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Traditional system
reliability efforts have
failed to focus on software
reliability. To remedy
this, the authors propose
a method that uses
descriptive analyses,
trend analyses, and
reliability models to
control testing activities,
evaluate software
reliability, and plan
maintenance.

uring the development of a software system,
the supplier must efficiently monitor the
development activities; comply with the deliv-
ery schedule; predict when a specified level of
reliability will be reached, or at least check
how well the software will satisfy the cus-

tomer’s requirements; and reduce maintenance efforts. On the
other hand, the customer needs a reliable product, delivered on
time and at the lowest price. Our method helps reach these
goals. It is based on the analysis and evaluation of software relia-
bility by processing failure data collected on a software product
during its development and operation.

Traditionally, system reliability efforts have not focused on
software reliability. We believe that failure prediction can be
improved if software reliability modeling is integrated into an
overall approach. The method we propose is based on the com-
bined use of descriptive analyses, trend analyses, and reliability
models to control testing activities, evaluate software reliability,
and plan maintenance.
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Even though each reliability evalua-
tion can be considered a special case due
to the diversity of several factors,
including

♦ the software’s nature and the cor-
responding failure data,

♦ the development and validation
methods adopted,

♦ the organization of data collec-
tion, and

♦ the aims of the analysis,
our experience let us define a general
method for software reliability analysis
that covers the entire life cycle, from
development to operational use. This
method emphasizes real-time data pro-
cessing within a controlled environment
that allows efficient, real-time feedback.
Doing so helps control the development
process and quantify software reliability.
To facilitate the processing of failure
data, we developed the Sorel tool,
which allows automatic data processing.
The box on page 79 gives a more
detailed description of Sorel.

OVERVIEW

The objectives of a reliability study
are directly related to the point of view

considered—whether supplier or cus-
tomer—and the life-cycle phase con-
cerned. Generally, the main objectives
of development—follow-up, mainte-
nance planning, and reliability evalua-
tion—are expressed as measures.

During software development,
important measures to track include

♦ the evolution of the trend—
whether reliability increases or
decreases—in response to the testing
and debugging effort to monitor these
activities, and

♦ the number of failures expected
to occur over several subsequent time
periods so as to plan the test effort and
thus the testing time and the size of the
test team.

Once the software is implemented
and operating, two types of measures
become useful.

♦ From the customer’s perspective,
the failure intensity, mean time to fail-
ure, or failure rate are important because
they help evaluate whole-system reliabil-
ity, including hardware and software.

♦ From the supplier’s perspective,
the expected number of failures among
all installations, or the number of cor-
rections to be performed, are impor-
tant because they help estimate the

maintenance effort still needed.
These measures determine the

nature of data to be collected and the
kind of data processing to be done. Two
categories of data can be recorded:

♦ data characterizing the product
itself, the production process, and the
use environment, such as the software
size, language, functions, current ver-
sion, verification and validation meth-
ods, tools used, workload, and so on; and

♦ data associated with failures and
corrections, such as date of occurrence,
nature of failures, consequences, fault
types, fault location, and so on.

Usually, data is collected through
use of failure and correction reports.
Figure 1 summarizes the various oper-
ations you can perform on the collect-
ed data set and the results you may
expect from these operations, which
include descriptive statistics, reliability
evolution, and reliability measures.
The collected data may include foreign
data, which requires filtering to keep
only the data related to software.
Depending on your study’s objectives,
you may perform reliability analysis
using the whole data set or subsets of it
obtained through data partitioning.
The latter approach enables more
detailed analyses yielding more elabo-
rate results. 

Three types of analysis may be per-
formed on the whole data set and on
the derived subsets.

♦ Descriptive analyses are based on
statistics that address fault density, the
number of faults per release, or com-
bined analyses such as fault location
and failure severity. They are not
directly related to software reliability
evaluation; they enhance knowledge
about the software and the correspond-
ing failure data.

♦ Trend analyses concern the time
evolution of reliability measures, such
as the time to failure or the number of
failures, which help gauge the effec-
tiveness of the testing activities to be
assessed. Trend analyses also lead to
better estimations when using reliabili-
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Figure 1. The various steps of reliability analysis and evaluation.
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ty growth models, because those mod-
els can be applied directly to subsets of
the data that display trends that con-
firm the underlying assumptions,
rather than blindly. 

♦ Application of one or several reli-
ability growth models lets you predict
the reliability measures based on the
observed behavior of the software.

Trend analysis and reliability evalu-
ation are performed on data in the
form of time to failure or number of
failures per unit of time. The latter are
also called grouped data. These values
are extracted from the failure and cor-
rection reports. The choice between
the two forms is governed by the

objective of the study and the life cycle
phase being analyzed. Grouped data
can be collected easily and helps miti-
gate the impact of local fluctuations on
software reliability evaluation. The
unit of time used for grouped data is a
function of the system usage type and
the number of failures occurring dur-
ing the period analyzed, and may differ
for different phases.

FILTERING, PARTITIONING,
ANALYSIS

Operations on data filtering, parti-
tioning, and descriptive analysis are

specific to the system under study, the
way data has been collected, the pur-
pose and structure of the software, and
the objectives of the analysis.

You may not need all these succes-
sive operations in every reliability
study. For example, if you enter the
collected data into a database and
check it on entry, filtering is not need-
ed. You would perform data partition-
ing and analysis depending on the level
of detail sought.

Collected data may include, in
addition to the reports related to actu-
al software failures, extraneous data
such as false trouble reports or dupli-
cate data, which must be discarded.
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SOREL

Sorel is a software reliability
analysis and evaluation tool com-
posed of two modules, for testing
trends and modeling the growth of
reliability (see Figure A). It can oper-
ate on two types of failure data:
interfailure times and number of fail-
ures per time unit. The two modules
operate on the same input data files,
which can be created and changed by
any word processing or graphics edi-
tor. Numerical results are displayed
automatically on the screen during
execution: the user can also ask for
the corresponding curves. The
results are recorded as ASCII files
that can serve as input to other appli-
cations, allowing for instance com-
parison of results issued from differ-
ent models.

Sorel runs on the Macintosh II-xx
with an arithmetical coprocessor. We
gave the interface special attention, making it interactive, menu-driven, and ensuring that it takes advantage of the
Macintosh’s multiple-window management facilities. Sorel is modular, so new reliability growth tests and models can be
added easily. Written in 5,000 lines of Pascal, it requires about 300 Kbytes of memory.
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Rediscoveries—such as multiple activa-
tion of the same fault—must be kept
when adopting the customer’s view-
point, because they correspond to dif-
ferent failures occurring on the same
or a different installation and as such
affect observed reliability. Data filter-
ing—also known as data validation—
though time-consuming and cumber-
some, accomplishes this. It requires
precise knowledge of the system and
software and you must interview those
involved in software testing and data
collection. When you enter the trouble
reports into a database, you can partly
automate the filtering. From our expe-
rience1 and that of others,2,3 we have
found that about half the failure
reports generated by a supposed soft-
ware failure are either unusable or,
after a detailed examination, reveal
problems that cannot be attributed to
software.4 Thus, data filtering is essen-
tial because accurate reliability analysis
can only be conducted on filtered data.

You must partition your data into
subsets whenever you require a
detailed analysis. The most common
partitions concern failure severity and
faulty software components.

Applying reliability growth models
to the most severe failures allows for
example evaluation of the software fail-
ure rate corresponding to the most
critical behavior. This failure rate is
generally more significant than that for
the whole software product, which may
also incorporate failures with no major

impact on the system’s behavior.
Partitioning according to fault location
and evaluation of the failure rate of
various components allows measure-
ment of each component’s influence
on the whole failure rate and identifi-
cation of the most and least reliable
components.

Descriptive analysis relies on syn-
thesis of the observed phenomena in
the form of control charts or tables
that identify the most significant phe-
nomena. The description may consist
of simple analyses such as fault density,
fault typology, and fault distribution
among new, modified, and reused soft-
ware components. Alternatively, it
could derive from a combined analysis,
such as the relationship between failure
occurrence conditions and criticality;
fault location and failure criticality; or
the number of faults in the compo-
nents and the component size. Such
statistics are commonly used by some
companies.4,5 The accumulation and
analysis of information about several
projects, products, and releases pro-
vides a company with better insights
into its products and the impact of the
development process on them.

TREND ANALYSIS

You can analyze reliability evolution
with trend indicators. Three simple
graphical tests can help determine
whether the system becomes more or

less reliable:
♦ time to failure, 
♦ the cumulative number of fail-

ures, and 
♦ the number of failures per unit of

time (failure intensity).
You derive the trend empirically,

using eyeball analysis, from the evolu-
tion of the plotted measures. While
these plots provide a quick and useful
indication of the trend, they may be
ambiguous and even misleading in
some situations because they fail to
offer quantifiable means. Therefore,
you need formal statistical tests to
enhance confidence in the results.
Such tests allow for trend quantifica-
tion. Various statistical tests such as
the Laplace, Kendall, and Spearman
tests are available for identifying
trends in time-series or grouped data.
Previous studies have shown the
Laplace test to be optimal within the
framework of the most famous soft-
ware reliability models.6 This test con-
sists of calculating the Laplace factor,
u(T), for the observation period [0, T].
When expressed in terms of time to
failure, the Laplace factor is

where θj is the time to failure j counted
from system restart after failure j − 1,
and N[T] is the number of failures in
[0,T]. In terms of n(i), the number of
failures during unit of time i, the
expression of the Laplace factor is

Significance levels are associated with
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these statistics. For example, for a sig-
nificance level of 5 percent, values of
u(k) such as −1.96 ≤ u(k) ≤ +1.96 indi-
cate stable reliability over [1, k]. In prac-
tice, in the context of reliability growth, 

♦ negative values indicate a de-
creasing failure intensity and thus a
reliability increase,

♦ positive values suggest an increas-
ing failure intensity and thus a reliabili-
ty decrease, and

♦ values oscillating between −2 and
+2 indicate stable reliability.

In its classical form, the Laplace test
gives the trend over a given interval of
time—the global trend—and identifies
the regions of global trend change as
indicated by point TG of Figure 2. The
work we have performed7 allows exten-
sion of the Laplace factor to detect the
regions of local trend changes as indi-
cated by points TL1 and TL2 of Figure
2. If you change the origin of the con-
sidered interval, and let the observation
interval start at TL1, u(k) becomes neg-
ative over the whole (remaining) inter-
val. The change in the time origin does
not result in a simple translation:
removal of failure data from 0 to TL1
underlines the local variations and thus
amplifies the Laplace factor variation.
However, the points of local trend
change are preserved.

From a pragmatic viewpoint, using
the Laplace factor as a trend indicator,
the procedure we’ve described lets
global and local trends be defined as
follows:

♦ negative or positive Laplace fac-
tor values over an interval indicate a
global reliability increase or decrease,
respectively, for that interval; and

♦ decreasing or increasing values
of the Laplace factor over a subinter-
val indicate local reliability increase
or decrease, respectively, for that
subinterval.
In real situations, we use the Laplace
factor to analyze the trend, considering
its sign (plus or minus) along with its
evolution. Doing so lets both global and
local trends be identified “at a glance.”

Using trend analysis results. Trend
analysis is intended only to draw atten-
tion to problems that might otherwise
pass unnoticed until too late, thus pro-
viding an early warning that will likely
shorten the search for a solution. It can
be used to enrich the interpretation of
someone who knows the software from
which the data is derived, the develop-
ment process, and the user environ-
ment. Typically, we analyze three
trends: decreasing reliability, increas-
ing reliability, and stable reliability.

Decreasing reliability is generally
expected and considered normal at the
start of a new activity, such as a new
life cycle phase, changing test sets
within the same phase, adding new
users, or activating the system with a
different user profile. Decreasing relia-
bility may also result from regression
faults. Trend analysis reveals this kind
of behavior. If the duration of the
decrease seems long, you must pay
attention to it. Those situations in
which reliability continues to decrease
can point to problems in the software:
analyzing the reasons for the decrease
and the nature of the activated faults is
of prime importance in such a situa-
tion. This analysis may influence the
decision to re-examine the correspond-
ing software part.

Reliability growth that follows a
reliability decline is usually welcome
because it indicates that, after removal
of the first faults, the corresponding
activity reveals fewer and fewer faults.
When calendar time is used, sudden
reliability growth may result from a
period during which the system is used
less or not at all; it may also be caused
by unrecorded failures. When you
notice a reliability growth trend, you
must take particular care and analyze
the reasons for the sudden increase.

Stable reliability indicates that
either the software is not receiving cor-
rective maintenance, or the corrective
actions have no visible effect on relia-
bility. When the software is being vali-
dated, stable reliability with almost no

failures means that the corresponding
activity has reached “saturation”: the
application of the corresponding test
sets reveals no new faults. At this point,
you must either stop testing and intro-
duce new test sets or proceed to the
next phase. More generally, we recom-
mend that you continue a test phase as
long as reliability keeps growing and
end it only when you reach stable relia-
bility with almost no failures. Thus, in
practice, if you have not reached stable
reliability, your validation team (and its
manager) may decide to continue test-
ing before software delivery because it
will be more efficient and cost-effective
to remove faults during validation than
during operation.

For the debugger, however, identi-
fying the region in which the local
trend changes is of prime importance:
these regions herald the beginning of
new trend periods. If the debugger
enters a period of reliability decrease,
he must be vigilant; he need not wait
for the moment when the global trend
changes to undertake corrective action.
Conversely, if he enters a period of
reliability growth, he becomes confi-
dent earlier.

As stated earlier, it is more efficient
to exploit the results in combination
with other criteria such as test coverage
and development activities, and with
information emerging from the
descriptive analyses such as the nature

of activated faults, failure conse-
quences, or affected components. An
example of applying trend analysis to
monitor the development of a real-
world software product can be found
elsewhere.4
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MODEL APPLICATION

Trend tests give information about
trend evolution. However, if you want
to evaluate the reliability of a particular
piece of real-world software, you
should apply reliability growth models.
This lets you do the evaluation during
validation. You are thus able to handle
the delays and ensure that the software
meets its reliability requirements.
Growth models also let you assess the
software’s reliability in operation and
thus estimate overall system depend-
ability. Estimating the number of fail-
ures that will occur over a future time
period is useful when planning the
software maintenance effort. During
development, frequent changes in the
use environment restrict you to very
short-term estimations. The relevance
of the measures obtained from apply-
ing a reliability growth model varies
with the considered life-cycle phase:

♦ Applying reliability growth mod-
els during the early stages of validation
is not convincing—when the observed
times to failure are of the order of
magnitude of minutes or hours, the
mean time to failure predictions
obtained from such data can hardly

exceed minutes or hours, which is dis-
tant from any expected reasonable reli-
ability. In this case, software validation
should be guided by trend analyses, as
shown in the previous section.

♦ When the software being validat-
ed becomes more reliable, the time to
failure may be large and the applica-
tion of reliability growth models is
more convincing, particularly when the
software is activated under an opera-
tional profile.

♦ When the software is in opera-
tion, on multiple installations, the
results are usually highly relevant since
you have a larger sample of failure
data.8,9

Models and trend analysis. Blindly
applying a reliability growth model may
lead to nonrealistic results when the
trend displayed by the data differs from
the one assumed by the model.
However, if the model is applied to data
displaying a trend that behaves accord-
ing to its assumptions, results may
improve dramatically.9,10 This is
because the already existing reliability
growth models only allow two types of
behavior to be modeled: decreasing fail-
ure intensity, or increasing failure inten-

sity prior to undergoing decreasing fail-
ure intensity. Thanks to trend analyses,
failure data can be partitioned according
to trend, and reliability growth models
can be selected as follows:

♦ In the case of reliability growth,
most existing reliability growth models
can be applied.

♦ When the failure data exhibits
decreasing reliability followed by relia-
bility growth, we recommend an S-
shaped model.

♦ When the system displays stable
reliability, you can apply a constant fail-
ure intensity model; reliability growth
models are not needed in this case.

Models in real time. To predict the
software’s future behavior based on the
information available at a given time,
you must carry out a trend test on the
available data. This helps you choose
the reliability growth model or models
to be applied and the subset of data to
which they should be applied. The
models are applied as long as the envi-
ronmental conditions remain signifi-
cantly unchanged, showing no major
changes in the testing strategy or spec-
ifications and no new system installa-
tion with different operational profiles.
Even in these situations, declining reli-
ability may be noticed. Initially, you
can consider this to result from a local,
random fluctuation and assume that
reliability will increase sometime in the
near future. Thus, you can still rely on
the predictions without partitioning
data. If reliability continues to decline,
you must find the reasons why.
Meanwhile, new predictions may be
made by partitioning data into subsets
according to the new trend displayed
by the data.

If a significant change in the devel-

8 2 M A R C H / A P R I L  1 9 9 7

u(k)
6

4

2

0

–2

–4

–6

–8

2

(A)

4 6 8 20

Validation

12 14 16 1810 3022 24 26 28 32

Unit of time

Operation

For the whole data set

2

0

–2

–4

–6

–8

9

(B)

11 13 15 2517 19 21 23 27 29 31

Unit of time

Operation

For operation

u(k)
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TABLE 1
COMPONENT SIZE AND NUMBER OF CORRECTIONS IN OPERATION

Application Size (Kbytes) Number of corrections

Telephony 75 40

Defense 103 47

Interface 115 41

Management 42 18

Total 335 146

.



opment or operational conditions
occurs, you must be aware that local
reliability trend changes may result,
leading to erroneous predictions. If
there is insufficient evidence that a dif-
ferent phase in the program’s reliabili-
ty evolution has been reached, you can
trust the results of reliability growth
models. If there is an obvious reliability
decrease, you must wait until a new
reliability growth period is reached, at
which time the data must be parti-
tioned according to the new trend.

We developed Sorel to make it easi-
er to process failure data and to apply
trend analysis and growth models in
combination.

CASE STUDY

To explore the application of our
Sorel tool, we consider the failure data
collected on an electronic switching
system (ESS) that was installed at 42
different sites during the collection
period. The software faults detected
and removed were recorded in appro-
priate failure reports, known as FRs.
Raw data were filtered before being
entered into the database: the 210 FRs
correspond to genuine software faults
removed and recorded over 32 time
units, including the end of validation (8
time units, 73 FRs) and the beginning
of operation (24 time units, 137 FRs).
The ESS software consists of four
components corresponding to the sys-
tem’s four main functions: telephony
(all modules that provide switching),
defense (all online testing and recon-
figuration mechanisms), interfaces (all
those with local devices, including
memories, terminals, alarms, and so
on), and management (programs that
allow communication with external
devices). Table 1 gives the size of the
various components and the number of
corrections carried out on each during
the system’s operational life. The sum
of the corrections made on different
components during operation, 146, is

higher than the number of corrections
performed on the software as a whole
during operation, 137. This is because
11 failures led to the modification of
more than one component.

To plan for the ongoing mainte-

nance effort, we analyzed the trend,
evaluated the operational reliability for
the whole software and its various
components, then estimated the num-
ber of failures that would occur over a
future period.
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Trend analysis. Figure 3A plots the
Laplace factor for the whole data set
when considering all the installed ESSs.
Between time units 4 and 6, declining
reliability occurred as a result of
changes in the nature of the validation
phase tests because new parts of the
programs were activated. The software
was put into operation before observing
a noticeable reliability growth.
Reliability growth took place only dur-
ing the system’s operational life.

Evaluating the Laplace factor for
FRs recorded during system operation
leads to Figure 3B, which shows relia-
bility fluctuation from time units 14 to
24, which was not obvious when consid-
ering the whole data set. This fluctua-
tion confirms that removal of a part of

the data corresponding to declining
reliability leads to negative Laplace fac-
tor values and amplifies the variation in
the trend. This fluctuation is due mainly
to the installation of 40 ESSs during
this period.

Analyzing an average system by
dividing the failure intensity by the
number of installations in service leads
to Figure 4: the curve obtained is
smooth compared to that of Figure 3.
Reliability fluctuation between time
units 14 and 17 corresponds to the
introduction of six ESSs. Reliability
growth tends to be regular from time
unit 17 onwards. This behavior is also
apparent in the four components, as
shown by the Laplace factor displayed
in Figure 5A: all the components exer-

cised reliability fluctuation between
time units 14 and 16, with the manage-
ment component most sensitive to
change.

Reliability growth models. We first
adopt the customer’s perspective: evalu-
ation of the software’s reliability in
operation. Then, we consider the sup-
plier’s perspective: to plan the mainte-
nance effort, we estimate the number of
failures expected to occur during the
subsequent time period.

Software and component reliability evalua-
tion. When the software is in operation,
one of the main measures of interest is
the residual failure rate corresponding
to the steady behavior of the software.
The hyperexponential (HE) model11 is
the only one that lets us estimate this
measure, so we will use this model to
evaluate the residual failure rate and the
failure intensity.

The results of the trend analyses in
Figures 4 and 5A show regularity from
time unit 17 on. These results guide the
model application: the failure intensity
and residual failure rate are evaluated
using failure data from time unit 17.
Figure 5B shows the results of applying
HE to each component separately,
which gives the observed and estimated
failure intensities. Table 2 gives the
residual failure rates obtained from
applying HE.

To check the validity of the results,
we evaluated the average failure rate
observed during the last 10 time units of
operation, as shown in the last column
of Table 2. As expected, this average is
higher than the residual for all compo-
nents. However, it is very close to the
latter for the defense and interface com-
ponents. This means that these compo-
nents had almost reached a steady
behavior during the last 10 time units,
whereas the telephony and management
components were still evolving. Figure
6 gives the results obtained from apply-
ing HE to the whole software.

If we review figures 5B and 6 and
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TABLE 2
RESIDUAL FAILURE RATES AND AVERAGE FAILURE RATE

OVER THE LAST 10 MONTHS

Estimated residual Observed average
failure rate (last 10 units of time)

Telephony 1.2 × 10−6/h 1.0 × 10−5/h

Defense 1.4 × 10−5/h 1.6 × 10−5/h

Interface 2.9 × 10−5/h 3.7 × 10−5/h

Management 8.5 × 10−6/h 2.0 × 10−5/h
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Figure 6. Failure rate and failure intensity observed and estimated by the hyperex-
ponential (HE) model for the whole software.
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Table 2, we can conclude the following:
♦ The evolution of the whole-

failure intensity masks the real evolution
of the component intensities.

♦ The failure rate obtained by sum-
ming over the component residual fail-
ure rates (5.3 × 10−5/h) is close to the
residual failure rate of the software (5.7
× 10−5/h), which means that even
though the components are not totally
independent, the residual failure rate of
the software is almost equal to the sum
of the failure rates of its components.

♦ The residual failure rate may be
regarded as high when compared to
those of other systems. However, this
failure rate must be moderated by
acknowledging that the severity of fail-
ures is not distinguished and the esti-
mated value includes failures with
minor consequences as well. Unfortu-
nately, the FRs do not record failure
severity.

Maintenance planning. We adopt here
the supplier’s and maintainer’s perspec-
tive: the maintenance effort is a function
of the average effort to make a correc-
tion and the number of corrections to be
performed. To do this, we consider data
collected from all the installed systems. 

Figure 3B indicates global reliability
growth over the operational life and sug-
gests the application of models with
decreasing failure intensity: we use HE
and the exponential model12 (EXP) for
data pertaining to operation. However,
we also present the results of an S-
shaped model13 (SS) to allow for com-
parison and highlight the advantage of
analyzing trends before applying mod-
els. We use failure data observed during
time units 9 to 19 to predict the number
of failures that will occur during the rest
of the observation period. Figure 7
shows the results. As expected, HE and
EXP give good results, whereas SS is
overly optimistic. Compared to the 34
observed failures for this period, HE
predicted 37, EXP predicted 33, and SS
predicted only 9.

Nevertheless, Figure 3A suggests

applying the SS model from the begin-
ning, to include the trend change
around time units 5 to 9. This is more in
line with the model’s assumptions.
Doing so gives the results shown in
Figure 8, including a significant
improvement in the model’s prediction
accuracy.

The results show how much the use
of trend test results can improve predic-
tions when we apply the models to data
exhibiting behavior according to the

models’ assumptions. Moreover, we can
obtain equivalent and good results for
maintenance planning over the next year
if the models we use are applied to sub-
sets of data displaying a trend in accor-
dance with the models’ assumptions.

oftware reliability now faces a
paradox: although software is the

current bottleneck to achieving
dependable computer systems, current
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reliability practice does not generally
take software reliability into account. In
part this is because reliability evaluation
has often been restricted to the applica-
tion of reliability models to failure data
and in many cases those applications
failed to give accurate predictions.

Our method has successfully helped
analyze the software reliability of sever-

al real systems. We believe it is mature
enough to be integrated into a more
general approach to software reliability
engineering and to be used in real time
to manage software development. The
approach we propose provides some
solutions to the current software relia-
bility evaluation paradox. However,
some limits in the current state of the

art must still be overcome to allow effi-
cient application of software evaluation
in the development process. We must
tie software reliability more strongly to
the earlier part of the development
process and correlate the observed reli-
ability with some characteristics of this
process to identify significant areas for
reliability improvement.
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