
It is possible to commit no mistakes and still lose.

That is not a weakness, that is life.

Jean-Luc Picard - Star Trek: The Next Generation
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This chapter primarily contributes to the research task V, i.e., evaluating the effectiveness of
the semantification and translation system LACAST. In Section 5.1, we also extend LACAST semantic
LATEX translations to support more mathematical operators, including sums, products, integrals,
and limit notations. Hence, this chapter secondarily also contributes to research task IV, i.e.,
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Section 5.1. Evaluations on the Digital Library of Mathematical Functions

implementing an extension of the semantification approach to provide translations to CAS. We
evaluate LACAST on two different datasets: the DLMF and Wikipedia.

First, we evaluate LACAST on the DLMF to estimate the capabilities and limitations of our rule-
based translator on a semantic enhanced dataset. Translating formulae from the DLMF to CAS
can be considered simpler primarily for three reasons. First, the formulae are manually enhanced
and can be considered unambiguous in most cases. Second, the constraints of formulae are
directly attached to equations and therefore accessible to LACAST. Lastly, parts of equations in the
DLMF are linked to their definitions which allow to resolve substitutions and fetch additional
constraints. This meta information is either not available or given in the surrounding context
in Wikipedia articles which greatly harms the accessibility of this crucial data. Hence, we
presume that we achieve the best possible translations via LACAST on the DLMF. For evaluating
the capabilities of LACAST, we perform numeric and symbolic evaluation techniques to evaluate
a translation [3, 13]. We will further use these evaluation approaches to identify flaws in the
DLMF and CAS computations.

Next, we evaluate LACAST on Wikipedia as the direct successor of the previous Chapter 4. Here,
we use the full and final version of LACAST, including every improvement that has been discussed
throughout the thesis. Specifically, it actively uses all common knowledge pattern recognition
techniques discussed in Section 4.2.6.1, all heuristics for detecting math operators introduced in
Section 5.1.2, and the enhanced symbolic and numeric evaluation pipeline first outlined in [3]
and finally elaborated in Section 5.1.3. In combination with the automatic evaluation, we are
able to perform plausibility checks on complex mathematical formulae in Wikipedia.

This chapter is split in two parts following two main motivations behind them. In Section 5.1,
we elaborate the possibility to use LACAST translations to automatically verify entire DML and
CAS with one another. We specifically focus on the DLMF for our DML and Mathematica
and Maple for our general-purpose CAS. In Section 5.2, we use the final context-sensitive
version of LACAST introduced in Chapter 4, including every improvement introduced in the first
Section 5.1 of this chapter, with the goal to verify equations in Wikipedia articles. This chapter
finalizes the improvements of LACAST for semantic LATEX expressions (Section 5.1) and general
LATEX expressions (Section 5.2).

The content of Section 5.1 was published at the TACAS conference [8]. Some parts in Section 5.2
have also been previously published at the CICM conference [2]. Section 5.2, as the direct
successor of Chapter 4, is part of the aforementioned submission to the TPAMI journal [11].

5.1 Evaluations on the Digital Library of

Mathematical Functions

Digital Mathematical Library (DML) gather the knowledge and results from thousands of years
of mathematical research. Even though pure and applied mathematics are precise disciplines,
gathering their knowledge bases over many years results in issues which every digital library
shares: consistency, completeness, and accuracy. Likewise, CAS1 play a crucial role in the
modern era for pure and applied mathematics, and those fields which rely on them. CAS can be
used to simplify, manipulate, compute, and visualize mathematical expressions. Accordingly,

1In the sequel, the acronyms CAS and DML are used, depending on the context, interchangeably with their
plurals.
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Section 5.1. Evaluations on the Digital Library of Mathematical Functions

modern research regularly uses DML and CAS together. Nonetheless, DML [2, 10] and CAS [20,
100, 180] are not exempt from having bugs or errors. Durán et al. [100] even raised the rather
dramatic question: “can we trust in [CAS]?”

Existing comprehensive DML, such as the DLMF [98], are consistently updated and frequently
corrected with errata2. Although each chapter of the DLMF and its print analog The NIST

Handbook of Mathematical Functions [276] has been carefully written, edited, validated, and
proofread over many years, errors still remain. Maintaining a DML, such as the DLMF, is a
laborious process. Likewise, CAS are eminently complex systems, and in the case of commercial
products, often similar to black boxes in which the magic (i.e., the computations) happens in
opaque private code [100]. CAS, especially commercial products, are often exclusively tested
internally during development.

An independent examination process can improve testing and increase trust in the systems and
libraries. Hence, we want to elaborate on the following research question.

� ResearchQuestion

How can digital mathematical libraries and computer algebra systems be utilized to
improve and verify one another?

Our initial approach for answering this question is inspired by Cohl et al. [2]. In order to verify
a translation tool from a specific LATEX dialect to Maple , they perform symbolic and numeric
evaluations on equations from the DLMF. This approach presumes that a proven equation in
a DML must be also valid in a CAS. In turn, a disparity in between the DML and CAS would
lead to an issue in the translation process. However, assuming a correct translation, a disparity
would also indicate an issue either in the DML source or the CAS implementation. In turn,
we can take advantage of the same approach proposed by Cohl et al. [2] to improve and even
verify DML with CAS and vice versa. Unfortunately, previous efforts to translate mathematical
expressions from various formats, such as LATEX [3, 10], MathML [18], or OpenMath [152], to
CAS syntax show that the translation will be the most critical part of this verification approach.

In this section, we elaborate on the feasibility and limitations of the translation approach from
DML to CAS as a possible answer to our research question. We further focus on the DLMF as
our DML and the two general-purpose CAS Maple and Mathematica for this first study. This
relatively sharp limitation is necessary in order to analyze the capabilities of the underlying
approach to verify commercial CAS and large DML. The DLMF uses semantic macros internally
in order to disambiguate mathematical expressions [260, 403]. These macros help to mitigate the
open issue of retrieving sufficient semantic information from a context to perform translations
to formal languages [10, 18]. Further, the DLMF and general-purpose CAS have a relatively
large overlap in coverage of special functions and orthogonal polynomials. Since many of those
functions play a crucial role in a large variety of different research fields, we focus in this first
study mainly on these functions.

In particular, we extend the first version of LACAST [3] to increase the number of translatable func-
tions in the DLMF significantly. Current extensions include a new handling of constraints, the
support for the mathematical operators: sum, product, limit, and integral, as well as overcoming

2https://dlmf.nist.gov/errata/ [accessed 2021-05-01]
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Section 5.1. Evaluations on the Digital Library of Mathematical Functions

semantic hurdles associated with Lagrange (prime) notations commonly used for differentia-
tion. Further, we extend its support to include Mathematica using the freely available WED3

(hereafter, with Mathematica, we refer to the WED). These improvements allow us to cover
a larger portion of the DLMF, increase the reliability of the translations via LACAST, and allow
for comparisons between two major general-purpose CAS for the first time, namely Maple and
Mathematica. Finally, we provide open access to all the results contained within this paper4.

The section is structured as follows. Section 5.1.1 explains the data in the DLMF. Section 5.1.2
focus on the improvements of LACAST that had been made to make the translation as comprehen-
sive and reliable as possible for the upcoming evaluation. Section 5.1.3 explains the symbolic
and numeric evaluation pipeline. We will provide an in-depth discussion of that process in
Section 5.1.3. Subsequently, we analyze the results in Section 5.1.4. Finally, we conclude the
findings and provide an outlook for upcoming projects in Section 5.1.5.

Related Work Existing verification techniques for CAS often focus on specific subroutines
or functions [45, 58, 107, 148, 180, 185, 225, 228], such as a specific theorems [218], differential
equations [153], or the implementation of the math.h library [224]. Most common are verifica-
tion approaches that rely on intermediate verification languages [45, 148, 153, 180, 185], such as
Boogie [29, 225] orWhy3 [41, 185], which, in turn, rely on proof assistants and theorem provers,
such as Coq [37, 45], Isabelle [153, 167], or HOL Light [146, 148, 180]. Kaliszyk andWiedijk [180]
proposed on entire new CAS which is built on top of the proof assistant HOL Light so that
each simplification step can be proven by the underlying architecture. Lewis and Wester [228]
manually compared the symbolic computations on polynomials and matrices with seven CAS.
Aguirregabiria et al. [20] suggested to teach students the known traps and difficulties with
evaluations in CAS instead to reduce the overreliance on computational solutions.

We [2] developed the aforementioned translation tool LACAST, which translates expressions from
a semantically enhanced LACAST dialect to Maple. By evaluating the performance and accuracy of
the translations, we were able to discover a sign-error in one the DLMF’s equations [2]. While
the evaluation was not intended to verify the DLMF, the translations by the rule-based translator
LACAST provided sufficient robustness to identify issues in the underlying library. To the best of
our knowledge, besides this related evaluation via LACAST, there are no existing libraries or tools
that allow for automatic verification of DML.

5.1.1 The DLMF dataset

In the modern era, most mathematical texts (handbooks, journal publications, magazines,
monographs, treatises, proceedings, etc.) are written using the document preparation system
LATEX. However, the focus of LATEX is for precise control of the rendering mechanics rather than
for a semantic description of its content. In contrast, CAS syntax is coercively unambiguous
in order to interpret the input correctly. Hence, a transformation tool from DML to CAS
must disambiguate mathematical expressions. While there is an ongoing effort towards such a
process [14, 214, 329, 402, 408], there is no reliable tool available to disambiguate mathematics
sufficiently to date.

3https://www.wolfram.com/engine/ [accessed 2021-05-01]
4https://lacast.wmflabs.org/ [accessed 2021-10-01]
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Section 5.1. Evaluations on the Digital Library of Mathematical Functions

The DLMF contains numerous relations between functions and many other properties. It is
written in LATEX but uses specific semantic macros when applicable [403]. These semantic
macros represent a unique function or polynomial defined in the DLMF. Hence, the semantic
LATEX used in the DLMF is often unambiguous. For a successful evaluation via CAS, we also
need to utilize all requirements of an equation, such as constraints, domains, or substitutions.
The DLMF provides this additional data too and generally in a machine-readable form [403].
This data is accessible via the i-boxes (information boxes next to an equation marked with the
icon ). If the information is not given in the attached i-box or the information is incorrect, the
translation via LACAST would fail. The i-boxes, however, do not contain information about branch
cuts (see Section 5.1.4.1) or constraints. Constraints are accessible if they are directly attached
to an equation. If they appear in the text (or even a title), LACAST cannot utilize them. The test
dataset, we are using, was generated from DLMF Version 1.0.28 (2020-09-15) and contained
9,977 formulae with 1,505 defined symbols, 50,590 used symbols, 2,691 constraints, and 2,443
warnings for non-semantic expressions, i.e., expressions without semantic macros [403]. Note
that the DLMF does not provide access to the underlying LATEX source. Therefore, we added the
source of every equation to our result dataset.

5.1.2 Semantic LaTeX to CAS translation

The aforementioned translator LACAST was first developed by Greiner-Petter et al. [3, 10]. They
reported a coverage of 53.6% translations [3] for a manually selected part of the DLMF to the
CAS Maple. Afterward, they extended LACAST to perform symbolic and numeric evaluations on
the entire DLMF and reported a coverage of 58.8% translations [2]. This version of LACAST serves
as a baseline for our improvements. They reported a success rate of ∼16% for symbolic and
∼12% for numeric verifications.

Evaluating the baseline on the entire DLMF result in a coverage of only 31.6%. Hence, we first
want to increase the coverage of LACAST on the DLMF. To achieve this goal, we first increasing
the number of translatable semantic macros by manually defining more translation patterns
for special functions and orthogonal polynomials. For Maple, we increased the number from
201 to 261. For Mathematica, we define 279 new translation patterns which enables LACAST to
perform translations to Mathematica. Even though the DLMF uses 675 distinguished semantic
macros, we cover∼70% of all DLMF equations with our extended list of translation patterns (see
Zipf’s law for mathematical notations [14]). In addition, we implemented rules for translations
that are applicable in the context of the DLMF, e.g., ignore ellipsis following floating-point
values or \choose always refers to a binomial expression. Finally, we tackle the remaining
issues outlined by Cohl et al. [2] which can be categorized into three groups: (i) expressions of
which the arguments of operators are not clear, namely sums, products, integrals, and limits;
(ii) expressions with prime symbols indicating differentiation; and (iii) expressions that contain
ellipsis. While we solve some of the cases in Group (iii) by ignoring ellipsis following floating-
point values, most of these cases remain unresolved.

In the following, we first introduce the constraint handling via blueprints5. Next, we elaborate
our solutions for (i) in Section 5.1.2.2 and (ii) in Section 5.1.2.3.

5This subsection 5.1.2.1 was previously published by Cohl et al. [2].
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5.1.2.1 Constraint Handling

Correct assumptions about variable domains are essential for CAS systems, and not surprisingly
lead to significant improvements in the CAS ability to simplify. The DLMF provides constraint
(variable domain) metadata for formulae, and we have extracted this formula metadata. We have
incorporated these constraints as assumptions for the simplification process (see Section 5.1.3.1).
Note however, that a direct translation of the constraint metadata is usually not sufficient for a
CAS to be able to understand it. Furthermore, testing invalid values for numerical tests returns
incorrect results (see Section 5.1.3.2).

For instance different symbols must be interpreted differently depending on the usage. One
must be able to interpret correctly certain notations of this kind. For instance, one must be able
to interpret the command a,b\in A, which indicates that both variables a and b are elements
of the set A (or more generally a_1,\dots,a_n\in A). Similar conventions are often used for
variables being elements of other sets such as the sets of rational, real or complex numbers, or
for subsets of those sets.

Also, one must be able to interpret the constraints as variables in sets defined using an equals
notation such as n=0,1,2,\dots, which indicates that the variable n is a integer greater than
or equal to zero, or together n,m=0,1,2,\dots, both the variables n and m are elements of this
set. Since mathematicians who write LATEX are often casual about expressions such as these, one
should know that 0,1,2,\dots is the same as 0,1,\dots. Consistently, one must also be able
to correctly interpret infinite sets (represented as strings) such as =1,2,\dots, =1,2,3,\dots,
=-1,0,1,2,\dots, =0,2,4,\dots, or even =3,7,11,\dots, or =5,9,13,\dots. One must
be able to interpret finite sets such as =1,2, =1,2,3, or =1,2,\dots,N.

An entire language of translation of mathematical notation must be understood in order for
CAS to be able to understand constraints. In mathematics, the syntax of constraints is often
very compact and contains textual explanations. Translating constraints from LATEX to CAS is
a compact task because CAS only allow precise and strict syntax formats. For example, the
typical constraint 0 < x < 1 is invalid if directly translated to Maple, because it would need to
be translated to two separate constraints, namely x > 0 and x < 1.

We have improved the handling and translation of variable constraints/assumptions for simplifi-
cation and numerical evaluation. Adding assumptions about the constrained variables improves
the effectiveness of Maple’s simplify function. Our previous approach for constraint handling
for numerical tests was to extract a pre-defined set of test values and to filter invalid values
according to the constraints. Because of this strategy, there often was no longer any valid values
remaining after the filtering. To overcome this issue, instead, we chose a single numerical value
for a variable that appears in a pre-defined constraint. For example, if a test case contains the
constraint 0 < x < 1, we chose x = 1

2 .

A naive approach for this strategy, is to apply regular expressions to identify a match between
a constraint and a rule. However, we believed that this approach does not scale well when it
comes to more and more pre-defined rules and more complex constraints. Hence, we used the
POM-tagger to create blueprints of the parse trees for pre-defined rules. For the example LATEX
constraint $0 < x < 1$, rendered as 0 < x < 1, our textual rule is given by

0 < var < 1 ==> 1/2.
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The parse tree for this blueprint constraint contains five tokens, where var is an alphanumerical
token that is considered to be a placeholder for a variable.

We can also distinguish multiple variables by adding an index to the placeholder. For example,
the rule we generated for the mathematical LATEX constraint $x,y \in \Real$, where \Real
is the semantic macro which represents the set of real numbers, and rendered as x, y ∈ R, is
given by

var1, var2 \in \Real ==> 3/2,3/2.

A constraint will match one of the blueprints if the number, the ordering, and the type of the
tokens are equal. Allowed matching tokens for the variable placeholders are Latin or Greek
letters and alphanumerical tokens.

5.1.2.2 Parse sums, products, integrals, and limits

Here we consider common notations for the sum, product, integral, and limit operators. For
these operators, one may consider Mathematically Essential Operator Metadata (MEOM). For
all these operators, the MEOM includes argument(s) and bound variable(s). The operators act
on the arguments, which are themselves functions of the bound variable(s). For sums and
products, the bound variables are referred to as indices. The bound variables for integrals6 are
called integration variables. For limits, the bound variables are continuous variables (for limits of
continuous functions) and indices (for limits of sequences). For integrals, MEOM include precise
descriptions of regions of integration (e.g., piecewise continuous paths/intervals/regions). For
limits, MEOM include limit points (e.g., points in Rn or Cn for n∈N), as well as information
related to whether the limit to the limit point is independent or dependent on the direction in
which the limit is taken (e.g., one-sided limits).

For a translation ofmathematical expressions involving the LATEX commands \sum, \int, \prod,
and \lim, we must extract the MEOM. This is achieved by (a) determining the argument of the
operator and (b) parsing corresponding subscripts, superscripts, and arguments. For integrals,
the MEOM may be complicated, but certainly contains the argument (function which will be
integrated), bound (integration) variable(s) and details related to the region of integration. Bound
variable extraction is usually straightforward since it is usually contained within a differential
expression (infinitesimal, pushforward, differential 1-form, exterior derivative, measure, etc.),
e.g., dx. Argument extraction is less straightforward since even though differential expressions
are often given at the end of the argument, sometimes the differential expression appears in the

numerator of a fraction (e.g.,
∫ f(x)dx

g(x) ). In which case, the argument is everything to the right of
the \int (neglecting its subscripts and superscripts) up to and including the fraction involving
the differential expression (which may be replaced with 1). In cases where the differential
expression is fully to the right of the argument, then it is a termination symbol. Note that
some scientists use an alternate notation for integrals where the differential expression appears
immediately to the right of the integral, e.g.,

∫
dxf(x). However, this notation does not appear

in the DLMF. If such notations are encountered, we follow the same approach that we used for
sums, products, and limits (see Section 5.1.2.2).

6The notion of integrals includes: antiderivatives (indefinite integrals), definite integrals, contour integrals,
multiple (surface, volume, etc.) integrals, Riemannian volume integrals, Riemann integrals, Lebesgue integrals,
Cauchy principal value integrals, etc.
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Extraction of variables and corresponding MEOM The subscripts and superscripts of
sums, products, limits, and integrals may be different for different notations and are there-
fore challenging to parse. For integrals, we extract the bound (integration) variable from the
differential expression. For sums and products, the upper and lower bounds may appear in
the subscript or superscript. Parsing subscripts is comparable with the problem of parsing
constraints [2] (which are often not consistently formulated). We overcame this complexity
by manually defining patterns of common constraints and refer to them as blueprints (see
Section 5.1.2.1). This blueprint pattern approach allows LACAST to identify the MEOM in the sub-
and superscripts.

For our MEOM blueprints, we define three placeholders: varN for single identifiers or a list
of identifiers (delimited by commas), numL1, and numU1, representing lower and upper bound
expressions, respectively. In addition, for sums and products, we need to distinguish between
including and excluding boundaries, e.g., 1 < k and 1 ≤ k. An excluding relation, such as
0<k <10, must be interpreted as a sum from 1 to 9. Table 5.1 shows the final set of sum/product
subscript blueprints.

Standard notations may not explicitly show infinity boundaries. Hence, we set the default
boundaries to infinity. For limit expressions we need different blueprints to capture the limit
direction. We cover the standard notations with ‘var1 \to numL*’, where * is either +, -,
^+, ^- or absent and the different arrow-notations where \to can be either \downarrow,
\uparrow, \searrow, or \nearrow, specifying one-sided limits. Note that the arrow-notation
(besides \to) is not used in the DLMF and thus, has no effect on the performance of LACAST
in our evaluation. Note further that, while the blueprint approach is very flexible, it cannot
handle every possible scenario, such as the divisor sum

∑
(p−1)|2n 1/p [98, (24.10.1)]. Proper

translations of such complex cases may even require symbolic manipulation, which is currently
beyond the capabilities of LACAST.

Table 5.1: The table contains examples of the blueprints for subscripts of sums/products includ-
ing an example expression that matches the blueprint.

Blueprints Example

numL1 \leq var1 < var2 \leq numU1 0≤n<k ≤10
-\infty < varN < \infty −∞<n<∞

numL1 < varN < numU1 0<n, k <10
numL1 \leq varN < numU1 0≤k <10
numL1 < varN \leq numU1 0<n, k ≤10

varN \leq numU1 n, k ≤N + 5
varN \in numL1 n∈{1, 2, 3}

varN = numL1 n, k, l=1

Identification of operator arguments Once we have extracted the bound variable for
sums, products, and limits, we need to determine the end of the argument. We analyzed all
sums in the DLMF and developed a heuristic that covers all the formulae in the DLMF and
potentially a large portion of general mathematics. Let x be the extracted bound variable. For
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sums, we consider a summand as a part of the argument if (I) it is the very first summand
after the operation; or (II) x is an element of the current summand; or (III) x is an element
of the following summand (subsequent to the current summand) and there is no termination
symbol between the current summand and the summand which contains x with an equal or
lower depth according to the parse tree (i.e., closer to the root). We consider a summand as a
single logical construct since addition and subtraction are granted a lower operator precedence
than multiplication in mathematical expressions. Similarly, parentheses are granted higher
precedence and, thus, a sequence wrapped in parentheses is part of the argument if it obeys the
rules (I-III). Summands, and such sequences, are always entirely part of sums, products, and
limits or entirely not.

A termination symbol always marks the end of the argument list. Termination symbols are
relation symbols, e.g., =, �=, ≤, closing parentheses or brackets, e.g., ), ], or >, and other
operators with MEOMs, if and only if, they define the same bound variable. If x is part of a
subsequent operation, then the following operator is considered as part of the argument (as
in (II)). However, a special condition for termination symbols is that it is only a termination
symbol for the current chain of arguments. Consider a sum over a fraction of sums. In that
case, we may reach a termination symbol within the fraction. However, the termination symbol
would be deeper inside the parse tree as compared to the current list of arguments. Hence, we
used the depth to determine if a termination symbol should be recognized or not. Consider an
unusual notation with the binomial coefficient as an example

n∑
k=0

(
n

k

)
=

n∑
k=0

∏n
m=1 m∏k

m=1 m
∏n−k

m=1m
. (5.1)

This equation contains two termination symbols, marked red and green. The red termination
symbol = is obviously for the first sum on the left-hand side of the equation. The green
termination symbol

∏
terminates the product to the left because both products run over the

same bound variable m. In addition, none of the other = signs are termination symbols for the
sum on the right-hand side of the equation because they are deeper in the parse tree and thus
do not terminate the sum.

Note that varN in the blueprints also matches multiple bound variable, e.g.,
∑

m,k∈A. In such
cases, x from above is a list of bound variables and a summand is part of the argument if one
of the elements of x is within this summand. Due to the translation, the operation will be
split into two preceding operations, i.e.,

∑
m,k∈A becomes

∑
m∈A

∑
k∈A. Figure 5.1 shows the

extracted arguments for some example sums. The same rules apply for extraction of arguments
for products and limits.

∑N
n=1 c + 2

∑N
n=1 c + c

n

∑N
n=1 c + n2 + N

∑N
n=1 n +

∑N
k=1 k

∑N
n=1 n +

∑n
k=1 k

∑N
n=1 c +

∑N
k=1 k + n

Figure 5.1: Example argument identifications for sums.
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5.1.2.3 Lagrange’s notation for differentiation and derivatives

Another remaining issue is the Lagrange (prime) notation for differentiation, since it does not
outwardly provide sufficient semantic information. This notation presents two challenges. First,
we do not knowwith respect to which variable the differentiation should be performed. Consider
for example theHurwitz zeta function ζ(s, a) [98, §25.11]. In the case of a differentiation ζ ′(s, a),
it is not clear if the function should be differentiated with respect to s or a. To remedy this
issue, we analyzed all formulae in the DLMF which use prime notations and determined which
variables (slots) for which functions represent the variables of the differentiation. Based on
our analysis, we extended the translation patterns by meta information for semantic macros
according to the slot of differentiation. For instance, in the case of the Hurwitz zeta function, the
first slot is the slot for prime differentiation, i.e., ζ ′(s, a) = d

dsζ(s, a). The identified variables
of differentiations for the special functions in the DLMF can be considered to be the standard
slots of differentiations, e.g., in other DML, ζ ′(s, a) most likely refers to d

dsζ(s, a).

The second challenge occurs if the slot of differentiation contains complex expressions rather
than single symbols, e.g., ζ ′(s2, a). In this case, ζ ′(s2, a) = d

d(s2)ζ(s2, a) instead of d
dsζ(s2, a).

Since CAS often do not support derivatives with respect to complex expressions, we use the
inbuilt substitution functions7 in the CAS to overcome this issue. To do so, we use a temporary
variable temp for the substitution. CAS perform substitutions from the inside to the outside.
Hence, we can use the same temporary variable temp even for nested substitutions. Table 5.2
shows the translation performed for ζ ′(s2, a). CAS may provide optional arguments to calculate
the derivatives for certain special functions, e.g., Zeta(n,z,a) in Maple for the n-th derivative
of the Hurwitz zeta function. However, this shorthand notation is generally not supported
(e.g., Mathematica does not define such an optional parameter). Our substitution approach is
more lengthy but also more reliable. Unfortunately, lengthy expressions generally harm the
performance of CAS, especially for symbolic manipulations. Hence, we have a genuine interest
in keeping translations short, straightforward and readable. Thus, the substitution translation
pattern is only triggered if the variable of differentiation is not a single identifier. Note that this
substitution only triggers on semantic macros. Generic functions, including prime notations,
are still skipped.

Table 5.2: Example translations for the prime derivative of the Hurwitz zeta function with
respect to s2.

System ζ ′(s2, a)
DLMF \Hurwitzzeta’@{s^2}{a}

Maple
subs(temp=(s)^(2),

diff(Zeta(0,temp,a),temp$(1)))

D[HurwitzZeta[temp,a],{temp,1}]
Mathematica

/.temp->(s)^(2)

A related problem to MEOM of sums, products, integrals, limits, and differentiations are the
notations of derivatives. The semantic macro for derivatives \deriv{w}{x} (rendered as dw

dx ) is

7Note that Maple also support an evaluation substitution via the two-argument eval function. Since our
substitution only triggers on semantic macros, we only use subs if the function is defined in Maple. In turn, as far
as we know, there is no practical difference between subs and the two-argument eval in our case.
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often used with an empty first argument to render the function behind the derivative notation,
e.g., \deriv{}{x}\sin@{x} for d

dx sin x. This leads to the same problem we faced above for
identifying MEOMs. In this case, we use the same heuristic as we did for sums, products, and
limits. Note that derivatives may be written following the function argument, e.g., sin(x) d

dx . If
we are unable to identify any following summand that contains the variable of differentiation
before we reach a termination symbol, we look for arguments prior to the derivative according
to the heuristic (I-III).

Wronskians With the support of prime differentiation described above, we are also able
to translate the Wronskian [98, (1.13.4)] to Maple and Mathematica. A translation requires
one to identify the variable of differentiation from the elements of the Wronskian, e.g., z for
W {Ai(z), Bi(z)} from [98, (9.2.7)]. We analyzed all Wronskians in the DLMF and discovered
that most Wronskians have a special function in its argument—such as the example above.
Hence, we can use our previously insertedmetadata information about the slots of differentiation
to extract the variable of differentiation from the semantic macros. If the semantic macro
argument is a complex expression, we search for the identifier in the arguments that appear
in both elements of the Wronskian. For example, in W {Ai(za), ζ(z2, a)}, we extract z as the
variable since it is the only identifier that appears in the arguments za and z2 of the elements.
This approach is also used when there is no semantic macro involved, i.e., from W {za, z2} we
extract z as well. If LACAST extracts multiple candidates or none, it throws a translation exception.

5.1.3 Evaluation of the DLMF using CAS
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Figure 5.2: The workflow of the evaluation engine and the overall results. Errors and abortions
are not included. The generated dataset contains 9, 977 equations. In total, the case analyzer
splits the data into 10, 930 cases of which 4, 307 cases were filtered. This sums up to a set of
6, 623 test cases in total.

For evaluating the DLMF with Maple and Mathematica, we symbolically and numerically verify
the equations in the DLMF with CAS. If a verification fails, symbolically and numerically, we
identified an issue either in the DLMF, the CAS, or the verification pipeline. Note that an issue
does not necessarily represent errors/bugs in the DLMF, CAS, or LACAST (see the discussion
about branch cuts in Section 5.1.4.1). Figure 5.2 illustrates the pipeline of the evaluation engine.
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First, we analyze every equation in the DLMF (hereafter referred to as test cases). A case
analyzer splits multiple relations in a single line into multiple test cases. Note that only the
adjacent relations are considered, i.e., with f(z) = g(z) = h(z), we generate two test cases
f(z) = g(z) and g(z) = h(z) but not f(z) = h(z). In addition, expressions with ± and ∓ are
split accordingly, e.g., i±i = e∓π/2 [98, (4.4.12)] is split into i+i = e−π/2 and i−i = e+π/2. The
analyzer utilizes the attached additional information in each line, i.e., the URL in the DLMF,
the used and defined symbols, and the constraints. If a used symbol is defined elsewhere in
the DLMF, it performs substitutions. For example, the multi-equation [98, (9.6.2)] is split into
six test cases and every ζ is replaced by 2

3z3/2 as defined in [98, (9.6.1)]. The substitution is
performed on the parse tree of expressions [10]. A definition is only considered as such, if
the defining symbol is identical to the equation’s left-hand side. That means, z = (3

2ζ)3/2 [98,
(9.6.10)] is not considered as a definition for ζ . Further, semantic macros are never substituted by
their definitions. Translations for semantic macros are exclusively defined by the authors. For
example, the equation [98, (11.5.2)] contains the StruveKν(z) function. SinceMathematica does
not contain this function, we defined an alternative translation to its definition Hν(z)−Yν(z) in
[98, (11.2.5)] with the Struve function Hν(z) and the Bessel function of the second kind Yν(z),
because both of these functions are supported by Mathematica. The second entry in Table E.2
in Appendix E available in the electronic supplementary material shows the translation for this
test case.

Next, the analyzer checks for additional constraints defined by the used symbols recursively.
The mentioned Struve Kν(z) test case [98, (11.5.2)] contains the Gamma function. Since the
definition of the Gamma function [98, (5.2.1)] has a constraint �z > 0, the numeric evaluation
must respect this constraint too. For this purpose, the case analyzer first tries to link the variables
in constraints to the arguments of the functions. For example, the constraint �z > 0 sets a
constraint for the first argument z of the Gamma function. Next, we check all arguments in the
actual test case at the same position. The test case contains Γ(ν + 1/2). In turn, the variable
z in the constraint of the definition of the Gamma function �z > 0 is replaced by the actual
argument used in the test case. This adds the constraint �(ν + 1/2) > 0 to the test case. This
process is performed recursively. If a constraint does not contain any variable that is used in
the final test case, the constraint is dropped.

In total, the case analyzer would identify four additional constraints for the test case [98,
(11.5.2)]8. Note that the constraints may contain variables that do not appear in the actual test
case, such as �ν +k +1 > 0. Such constraints do not have any effect on the evaluation because
if a constraint cannot be computed to true or false, the constraint is ignored. Unfortunately,
this recursive loading of additional constraints may generate impossible conditions in certain
cases, such as |Γ(iy)| [98, (5.4.3)]. There are no valid real values of y such that �(iy) > 0. In
turn, every test value would be filtered out, and the numeric evaluation would not verify the
equation. However, such cases are the minority and we were able to increase the number of
correct evaluations with this feature.

To avoid a large portion of incorrect calculations, the analyzer filters the dataset before trans-
lating the test cases. We apply two filter rules to the case analyzer. First, we filter expressions
that do not contain any semantic macros. Due to the limitations of LACAST, these expressions
most likely result in wrong translations. Further, it filters out several meaningless expressions

8See Table E.2 in Appendix E available in the electronic supplementary material for the applied constraints
(including the directly attached constraint �z > 0 and the manually defined global constraints from Figure 5.3).
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that are not verifiable, such as z = x in [98, (4.2.4)]. The result dataset flag these cases with
‘Skipped - no semantic math’. Note that the result dataset still contains the translations for these
cases to provide a complete picture of the DLMF. Second, we filter expressions that contain
ellipsis9 (e.g., \cdots), approximations, and asymptotics (e.g., O(z2)) since those expressions
cannot be evaluated with the proposed approach. Further, a definition is skipped if it is not a
definition of a semantic macro, such as [98, (2.3.13)], because definitions without an appropriate
counterpart in the CAS are meaningless to evaluate. Definitions of semantic macros, on the
other hand, are of special interest and remain in the test set since they allow us to test if a
function in the CAS obeys the actual mathematical definition in the DLMF. If the case analyzer
(see Figure 5.2) is unable to detect a relation, i.e., split an expression on <, ≤, ≥, >, =, or
�=, the line in the dataset is also skipped because the evaluation approach relies on relations
to test. After splitting multi-equations (e.g., ±, ∓, a = b = c), filtering out all non-semantic
expressions, non-semantic macro definitions, ellipsis, approximations, and asymptotics, we end
up with 6, 623 test cases in total from the entire DLMF.

After generating the test case with all constraints, we translate the expression to the CAS
representation. Every successfully translated test case is then symbolically verified, i.e., the
CAS tries to simplify the difference of an equation to zero. Non-equation relations simplifies
to Booleans. Non-simplified expressions are verified numerically for manually defined test
values, i.e., we calculate actual numeric values for both sides of an equation and check their
equivalence.

5.1.3.1 Symbolic Evaluation

The symbolic evaluation was performed forMaple as described in the following (taken from [2]).
Originally, we used the standalone Maple simplify function directly, to symbolically simplify
translated formulae. See [26, 28, 148, 190] for other examples of where Maple and other CAS
simplification procedures has been used elsewhere in the literature. Symbolic simplification
is performed either on the difference or the division of the left-hand sides and the right-hand
sides of extracted formulae. Thus the expected outcome should be respectively either a 0 or 1.
Note that other outcomes, such as other numerical outcomes, are particularly interesting, since
these may be an indication of errors in the formulae.

In Maple, symbolic simplifications are made using internally stored relations to other functions.
If a simplification is available, then in practice it often has to be performed over multiple defined
relevant relations. Often, this process fails and Maple is unable to simplify the said expression.
We have adopted some techniques which assist Maple in this process. For example, forcing
an expression to be converted into another specific representation, in a pre-processing step,
could potentially improve the odds that Maple is able to recognize a possible simplification.
By trial-and-error, we discovered (and implemented) the following pre-processing steps which
significantly improve the simplification process:

• conversion to exponential representation;

• conversion to hypergeometric representation;

• expansion of expressions (for example (x+y)^2); and

• combined expansion and conversion processes.

9Note that we filter out ellipsis (e.g., \cdots) but not single dots (e.g., \cdot).
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Figure 5.3: The ten numeric test values in the complex plane for general variables. The dashed
line represents the unit circle |z| = 1. At the right, we show the set of values for special variable
values and general global constraints. On the right, i is referring to a generic variable and not
to the imaginary unit.

In comparison to the original approach described in [2], we use the newer version Maple 2020
now. Another feature we added to LACAST is the support of packages in Maple. Some functions
are only available in modules (packages) that must be preloaded, such as QPochhammer in
the package QDifferenceEquations10. The general simplify method in Maple does not
cover q-hypergeometric functions. Hence, whenever LACAST loads functions from the q-hyper-
geometric package, the better performing QSimplify method is used. With the WED and
the new support for Mathematica in LACAST, we perform the symbolic and numeric tests for
Mathematica as well. The symbolic evaluation in Mathematica relies on the full simplification11.
For Maple and Mathematica, we defined the global assumptions x, y ∈ R and k, n, m ∈ N.
Constraints of test cases are added to their assumptions to support simplification. Adding
more global assumptions for symbolic computation generally harms the performance since
CAS internally uses assumptions for simplifications. It turned out that by adding more custom
assumptions, the number of successfully simplified expressions decreases.

5.1.3.2 Numerical Evaluation

Defining an accurate test set of values to analyze an equivalence can be an arbitrarily complex
process. It would make sense that every expression is tested on specific values according to the
containing functions. However, this laborious process is not suitable for evaluating the entire
DML and CAS. It makes more sense to develop a general set of test values that (i) generally
covers interesting domains and (ii) avoid singularities, branch cuts, and similar problematic
regions. Considering these two attributes, we come up with the ten test points illustrated in
Figure 5.3. It contains four complex values on the unit circle and six points on the real axis. The
test values cover the general area of interest (complex values in all four quadrants, negative
and positive real values) and avoid the typical singularities at {0, ±1, ±i}. In addition, several
variables are tied to specific values for entire sections. Hence, we applied additional global
constraints to the test cases.

10https://jp.maplesoft.com/support/help/Maple/view.aspx?path=QDifferenceEquations/
QPochhammer [accessed 2021-05-01]

11https://reference.wolfram.com/language/ref/FullSimplify.html [accessed 2021-05-01]
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The numeric evaluation engine heavily relies on the performance of extracting free variables
from an expression. Maple does not provide a function to extract free variables from an ex-
pression. Hence, we implemented a custom method first. Variables are extracted by identifying
all names [36]12 from an expression. This will also extract constants which need to be deleted
from the list first. Unfortunately, inbuilt functions in CAS, if available, and our custom im-
plementation for Maple are not very reliable. Mathematica has the undocumented function
Reduce‘FreeVariables for this purpose. However, both systems, the custom solution in
Maple and the inbuilt Mathematica function, have problems distinguishing free variables of
entire expressions from the bound variables in MEOMs, e.g., integration and continuous vari-
ables. Mathematica sometimes does not extract a variable but returns the unevaluated input
instead. We regularly faced this issue for integrals. However, we discovered one example with-
out integrals. For EulerE[n,0] from [98, (24.4.26)], we expected to extract {n} as the set of
free variables but instead received a set of the unevaluated expression itself {EulerE[n,0]}13.
Since the extended version of LACAST handles operators, including bound variables of MEOMs,
we drop the use of internal methods in CAS and extend LACAST to extract identifiers from an
expression. During a translation process, LACAST tags every single identifier as a variable, as
long as it is not an element of a MEOM. This simple approach proves to be very efficient
since it is implemented alongside the translation process itself and is already more powerful as
compared to the existing inbuilt CAS solutions. We defined subscripts of identifiers as a part of
the identifier, e.g., z1 and z2 are extracted as variables from z1 + z2 rather than z.

The general pipeline for a numeric evaluationworks as follows. First, we replace all substitutions
and extract the variables from the left- and right-hand sides of the test expression via LACAST.
For the previously mentioned example of the Struve function [98, (11.5.2)], LACAST identifies two
variables in the expression, ν and z. According to the values in Figure 5.3, ν and z are set to the
general ten values. A numeric test contains every combination of test values for all variables.
Hence, we generate 100 test calculations for [98, (11.5.2)]. Afterward, we filter the test values
that violate the attached constraints. In the case of the Struve function, we end up with 25 test
cases (see also Table E.2 in Appendix E available in the electronic supplementary material).

In addition, we apply a limit of 300 calculations for each test case and abort a computation after
30 seconds due to computational limitations. If the test case generates more than 300 test values,
only the first 300 are used. Finally, we calculate the result for every remaining test value, i.e.,
we replace every variable by their value and calculate the result. The replacement is done by
Mathematica’s ReplaceAll method because the more appropriate method With, for unknown
reasons, does not always replace all variables by their values. We wrap test expressions in
Normal for numeric evaluations to avoid conditional expressions, which may cause incorrect
calculations (see Section 5.1.4.1 for a more detailed discussion of conditional outputs). After
replacing variables by their values, we trigger numeric computation. If the absolute value of
the result is below the defined threshold of 0.001 or true (in the case of inequalities), the test
calculation is considered successful. A numeric test case is only considered successful if and
only if every test calculation was successful. If a numeric test case fails, we store the information
on which values it failed and how many of these were successful.

12A name in Maple is a sequence of one or more characters that uniquely identifies a command, file, variable, or
other entity.

13The bug was reported to and confirmed by Wolfram Research Version 12.0.

Chapter 5

Qualitative and Quantitative Evaluations
127

https://dlmf.nist.gov/24.4.E26
https://dlmf.nist.gov/11.5.E2
https://dlmf.nist.gov/11.5.E2


Section 5.1. Evaluations on the Digital Library of Mathematical Functions

5.1.4 Results

The translations to Maple and Mathematica, the symbolic results, the numeric computations,
and an overview PDF of the reported bugs to Mathematica are available online14. In the fol-
lowing, we mainly focus on Mathematica because of page limitations and because Maple has
been investigated more closely by [2]. The results for Maple are also available online. Com-
pared to the baseline (≈ 31%), our improvements doubled the amount translations (≈ 62%)
for Maple and reach ≈ 71% for Mathematica. The majority of expressions that cannot be
translated contain macros that have no adequate translation pattern to the CAS, such as the
macros for interval Weierstrass lattice roots [98, §23.3(i)] and the multivariate hypergeometric
function [98, (19.16.9)]. Other errors (6% for Maple and Mathematica) occur for several reasons.
For example, out of the 418 errors in translations to Mathematica, 130 caused an error because
the MEOM of an operator could not be extracted, 86 contained prime notations that do not
refer to differentiations, 92 failed because of the underlying LATEX parser [402], and in 46 cases,
the arguments of a DLMF macro could not be extracted.

Out of 4,713 translated expressions, 1,235 (26.2%) were successfully simplified by Mathematica
(1,084 of 4,114 or 26.3% in Maple). For Mathematica, we also count results that are equal to 0
under certain conditions as successful (called ConditionalExpression). We identified 65 of
these conditional results: 15 of the conditions are equal to constraints that were provided in the
surrounding text but not in the info box of the DLMF equation; 30 were produced due to branch
cut issues (see Section 5.1.4.1); and 20 were the same as attached in the DLMF but reformulated,
e.g., z ∈ C\(1, ∞) from [98, (25.12.2)] was reformulated to 
z �= 0 ∨ �z < 1. The remaining
translated but not symbolically verified expressions were numerically evaluated for the test
values in Figure 5.3. For the 3,474 cases, 784 (22.6%) were successfully verified numerically by
Mathematica (698 of 2,618 or 26.7% byMaple15). For 1,784 the numeric evaluation failed. In the
evaluation process, 655 computations timed out and 180 failed due to errors in Mathematica. Of
the 1,784 failed cases, 691 failed partially, i.e., therewas at least one successful calculation among
the tested values. For 1,091 all test values failed. The Appendix E, available in the electronic
supplementary material, provides a Table E.2 with the results for three sample test cases. The
first case is a false positive evaluation because of a wrong translation. The second case is valid,
but the numeric evaluation failed due to a bug in Mathematica (see next subsection). The last
example is valid and was verified numerically but was too complex for symbolic verifications.

5.1.4.1 Error Analysis

The numeric tests’ performance strongly depends on the correct attached and utilized informa-
tion. The example [98, (1.4.8)] from the DLMF

d2f

dx2 = d
dx

(
df

dx

)
, (5.2)

illustrates the difficulty of the task on a relatively easy case16. Here, the argument of f was
not explicitly given, such as in f(x). Hence, LACAST translated f as a variable. Unfortunately,

14https://lacast.wmflabs.org/ [accessed 2021-10-01]
15Due to computational issues, 120 cases must have been skipped manually. 292 cases resulted in an error during

symbolic verification and, therefore, were skipped also for numeric evaluations. Considering these skipped cases as
failures, decreases the numerically verified cases to 23% in Maple.

16This is the first example in Table E.2
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this resulted in a false verification symbolically and numerically. This type of error mostly
appears in the first three chapters of the DLMF because they use generic functions frequently.
We hoped to skip such cases by filtering expressions without semantic macros. Unfortunately,
this derivative notation uses the semantic macro deriv. In the future, we filter expressions that
contain semantic macros that are not linked to a special function or orthogonal polynomial.

As an attempt to investigate the reliability of the numeric test pipeline, we can run numeric
evaluations on symbolically verified test cases. Since Mathematica already approved a trans-
lation symbolically, the numeric test should be successful if the pipeline is reliable. Of the
1,235 symbolically successful tests, only 94 (7.6%) failed numerically. None of the failed test
cases failed entirely, i.e., for every test case, at least one test value was verified. Manually
investigating the failed cases reveal 74 cases that failed due to an Indeterminate response
from Mathematica and 5 returned infinity, which clearly indicates that the tested numeric
values were invalid, e.g., due to testing on singularities. Of the remaining 15 cases, two were
identical: [98, (15.9.2)] and [98, (18.5.9)]. This reduces the remaining failed cases to 14. We
evaluated invalid values for 12 of these because the constraints for the values were given in the
surrounding text but not in the info boxes. The remaining 2 cases revealed a bug in Mathematica
regarding conditional outputs (see below). The results indicate that the numeric test pipeline is
reliable, at least for relatively simple cases that were previously symbolically verified. The main
reason for the high number of failed numerical cases in the entire DLMF (1,784) are due to
missing constraints in the i-boxes and branch cut issues (see Section 5.1.4.1), i.e., we evaluated
expressions on invalid values.

Bug reports Mathematica has trouble with certain integrals, which, by default, generate
conditional outputs if applicable. With themethodNormal, we can suppress conditional outputs.
However, it only hides the condition rather than evaluating the expression to a non-conditional
output. For example, integral expressions in [98, (10.9.1)] are automatically evaluated to the
Bessel function J0(|z|) for the condition17 z ∈ R rather than J0(z) for all z ∈ C. Setting the
GenerateConditions18 option to None does not change the output. Normal only hides z ∈ R

but still returns J0(|z|). To fix this issue, for example in (10.9.1) and (10.9.4), we are forced to
set GenerateConditions to false.

Setting GenerateConditions to false, on the other hand, reveals severe errors in several other
cases. Consider

∫ ∞
z t−1e−t dt [98, (8.4.4)], which gets evaluated to Γ(0, z) but (condition) for

�z > 0 ∧ 
z = 0. With GenerateConditions set to false, the integral incorrectly evaluates
to Γ(0, z) + ln(z). This happened with the 2 cases mentioned above. With the same setting,
the difference of the left- and right-hand sides of [98, (10.43.8)] is evaluated to 0.398942 for
x, ν = 1.5. If we evaluate the same expression on x, ν = 3

2 the result is Indeterminate due
to infinity. For this issue, one may use NIntegrate rather than Integrate to compute the
integral. However, evaluating via NIntegrate decreases the number of successful numeric
evaluations in general. We have revealed errors with conditional outputs in (8.4.4), (10.22.39),
(10.43.8-10), and (11.5.2) (in [98]). In addition, we identified one critical error in Mathematica.
For [98, (18.17.47)], WED (Mathematica’s kernel) ran into a segmentation fault (core dumped)

for n > 1. The kernel of the full version of Mathematica gracefully died without returning an
output19.

17J0(x) with x ∈ R is even. Hence, J0(|z|) is correct under the given condition.
18https://reference.wolfram.com/language/ref/GenerateConditions.html [accessed 2021-05-01]
19All errors were reported to and confirmed by Wolfram Research.
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BesidesMathematica, we also identified several issues in the DLMF. None of the newly identified
issues were critical, such as the reported sign error from the previous project [2], but generally
refer to missing or wrong attached semantic information. With the generated results, we can
effectively fix these errors and further semantically enhance the DLMF. For example, some
definitions are not marked as such, e.g., Q(z) =

∫ ∞
0 e−ztq(t) dt [98, (2.4.2)]. In [98, (10.24.4)],

ν must be a real value but was linked to a complex parameter and x should be positive real. An
entire group of cases [98, (10.19.10-11)] also discovered the incorrect use of semantic macros. In
these formulae, Pk(a) and Qk(a) are defined but had been incorrectly marked up as Legendre
functions going all the way back to DLMF Version 1.0.0 (May 7, 2010). In some cases, equations
are mistakenly marked as definitions, e.g., [98, (9.10.10)] and [98, (9.13.1)] are annotated as
local definitions of n. We also identified an error in LACAST, which incorrectly translated the
exponential integrals E1(z), Ei(x) and Ein(z) (defined in [98, §6.2(i)]). A more explanatory
overview of discovered, reported, and fixed issues in the DLMF, Mathematica, and Maple is
provided in Appendix D available in the electronic supplementary material.

Branch cut issues Problems that we regularly faced during evaluation are issues related to
multi-valued functions. Multi-valued functions map values from a domain to multiple values in
a codomain and frequently appear in the complex analysis of elementary and special functions.
Prominent examples are the inverse trigonometric functions, the complex logarithm, or the
square root. A proper mathematical description of multi-valued functions requires the com-
plex analysis of Riemann surfaces. Riemann surfaces are one-dimensional complex manifolds
associated with a multi-valued function. One usually multiplies the complex domain into a
many-layered covering space. The correct properties of multi-valued functions on the complex
plane may no longer be valid by their counterpart functions on CAS, e.g., (1/z)w and 1/(zw)
for z, w ∈ C and z �= 0. For example, consider z, w ∈ C such that z �= 0. Then mathemati-
cally, (1/z)w always equals 1/(zw) (when defined) for all points on the Riemann surface with
fixed w. However, this should certainly not be assumed to be true in CAS, unless very specific
assumptions are adopted (e.g., w ∈ Z, z > 0). For all modern CAS20, this equation is not true.
Try, for instance, w = 1/2. Then (1/z)1/2 − 1/z1/2 �= 0 on CAS, nor for w being any other
rational non-integer number.

In order to compute multi-valued functions, CAS choose branch cuts for these functions so that
they may evaluate them on their principal branches. Branch cuts may be positioned differently
among CAS [84], e.g., arccot(−1

2) ≈ 2.03 in Maple but is ≈ −1.11 in Mathematica. This is
certainly not an error and is usually well documented for specific CAS [108, 171]. However,
there is no central database that summarizes branch cuts in different CAS or DML. The DLMF
as well, explains and defines their branch cuts carefully but does not carry the information
within the info boxes of expressions. Due to complexity, it is rather easy to lose track of
branch cut positioning and evaluate expressions on incorrect values. For example, consider
the equation [98, (12.7.10)]. A path of z(φ) = eiφ with φ ∈ [0, 2π] would pass three different
branch cuts. An accurate evaluation of the values of z(φ) in CAS require calculations on the
three branches using analytic continuation. LACAST and our evaluation frequently fall into the
same trap by evaluating values that are no longer on the principal branch used by CAS. To
solve this issue, we need to utilize branch cuts not only for every function but also for every
equation in the DLMF [10]. The positions of branch cuts are exclusively provided in the text

20The authors are not aware of any example of a CAS which treats multi-valued functions without adopting
principal branches.
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but not in the i-boxes. Adding the information to each equation in the DLMF would be a
laborious process because a branch cut position may change according to the used values (see
the example [98, (12.7.10)] from above). Our result data, however, would provide beneficial
information to update, extend, and maintain the DLMF, e.g., by adding the positions of the
branch cuts for every function. An extended discussion about branch cut issues is available in
Appendix A available in the electronic supplementary material.

5.1.5 ConcludeQuantitative Evaluations on the DLMF

We have presented a novel approach to verify the theoretical digital mathematical library DLMF
with the power of two major general-purpose computer algebra systems Maple and Mathemat-
ica. With LACAST, we transformed the semantically enhanced LATEX expressions from the DLMF
to each CAS. Afterward, we symbolically and numerically evaluated the DLMF expressions in
each CAS. Our results are auspicious and provide useful information to maintain and extend
the DLMF efficiently. We further identified several errors in Mathematica, Maple [2], the DLMF,
and the transformation tool LACAST, proving the profit of the presented verification approach.
Further, we provide open access to all results, including translations and evaluations21.

The presented results show a promising step towards an answer for our initial research question.
By translating an equation from a DML to a CAS, automatic verifications of that equation in
the CAS allows us to detect issues in either the DML source or the CAS implementation. Each
analyzed failed verification successively improves the DML or the CAS. Further, analyzing a
large number of equations from the DML may be used to finally verify a CAS. In addition,
the approach can be extended to cover other DML and CAS by exploiting different translation
approaches, e.g., via MathML [18] or OpenMath [152].

Nonetheless, the analysis of the results, especially for an entire DML, is cumbersome. Minor
missing semantic information, e.g., a missing constraint or not respected branch cut positions,
leads to a relatively large number of false positives, i.e., unverified expressions correct in theDML
and the CAS. This makes a generalization of the approach challenging because all semantics of
an equation must be taken into account for a trustworthy evaluation. Furthermore, evaluating
equations on a small number of discrete values will never provide sufficient confidence to verify
a formula, which leads to an unpredictable number of true negatives, i.e., erroneous equations
that pass all tests.

After all, we conclude that the approach provides valuable information to complement, improve,
and maintain the DLMF, Maple, and Mathematica. A trustworthy verification, on the other
hand, might be out of reach.

5.1.5.1 Future Work

The resulting dataset provides valuable information about the differences between CAS and the
DLMF. These differences had not been largely studied in the past and are worthy of analysis.
Especially a comprehensive and machine-readable list of branch cut positioning in different
systems is a desired goal [84]. Hence, we will continue to work closely together with the
editors of the DLMF to improve further and expand the available information on the DLMF.
Finally, the numeric evaluation approach would benefit from test values dependent on the actual
functions involved. For example, the current layout of the test values was designed to avoid

21https://lacast.wmflabs.org/ [accessed 2021-10-01]
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problematic regions, such as branch cuts. However, for identifying differences in the DLMF
and CAS, especially for analyzing the positioning of branch cuts, an automatic evaluation of
these particular values would be very beneficial and can be used to collect a comprehensive,
inter-system library of branch cuts. Therefore, we will further study the possibility of linking
semantic macros with numeric regions of interest.

Finally, we used LACAST to perform translations solely on semantic LATEX expressions. Real-world
mathematics, however, is not available in this semantically enriched format. In the previous
chapter, we already developed and discussed a context-sensitive extension for LACAST. This
enables LACAST to translate not only semantic LATEX formulae from the DLMF but, considering
an informative textual context, also general mathematical expressions to multiple CAS. In the
following section, we will evaluate this new extension of LACAST on Wikipedia articles.

5.2 Evaluations on Wikipedia

In the following, resulting from our motivation outlined in Chapter 4 - improving Wikipedia
articles - we use Wikipedia for our test dataset to evaluate our context-sensitive extension of
LACAST. More specifically, we considered every English Wikipedia article that references to the
DLMF via the {{dlmf}} template22. This should limit the domain to OPSF problems that we are
currently examining. The English Wikipedia contains 104 such pages, of which only one page
did not contain any formula (Spheroidal wave function)23. For the entire dataset (the remaining
103Wikipedia pages), we detected 6, 337 formulae in total (including potential erroneous math).

So far, one of our initial three issues from Section 4.2.3 still remains unsolved: how can we
determine if a translation was appropriate and complete? We called a translation appropriate,
if the intended meaning of a presentational expression e ∈ LP is the same as the translated
expression t(e, X) ∈ LC . However, how can we know the intended semantic meaning of a
presentational expression e ∈ LP ? In natural languages, the BLEU score [282] is widely used to
judge the quality of a translation. The effectiveness of the BLEU score, however, is questionable
when it comes to math translations due to the complexity and high interconnectedness of
mathematical formulae. Consider, a translation of the arccotangent function arccot(x) was
performed to arctan(1/(x)) in Maple. This translation is correct and even preferred in certain
situations to avoid issues with so-called branch cuts (see [13, Section 3.2]). Previously, we
developed a new approach that relies on automatic verification checks with CAS [2, 11] to
verify a translation. This approach is very powerful for large datasets. However, it requires a
large and precise amount of semantic data about the involved formulae, including constraints,
domains, the position of branch cuts, and other information to reach high accuracy. In turn, we
perform this automatic verification on the entire 103 Wikipedia pages but additionally created
a benchmark dataset with 95 entries for qualitative analysis. To avoid issues like with the BLEU
score, we manually evaluated each translation of the 95 test cases.

22Templates in Wikitext are placeholders for repetitive information which get resolved by Wikitext parsers. The
DLMF-template, for example, adds the external reference for the DLMF to the article.

23Retrieved from https : / / en . wikipedia . org / wiki / Special : WhatLinksHere by searching for
Template:Dlmf [accessed 2021-01-01]
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5.2.1 Symbolic and Numeric Testing

The automatic verification approach makes the assumption that a correct equation in the
domain must remain valid in the codomain after a translation. If the equation is incorrect after
a translation, we conclude a translation error. As we have discussed in the previous Section 5.1,
we examined two approaches to verify an equation in a CAS. The first approach tries to
symbolically simplify the difference of the left- and right-hand sides of an equation to zero. If
the simplification returned zero, the equation was symbolically verified by the CAS. Symbolic
simplifications of CAS, however, are rather limited and may even fail on simple equations.
The second approach overcomes this issue by numerically calculating the difference between
the left- and right-hand sides of an equation on specific numeric test values. If the difference
is zero (or below a given threshold due to machine accuracy) for every test calculation, the
equivalence of an equation was numerically verified. Clearly, the numeric evaluation approach
cannot prove equivalence. However, it can prove disparity and therefore detect an error due to
the translation.

In the previous Section 5.1, we saw that the translations by LACAST [13] were so reliable that
the combination of symbolic and numeric evaluations was able to detect errors in the domain
library (i.e., the DLMF) and the codomain systems (i.e., the CAS Maple and Mathematica) [2,
11]. Unfortunately, the number of false positives, i.e., correct equations that were not verified
symbolically nor numerically, is relatively high. The main reason is unconsidered semantic
information, such as constraints for specific variables or the position of branch cuts. Unconsid-
ered semantic information causes the system to test equivalence on invalid conditions, such
as invalid values, and therefore yields inequalities between the left- and right-hand sides of
an equation even though the source equation and the translation were correct. Nonetheless,
the symbolic and numeric evaluation approach proofs to be very useful also for our translation
system. It allows us to quantitatively evaluate a large number of expressions in Wikipedia.
In addition, it enables continuous integration testing for mathematics in Wikipedia article
revisions. For example, an equation previously verified by the system that fails after a revision
could indicate a poisoned revision of the article. This automatic plausibility check might be a
jump start for the ORES system to better maintain the quality of mathematical documents [359].
For changes in math equations, ORES could trigger a plausibility check through our translation
and verification pipeline and adjust the score of good faith of damaging an edit accordingly.

5.2.2 Benchmark Testing

To compensate for the relatively low number of verifiable equations in Wikipedia with the
symbolic and numeric evaluation approach, we crafted a benchmark test dataset to qualitatively
evaluate the translations. This benchmark includes a single equation (the formulae must
contain a top-level equality symbol24, no \text, and no \color macros) randomly picked from
each Wikipedia article from our dataset. For eight articles, no such equation was detected.
Hence, the benchmark contains 95 test expressions. For each formula, we marked the extracted
descriptive terms as irrelevant (0), relevant (1), or highly relevant (2), andmanually translated the
expressions to semantic LATEX and toMaple andMathematica. If the formula contained a function
for which no appropriate semantic macro exists, the semantic LATEX equals the generic (original)
LATEX of this function. In 18 cases, even the human annotator was unable to appropriately

24This excludes equality symbols of deeper levels in the parse tree, e.g., the equality symbols in sums are not
considered as such.
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Table 5.3: The symbolic and numeric evaluations on all 6, 337 expressions from the dataset
with the number of translated expressions (T), the number of started test evaluations (Started),
the success rates (Success), and the success rates on the DLMF dataset for comparison (DLMF).
The DLMF scores refer to the results presented in the previous Section 5.1.

Symbol Evaluation

T Started Success DLMF

Maple 4, 601 1, 747 .113 .264
Mathematica 4, 678 1, 692 .158 .262

Numeric Evaluation

T Started Success DLMF

Maple 4, 601 1, 627 .181 .433
Mathematica 4, 678 1, 516 .236 .429

translate the expressions to the CAS, which underlines the difficulty of the task. The main
reason for a manual translation failure was missing information (the necessary information for
an appropriate translation was not given in the article) or it contained elements for which an
appropriate translation was not possible, such as contour integrals, approximations, or indefinite
lists of arguments with dots (e.g., a1, . . . , an). Note that the domain of orthogonal polynomials
and special functions is a well-supported domain for many general-purpose CAS, like Maple
and Mathematica. Hence, in other domains, such as in group, number, or tensor field theory,
we can expect a significant drop of human-translatable expressions25. Since Mathematica is
able to import LATEX expressions, we use this import function as a baseline for our translations
to Mathematica. We provide full access to the benchmark via our demo website and added an
overview to Appendix F.4 available in the electronic supplementary material.

5.2.3 Results

First, we evaluated the 6, 337 detected formulae with our automatic evaluation via Maple and
Mathematica. Table 5.3 shows an overview of this evaluation. With our translation pipeline, we
were able to translate 72.6% of mathematical expressions into Maple and 73.8% into Mathemat-
ica syntax. From these translations, around 40% were symbolically and numerically evaluated
(the rest was filtered due to missing equation symbols, illegal characters, etc.). We were able to
symbolically verify 11% (Maple) and 15% (Mathematica), and numerically verify 18% (Maple)
and 24% (Mathematica). In comparison, the same tests on the manually annotated semantic
dataset of DLMF equations [403] reached a success rate of 26% for symbolic and 43% for nu-
meric evaluations [11] (see the previous Section 5.1). Since the DLMF is a manually annotated
semantic dataset that provides exclusive access to constraints, substitutions, and other relevant
information, we achieve very promising results with our context-sensitive pipeline. To test a
theoretical continuous integration pipeline for the ORES system in Wikipedia articles, we also
analyzed edits in math equations that have been reverted again. The Bessel’s function contains

25Note that there are numerous specialized CAS that would cover the mentioned domains too, such as GAP [177],
PARI/GP [283], or Cadabra [290].
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such an edit on the equation

Jn(x) = 1
π

∫ π

0
cos(nτ − x sin τ) dτ. (5.3)

Here, the edit26 changed Jn(x) to JZWE(x). Our pipeline was able to symbolically and
numerically verify the original expression but failed on the revision. The ORES system could
profit from this result and adjust the score according to the automatic verification via CAS.

5.2.3.1 Descriptive Term Extractions

Previously, we presumed that our update of the description retrieval approach to MOI would
yield better results. In order to check the ranking of retrieved facts, we evaluate the descriptive
terms extractions and compare the results with our previously reported F1 scores in [330]. We
analyze the performance for a different number of retrieved descriptions and different depths.
Here, the depth refers to the maximum depth of in-going dependencies in the dependency
graph to retrieve relevant descriptions. A depth value of zero does not retrieve additional terms
from the in-going dependencies but only the noun phrases that are directly annotated to the
formula itself. The results for relevance 1 or higher are given in Table 5.4a and for relevance 2
in Table 5.4b. Since we need to retrieve a high number of relevant facts to achieve a complete
translation, we are more interested in retrieving any relevant fact rather than a single but
precise description. Hence, the performance for relevance 1 is more appropriate for our task.
For a better comparison with our previous pipeline [330], we also analyze the performance
only on highly relevant descriptions (relevance 2). As expected, for relevant noun phrases,
we outperform the reported F1 score (.35). For highly relevant entries only, our updated MOI
pipeline achieves similar results with an F1 score of .385.

5.2.3.2 Semantification

Since we split our translation pipeline into two steps, semantification and mapping, we evaluate
the semantification transformations first. To do this, we use our benchmark dataset and perform
tree comparisons of our generated transformed tree ts(e, X) and the semantically enhanced
tree using semantic macros. The number of facts we take into account affects the performance.
Fewer facts and the transformation might be not complete, i.e., there are still subtrees in e
that should be already in LC . Too many facts increase the risk of false positives, that yield
wrong transformations. In order to estimate how many facts we need to retrieve to achieve
a complete transformation, we evaluated the comparison on different depths D and limit the
number of facts with the same MOI, i.e., we only consider the top-ranked facts f for an MOI
according to sMLP(f). In addition, we limit the number of retrieved rules rf per MC. We
observed that an equal limit of retrieved MC per MOI and rf per MC performed best. Consider
we set the limit N to five, we would retrieve a maximum of 25 facts (five rf for each of the five
MC for a single MOI). Typically, the number of retrieved facts f is below this limit because
similar MC yield similar rf . In addition, we found that considering replacement patterns with
a likelihood of 0% (i.e., the rendered version of this macro never appears in the DLMF), harms
performance drastically. This is because semantic macros without any arguments regularly
match single letters, for example, Γ representing the gamma function with the argument (z)

26https://en.wikipedia.org/w/index.php?diff=991994767&oldid=991251002&title=Bessel_
function&type=revision [accessed 2021-06-23]
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Table 5.4: Performance of description extractions via MLP for low (5.4a) and high (5.4b) rele-
vance. In all tables, D refers to the depth (following ingoing dependencies) in the dependency
graph, N is the maximum number of facts and rf for the same MOI, TP are true positives, and
FP are false positives.

(a) Relevance 1 or higher.

Description Extraction

D N TP FP Prec Rec F1

0 1 59 32 .648 .184 .286
0 3 136 95 .589 .424 .493
0 6 155 150 .508 .483 .495
0 15 167 190 .468 .520 .493
1 1 123 211 .368 .383 .376
1 3 179 602 .229 .558 .325
1 6 210 1107 .159 .654 .256
2 1 122 210 .367 .379 .373
2 3 179 600 .230 .556 .325

(b) Relevance 2.

Description Extraction

D N TP FP Prec Rec F1

0 1 41 59 .451 .210 .287
0 3 82 149 .355 .421 .385
0 6 90 215 .295 .462 .360
0 15 95 262 .266 .487 .344
1 1 82 252 .246 .421 .310
1 3 106 675 .139 .544 .217
1 6 124 1193 .094 .636 .164
2 1 56 227 .198 .287 .234
2 3 88 661 .117 .451 .186

being omitted. Hence, we decided to consider only replacement patterns that exist in the DLMF,
i.e., sDLMF(rf ) > 0.

Since certain subtrees ẽ ⊆ e ∈ LP can be already operator trees, i.e., ẽ ∈ LC , we calculate
a baseline (base) that does not perform any transformations, i.e., e = t(e, X). The baseline
achieves a success rate of 16%. To estimate the impact of our manually defined set of common
knowledge facts K, we also evaluated the transformations for X = K and achieve a success
rate of 29% which is already significantly better compared to the baseline. The full pipeline,
as described above, achieves a success rate of 48%. Table 5.5 compares the performance. The
table shows that depth 1 outperforms depth 0, which intuitively contradicts the F1 scores in
Table 5.4a. This underlines the necessity of the dependency graph. We further examine a drop
in the success rate for larger N. This is attributable to the fact that gf (e) is not commutative
and large N retrieve too many false positive facts f with high ranks. We reach the best success
rate for depth 1 and N = 6. Increasing the depth further only has a marginal impact because,
at depth 2, most expressions are already single identifiers, which do not provide significant
information for the translation process.

5.2.3.3 Translations from LATEX to CAS

Mathematica’s ability to import TEX expressions will serve as a baseline. While Mathe-
matica does allow to enter a textual context, it does recognize structural information in

the expression. For example, the Jacobi polynomial P
(α,β)
n (x) is correctly imported as

JacobiP[n,\[Alpha],\[Beta],x] because no other supported function in Mathematica is
linked with this presentation. Table 5.6 compares the performance. The methods base, ck,
full are the same as in Table 5.5, but now refer to translations to Mathematica, rather than
semantic LATEX. Method full uses the optimal setting as shown in Table 5.5. We consider a
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Table 5.5: Performance of semantification from LATEX to semantic LATEX. D refers to the depth
(following ingoing dependencies) in the dependency graph, N is the maximum number of facts
and rf for the same MOI. The methods base refers to no transformations t(e, X) = e, ck
where X = K, and full use the full proposed pipeline. � matches the benchmark entry and
� does not match the entry.

Semantic LaTeX Comparison

Method D N � �

base - - .16 .84
ck - - .29 .71
full 0 3 .36 .64

0 6 .40 .60
0 15 .40 .60
1 3 .43 .57
1 6 .48 .52
1 15 .45 .55
1 20 .44 .56

translation a match (�) if the returned value by Mathematica equals the returned value by the
benchmark. The internal process of Mathematica ensures that the translation is normalized.

We observe that without further improvements, LACAST already outperforms Mathematica’s
internal import function. Activating the general replacement rules further improved perfor-
mance. Our full context-aware pipeline achieves the best results. The relatively high ratio of
invalid translations for full is owed to the fact that semantic macros without an appropriate
translation to Mathematica result in an error during the translation process. The errors ensure
that LACAST only performs translations for semantic LATEX if a translation is unambiguous and
possible for the containing functions [13]. Note that we were not able to appropriately translate
18 expressions (indicated by the human performance in Table 5.6) as discussed before.

5.2.4 Error Analysis & Discussion

In this section, we briefly summarize the main causes of errors in our translation pipeline. A
more extensive analysis can be found in Appendix F.3 (available in the electronic supplementary
material) and on our demo page at: https://tpami.wmflabs.org. In the following, we
may refer to specific benchmark entries with the associated ID. Since the benchmark contains
randomly picked formulae from the articles, it also contains entries that might not have been
properly annotated with math templates or math-tags in the Wikitext. Four entries in the
benchmark (28, 43, 78, and 85) were wrongly detected by our engine and contained only parts
of the entire formula. In the benchmark, we manually corrected these entries. Aside from the
wrong identification, we identified other failure reasons for a translation to semantic LATEX or
CAS. In the following, we discuss the main reasons and possible solutions to avoid them, in
order of their impact on translation performance.
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Table 5.6: Performance comparison for translating LATEX to Mathematica. A translation was
successful (ST) if it was syntactically verified by Mathematica (otherwise: FT). � refers to
matches with the benchmark and� to mismatches. The methods are explained in Section 5.2.3.3.

LaTeX Translations to Mathematica

Method ST FT � �

MM_import 57 (.60) 38 (.40) 9 (.09) 48 (.51)
LACAST_base 55 (.58) 40 (.42) 11 (.12) 44 (.46)
LACAST_ck 62 (.65) 33 (.35) 19 (.20) 43 (.45)
LACAST_full 53 (.56) 42 (.44) 26 (.27) 27 (.26)

Theory_def - - +18 (.19) -18 (.19)
Theory_ck - - +3 (.03) -3 (.03)

Human 95 (1.0) 0 (.00) 77 (.81) 18 (.19)

5.2.4.1 Defining Equations

Recognizing an equation as a definition would have a great impact on performance. As a test,
we manually annotated every definition in the benchmark by replacing the equal sign = with
the unambiguous notation := and extended LACAST to recognize such combination as a definition
of the left-hand side27. This resulted in 18 more correct translations (e.g., 66, 68, and 75) and
increased the performance from .28 to .47. The accuracy for this manual improvement is given
as Theory_def in Table 5.6.

The dependency graph may provide beneficial information towards a definition recognition
system for equations. However, rather than assuming that every equation symbol indicates a
definition [214], we propose a more selective approach. Considering one part of an equation
(including multi-equations) as an extra MOI would establish additional dependencies in the
dependency graph, such as a connection between x = sn(u, k) andF (x; k) = u. A combination
with recent advances of definition recognition in NLP [111, 134, 183, 370] may then allow us to
detect x as the defining element. The already established dependency between x and F (x; k) =
u can finally be used to resolve the substitution. Hence, for future research, we will elaborate
on the possibility of integrating existing NLP techniques for definition recognition [111, 134]
into our dependency graph concept.

5.2.4.2 Missing Information

Another problem that causes translations to fail is missing facts. For example, the gamma
function seems to be considered common knowledge in most articles on OPSF because it is
often not specifically declared by name in the context (e.g., 19 or 31). To test the impact of
considering the gamma function as common knowledge, we added a rule rf to K and attached
a low rank to it. The low rank ensures the pattern for the gamma function will be applied
late in the list of transformations. This indeed improved performance slightly, enabling a
successful translation of three more benchmark entries (Theory_ck in Table 5.6). This naive

27The DLMF did not use this notation, hence LACAST was not capable of translating := in the first place.
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approach, emphasizes the importance of knowing the domain knowledge for specific articles. In
combination with article classifications [320], we could activate different common knowledge
sets depending on the specific domain.

5.2.4.3 Non-Matching Replacement Patterns

An issue we would more regularly faced in domains other than OPSF is non-standard nota-
tions. As previously mentioned, without definition detection, we would not be able to derive
transformation rules if the MOI is not given in a standard notation, such as p(a, b, n, z) for the
Jacobi polynomial. This already happens for slight changes that are not covered by the DLMF.
For six entries, for instance, we were unable to appropriately replace hypergeometric functions
because they used the matrix and array environments in their arguments, while the DLMF (as
shown in Table 4.5) only uses \atop for the same visualization. Consequently, none of our
replacement patterns matched even though we correctly identified the expressions as hyper-
geometric functions. A possible solution to this kind of minor representational changes might
be to add more possible presentational variants m for a semantic macro m̃. Previously [14],
we presented a search engine for MOI that allows searching for common notations for a given
textual query. Searching for Jacobi polynomials in arXiv.org shows that different variants of

P
(α,β)
n (x) are highly related or even equivalently used, such as p, H , or R rather than P . There

were also a couple of other minor issues we identified during the evaluation, such as synonyms
for function names, derivative notations, or non-existent translations for semantic macros. This
is also one of the reasons why our semantic LATEX test performed better than the translations to
Mathematica. We provide more information on these cases on our demo page.

Implementing the aforementioned improvements will increase the score from .26 (26 out of 95)
to .495 (47 out of 95) for translations from LATEX toMathematica. We achieved these results based
on several heuristics, such as the primary identifier rules or the general replacement patterns,
which indicates that we may improve results even further with ML algorithms. However,
a missing properly annotated dataset and no appropriate error functions made it difficult to
achieve promising results with ML on mathematical translation tasks in the past [1, 15]. Our
translation pipeline based on LACAST paves the way towards a baseline that can be used to train
ML models in the future. Hence, we will focus on a hybrid approach of rule-based translations
via LACAST on the one hand, and ML-based information extraction on the other hand, to further
push the limits of our translation pipeline.

5.2.5 ConcludeQualitative Evaluations on Wikipedia

We presented LACAST, the first context-sensitive translation pipeline formathematical expressions
to the syntax of two major Computer Algebra Systems (CAS), Maple and Mathematica. We
demonstrated that the information we need to translate is given as noun phrases in the textual
context surrounding a mathematical formula and common knowledge databases that define
notation conventions. We successfully extracted the crucial noun phrases via part-of-speech
tagging. Further, we have shown that CAS can automatically verify the translated expressions
by performing symbolic and numeric computations. In an evaluationwith 104Wikipedia articles
in the domain of orthogonal polynomials and special functions, we verified 358 formulae using
our approach. We identified one malicious edit with this technique, which was reverted by
the community three days later. We have shown that LACAST correctly translates about 27% of
mathematical formulae compared to 9% with existing approaches and a 81% human baseline.
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Further, we demonstrated a potential successful translation rate of 46% if LACAST can identify
definitions correctly and 49% with a more comprehensive common knowledge database.

Our translation pipeline has several practical applications for a knowledge database like
Wikipedia, such as improving the readability [17] and user experience [150], enabling entity
linking for mathematics [320, 17], or allowing for automatic quality checks via CAS [2, 11]. In
turn, we plan to integrate [401] our evaluation engine into the existing ORES system to classify
changes in complex mathematical equations as potentially damaging or good faith. In addition,
the system provides access to different semantic formats of a formula, such as multiple CAS
syntaxes and semantic LATEX [260]. As shown in the DLMF [260], the semantic encoding of a
formula can improve search results for mathematical expressions significantly. Hence, we also
plan to add the semantic information from our mathematical dependency graph to Wikipedia’s
math formulae to improve search results [17].

In future work, we aim to mitigate the issues outlined in Section 5.2.4, primarily focusing
our efforts on definition recognitions for mathematical equations. Advances on this matter
will enable the support for translations beyond OPSF. In particular, we plan to analyze the
effectiveness of associating equations with their nearby context classification [111, 134, 183,
370], assuming a defining equation is usually embedded in a definition context. Apart from
expanding the support beyond OPSF, we further focus on improving the verification accuracy of
the symbolic and numeric evaluation pipeline. In contrast to the evaluations on the DLMF, our
evaluation pipeline currently disregards constraints inWikipedia. While most constraints in the
DLMF directly annotate specific equations, Wikipedia contains constraints in the surrounding
context of the formula. We plan to identify constraints with new pattern matches and distance
metrics, by assuming that constraints are often short equations (and relations) or set definitions
and appear shortly after or before the formula they are applied to. While we made math in
Wikipedia computable, the encyclopedia does not take advantage of this new feature yet. In
future work, we will develop an AI [401] (as an extension to the existing ORES system) that
makes use of this novel capability.
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