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Abstract The research reported in this paper uses wireless sensor networks to provide

salient information about spatially distributed dynamic fields, such as regional varia-

tions in temperature or concentration of a toxic gas. The focus is on deriving qualitative

descriptions of salient changes to areas of high-activity that occur during the tempo-

ral evolution of the field. The changes reported include region merging or splitting,

and hole formation or elimination. Such changes are formally characterized, and a dis-

tributed qualitative change reporting (QCR) approach is developed that detects the

qualitative changes simply based on the connectivity between the sensor nodes without

location information. The efficiency of the QCR approach is investigated using simula-

tion experiments. The results show that the communication cost of the QCR approach

in monitoring large-scale phenomena is an order of magnitude lower than that using

the standard boundary-based data collection approach, where each node is assumed to

have its location information.

Keywords Sensor network · topology · qualitative changes · spatio-temporal data

1 Introduction

The research reported in this paper uses wireless sensor networks to provide qualitative

information about dynamic happenings in large-scale geographical phenomena, espe-

cially the qualitative changes. There are many examples where wireless sensor networks

can be utilized for monitoring environmental change, modeled as fields. Examples in-

clude flooding, pollution plumes, temperature, and ocean salinity. For the purpose of
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(a) Appearance

(b) Merge

(c) Self-Merge

Fig. 1 Examples of qualitative changes during the spreading of a Yellowstone Park wild fire

an example, we consider a video showing the progression of the 1988 Yellowstone Park

wild fire [25]. In the first pair of snapshots shown in Fig. 1(a), a qualitative change of

type ‘(fire zone) region appearance’ can be observed within the area enclosed by the

bounding box A. In the second pair shown in Fig. 1(b), a qualitative change of type

‘regions merge’ can be observed within the area enclosed by the bounding box B, in

which two fire zone regions become connected. In the third pair shown in Fig. 1(c), a

qualitative change of type ‘region self-merge’ can be observed within the area enclosed

by the bounding box G, in which a fire zone region merges with itself and forms a hole.

These are examples of different types of qualitative changes.

Geographical information of dynamic phenomena is important, and most sensing

applications focused on capturing, processing and reporting the geographical informa-

tion in the form of spatial-temporal data. Besides that, qualitative changes of dynamic

phenomena often describe significant moments, and in many applications it is useful

to have information about these kinds of qualitative changes. For example, in the case

of wildfire, fire fighters might be interested if the fire zone regions split and become
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disconnected, so that they can reorganize the team accordingly. They might also be

interested in merging fires, as it sometimes slows down the burn when the fires are

burning over each other. In the case of a flood, the emergency services may be inter-

ested in the appearance of an island in the flood, because this indicates the locations of

possible safe areas. Instead of emerging from the flood directly, it is also possible that

an island is formed by the flood engulfing a piece of land. In this scenario, people on the

island become separated and may have difficulty escaping. Therefore, rescue from such

a newly formed island might have higher priority in the overall hazard management

strategy. This work focuses on detecting and reporting such salient qualitative changes

using sensor networks.

By focusing on the qualitative information, our approach requires less energy in

communication due to the small and discrete domain of qualitative properties [6]. In

addition, the communication cost can be further reduced as the qualitative descrip-

tions we focus on can be generated without location information. Existing research in

environmental data collection applications often assumes that location information is

available at each sensor node, either at the node itself [18,12] or at the base station [26].

With the location information available, it is possible to generate the boundary shape

or other quantitative properties, such as area, of the observed phenomena. Current

technology allows sensor nodes to obtain their location information either from GPS

directly or using localization algorithms. However, GPS is expensive, and localization

approaches are energy-consuming especially for large sensor networks [2]. Therefore, in

these applications based on location information, additional cost is needed. Another

advantage of our qualitative approach is that the location information is not necessary.

In this work, we do not require the sensor nodes to be aware of their geographic lo-

cations. The qualitative descriptions of salient changes are generated simply based on

network connectivity, and therefore the cost in localization is reduced.

To enable the qualitative reporting approach, in this paper we first provide a formal

classification of changes based on the readings and connectivity of the sensor nodes.

Each class of changes is qualitatively described using a phrase in natural language.

After that, a distributed algorithm is proposed for sensor networks to detect these

changes and report them using the specified phrases in real-time monitoring. The

major contributions of the paper include the following:

1. Identification of key features that allow us to distinguish different types of changes

and to generate qualitative descriptions for the observations.

2. We show that at each particular sampling round, these key features can be com-

pletely captured based on the readings and connectivity information of a small

portion of sensor nodes.

3. An energy-efficient approach is proposed for the detection of different types of

changes in sensor networks. Our experiments show that this approach is able to

generate qualitative descriptions for changes by sensor networks without location

information, and the communication cost in monitoring large-scale phenomena is

much lower than the standard boundary-based data collection approaches with

location information.

2 Background

Applications in geographic information systems often require identification and manip-

ulation of qualitative representations [3,11]. Topology provides an important way to
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abstract and generate qualitative descriptions for spatial data. Active research in this

direction is the specification of static topological relations between spatial regions [8],

and the qualitative reasoning of these relations [4]. Topological features also allow us

to classify spatial changes. Egenhofer and Al-Taha [7] analyze and classify the spatial

changes involving two regions based on their topological relations before and after the

change, and the result is recorded using the conceptual neighborhood graph. Wilmsen

[28] analyzes and identities topological states of regions in snapshots and derives dif-

ferent types of changes, including continuous changes (such as growing, shrinking, and

moving), as well as discrete changes (such as splitting and merging). In the previous

work [15], we propose a model that represents the dynamic topology of an areal object

(a collection of region components, possibly with holes and islands), based on which

different types of topological changes are specified.

Wireless sensor networks provide real-time information about the environment,

and thus have the potential to play an important role in the monitoring of geographic

phenomena [20]. Previous research in environmental data collection either focuses on

proposing energy-efficient approaches to transmitting entire sensed data back to base

stations [26,23,24,19], or focuses on providing important spatial properties of the phe-

nomena. For example, the snake model proposed by Jin and Nittel [16] is able to derive

the area and centroid of a deformable 2D object over time. Recently, there is an in-

creasing interest in considering topological information when processing sensed data.

Gandhi, Hershberger and Suri [12] emphasize the topology of the isolines in a scalar

field and propose an approach that approximates a family of isolines by a collection

of topology-preserving polygons. Sarkar et al. [22] present a distributed algorithm for

the construction of a contour tree to represent the topological structure of contours

in a scalar field, based on which isoline queries can be enabled. Worboys and Duck-

ham [29] provide a computational model for sensor networks to detect global high-level

topological changes based on low-level ‘snapshot’ of spatiotemporal data. Zhu et al.

[30] propose a distributed algorithm for the sensor networks to maintain contours (or

boundaries) of a binary object incrementally as they deform, while guaranteeing that

the maintained contours capture the global topological features of the object boundary.

However, none of the existing work focuses on detecting and reporting of topological

changes.

Another research area of sensor networks that relates to this work is the retrieval of

network topology itself, especially the connectivity among sensor nodes in their com-

munication graphs [17]. Deb, Bhatnagar and Nath [5] in their STREAM algorithm

enable the retrieval of the entire network topology with predefined resolution, which

allows users to make a trade-off between topological details and resources expended.

Existing work has also shown that connectivity information allows the detection of the

topological features of either the sensor networks themselves or the underlying phenom-

ena. Funke and Klein [10] propose an approach that detects holes of sensor networks

based on connectivity information. Wang, Gao, and Mitchell [27] use the connectivity

information to derive the boundary of sensor networks. Ghrist and Muhammad [13]

implement algorithms for sensor networks to detect holes of objects by means of homol-

ogy derived from connectivity information. Although the detection of some topological

properties of areal objects can be achieved based on the analysis of the network con-

nectivity among sensors that observe the areal object [9], the cost for network topology

retrieval is very high. Therefore, more efficient detection methods are needed.
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3 Preliminary

This section provides the basic definitions and assumptions we have made about the

sensor networks in our work. We assume that a large number of sensors are deployed

in the sensing area. Each sensor node is initialized with a unique identifier and records

the values of measurements. A node located near the boundary of the sensing area

is selected to be the reference node, which is assumed to be located in the exterior

of any regions occupied by the phenomena. The reference node enables identification

of a region exterior, which is important for distinguishing certain types of qualitative

changes, such as merge and self-split. The sensor nodes in the sensing area induce a

Voronoi diagram, and each node n is associated with a Voronoi cell consisting of all

the locations that are closer to n than to any other node. We stipulate that the sensor

node deployment satisfies the following constraints:

1. Density constraint, sensor nodes are deployed densely enough so that a sensor

measurement accurately reflects all locations in its Voronoi cell.

2. Communication constraint, each node communicates with exactly the nodes in

its adjacent Voronoi cells.

Both constraints ensure that sensor networks generate accurate reports of qual-

itative changes. In real applications, the constraints may be broken due to energy

exhaustion or hardware failure. It should be pointed out that failure to confirm to

both constraints does not disable the whole detection approach, but it reduces the

reporting accuracy (for example, sensor network may report that splitting of a wild

fire is observed, but in reality the fire does not split).

Fig. 2 shows an example deployment of nodes and their associated Voronoi cells.

It also shows a possible location of the reference node r.

Fig. 2 Sensor network configuration

The sensors take measurements at a sequence of sampling rounds t0, t1, ..., tk. We

assume that the reading of a node at any of the sampling rounds is either 0 or 1. Our

interpretation is that the reading is 1 if the node is in an area of high intensity (reading

above a given threshold), otherwise it is 0. A change is captured by sensor readings at

a pair of consecutive sampling rounds, and the qualitative descriptions of changes are

generated by comparing the readings. The comparison first defines four states of nodes

at sampling round ti.
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Definition 1 Let r(n, t) ∈ {0, 1} denote the reading of a node n at a time t. The state

of n at a sampling round ti(1 ≤ i ≤ k) is defined to be a pair h = (r(n, ti−1), r(n, ti)),

such that h ∈ {(0, 1), (0, 0), (1, 0), (1, 1)}

The state of a node varies with time. In the following discussion, everything is

assumed to be in the same snapshot at sampling round ti(1 ≤ i ≤ k) unless time is

explicitly specified. The states of the sensor nodes together with the node connectivity

yield the following concepts that are foundations for generating qualitative descriptions.

Definition 2 Let N be a set of sensor nodes, N is said to be a homogeneous compo-

nent if the nodes in N have the same state and induce a connected component in the

communication graph. Moreover, N is defined to be a maximal homogeneous compo-

nent, if it is impossible to find a node n in the sensing area such that (1) n /∈ N , and

(2) N ∪ {n} is a homogeneous component.

Definition 3 Let N1 and N2 (N1 ∩ N2 = ∅) be a pair of homogeneous components.

1. N1 is said to be adjacent to N2 if there are nodes n1 ∈ N1 and n2 ∈ N2 such that

n1 and n2 are direct neighbors in the communication graph. Otherwise, N1 and

N2 are said to be separated.

2. N1 is said to be surrounded by N2, if any path in the communication graph that

starts from the reference node and contains a node of N1 must contain a node of

N2. N1 is said to surround N2, if N2 is surrounded by N1.

The generation of qualitative change descriptions does not require data from all

of the nodes. Only the nodes located inside or near the locations where sensor read-

ings change are necessary. These nodes form the transition components and the C-

components defined as follows:

Definition 4 Let N be a maximal homogeneous component.

N is defined to be a transition component, if N consists of only nodes of state (0, 1)

or (1, 0).

N is defined to be a C-component, if both of the following conditions are satisfied:

(1) N consists of nodes of state (1, 1) or (0, 0), and (2) N is adjacent to a transition

component.

The transition components consist of nodes that change their readings, whereas

C-components consist of nodes that do not change. As an example, Fig. 3(A) and 3(B)

show the readings of nodes at consecutive sampling rounds t1 and t2, respectively. Both

snapshots describe a change in which a hole of a region engulfs a piece of its exterior

that forms an island. The black points denote nodes with reading 1, and the white

points denote nodes with reading 0. The only difference between the two snapshots

is that the nodes located in the area enclosed by a polygon change their readings.

These nodes form a maximal homogeneous component with state (1, 0), which is a

transition component at t2 by definition 4. The rest nodes are of states (0, 0) and (1, 1)

at t2, and they form other six maximal homogeneous components. Fig. 3(C) shows the

geographical locations of the seven maximal homogeneous components. In the figure,

region b contains the transition component. Regions a, d, and f contain the maximal

homogeneous components that consist of nodes of state (1, 1). Regions c, e, and g

contain the maximal homogeneous components that consist of nodes of state (0, 0).

In addition, we use ã, c̃, and d̃ to represent the maximal homogeneous components
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contained in regions a, c, and d, respectively, as shown in Fig. 3(D), 3(E), and 3(F).

ã, c̃, and d̃ are adjacent to the transition component contained in region b. Therefore,

they are C-components at t2 by definition 4.

Fig. 3 An example of homogeneous components

In this work, we assume that at each sensing round, only one transition component

is observed, and the region represented by the transition component is a single piece

without any holes. The assumption of simple transition components simplifies our dis-

cussion. More complex situations, in which more than one transition components exist

and each region represented by a transition component is allowed to have holes, will

be recorded as our future work. It should be pointed out that any complex transition

components can be decomposed into several simple transition components. By forcing

the simple transition components to switch one after another, we could generate a se-

quence of descriptions for a complex change. Hence, the study of the simple changes

forms the foundation for the future work.

4 Classification of changes

In this section, we classify the changes based on their topological features defined in

section 3, and phrases in natural language are used to describe each type of changes

in the classification result.

Similar to the discussion of binary images [21], the C-components within a snapshot

have the following properties:

1. There exists exactly one C-component X which surrounds all the other C-components.

X is referred to as the background C-component of the change.

2. The topological structure of the C-components can be represented by a rooted tree.

A vertex of the tree represents a C-component, and an edge of the tree connects a

pair of vertices representing adjacent C-components. The root of the tree represents

the background C-component.

Returning to the example transition shown in Fig. 3, the C-component d̃ is the

background C-component. In addition, C-components ã and c̃ are adjacent, as well as
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the C-components c̃ and d̃ . The structure of the C-components can be represented by

the rooted tree in Fig. 3(G), in which the root is indicated by a double-circled vertex.

The following three features allow us to differentiate and specify various types of

changes. The changes of the same kind must have identical features, and different

changes differ in at least one of the features.

1. The topological structure of its C-components

2. The state of nodes in the transition component

3. The state of nodes in the background C-component

As different rooted tree structures can be explored in a systematic way, we are

able to generate the possible topological structures between the C-components. Fig.

4 lists all the rooted trees with less than 4 vertices, and example configurations of

C-components represented by the rooted trees are also provided. In the figure, the

geographical region that contains the transition component is indicated by a shaded

area, and any vertex of the tree is placed inside the region in which the C-component

represented by the vertex is located.

Fig. 4 Tree representations for different configurations of C-components

The classification yields different types of changes. Fig. 5 shows the classification

results, in which 16 types of changes are distinguished. Based on the way in which the

phenomena represented by the nodes evolve, each type of changes is described by a

phrase, which is also shown in Fig. 5. These qualitative descriptions will be included

in the node report. Fig. 6 gives example evolutions of regions that are described by

different types of changes.

Fig. 5 Classification of changes
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Fig. 6 Examples of specific types of qualitative changes

It should be pointed out that in addition to the specific types of changes shown in

Fig. 5, there are other changes whose structures are represented by a tree with four or

even more vertices. Fig. 7 gives an example of such changes and its representation tree.

Such changes may not have a commonly accepted description associated with them,

but they can also be detected and included in the sensing report if users are interested

in them.

Fig. 7 An example of an uncommon type of change

5 Boundary group based representation for qualitative change detection

As discussed in section 4, in order to form the qualitative descriptions of changes, we

need to identify both the transition component and the C-components together with

their states, and more important, to determine the topological structure between the

C-components.

Using a naive approach, we require the entire collection of nodes located in sensing

area to report their readings and geographical locations back to the base station after

each sensing round. With all the received data, the base station is able to determine

the types of qualitative changes using centralized computation. However, it is energy-

consuming to gather all of the node information to the base station.

To improve on the naive approach, only the nodes located near the boundary of the

areal object are required to report after each sensing round. A boundary node is defined

as a node that has a direct neighbor with a different reading. As an example, Fig. 8 (A)
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and 8(B) show the boundary nodes that are required to report during the transition

described in Fig. 3. Because the boundary nodes carry the necessary information for

change detection, the base station is able to detect the qualitative changes based on

the data received from the boundary nodes. The polygon in Fig. 8(C) encloses the

boundary nodes that are identified to be part of the transition component. Fig. 8(D),

8(E), and 8(F) show the boundary nodes that represent the C-components ã, c̃, and d̃,

respectively. By analyzing the properties of the boundary nodes, the structure of the

representation tree can also be identified, as shown in Fig. 8(G).

Fig. 8 Boundary nodes

The boundary-based approach reduces the number of reporting nodes. However,

as we have assumed a dense deployment of sensor nodes, the number of boundary

nodes may still be large. In addition, both the naive approach and the boundary-based

approach assume the availability of node geographical location data. To further reduce

the communication cost and to avoid the use of geographical location data, we propose

the boundary group based approach.

In the boundary group based approach, some nodes in the sensing area form groups,

and each group is assigned with a unique integer label. The structure of groups is

dynamically updated after each sensing round, so that the nodes in the same group

are always ensured to form a homogeneous component; that is, they all have the same

state. After each sensing round, only groups located near the boundary of the areal

object are required to report. A node in each of the boundary group is selected to be

the group leader, which is responsible for sending data back to the base station.

The data sent from the leader of a group G represent information about the group

as a whole, instead of information about a single node. The group level data include

the integer label of G, the state of the nodes in G, and the neighboring label set of G,

which is defined to be the set of labels of groups that are adjacent to G and whose labels

are greater than G. As an example, Fig. 9(A) and 9(B) describe a basic transition. In

Fig. 9(B), seventeen boundary groups labeled from 0 to 16 exist. Taking group 6 as

an example, the data sent from this group to the base station include group label 6,

the state of the group (1, 1) , and the neighboring label set {7, 13}. The data received

by the base station from all the groups can be represented by the graph shown in Fig.
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Fig. 9 Possible formation of groups

9(C). In this graph, a vertex represents a group of that label, and the color of a vertex

represents the state of the group. Edges of the graph represent the adjacency relations

between the groups, which are derived from the neighboring label sets of the groups.

The base station is able to identify the C-components simply based on the group

level data. In this example, as the state of group 1 is (1, 0), it must be contained in the

transition component. By definition 4, all the other groups that are adjacent to group

1 (including the groups 0, 2, 3, 4, and 6) are contained in C-components. Consider

groups 4 and 6: they are adjacent and are of the same state (1, 1), so they are in the

C-component. In addition, group 6 is adjacent to group 7, and both have the same

state. By definition 4, group 7 must be contained in the same C-component as group 6.

Similarly, groups 5 and 8 must be contained in the same C-component as group 6. But

the other groups are not contained in the same C-component as groups 4 and 6. So

there must be a C-component of state (1, 1) that contains groups 4, 5, 6, 7 and 8. Next,

consider group 2: as no other group of state (1, 1) is adjacent to group 2, another C-

component of state (1, 1) is identified that contains group 2. Finally, consider groups 0

and 3: as both of them are adjacent and are of the same state (0, 0), they are contained

in the same C-component. In addition, as no other group of state (0, 0) is adjacent to

them, we identify the third C-component of state (0, 0), which contains the groups 0

and 3.

The adjacency relations between the C-components can be identified based on the

adjacency relations between the groups. A pair of C-components are adjacent if one
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contains a group that is adjacent to a group in the other C-component. In this example,

as group 3 is adjacent to group 4, the C-component containing groups 0 and 3 must

be adjacent to the C-component containing groups 4, 5, 6, 7 and 8. Similarly, as group

2 is adjacent to group 3, the C-component containing group 2 must be adjacent to

the C-component containing groups 0 and 3. Fig. 9(D) shows the C-components and

adjacency relations identified based on group level data.

Finally, to identify the background C-component, we require each group to send

its group hop distance to the base station, in addition to the other data. The group

hop distance is the number of hops of the shortest path between any node in the

group and the reference node. As the background C-component surrounds any of the

other C-components and the reference node is located outside all the C-components,

it follows that any path that connects a node in a C-component to the reference node

must contain a node in the background C-component. Therefore, among all the groups

identified to be contained in a C-component, the one with the minimal group hop

distance must belong to the background C-component. In this example, if we place

the reference node at the right-bottom of the sensing area, group 6 has the minimal

group hop distance, and the C-component containing group 6 is identified to be the

background C-component.

Generally, with the group level data, the following procedure can be performed in

the base station to determine the type of a change.

First, the base station identifies sets of groups, each set having the following prop-

erties:

1. At least one of the groups in the set is adjacent to a group of state (0, 1) or (1, 0).

2. Groups in the same set have the same state.

3. Groups in the same set are connected with respect to the adjacency relation.

4. Each set is maximal with respect to properties 2 and 3.

Each set satisfying these properties is formed by groups that are located in the

same C-component, and can be used to represent that C-component. By generating

such sets of groups, all the C-components can be found. A pair of C-components are

adjacent if a group in one of the C-components is adjacent to a group in the other

C-component.

Finally, the background C-component is the one that contains the group with the

minimal group hop distance.

6 Algorithms

The analysis in section 5 shows that a qualitative change description can be derived

at any sampling round, as long as the boundary groups are maintained, and necessary

group level data are available at the base station. This section proposes the qualitative

change reporting (QCR) approach based on the foundation laid in section 5. Algorithm

1 sets out the sketch of the proposed approach, and the following subsections present

each step in detail.
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Algorithm 1 Qualitative change reporting

1 Initialization

1.1 Each node in the sensor network computes its hop distance to the reference node.

1.2 The base station sends out a query to the entire nodes in the whole sensing area.

2 Boundary group initialization The following steps are performed immediately

after the first sensing round.

2.1 Group formation: After the first sensing round, groups are formed among the

boundary nodes.

2.2 Group information aggregation and reporting: The group information is

aggregated and sent back to the base station.

3 Monitoring

Sensor nodes take measurements in specified sensing rounds, and the following steps

are performed in each sensing round in a distributed manner:

3.1 Group update: Existing groups are modified to ensure that (1) every node

located near the boundary of C-components is included in a group, and (2) each

group is a homogeneous component.

3.2 Update aggregation: The modified groups perform an update, and update

messages are sent back to the base station.

3.3 Data reporting and analysis: Data are sent back to the base station from

group leaders. The base station analyzes data it receives to determine the type of

changes.

6.1 Initialization

During initialization, each sensor node computes its hop distance to the reference node,

and a query request is propagated from the base station to the nodes in the sensing

area.

The hop distance of a node n is the minimal number of hops that connect n to

the reference node. Similar to the approach described in [10], hop distances of nodes

can be computed by flooding originating from the reference node. The reference node

broadcasts a HELLO message maintaining a distance counter that is incremented at

each hop. The minimal counter value over all messages received by a node n is the hop

distance of n.

Query propagation is done by flooding originating from the base station Q, which

broadcasts a query TPQ(ts, tf , t∆) to all the nodes located in the sensing area. In the

query, ts and tf state the time to start and to finish the monitoring, and t∆ specifies

the time period between a pair of consecutive sensing rounds.

6.2 Group formation

After the first sensing round, the initial boundary groups are formed. Each node first

communicates with its direct neighbors to identify the boundary nodes. A node is a

boundary node if it has a direct neighbor with a different reading. Groups are formed

among those boundary nodes.
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During group formation, a boundary node n first waits for a random amount of

time tw in the range [1, Tw], in which Tw is the maximal waiting time. After that if

no existing group is found for n to join, n becomes a group leader. Each group leader

propagates a group call message toward the other boundary nodes of the same reading.

A boundary node joins with the same group as the sender of the group call message

it first hears. During the group formation, all the boundary nodes in the same group

are assigned the same label, which is the unique identifier of its group leader. Also, a

routing tree is set up within each group that is rooted by the group leader and connects

all the boundary nodes in the group.

Fig. 10 An example of group formation

As an example, Fig. 10(A) shows the boundary groups formed among the boundary

nodes detected immediately after the first sensing round of the basic transition in Fig.

3. Fig. 10(B) shows the details of the boundary group 0, in which the group leader is

indicated by a double circle, and the routing tree built among the nodes in the group

is indicated by the edges between the nodes.

6.3 Group information aggregation and reporting

After the boundary groups are formed, data necessary for qualitative change detection

are aggregated along the routing trees. The aggregation result of a group includes its

neighboring label set, as well as its group hop distance.

By communicating with its direct neighbors, a node n in a group observes the labels

of its direct neighbors. The observed labels that are greater than the label of n form

a local label set of n, denoted by L(n). In addition, we define the neighboring label set

of n, denoted by N(n), to be the union of all the local label sets of nodes contained

in the subtree rooted at n; that is, N(n) = L(n) ∪ (
⋃

m∈D(n) L(m)), in which D(n) is

the set of descents of n in the routing tree .

By definition, the neighboring label set of the group G is N(r), where r is the root

of the routing tree in G. The neighboring label sets can be computed by aggregation.

During the aggregation, each node n computes N(n) based on the data received from

its direct children, and sends the result to its parent. If node n is a leaf node in the

tree, N(n) = L(n). Otherwise, let c1, c2,..., ck be the direct children of n in the routing

tree, N(n) = N(c1) ∪ N(c2) ∪ N(ck) ∪ L(n).

As an example, Fig. 10(C) shows the details of the bottom part of the routing

tree in group 0. The nodes of the part are named a to g, and the node g is the root.

Each node knows its local label set, in which L(a) = L(d) = {1}, L(b) = L(c) =
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{13}, L(e) = {5, 13}, and L(f) = {1, 5}. After the aggregation, each node knows its

neighboring label set, in which N(a) = {1}, N(f) = N(d) = {1, 5}, N(e) = {5, 13},

N(b) = N(c) = {1, 5, 13}.

Similarly, with the routing tree, the group hop distance, which is the minimal hop

distance of the nodes in the group, can be found at the group leader by a standard

aggregation method.

After the aggregation, the group leader is able to send the necessary group infor-

mation back to the base station, including the reading of the group, its integer label,

its neighboring label set, and its group hop distance.

6.4 Group update

In the QCR approach, a group endures after it is formed. However, the readings of

nodes in a sensing round ti can be different from that in ti−1. Therefore, the nodes

in the same group formed in ti−1 may have different states in ti. In order to ensure

that the nodes in the same group form a homogeneous component, some groups are

modified at ti. The modifications include group partial deletions and creations.

The nodes in a group may change its reading after a sensing round. Suppose the

node n in group G changes its reading. Then group G is no longer a homogeneous

component, and needs to be updated. A partial deletion is performed, in which the

nodes in the subtree originating at n is deleted from the group G. To perform the

partial deletion, after the sensing round ti, any labeled node of state (0, 1) or (1, 0)

is set to be unlabeled, leaves the group, and propagates a DESTROY message to its

decedents in the routing tree. A labeled node that receives a DESTROY message is

set to be unlabeled and leaves the group.

The partial deletion of existing groups, as well as the change of the C-components,

results in unlabeled boundary nodes that are not included in any groups. To report

the properties of these nodes, groups are formed among the unlabeled boundary nodes.

The formation procedure is the same as that described in section 6.2.

For an illustration, consider the basic transition described by Fig. 11(A) and 11(B).

During the transition some nodes in group 0 change their readings from 1 to 0, which

incur the partial deletions. These nodes together with their descendants leave group

0 and become unlabeled boundary nodes, as shown in Fig. 11(C). In addition, the

transition also results in some new boundary nodes depicted as squares in Fig. 11(C).

These boundary nodes perform a group formation procedure, and a possible result is

shown in Fig. 11(D), in which new groups 2 and 6 are created, and group 0 is expanded

to include two boundary nodes.

6.5 Update aggregation and reporting

After the group update, information of some groups needs to be computed. The same

procedure as described in section 6.3 is performed in the new groups. In addition, the

aggregation is also performed in the groups that are created in previous sensing rounds.

The aggregation in these groups only takes place where nodes have different data. As

an example, the nodes m, n, o, p, and q shown in Fig. 12 are the only nodes in group

0, whose neighboring label sets and group hop distances may need to be updated. As



16

Fig. 11 An example of group update

the data in the rest of the nodes in group 0 do not change, an aggregation among them

is unnecessary.

Fig. 12 An example of group update aggregation

After the update, the messages are sent from the leaders of some groups to the

base station Q, which include the following.

A creation message is sent from the leader of each new group G. This message

includes the label of G, the state of G, neighboring label set of G, and the group hop

distance of G.

An update message is sent back from the leader of a group G whose group data

changed. The update message includes the labels that are added to, or removed from,

the neighboring label set of G, and the group hop distance of G, if it changes.
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Table 1 Sensing reports description

Time t1 t2 t3 t4
Size ratio 7.77% 8.45% 9.71% 11.05%

Type of change Blob Enlarge Blob Appear Blob Merge

Time t5 t6 t7 t8
Size ratio 12.85% 13.94% 14.4% 14.88%

Type of change Blob Enlarge Blob Merge Blob Enlarge Blob Enlarge

Time t9 t10 t11 t12
Size ratio 13.79% 15.06% 14.03% 14.72%

Type of change Blob Split Blob Enlarge Blob Split Blob Merge

Time t13 t14 t15 t16
Size ratio 15.49% 16.51% 17.51% 18.03%

Type of change Blob Enlarge Blob Enlarge Blob self-merge Blob Enlarge

Time t17 t18 t19 t20
Size ratio 19.12% 19.9% 20.81% 21.8%

Type of change Hole disappear Blob appear Blob Merge Blob Enlarge

7 Experimental evaluation

An experiment was conducted by simulation in order to test the performance of the

proposed approach. We used Prowler [1], a MATLAB based network simulator, as our

simulation environment.

7.1 Experiment setup

In the experiment, the size of the sensing area was set to be 420 units×600 units, and

nodes were deployed in a regular grid with the distance between adjacent nodes being

10 units. Therefore, 42×60=2460 nodes in total were deployed. The sensing range of a

node was defined to be 15 units, so that each node was able to communicate with its 8

direct neighbors. The base station was placed in the middle of the sensing area, which

collected the data and determined the type of the qualitative change in each sensing

round. The sensor nodes woke up and performed the qualitative change detection in

sensing rounds t1, t2,..., t20, in which the difference between ti+1 and ti was 60 seconds.

The maximal waiting time Tw was set to be 10 seconds.

A sequence of 20 snapshots were generated to provide the sensing data from t1 to

t20. These snapshots described a scenario, in which an areal object grew in the form

of basic transitions, from a small areal object to a large one. Table 1 describes the

information of the snapshots, including the ratio of the size of the areal object to the

size of whole sensing area, as well as the type of qualitative changes that occurred in

each sensing round. Fig. 13 shows three example snapshots at times t1, t10, and t20,

respectively.

We ran the qualitative change detection approach on the 20 snapshots. For compar-

ison, the qualitative changes were also detected by the method of periodically boundary

reporting (BR), as described in section 5.
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Fig. 13 Examples of experiment snapshots

7.2 Results and discussion

7.2.1 Communication cost

In the experiments, all the reported types of qualitative changes by both the QCR and

the BR approach were the same as expected. Fig. 14 shows the communication cost of

both approaches. The QCR approach requires higher communication cost in the first

sensing round for the group formation and reporting. After that, the communication

cost is reduced, as the aggregation takes place only at the locality of the change,

and only the updated information is transfered to the base station. However, the BR

approach requires higher communication cost than the QCR method in every sensing

round, as every boundary node is required to report. The total communication cost

of the QCR method is as low as 16.2% of the BR approach. In addition, as the QCR

approach does not assume the availability of node locations, which also reduces the

cost in handling the location information.

Fig. 14 Communication cost of two approaches
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7.2.2 Effect of group size

The maximal waiting time Tw affects the group size in the detection. If Tw is higher,

a smaller number of groups is formed, and each group contains more boundary nodes.

The total communication cost of reporting the 19 changes was affected by the

average group size. In order to study this effect, we set up different Tw within the range

[5s, 30s] in different runs. The average size of groups formed in each run varied, so did

the communication cost. The three curves in Fig. 15 show the local communication cost,

reporting communication cost, and the total communication cost versus the average

group size. Local communication cost refers to the number of bytes transmitted locally

during the group update and data aggregation. Reporting communication cost refers

to the number of bytes transmitted for the reporting. The total communication cost is

the sum of both.

As shown in Fig. 15, the local communication cost increases almost linearly with

the increase of average group size, whereas the reporting communication cost decreases

as the average group size increases. When the average group size increases from 0

to 25, an intensive decrease of the reporting communication cost is observed, and

thereafter it remains almost stable. As the combination of both the local and the

reporting communication costs, the overall communication cost reaches a minimal in

the range between 20 and 30 of the average group size.

Fig. 15 Communication cost versus group size

8 Conclusions and future work

In this paper, we have performed a detailed analysis of qualitative changes that can

be reported by sensor networks simply based on the network connectivity information.

A complete classification of changes is provided, and each kind of change is assigned

a qualitative description. An energy-efficient QCR approach is proposed to collect the

important features for reporting types of observed change during real-time monitoring.

The experiments show that in large-scale monitoring applications, the QCR approach

is able to generate qualitative descriptions of changes simply based on the connectivity

information at a low communication cost.
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The work presented here assumes the transition component in each snapshot is

topologically equivalent to a disk. In future work, we are going to extend the current

work so that it is possible to monitor more complex changes, in which several compo-

nents exist in a single snapshot and each component is allowed to have holes. One of

the possible avenues for future research is to decompose the complex transition com-

ponents into several simple transition components, and the changes incurred by each

simple transition component is processed one after another.

Both this and our previous work [15,14] have shown that it is possible to provide

qualitative descriptions of spatial-temporal data based on changing topology. This pro-

vides a foundation for further study in spatial and temporal queries in terms of dynamic

topological properties. Examples of such queries include, (1) Retrieve the data describ-

ing the appearance of a wild fire in the forest. (2) Retrieve the data describing the

typhoons that occurred last year and split during their evolution. Therefore, another

future research direction is to incorporate the primitive qualitative changes into query

languages, and finally support query manipulation in terms of the dynamic topological

properties of phenomena.
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