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Qualitative and Quantitative Identification of
Components in Mixture by Terahertz Spectroscopy

Yan Peng , Chenjun Shi, Mingqian Xu, Tianyi Kou, Xu Wu, Bin Song, Hongyun Ma, Shiwei Guo,
Lizhuang Liu, and Yiming Zhu

Abstract—Typical methods for the analysis of mixture compo-
nents include multiple linear regression, partial linear squares,
and artificial neural network. However, these methods need large
amount of samples and time to improve recognition accuracy. In
this paper, based on the data obtained from terahertz spectroscopy,
an identification method with less sample requirements and lower
calculation time but higher accuracy is proposed. Based on the
wavelet transform, baseline elimination, support vector regression,
and loop iteration of samples, the specific substance in the mixture
can be identified effectively. For example, seven substances that
exist in brain glioma are chosen as the components of a mixture,
where the key substances used for glioma diagnosis are set as the
target substances and the spectra of mixtures with different mix
proportions serve as training data. The average correlation coeffi-
cient of identification achieves 99.135% and the root-mean-square
error is 0.40%. These results have profound implications for the
eventual practical application of exact qualitative and quantitative
identification of components in mixtures.

Index Terms—Mixture identification, terahertz (THz)
spectroscopy.

I. INTRODUCTION

T ERAHERTZ (THz) radiation is the electromagnetic radi-
ation in the frequency interval from 0.1 to 10 THz. Due

to its low photon energy (4 meV @ 1 THz), THz wave offers
the advantages of being noninvasive and nonionizing, thus pre-
senting little harm to biological tissue [1]–[4]. Combining good
accuracy, sensitivity, and rapidity, THz spectroscopy has been
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widely used in identifying substances, especially cancer tissues.
Recently, the qualitative and quantitative analyses of mixtures
using THz spectroscopy became an important research topic
[4]–[7]. However, in those cases, such as multiple linear regres-
sion and least square method, the spectrum of each component in
the mixture has to be known in advance (single-spectrum-known
pattern), which is infeasible for the identification of complicated
mixtures consisting of over hundreds of substances. While for
some mixture identification methods that do not need to measure
the spectrum of each mixture component in advance, such as
partial least squares (PLS) and principal component analysis [4],
[8], [9], only the datasets containing strong linear relationships
can be identified with high accuracy. However, there always
exists unknown or uncertain relationship mapping between the
spectral data and the concentration of the component. This can
only result in poor performance of these common algorithms.
On the other hand, backpropagation (BP) neural network is con-
sidered to be a good nonlinear regression method [10]. However,
the BP neural network requires a massive database to improve its
accuracy, whereas the larger database also needs more computa-
tion time. Therefore, a new mixture identification method with
unknown relationship identification capability and few training
sample requirement is urgently needed.

Here, the human brain, one of the most complicated mixtures,
is chosen as the example. Brain tissue cells contain lots of sub-
stances, such as γ-aminobutyric acid (GABA), L-glutamic acid
(L-Glu), D-myo-inositol (D-MI), creatine monohydrate (CMH),
cholesterol (CHO), noradrenaline (NE), and N-acetylaspartate
(NAA). But only a small part of them will have obvious con-
centration change when brain glioma occurs. NE is the major
transmitter of various inhibitory neurons and interneurons in
the human brain, the increase of its concentration means the
invasion of glioblastoma cells. NAA is a cellular structure in
neurons, while a decreased concentration of NAA reflects neu-
ronal death and an increased concentration of NAA is related
to inflammation, demyelination, and membrane synthesis or re-
pair [11]–[13]. Thus, NE and NAA are chosen as the target
substances for the study.

To be specific, a method is proposed for the qualitative and
quantitative identification of components in mixtures by THz
spectroscopy, without building the databases of each compo-
nent. First, under different mixture ratios, the absorption spectra
of mixtures (CHO, L-Glu, NAA, GABA, NE, D-MI, and CMH)
are obtained by THz time-domain spectroscopy (THz-TDS).
Next, the baseline and noise are removed, and the absorption
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spectra are used for building and training the support vector
regression (SVR) model. After optimizing the SVR parame-
ters, the testing spectral data are imported into the SVR model
for the identification of two key diagnostic substances (NE and
NAA). Finally, root-mean-square error (RMSE) and correlation
coefficient are used to evaluate the accuracy rate of the mixture
identification method.

II. EXPERIMENTS

A. Sample Preparation

To ensure the wide adaptability of the method, mixtures of
seven substances in glioma were selected as examples, including
GABA, L-Glu, D-MI, CMH, CHO, NE, and NAA (all purchased
from Sigma–Aldrich Corporation and stored according to the
instructions of the supplier). Mixture samples were pressed as
13 mm tablets with 2 mm thickness. The masses of all the tablets
are controlled to 130 ± 5 mg (the PE is 30 ± 1 mg) and the
concentration of target components (NE and NAA) are within
0%–12% with random distribution. This range includes all their
possible concentrations in the real human brain. To avoid dam-
aging the compounds, the grinding force was controlled, and
the pressing time was set at 1 min. Then, the absorption spectra
of samples were measured by THz-TDS, whose effective spec-
tral range is 1.0–3.0 THz, resolution is 0.001 THz, and SNR is
40 000:1 [4], [13]. The environmental temperature was con-
trolled at 22 °C and humidity <3%. To ensure the reliability of
the data, each sample was measured ten times and then aver-
aged. The absorbance of the samples α(w) can be calculated by
using the following equation [4], [13]:

α(w) =
1
d
ln
lref (f)
lsam(f)

. (1)

B. Data Preprocessing

The sources of major noise in THz spectra have the following
three aspects.

1) When the particle size of the substance is comparable
to the THz wavelength, scattering causes a significant
loss in THz amplitude and yields a slanted baseline. This
baseline will break the linearity between mixtures and
their components and, therefore, increase the difficulty of
identification and quantitative analysis.

2) Impurities existing in the substances (which are unavoid-
able) will also give out their THz spectra in the final
spectral shape. This will complicate the recognition al-
gorithms and then affect the efficiency and accuracy of
identification.

3) Noises from the test system and the environment have a
random distribution in the final spectrum, whose ampli-
tudes are small but its irregular frequency makes spectral
analysis difficult.

Therefore, the elimination of noise and baseline is necessary
for the accurate quantitative measurement of the substances in
the mixture. Considering the baseline and noise to be nonlinear
with the change of frequency, the wavelet transform is used to
deal with these in the THz spectra. The wavelet transform has
good time–frequency localization character and decorrelation,

which can remove the baseline and noise with different scales
and retain the effective information in the different frequency
regions of the THz spectrum at the same time [14]–[16]. The
Mallat algorithm [17] is used for wavelet decomposition as
follows:

f(u) = CJϕJ (u) +
J∑

j=1

djψj (u). (2)

The mother wavelet ϕJ (u) is orthogonal to the scaling func-
tion ψj (u), CJ is a coefficient in the (J + 1)th level of the
low-frequency component, and dj is a coefficient in the jth
level (1 � j � J) of the high-frequency component. With this
equation, different parts and frequencies of the signal can be
analyzed [18]. Based on the mother wavelet Daubechies 9, the
spectra of the mixtures were decomposed at level six. The coef-
ficients in levels 1–6 contain both noise and useful information.
We dropped the high-frequency components from levels 1–3,
which represented noise, and retained the low-frequency com-
ponents from levels 4–6, which represented useful information.
Then, the polynomial fitting method [19] was used to correct the
baseline of the THz spectrum. For each spectrum after wavelet
transform, we chose minimums at different frequencies as series
reference points, then fit them by using different order polyno-
mials based on the least square. The obtained curve is used as
the absorption baseline, which will be removed from the initial
spectrum.

C. SVR Identification

SVR was used in our qualitative and quantitative identifica-
tion [20]. A given set of train data (Xi, Yi), i = 1, 2, 3, . . . , N,
Xi ∈ Rn are used to establish the SVR model,Xi is the absorp-
tion spectral data of the mixture sample, which is the input data
of SVR model. Xi = (x1 , x2 , . . . , xm ), m is the number of the
discrete sampling frequency in spectral data, and N is the num-
ber of samples. Yi is the concentration of target components in a
mixture sample, which is the output data of the SVR model. As
our quantitative identification method for certain components is
a situation of multioutputs (number of target substance in mix-
ture), it is necessary to establish multiple SVR models where
each SVR corresponds to a certain component in the mixture.
Then, this model is employed to predict the concentration of the
target component for testing set samples. The SVR estimation
can be described as follows:

Yn = wT · ϕ(X) + b. (3)

Yn is the predicted result of the SVR model, w and b are the
weight and bias parameters of the regression function, respec-
tively, and ϕ(X) is the function that transforms the input x to the
separating space [21]. Thus, the risk function of the SVR model
is as follows:

|Yn − Yi | =

⎧
⎨

⎩

0, if |Yn − Yi | ≤ ε

|Yn − Yi | − ε, otherwise
(4)

where ε is the loss parameter based on Vapnik’s ε-insensitive
[22]. Then, w and b can be derived by the SVR objective function
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as follows:

min

[
1
2
wT w + c

(
N∑

n=1

ε∧n +
N∑

n=1

ε∨n

)]
(5)

subject to
{−ε− ε∨n ≤ Yn − wT · ϕ(X) − b ≤ ε+ ε∧n
ε∨n ≥ 0, ε∧n ≥ 0 (6)

where c is the regularization parameter that represents the degree
of the penalty loss, ε∧n and ε∨n are the slack variables of the loss
parameter ε.

Furthermore, kernel function k(x, y) = ϕ(X) · ϕ(Y ) is very
important for constructing the SVR model. It was mainly used
to map the input data onto a higher dimensional space that
enables the solution of the nonlinear optimization problem linear
separable. The three most commonly used kernel functions are
described by the following equations:

Linear kernel : k(x, y) = x · y (7)

Polynomial kernel : k(x, y) = [(x · y) + 1]d (8)

RBF kernel : k(x, y) = exp(−|x− y|2/g2). (9)

The kernel parameter g and the regularization parameter c
should be defined using the best fitting value, which can be
obtained by trial and error. Leave-one-out cross validation was
used to find the optimal parameters by which the model can
achieve the best predicted results.

To evaluate the performance of the established models, RMSE
and correlation coefficient were employed to evaluate the devel-
oped model’s accuracy. RMSE represents the dispersion degree
of predicted results, while the correlation coefficient represents
the relevancy. They are, respectively, calculated as follows:

RMSE =

√√√√√
∑N

i=1

(
Yi −

∧
Y i

)2

N
× 100% (10)

R =

√√√√√√√√
1 −

∑N
i=1

(
Yi −

∧
Y i

)2

∑N
i=1

(
Yi −

−
Y i

)2 × 100% (11)

where N represents the number of samples in the training set,

Y −
i is the average of Yi , and Yi and

∧
Yi are the actual value of

the ith sample in the dataset and the predicted value of the ith
sample in the developed model, respectively.

III. RESULTS AND DISCUSSION

For the training spectral data, these seven components were
mixed randomly at ten different concentrations (mg/mg) under a
constant total mass, where the masses of all tablets are controlled
to 130 ± 5 mg (the PE is 30 ± 1 mg) and the concentrations
of target components (NE and NAA) are within 0%–12% with
random distribution. As the input label of our method needs only

TABLE I
TEN MIXTURE SAMPLES UNDER A CONSTANT TOTAL MASS (130 ± 5 mg), THE

CONCENTRATIONS OF TARGET COMPONENTS (NE AND NAA) ARE WITHIN

0%–12% WITH RANDOM DISTRIBUTION

the concentration of the target substance and the concentrations
of all components in the mixture are irrelevant with each other,
only the masses of the target substances (NAA and NE) are
recorded. The specific value of masses in ten mixture samples
is given in Table I.

The corresponding THz spectra of these ten mixture samples
are shown in Fig. 1(a), which obviously have separate and sharp
absorption peaks but with small noise and baseline drifting. To
improve the precision and accuracy of identification, it is nec-
essary to reduce the noise and correct the baseline of spectra
before applying the algorithm. Fig. 1(b) shows the spectra af-
ter removing the noise by wavelet transform. We can see that
the small vibrations near the absorption peaks have all been
smoothed. Then, the baselines of spectra are eliminated by the
polynomial fitting method. The final processed THz absorption
spectra are shown in Fig. 1(c). It can be clearly seen that the
baselines have been well corrected, i.e., their base values are
almost close to zero.

Considering the spectrum of each pure substance in mix-
ture to be unknown, we need to build and train an SVR model
to find out the regularity between the spectra of mixture sam-
ples and the concentration of substances. The open-source soft-
ware LIBSVM [19] was used in our method to identify the
concentration of target substances (NAA and NE) in mixtures.
Due to the small number of samples in this experiment, all sam-
ples were divided into five equal parts randomly. One part (two
samples) was used as the prediction set and the remaining four
parts (eight samples) were used as the training sets to construct
the model. The loop iteration was repeated five times. Subse-
quently, the obtained results of prediction sets were pooled and
utilized to estimate the RMSE and correlation coefficient.

The performance of the SVR model depends on a proper set-
ting of several parameters such as the regularization parameter c,
kernel function parameter g, and the loss parameter e [23]–[25].
The parameter c determines the tradeoff between the training
error and the model complexity, the parameter g determines
the distribution of support vectors in the new feature space, and
the parameter e affects the number of support vectors used for the
construction of the regression model. Here, RBF kernel function
and the leave-one-out cross validation were used to determine
the optimum value of c, g, and e [26], [27]. Through circular
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Fig. 1. THz absorption spectra of ten mixture samples. (a) Original spectra.
(b) Spectra after wavelet transform. (c) Baseline correction by polynomial
fitting.

computations, one parameter varied with fixed step lengths in
the allowable range, while the other two parameters were fixed.
The selection progress and results are shown in Fig. 2(a)–(c).

The position of the minimum RMSE corresponds to the best
parameter. Optimization parameters of SVR are: c = 0.025,
g = 0.01, and e = 0.33. We can see that the fine-tuning of these
values can apparently influence the predictability of our model.
The rapid increase of c and g could induce incorrect fitting in
the training data, while the decrease of those parameters can
induce the failure of testing data prediction. As for parameter e,
if the value is too large, only a small amount of support vectors
can be selected, leading to a decrease of the final prediction

Fig. 2. RMSE of the training set based on leave-one-out cross validation
versus three SVR parameters. (a) Regularization parameter c with g = 0.01,
e = 0.01. (b) Kernel function parameter g with c = 0.25, e = 0.01. (c) Loss
parameter e with c = 0.25, g = 0.01.

Fig. 3. Actual and predicted concentrations of the two target components in
mixtures. (a) NAA. (b) NE.

TABLE II
QUANTITATIVE ANALYSES OF NAA AND NE COMPONENTS IN MIXTURES

performance; if the value is too small, excessive support vectors
will lead to an over fitting of the SVR model. These optimum
parameters were used to build an SVR model, and then predict
the concentrations of target substances in testing data.

Fig. 3 presents the comparison between the actual and pre-
dicted results for NAA and NE components in mixtures. The
SVR model using processed spectral data shows good results.
Table II shows the RMSE and R of the test sets. As it can be
seen, except for accurate qualitative identification, the quanti-
tative correlation coefficients of NAA and NE are 99.13% and
99.14%, respectively, both with the RMSE of 0.40% as com-
pared to the experimental ratios.

For comparison, PLS and BP neural networks, which are
widely used as qualitative identification methods that do not
need to obtain the spectrum of each component in mixtures
in advance, were also tested in our case [28], [29]. PLS is a
multivariate statistical analysis algorithm, which can process
a large number of correlated data. BP neural networks model is
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TABLE III
RESULTS OF DIFFERENT ALGORITHMS FOR QUANTITATIVE IDENTIFICATION

OF NAA AND NE IN MIXTURES

a kind of nonlinear multivariate calibration algorithm, a multiple
layer feed-forward neural network that is trained by the error
reverse propagation algorithm. Here, the performances of these
models are evaluated using their average RMSE and correlation
coefficient for the prediction of the test data set (see Table III).
It can be seen clearly that the accuracy of the PLS (80.52%)
and BP neural networks (83.53%) models is much lower than
that of our method (99.135%), which also show the unsatisfied
RMSE coefficients 2.31% and 1.75%, respectively. This is be-
cause the PLS is more adept at the analysis of linear data, while
our mixtures data with “uncertain linear correlation” directly
limit its effectiveness. While for BP neural networks model,
except the requirement of massive database, it is easy to fall
into local minimum and then it is difficult to acquire the op-
timized result. Therefore, for the identification and prediction
of the target component concentration in mixtures, especially
for the samples with unknown relationship characteristics and
small training number, the proposed method is better.

IV. CONCLUSION

In this paper, we propose a qualitative and quantitative mix-
ture identification method that includes the wavelet transform,
baseline elimination, SVR, and loop iteration of samples, which
can be used for the identification of specific substances in a
mixture effectively. In the example of seven component mix-
tures (GABA, L-Glu, D-MI, CMH, CHO, NE, and NAA) in
the human brain, our method can achieve an average RMSE
and average correlation coefficient of 0.40% and 99.135%, re-
spectively, which is much better than the usual single-spectrum-
known pattern and mixture identification methods such as PLS
and BP neural networks. These results are important for the
identification of mixtures in real applications with unknown
relationship characteristics and small training number.
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