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Abstract

We study the qualitative behavior of a smoking model in which the population is

divided into five classes, that is, non-smokers, smokers, people who temporarily quit

smoking, people who permanently quit smoking, and people who are associated

with illness due to smoking. The global asymptotic stability of the unique positive

equilibrium point is presented. More precisely, a graph-theoretic method is used to

prove the global stability of the unique positive equilibrium point.

Keywords: epidemic model; local and global stability; Lyapunov function;

graph-theoretic method

1 Introduction

Smoking is one of the main causes of health problems and continues to be one of the

world’s most significant health challenges. It is the leading cause of preventable death,

and it is estimated to kill more than  million people worldwide each year, and this num-

ber is expected to grow. According to theWorld Health Organization report on the global

tobacco epidemic [], tobacco use kills or disables many people in their most productive

years, which denies families their primary wage-earners, consumes family budgets, raises

the cost of health care and hinders economic development. Smoking or tobacco is a known

or probable cause of deaths from cancers of the oral cavity, larynx, lung, esophagus, blad-

der, pancreas, renal pelvis, stomach, and cervix. Smoking is also a cause of heart disease,

strokes, peripheral vascular diseases, chronic obstructive lung diseases, and other respi-

ratory diseases, and low-birth weight babies [].

Exerting more pressure for immediate intervention and public policy making are the

reported increases in tobacco and drug use by young people. The SurgeonGeneral reports

that in  the average age when smokers tried a cigarette for the first timewas . years,

and the average age when they became daily smokers was . years. The observed trend

from  to  of relevant data confirm that adolescence is the primary time during

which tobacco use develops []. Smoking among adolescents is also connected to social

factors. Adolescents whose families and friends smoke are more likely to start smoking

earlier than their counterparts.

The enormous public health burden relatedwith smoking urges one to study the dynam-

ics of smoking in a community, intended at determining realistic methods for preventing

this habit. Mathematical modeling has been used extensively to address questions of pub-

lic health importance, dating back to the seminal work of Bernoulli (on modeling the dy-
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namics of smallpox) in  [], Kermack and McKendrick [–] and those reported in

more recent literature (such as in [–] and the references therein); not much has been

analyzed in terms of the mathematical modeling of human social behavior.

In , Castillo-Garsow et al. [] for the first time proposed a simple mathematical

model for giving up smoking. They consider a system with a total constant population

which is divided into three classes: potential smokers, that is, people who do not smoke

yet but might become smokers in the future (P), smokers (S), and people (former smok-

ers) who have quit smoking permanently (Q). Sharomi and Gumel developed mathemat-

ical models by introducing mild and chain classes []. In their work they presented the

development and public health impact of smoking-related illnesses. Zaman [] extended

the work of Castillo-Garsow et al. [] and developed a model taking into account the oc-

casional smokers compartment in the given smoking model and presented its qualitative

behavior.

The model presented in [] studied the dynamics of a given smoking model. In this

work, the population was divided in four subclasses: potential smokers, occasional smok-

ers, smokers, and quit smokers. In this paper, we modified this model by including the

following features:

• Smokers who temporarily quit smoking and return back to smoking class.

• A class of smokers associated with some illness.

• The additional death rate of the smoking-related illness class.

The rest of the paper is organized as follows. In Section , we present a formulation of the

modified mathematical model. The existence of endemic equilibrium and its local stabil-

ity is presented in Section . In Section , we use a graph-theoretic method to show the

global stability of the endemic equilibrium. An estimation of the parameters and numeri-

cal results are discussed in Section . Finally, we give our conclusion.

2 Formulation of model

The schematic diagram of the proposed model is shown in Figure .

The description of the variables and the parameters is given in Table .

The analytical expression of the above model, shown in the flow diagram, is

dP

dt
= α – βf (P,S) – γP, (.)

dS

dt
= βf (P,S) – (γ + δ + ǫ)S + ζX, (.)

dX

dt
= δ( – η)S – (γ + ζ )X, (.)

dY

dt
= δηS – γY , (.)

Figure 1 Flow diagram of smoking model.
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Table 1 Description of variables and parameters

Parameter Description

P Potential smokers

S Smokers

X Smokers who temporarily quit smoking

Y Smokers who permanently quit smoking

Z Class of smokers associated with some illness

α The recruitment rate of the non-smoking (potential smoking) class from the larger embed-

ding population

β The transmission rate of non-smokers into smoking class

γ The natural death rate

δ(1 – η) The rate at which smokers temporarily quit smoking

δη The rate at which smokers permanently quit smoking. It is assumed that 0 < η < 1

ǫ Developing rate of smoking-related illness of the smokers

ζ The rate at which temporarily quit smokers return back to smoking class

ϑ The additional death rate of the smoking-related illness class

dZ

dt
= ǫS – (γ + ϑ)Z. (.)

Our aim in this paper is to discuss the qualitative behavior of above model by taking

f (P,S) =
√
PS.

In this case the system (.)-(.) can be rewritten as

dP

dt
= α – β

√
PS – γP, (.)

dS

dt
= β

√
PS – (γ + δ + ǫ)S + ζX, (.)

dX

dt
= δ( – η)S – (γ + ζ )X, (.)

dY

dt
= δηS – γY , (.)

dZ

dt
= ǫS – (γ + ϑ)Z. (.)

Assume that system (.)-(.) has non-negative initial conditions, then every solution

(P(t),S(t),X(t),Y (t),Z(t)) of (.)-(.) has the positivity property, i.e., P(t) ≥ , S(t)≥ ,

X(t)≥ , Y (t) ≥ , and Z(t) ≥ .

Consider the following equation:

N(t) = P(t) + S(t) +X(t) + Y (t) + Z(t).

Hence, we obtain

dN

dt
= α – γN – Zϑ .

Then it follows that

dN

dt
≤ α – γN , (.)
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with N() = P() + S() +X() + Y () + Z(). Then from (.), it follows that

lim
t→∞

supN(t)≤
α

γ
.

3 Endemic equilibrium and its local stability

An endemic equilibrium is one in which there are variables corresponding to the pres-

ence of the disease in the population that are non-zero. Local stability of an equilibrium

point means that if we put the system somewhere near the point then it will move to the

equilibrium point in some time. Global stability means that the system will come to the

equilibrium point from any possible starting point (i.e., there is no ‘nearby’ condition). In

an even more physical interpretation, if an endemic equilibrium is locally stable then all

epidemiological situations not so much different from the given stable equilibrium will

(with time) evolve to (or transform into) the equilibrium point. Also it means that the

equilibria are stable to small perturbations, i.e., if we push the situation a bit away from

the equilibrium point then the situation will return on its own (from the physicist’s point

of view, it means that the equilibrium may be a stable situation in real life, because the

real world always is somewhat noisy). Global stability of an equilibrium point in this case

may be described as ‘the inevitable fate of the epidemic process regardless of its start-

ing situation’. But the caveat should be considered that this ‘inevitability’ holds as long

as the world strictly follows the underlying mathematical model of the epidemic pro-

cess.
Let E = (P∗,S∗,X∗,Y ∗,Z∗) be an equilibrium point of (.)-(.), then

P∗ =
α(γ  + γ (δ + ζ + ǫ) + ζ (δη + ǫ))

β(γ + ζ ) + γ (γ  + γ (δ + ζ + ǫ) + ζ (δη + ǫ))
,

S∗ =
αβ(γ + ζ )

(γ  + γ (δ + ζ + ǫ) + ζ (δη + ǫ))(β(γ + ζ ) + γ (γ  + γ (δ + ζ + ǫ) + ζ (δη + ǫ)))
,

X∗ =
αβδ( – η)(γ + ζ )

(γ  + γ (δ + ζ + ǫ) + ζ (δη + ǫ))(β(γ + ζ ) + γ (γ  + γ (δ + ζ + ǫ) + ζ (δη + ǫ)))
,

Y ∗ =
αβδη(γ + ζ )

γ (γ  + γ (δ + ζ + ǫ) + ζ (δη + ǫ))(β(γ + ζ ) + γ (γ  + γ (δ + ζ + ǫ) + ζ (δη + ǫ)))
,

Z∗ =
αβǫ(γ + ζ )

(γ + ϑ)(γ  + γ (δ + ζ + ǫ) + ζ (δη + ǫ))(β(γ + ζ ) + γ (γ  + γ (δ + ζ + ǫ) + ζ (δη + ǫ)))
.

Hence, (P∗,S∗,X∗,Y ∗,Z∗) is the unique positive equilibrium point of (.)-(.).

The feasible region Ŵ = {(P,S,X,Y ,Z) ∈ R

+ : P+S+X +Y +Z ≤ α

γ
} is positively invariant

with respect to (.)-(.). Furthermore, (P∗,S∗,X∗,Y ∗,Z∗) ∈ int(Ŵ) [].

Theorem . The unique positive equilibrium point of (.)-(.) is locally asymptoti-

cally stable.
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Proof The Jacobian matrix JM(P∗,S∗,X∗,Y ∗,Z∗) associated with (P∗,S∗,X∗,Y ∗,Z∗) is

given by

JM
(

P∗,S∗,X∗,Y ∗,Z∗)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

– β
√
S∗


√
P∗ – γ – β

√
P∗


√
S∗   

β
√
S∗


√
P∗

β
√
P∗


√
S∗ – (γ + δ + ǫ) ζ  

 δ( – η) –(γ + ζ )  

 δη  –γ 

 ǫ   –(γ + ϑ)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Furthermore, the characteristic polynomial of JM(P∗,S∗,X∗,Y ∗,Z∗) about (P∗,S∗,

X∗,Y ∗,Z∗) is given by

C(λ) = (λ + γ )(λ + γ + ϑ)Q(λ), (.)

where

Q(γ ) = λ + aλ + bλ + c (.)

with

a = γ + δ + ζ +
β(S∗ – P∗)


√
P∗S∗

+ ǫ,

b =
(

P∗(S∗(γ  + γ (δ + ζ + ǫ) + ζ (δη + ǫ)
)

– β(γ + ζ )
√
P∗S∗

)

+ βS∗√P∗S∗(γ + δ + ζ + ǫ)
)

/
(

P∗S∗),

and

c =
(

βS∗√P∗S∗
(

γ  + γ (δ + ζ + ǫ) + ζ (δη + ǫ)
)

+ γP∗(S∗(γ  + γ (δ + ζ + ǫ) + ζ (δη + ǫ)
)

– β(γ + ζ )
√
P∗S∗

)

)

/
(

P∗S∗).

It follows from (.) that λ = –γ and λ = –(γ + ϑ) are two eigenvalues of the Jacobian

matrix JM(P∗,S∗,X∗,Y ∗,Z∗), and its remaining eigenvalues are the roots of (.). Further-

more, after some tedious calculations, one can show that

a > , b > , c > , ab > c.

Hence, according to the Hurwitz criterion, the unique positive equilibrium point of (.)-

(.) has local asymptotical stability. �
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4 Global stability

In order to prove the global stability of unique endemic equilibrium, we use a graph-

theoretic method. One can find this method in [, ]. Arguing as in [], we will study

some basic results related to the graph-theoretic method.

A directed graph, or digraph,G, consists of a set of vertices V (G), a set of arcs A(G), and

a function which assigns each arc A an ordered pair of vertices (i, j). We call i the tail of A,

j the head of A, and i, j the ends of A. If there is an arc with tail i and head j, then we let

(i, j) denote such an arc, and we say that this arc is directed from i to j. The indegree d–
G(i)

of vertex i is the number of arcs (l, i), l ∈ V . The outdegree d+
G(i) of vertex i is the number

of arcs (i, l), l ∈ V . Moreover, assume that H is a spanning set of G having the same vertex

sets, then we call H a subdigraph of G. If we assign a positive weight to each arc, then the

digraph G is said to be weighted. The weight W (H) of a subdigraph H is the product of

the weights on all its arcs.

A rooted graph, or simply a tree, is a subdigraph, denoted by T of G, and it is a single

connected component in which the indegree of one vertex is zero, whereas each of the

remaining vertices has indegree one. On the other hand, a directed path P is a subdigraph

with distinct vertices denoted by i, i, . . . , ik such that its arcs are of the form (im, im+),

wherem = , , . . . ,k–.Moreover, we denote a directed cycle byC, and it is the subdigraph

obtained from such a path P by adding the arc (ik , i).

Let G be a weighted digraph having n vertices. Next, we consider an n × n weighted

matrix denoted by M = (aij) such that aij >  equal to the weight of arc (j, i) if it exists

and  otherwise. We denote such a weighted digraph by (G,M). A digraph G is strongly

connected if, for any pair of distinct vertices i, j, there exists a directed path from i to j.

A weighted digraph (G,M) is strongly connected if and only if the weight matrix M is

irreducible. The Laplacian matrix L = (lij) of (G,M) is defined as

lij =

⎧

⎨

⎩

–aij, i 	= j,
∑

i	=k aik , i = k.

Lemma . (Kirchhoff’s matrix tree theorem) For n ≥ , assume that ci is the cofactor of

lii in L. Then ci =
∑

T∈Ti W (T), i = , , . . . ,n, where Ti is the set of all spanning trees T of

(G,M) that are rooted at vertex i. Moreover, if (G,M) is strongly connected, then ci >  for

 ≤ i≤ n.

Moreover, arguing as in [, ], we have the following results.

Lemma. Let ci be as given in Lemma ..Then
∑n

i,j= ciaijFi(X) =
∑n

i,j= ciaijFj(X),where

Fi(X) is a collection of functions with X = (x, . . . ,xm) ∈ R
m, and  ≤ i≤ n.

Lemma . [] Let ci be as given in Lemma .. Let aij > , and d+
G(j) =  for some  ≤

i, j ≤ n, then ciaij =
∑n

k= cjajk .

Theorem . The unique positive equilibrium point of system (.)-(.) is globally

asymptotically stable.
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Proof Using the graph-theoretic method developed in [], first we construct the Lya-

punov function V (t). For this purpose, we set

V = P – P∗ – P∗ ln
P

P∗ , V = S – S∗ – S∗ ln
S

S∗ ,

V = X –X∗ –X∗ ln
X

X∗ , V = Y – Y ∗ – Y ∗ ln
Y

Y ∗ ,

and

V = Z – Z∗ – Z∗ ln
Z

Z∗ .

Differentiation w.r.t. t gives

V ′
 =

(

 –
P∗

P

)

P′,

V ′
 =

(

 –
P∗

P

)

(α – β
√
PS – γP),

V ′
 = β

(

 –
P∗

P

)

(
√
P∗S∗ –

√
PS

)

+ γ

(

 –
P∗

P

)

(

P∗ – P
)

,

V ′
 = β

√
P∗S∗

(

 –
P∗

P

)(

 –

√
PS

√
P∗S∗

)

– γ
(P – P∗)

P
,

V ′
 = –γ

(P – P∗)

P

+ β
√
P∗S∗

(

√

P∗

P

√

S

S∗ – ln

√

P∗

P

√

S

S∗ + ln

√

P∗

P

√

S

S∗ +  –
P∗

P
–

√
PS

√
P∗S∗

)

,

V ′
 ≤ β

√
P∗S∗

(

√

P∗

P

√

S

S∗ – ln

√

P∗

P

√

S

S∗ + ln

√

PS

P∗S∗ –

√
PS

√
P∗S∗

)

=: aG.

Similarly we obtain

V ′
 =

(

 –
S∗

S

)

S′,

V ′
 =

(

 –
S∗

S

)

(

β
√
PS – (γ + δ + ǫ)S + ζX

)

,

V ′
 ≤ β

√
P∗S∗

(

√

PS

P∗S∗ – ln

√

PS

P∗S∗ + ln

√

P

P∗ –

√

P

P∗ –

√

S∗

S
+ ln

√

S∗

S

)

+ ζX∗
(

X

X∗ – ln
X

X∗ –
X

X∗
S∗

S
+ ln

X

X∗
S∗

S

)

=: aG + aG,

V ′
 =

(

 –
X∗

X

)

X ′,

V ′
 =

(

 –
X∗

X

)

(

δ( – η)S – (γ + ζ )X
)

,
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Figure 2 Weighted-diagraph constructed for

system (2.6)-(2.10).

V ′
 ≤ δ( – η)S∗

[

S

S∗ –
SX∗

S∗X
+ ln

SX∗

S∗X
– ln

S

S∗

]

=: aG,

V ′
 =

(

 –
Y ∗

Y

)

Y ′,

V ′
 =

(

 –
Y ∗

Y

)

[δηS – γY ],

V ′
 ≤ δηS∗

[

S

S∗ – ln
S

S∗ –
S

S∗
Y ∗

Y
+ ln

S

S∗
Y ∗

Y

]

=: aG,

V ′
 =

(

 –
Z∗

Z

)

Z′,

V ′
 =

(

 –
Z∗

Z

)

[

ǫS – (γ + ϑ)Z
]

,

V ′
 ≤ ǫS∗

[

S

S∗ – ln
S

S∗ –
S

S∗
Z∗

Z
+ ln

S

S∗
Z∗

Z

]

=: aG.

The associated weighted digraph has five vertices and two cycles (see Figure ). Along

each cycle G + G + G + G =  and G + G + G + G + G = . By Theo-

rem . in [], there exists ci,  ≤ i ≤ , such that V =
∑

i= ciVi is a Lyapunov function

for (.)-(.). The relations between ci ’s can be derived from Theorems . and .

of []: d+() =  implies ca = ca, d
+() =  implies ca = c(a + a), d

+() = 

implies ca = ca, and d+() =  implies ca = ca. Therefore V =
∑

i= ciVi =

V +
β
√
P∗S∗

(β
√
P∗S∗+ζX∗)

V +
βP∗S∗

δ(–η)(β
√
P∗S∗+ζX∗)

V +
β

δη

√

P∗
S∗ V +

β

ǫ

√

P∗
S∗ V. We can easily verify that

{E} is the only invariant set in int(�), where V ′ = , therefore, E is globally asymptotically

stable in int(�). �

Physically the global stability of unique endemic equilibriummeans that if smokers con-

tinue to spread the disease in the population, whatever the initial population will be, ul-

timately the population approaches a constant level. The constant level means that the

transition in different classes of the population stops.

5 Numerical simulations and discussion

In this section themodel is solved by using a Runge-Kutta fourth order scheme. The values

of some of the parameters in the model are dictated by reality, e.g. the death rates of the
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Figure 3 The plot shows the variation of total

population with α = 0.8, β = 0.0005,

γ = 0.0000391, δ = 0.0000913, η = 0.000001,

ǫ = 0.00458, ζ = 0.002, θ = 0.0457.

Figure 4 Endemic levels of S and X for different values of α.

humans and the rate at which smokers quit smoking. The values of the parameters deter-

mined by nature are γ = . per day, corresponding to a life expectancy of humans

of  years and δ = . per day, corresponding to an average duration of smoking

of  years. The variation of the total population is shown in Figure . From this figure

we see that the population approaches a unique endemic equilibrium whenever the re-

productive number exceeds unity and the value of R is .. It means that when disease

persists and the smokers continue to infect potential smokers even then the population

approaches the constant level.

The endemic level of smokers and temporarily quit smokers can be decreased or in-

creased by decreasing or increasing the value of the different parameters. Figures , , ,

, , and  represent endemic levels of smokers and temporary quit smokers for different

values of the parameter. We observe that increasing the values of δ, the endemic level of

temporary quit smokers increases. It means that the smokers enter in the temporary quit

smoking class at the first moment. It can also be observed that by increasing the factor η

the endemic level of temporary quit smokers decreases. These observations suggest that

enhancing the awareness in the population about themenace of smoking canmotivate the

smokers and temporary quit smokers to enter in the permanently quit smoking class. In

this way we can reduce this endemic disease.
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Figure 5 Endemic levels of S and X for different values of β .

Figure 6 Endemic levels of S and X for different values of γ .

6 Conclusion

In this work we modified the model by taking into account smokers who temporarily quit

smoking, a class of smokers associated with some illness, and the additional death rate

of the smoking-related illness class. We first established the local stability of the endemic

equilibrium by using a Hurwitz criterion and then used a graph-theoretic approach to

prove the global stability. The typical solution of the system is obtained and showed that

the population approaches the endemic level. It has also been observed that the endemic

level of smokers and temporarily quit smokers is decreased by increasing the factor η. It

means that the endemic level of smokers could be decreased through education and treat-

ment campaigns to minimize the number of smokers and maximize the number of quit

smokers in a community. The main objective of dynamical systems theory is to predict

the global behavior of a system based on the knowledge of its present state. An approach

to this problem consists of determining the possible global behavior of the system and

determining which conditions on real parameters lead to this long-term behavior. In the

case of nonlinear dynamical systems, it is very crucial to discuss the global behavior of

the system. Particularly, the condition for global stability in population biology is a very
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Figure 7 Endemic levels of S and X for different values of δ.

Figure 8 Endemic levels of S and X for different values of ǫ .

Figure 9 Endemic levels of S and X for different values of η.
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interestingmathematical problem. Therefore, it is very important to find conditionswhich

may guarantee the global stability of the unique positive equilibrium point of the given

system. In the paper, we prove the conditions for the global asymptotic stability of the

unique positive equilibrium point for system (.)-(.).
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