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Abstract: This paper investigates to what extent a purely symbolic approach to
decision making under uncertainty is possible, in the scope of Artificial Intelligence.
Contrary to classical approaches to decision theory, we try to rank acts without
resorting to any numerical representation of utility nor uncertainty, and without using
any scale on which both uncertainty and preference could be mapped. Our approach is a
variant of Savage's where the setting is finite, and the strict preference on acts is a
partial order. It is shown that although many axioms of Savage theory are preserved and
despite the intuitive appeal of the ordinal method for constructing a preference over
acts, the approach is inconsistent with a probabilistic representation of uncertainty. The
latter leads to the kind of paradoxes encountered in the theory of voting. It is shown that
the assumption of ordinal invariance enforces a qualitative decision procedure that
presupposes a comparative possibility representation of uncertainty, originally due to
Lewis, and usual in nonmonotonic reasoning. Our axiomatic investigation thus provides
decision-theoretic foundations to preferential inference of Lehmann and colleagues.
However, the obtained decision rules are sometimes either not very decisive or may
lead to overconfident decisions, although their basic principles look sound. This paper
points out some limitations of purely ordinal approaches to Savage-like decision
making under uncertainty, in perfect analogy with similar difficulties in voting theory.
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1 - Introduction

Traditionally, decision making under uncertainty (DMU) relies on a probabilistic
framework. When modeling a decision maker's rational choice between acts, it is
assumed that the uncertainty about the state of the world is described by a probability
distribution, and that the ranking of acts is done according to the expected utility of the
consequences of these acts. This proposal was made by economists in the 1950's, and
justified on an axiomatic basis by Savage (1972) and colleagues. More recently, in
Artificial Intelligence, this setting has been applied to problems of planning under
uncertainty, and is at the root of the influence diagram methodology for multiple stage
decision problems.

However, in parallel to these developments, Artificial Intelligence has witnessed
the emergence of a new decision paradigm called qualitative decision theory, where the
rationale for choosing among decisions no longer relies on probability theory nor
numerical utility functions. Papers by Brafman and Tennenholtz (1997)@nd Doyle and
Thomason (1999) stress the main issues in this area. Motivations for this new proposal
are twofold. On the one hand there exists a tradition of symbolic processing of
information in Artificial Intelligence, and it is not surprising this tradition should try
and stick to symbolic approaches when dealing with decision problems. On the other
hand, the emergence of new information technologies has generated many new decision
problems involving intelligent agents like information systems or autonomous robots.

An information system is supposed to help an end-user retrieve information and
choose among courses of action, based on a limited knowledge of the user needs. It is
not clear that numerical approaches to DMU, that were developed in the framework of
economics, are fully adapted to these new problems. Expected utility theory might
sound too demanding a tool for handling queries of end-users. Numerical utility
functions and subjective probabilities presuppose a rather elaborate elicitation process
that is worth launching for making strategic decisions that need to be carefully
analyzed. Users of information systems are not necessarily capable of describing their
state of uncertainty by means of a probability distribution, nor may they be willing to
quantify their preferences (Boutilier, 1994). This is typical of electronic commerce, or
recommender systems for instance. In many cases, it sounds more satisfactory to
implement a choice method that is fast, and based on rough information about the user
preferences and knowledge. Moreover the expected utility criterion makes full sense for
repeated decisions whose successive results accumulate (for instance money in
gambling decisions). Some decisions made by end-users are rather one-shot, in the
sense that getting a wrong advice one day cannot always be compensated by a good
advice the next day. Note that this kind of application often needs multiple-criteria
decision-making rather than DMU. However there is a strong similarity between the
two problems. Besides, there is no need for a precise modelling of information in the
handling of many queries to recommender systems, and qualitative information is
sometimes good enough, because little is at stake with such queries.

In the case of autonomous robots, conditional plans are often used to monitor the
robot behavior, and the environment of the robots are sometimes only partially



observable. The theory of partially observable Markov decision processes leads to
highly complex methods, because handling infinite state spaces. A qualitative, finitistic,
description of the goals of the robot, and of its knowledge of the environment might
lead to more tractable methods (Sabbadin, 2000, for instance). Besides, the expected
utility criterion is often adopted because of its mathematical properties (it enables
dynamic programming principles to be used). However it is not clear that this criterion
is always the most cogent one, for instance in risky environment, where cautious
policies should be followed.

It is thus tempting to try and define decision rules that would be simple to
implement and do not require from the user numerical information he/she is not able to
provide. Formulating decision problems in a symbolic way may also be more
compatible with a declarative expression of uncertainty and preferences in the setting
of some logic-based language (Boutilier, 1994C1Thomason 2000).

So, there is a need for qualitative decision rules. However there is no real
agreement on what "qualitative" means. Some authors assume incomplete knowledge
about classical additive utility models, whereby the utility function is specified via
symbolic constraints (Lang, 1996; Bacchus and Grove, 1996 for instance). Others use
sets of integers and the like to describe rough probabilities or utilities (Tan and Pearl,
1994). Lehmann (1996) injects some qualitative concepts of negligibility in the classical
expected utility framework. However some approaches are genuinely qualitative in the
sense that they do not involve any form of quantification. Boutilier (1994) exploits
preferential inference of nonmonotonic reasoning and makes decisions on the basis of
most plausible states of nature. Brafman & Tenenholtz (1996) adopt a pessimistic
attitude to decision making, and cast the maximin criterion in a logical setting. Dubois
and Prade (1995c) generalize the maximin criterion in the setting of possibility theory
and propose a Von Neumann and Morgenstern style axiomatisation. However, none of
these approaches are in agreement with the most classical of decision theories, i.e.
Savage's. The natural question is then whether it is possible to found rational decision
making in a purely qualitative setting, without moving too far away from Savage.

We take it for granted that a qualitative decision theory is one that does not resort
to the full expressive power of numbers for the modeling of uncertainty not for the
representation of utility. Two lines can be followed in agreement with this definition:
the relational approach and the absolute approach. Following the relational approach,
the decision maker uncertainty is represented by a partial ordering relation among
events (expressing relative likelihood), and the utility function is just encoded as
another ordering relation between potential consequences of decisions. This approach is
close to the framework of voting theories after Arrow (1951), Sen (1986) etc. The
advantage is that it is faithful to the kind of elementary information users can directly
provide. The other approach (Dubois et al. 2001) presupposes the existence of a totally
ordered scale (typically a finite one) for grading both likelihood and utility. Decision
rules generalizing maximin and maximax criteria can be defined on this ordinal scale.
This approach is very simple but has some shortcomings. First, the obtained ranking of
decisions is bound to be coarse since there cannot be more classes of preference-
equivalent decisions than levels in the finite scale used. Moreover, the assumption of a
common scale for grading uncertainty and preference (we call the commensurability



assumption) is strong. It can be questioned, although it is already taken for granted in
classical decision theory (via the notion of certainty equivalent of an uncertain event).
When only relations are used, one does not make such an assumption, and the
expressive power of purely relational approaches is thus worth investigating.

This investigation is carried out in this paper, in the setting of decision theory
after Savage. Namely, we address the following question: If an uncertainty relation on
events is given, and a preference relation on consequences is independently given as
well, how can a preference relation on acts be rationally constructed with a purely
symbolic approach, without assuming that the uncertainty relation and the preference
relation can both be mapped to some unique scale be it numerical or ordinal. The aim of
the paper is to lay bare the formal consequences of adopting such a purely ordinal point
of view on DMU, while retaining as much as possible from Savage's axioms, and
especially the sure thing principle which is the cornerstone of the theory.

Suppose only a relative likelihood relation on events that describes a decision
maker's knowledge about the state of the world, and a preference ordering on the
consequences of feasible acts are available. A natural, intuitively appealing technique
that solves the act-ranking problem is as follows: suppose an act f is preferred to
another g if the (relative) likelihood that f outperforms g is greater than the likelihood
that g outperforms f. It is called the likely dominance rule. In our investigation, Savage's
framework is slightly relaxed so as to allow for intransitive indifference between acts.
This is necessary in order to avoid trivialization. Moreover we assume that both the set
of states and the set of consequences are finite. An axiom, originally due to Fishburn
(1975) in another context, is then added. It expresses the purely ordinal nature of the
decision criterion, and it is proved to enforce the likely dominance rule.

More precisely, the results of this paper show that:

1) There is no other way of building a preference on acts from an uncertainty
relation on events and a preference relation of consequences, in the sense of reasonable
assumptions coming from Savage's framework and the requirement of a purely
qualitative (ordinal) approach.

2) The decision rule generated by the axiomatic framework is generally
incompatible with a probabilistic representation of uncertainty. Indeed, applying it to an
ordering on events induced by a probability measure may lead to a non-transitive strict
preference relation on acts. The ordinal Savagean framework actually leads to a
representation of uncertainty that is closely related to the ordering of formulas in the
nonmonotonic logic ("System P") of Kraus, Lehmann and Magidor (1990), also
exhibited by Friedman and Halpern (1996).

3) The enforced simple decision criterion is a mixture of lexicographic priority
and unanimity. Preferred acts are selected by restricting to the most plausible states of
the world, and using a unanimity rule on these maximally plausible states. Ties are
broken by lower level oligarchies. However cognitively appealing it may look, it has a
limited expressive and decisive power.

The difficulty met by the purely relational approach to the decision problem under
uncertainty is very similar to the one faced in voting theories (see for instance



Moulin(1988)) where a priori natural procedures, like the Condorcet pairwise majority
rule, exhibit counterintuitive intransitivities. These results question the very possibility
of a purely ordinal solution to this problem, in the framework of transitive and complete
preference relations on acts. This kind of impediment was already pointed out by Doyle
and Wellman (1991) for preference-based default theories.

This paper extends preliminary results that were presented in (Dubois et al.,
1997). 1t is organized as follows. Section 2 recalls some classical decision rules and
Savage's framework for DMU. Section 3 presents the likely dominance rule that can
rank acts from a purely ordinal knowledge of uncertainty on states, and utility on
consequences. This method is similar to the pairwise majority rule in social choice but
is much more general. It is shown that this decision rule is basically inconsistent with
Savage axioms. An axiomatic framework for ordinal DMU is presented in Section 4.
This framework is the one of Savage but the indifference between acts is allowed not to
be transitive. An ordinal invariance axiom is introduced and it is proved that it enforces
the likely dominance rule. Section 5 studies the type of subjectivist uncertainty theory
induced by purely ordinal Savage-like frameworks with or without the ordinal
invariance assumption. It shows that a connection exists between Savage's framework
adapted to ordinal decision criteria, and nonmonotonic reasoning after Kraus, Lehmann
and Magidor (1990). Namely the subjective likelihood relation induced from the
decision-making axioms is equivalently represented by a preferential consequence
relation. Section 6 exhibits a model of the set of axioms, where uncertainty is
represented by a single weak ordering of states, in the framework of comparative
possibility theory (Lewis, 1973; Dubois and Prade, 1998). The relation on events
induced by the likely dominance expresses relative likelihood and plays the role of a
probability measure, but only its strict part is transitive. This type of relation, refines
both possibility and necessity relations. A representation theorem for ordinal DMU is
then provided in terms of a family of possibility relations. Section 7 studies the type of
decision rules generated by the theory. Proofs of the results appear in Appendix 2.

2 — Background on decision theory

A decision problem is cast in the framework of a set S of states (of the world) and
a set X of potential consequences of decisions. States encode possible situations, states
of affairs, etc. An act is viewed as a mapping f from the state space to the consequence
set, namely, in each state s € S, an act f produces a well-defined result f(s) € X. The
decision maker must rank acts without knowing what is the current state of the world in
a precise way. The consequences of an act can often be ranked in terms of their relative
appealllsome consequences are judged better than others. This is often modeled by
means of a numerical utility function u which assigns to each consequence x €X a
utility value u(x) € r. Classically there are two approaches to modeling the lack of
knowledge of the decision maker about the state. The most widely found assumption is
that there is a probability distribution p on S. It is either obtained from statistics (this is
called decision under risk, Von Neumann and Morgenstern, 1953) or it is a subjective
probability supplied by the agent via suitable elicitation methods. Then the most usual
decision rule is based on the expected utility criterion]

EU(DE Xses p(s)u(fis))



where by act f is preferred to act g if and only if EU(f) > EU(g). Another proposal
is the maximin criterion (Arrow and Hurwicz, 1972). It applies when no information
about the current state is available, and it ranks acts according to its worst
consequencel]

W(f) = mingeg u(f(s)).

This criterion, first proposed by Wald (1950), has the major defect of being
extremely pessimistic. In practice it is never used for this reason. An optimistic
counterpart of W(f) is obtained by turning minimum into maximum. Hurwicz has
proposed to use a weighted average of W(f) and its optimistic counterpart, where the
weight bearing on W(f) is viewed as a degree of pessimism of the decision maker.
Other decision rules have been proposed, especially some that generalize both EU(f)
and W(f)Elsee (Jaffray, 1989) and (Schmeidler 1989), among others. Dubois et al.
(1995c¢c, 2001) propose a non-numerical generalization of W(f) on an ordinal scale.
However the expected utility criterion is by far the most commonly used one.

Savage (1972) proposed an axiomatic framework for justifying the use of
expected utility, that we shall briefly recall here as our ordinal approach to DMU
heavily relies on it. Savage is interested in proving that rational decision makers should
use this criterion when ranking acts according to their preferences. From a complete and
transitive preference relation over acts, Savage derives a likelihood relation
representing uncertainty on events in the state space, and a preference relation on the
consequences. If the preference on acts satisfies suitable properties, according to which
the decision maker is considered to be "rational", then the uncertainty on events can be
represented by a unique probability distribution, the preference relation on
consequences by a numerical utility function on an interval scale, and acts are ranked
according to their expected utility.

Let us recall this framework. It is adapted to our purpose of devising a purely
ordinal approach because the starting point of Savage theory is indeed based on
relations and their representation on an interval scale. Suppose a decision maker
supplies a preference relation > over acts. An act is modeled as a mapping f: S — X and
X3S usually denotes the set of all such mappings. In Savage's approach, any mapping in
the set XS is considered as a possible act (even if it is an imaginary one rather than a
feasible one). The first requirement stated by Savage is:

Axiom S1: (XS, >) is a weak order.

Although Savage had his own defense of this axiom, it is unavoidable in the scope
of utility theory: If acts are ranked according to expected utility, then the preference
over acts will be transitive, reflexive, and complete (f > g or g > f for any f, g).

What this axiom also implies, if X and S are finite, is that there exists a totally
ordered scale, say A, that can serve to evaluate the worth of acts. Indeed the

indifference relation (f ~ g if and only if f> g and g > f) is an equivalence relation, and
the set of equivalence classes, denoted XS/~ is totally ordered via the strict preference

>. If [f] and [g] denote the equivalence classes of f and g, [f] > [g] holds if and only if f
> ¢ holds for any representatives of each class. So it is possible to rate acts on A =



XS/~ and [f] is the qualitative utility level of f.

The set of acts is closed under the following combination involving acts and
events. An event is modeled by a subset of states, understood disjunctively. To say that
an event A occurs means that one of the states in A is the real state. Events are the same
as propositions of the form “s € A” . Let A C S be an event, f and g two acts, and
denote by fAg the act such that:

fAg(s) =f(s) if s € A, and g(s) if s & A.

For instance, f may mean "bypass the city", g mean "cross the city", and A
represents the presence of a traffic jam. Then S represents descriptions of the state of
the road network, and X represents a time scale for the time spent by an agent who

drives to his/her working place. fAg then means: bypass the city if there is a traffic jam,
and cross the city otherwise. More generally the notation 1A HHA,, ..., A 1T,A,,

where Ay, ..., A,_1A, is a partition of S, denotes the act whose result is fi(s) if
SEFMA; ¥ i = 1,...n. fAg is actually short for fAgA® where A® is the complement of A.

Savage proposed an axiom that he called the sure-thing principle. It requires that
the relative preference between two acts does not depend on states where the acts have
the same consequences. In other words, the preference between fAh and gAh does not
depend on the choice of h:

Axiom S2 (Sure-thing principle): VA, f, g, h, h' fAh > gAh iff fAh' > gAh'.

For instance, if you bypass the city (f) rather than cross it (g) in case of a traffic
jam (A), this preference does not depend on what you would do in case of fluid traffic
(A®), say, cross the city (h = g), bypass it anyway (h = f) or make a strange decision
such as staying at home. Grant et al. (1997) pointed out that the name "sure-thing
principle" for this postulate was not fully justified since it is hard to grasp where the
sure thing is. Grant et al. propose several expressions of a genuine sure-thing principle
(he calls weak sure-thing principle) one version being as follows:

Axiom WSTP: fAg> gand gAf>gimply f> g.

The above property really means that the weak preference of f over g does not
depend on whether A occurs or not. It is obvious that WSTP is implied by S1 and S2,
since from fAg > g = gAg and S2 we derive f = fAf > gAf and using transitivity of >
due to S1, f > g follows.

The sure-thing principle enables two notions to be simply defined, namely
conditional preference and null events.

Definition 1: f is said to weakly preferred to g, conditioned on A if and only if
Vh,[MAh > gAh. This is denoted by (f> g) 4.

Clearly, the sure-thing principle enables (f > g) 5 to hold as soon as fAh > gAh for
some h. Conditional preference (f > g) o means that f is weakly preferred to g when the
state space 1is restricted to A, regardless of the decision made when A does not occur.



Note that f > g is short for (f > g)g. Moreover (f > g)g always holds, for any f and g,
since it is equivalent to the reflexivity of > (i.e., h > h).

Definition 2: An event A is said to be null if and only if V£, Vg, (f > g) o holds.

Any non-empty set A on which all acts make no difference is then like the empty
set: the reason why all acts make no difference is because this event is considered
impossible by the decision maker.

Conditional preference enables the weak sure-thing principle to be expressed like
a unanimity principle in the terminology of voting theory, provided that the sure-thing
principle holds.

Axiom U: (f > g) o and (f > g) oc implies f > g (unanimity).
Proposition 1: Under axiom S2, WSTP is equivalent to unanimity.

Note that in the absence of S2, (U) implies (WSTP) but not the converse. The
unanimity postulate has been formulated by Lehmann (1996).

Among acts in XS are constant acts such that: 3x € X, V s € S, f(s) = x. They are
denoted fx. It seems reasonable to identify the set of constant acts {fx, x € X} and X.

The preference on X can be induced from (XS, >) as follows:

Definition 3: Given (X5, >), the preference relation >p on X is of the form
Vx,y € X, x 2p y if and only if fx > fy.

This definition is self-consistent provided that the preference between constant
acts is not altered by conditioning. This is the third Savage's postulate:

Axiom S3: V A CS, Anotnull, (fx > fy), if and only if x =p y.

An act f is said to Pareto-dominate another act g if and only if V s € S, f(s) >p
g(s) or f(s) = g(s), which is denoted f =p g. Clearly, Pareto-dominance should imply

weak preference for acts. And indeed under S1, S2, and S3, f >p g implies f > g.

The preference on acts also induces a likelihood relation among events. For this

purpose, it is enough to consider the set of binary acts, of the form fxAfy, which due to
(S3) can be denoted xAy, where x € X, y € X, and x >p y. Clearly for fixed x >p y, the

set of acts {x,y}S is isomorphic to the set of events 25. However the restrictions of

(X5,3) to {x, y}S may be inconsistent with the restriction to {x', y'}> for other choices
of consequences x' >p y'. A partial ordering among events can however be recovered, as

suggested by Lehmann (1996):
Definition 4: Relative likelihood > :

VA,B CS, A= Bifand only if xAy > xBy, Vx, y € X such that x >p y.

In order to get a weak order of events, Savage introduced a new postulate:



Axiom S4: Vx,y,x,y €E X s.t. x >py, x' >py', xAy > xBy [] x'Ay' >x'By"

Under this property, the choice of x, y € X with x >p y does not affect the
ordering between events in terms of binary acts, namely: A > B is short for 3 x >p y,

xAy> xBy.
Lastly, Savage assumed that the set X is not trivial:

Axiom S5: X contains at least two elements X, y such that fx > fy (or x >p y).

Under S1-S5, the likelihood relation on events is a comparative probability
ordering. Savage introduces another postulate that enables him to derive the existence

(and uniqueness) of a numerical probability measure on S that can represent the
likelihood relation > . This axiom reads:

Axiom S6: For any f, g with f > g in XS and any x € X, there is a partition
{S;.0.8,} of Ssuch that Vi=1,...n, xS;f > g and f > xS;g.

Under the postulates S1-S6, not only can > be represented by a numerical

probability function but (XS, >) can be represented by the expected utility of acts u(f)Z
2 es p(s)u(f(s)) where the utility function u represents the relation =p on X uniquely,

up to a linear transformation. However S6 presupposes that the state space S is infinite
so that the probability of S; can be made arbitrary small, thus not altering the relation f

> g when x is very bad (so that xS;f > g) or very good (so that f > xS;g). In contrast, we

assume that both S and X are finite in this paper, and S6 is trivially violated in such a
finite setting. In that case, it is well-known that the axioms of comparative probability
do not ensure that the likelihood relation can always be represented by a probability
(see Fishburn, 1986). This feature does not matter here since our aim is to remain at the
ordinal level. However, there is to our knowledge no representation of subjective
expected utility that would assume a purely finite setting for states and consequences.

3 The Likely Dominance Rule

Savage approach to the justification of expected utility starts from a ranking of
acts. However the real decision problem is to build this relation from information
regarding the likelihood of states and the decision maker preference on consequences.
This Section introduces a natural decision rule that computes such a preference relation
on acts from a purely symbolic perspective, no longer assuming a probability function
on S is available nor a numerical utility function on X. Moreover we assume the set of
states is finite, contrary to the framework of Savage, and we do not use axiom S6.

A "likelihood" relation on the set of events is an irreflexive and transitive relation
> on 25, and a non-trivial one (S > @,), faithful to deductive inference. A >; B means
that event A is more likely than B. Given that an event A stands for a proposition *“s €
A”, a deductive inference “A implies B” is modeled by the inclusion A C B. So, if A C
B then A > B should not hold (inclusion-monotony). The inclusion-monotony property

states that if A implies B, then A cannot be more likely than B. Let us define the weak
likelihood relation 2 induced from > via complementation, and the indifference



relation ~p as usual:
Az Bifandonlyifnot (B> A); A~y Biff A=z Band Bz A.

The preference relation on the set of consequences X is supposed to be a weak
order (a complete preordering, e.g. Roubens and Vincke, 1985). Namely, =p is a

reflexive and transitive relation, and completeness means x =p y ory =p X, Vx,y € X. x
>p y means that consequence x is not worse than y. The induced strict preference
relation is derived as usual: x >p y if and only if x 2p y and not y >p x. It is assumed
that X has at least two elements x and y s.t. x >p y. The assumptions pertaining to >p are

natural in the scope of numerical representations of utility, however we do not require
that the weak likelihood relation be a weak order too.

If the likelihood relation on events and the preference relation on consequences
are not comparable, a natural way of lifting the pair (>, =p) to XS is as follows: an act f

is more promising than an act g if and only if the event formed by the disjunction of
states in which f gives better results than g, is more likely than the event formed by the

disjunction of states in which g gives results better than f. A state s is more promising
for act f than for act g if and only if f(s) >p g(s). The following notation is adopted in

the paper: while f >p g stands for: Vs, f(s) >p g(s), [f >p g] is an event made of all states
where f outperforms g, thatis [f >p g] = {s € S, {(s) >p g(s)}.

Accordingly, we define the preference between acts ( >), the corresponding
indifference (~) and strict preference (>) relations as follows:

Definition 5 (Likely dominance rule) :

f>¢g ifandonlyif [f>pg]>1 [g>pfl;

f>g if and only if not(g > f) i.e. if and only if [f >p g] 2 [g >p{];
f~g ifandonlyif f>gandg>f.

This approach looks very natural, and is the first one that comes to mind when
information is only available under the form of an ordering of events and an ordering of
consequences and when the preference and uncertainty scales are not comparable.
Events are only compared to events, and consequences to consequences. Another

definition, that may look as natural, uses the weak preference ordering and is obtained
by changing [f >p g] into [f =p g]. However, in the scope of Savage approach, this

alternative definition should be equivalent to Definition 5, because of the sure thing
principle: the event [f ~p g] should not affect the likelihood ordering between two

events that both contain it.

The properties of the relations >, ~, and > on XS will depend on the properties of
> with respect to Boolean connectives. The most obvious choice for > is a
comparative probability enforced by S1-S5 (e.g., Fishburn, 1986):

Definition 6: >| is a comparative probability if and only if



1) = is a weak order

ii) S > O (non-triviality),

iii) VA, A = @ (consistency)

iVVANBUC)=0=B=C[] AUBz AU C) (preadditivity).

Note that these properties do not ensure a numerical additive representation of = .
A first negative result is that if > is a comparative probability ordering then the strict

preference relation > in XS is not necessarily transitive.

Example 1:

A very classical and simple example of undesirable lack of transitivity is when S = {sq, s, s3} and
X = {x1, X9, X3} with x| >p X >p x3, and the comparative probability ordering is generated by a
uniform probability on S. Suppose three acts f, g, h such that

f(s1) = x1 >p f(sp) = xp >p f(83) = X3,

8(s3) =x1 >p g(s1) =X >p &(s) = X3,

h(sp) = x1 >p h(s3) = x9 >p h(s) = x3.

Then [f>p gl ={sy,s7 ;s [g>pfl={s3};[g>phl={sy,s3};[h>pgl={s};

[f>ph] = {51} [h>p f] = { 5. 53

The likely dominance rule yields f> g, g > h, h > f. Note that the presence of this cycle does not
depend on figures of utility that could be attached to consequences insofar as the ordering of utility
values is respected for each state. In contrast the ranking of acts induced by expected utility
completely depends on the choice of utility values, even if we keep the constraint u(xq) > u(xp) >
u(x3). The reader can check that, by symmetry, any of the three linear orders f>g>h, g >h>f h>
f > g can be obtained by suitably quantifying the utility values of states without changing their
preference ranking. Note that the undesirable cycle remains if probabilities p(s1) > p(sp) > p(s3) are
attached to states, and the degrees of probability remain close to each other (so that p(sy) + p(s3) >

p(sq)).

This situation can be viewed as an analog of the Condorcet paradox in social
choice, here in the setting of DMU. Indeed the problem of ranking acts on the basis of
the likelihood relation >y and the preference on consequences =p can be cast in the
setting of a voting problem (See Moulin, 1988, for an introduction to voting methods).
Let V be a set of voters, C be a set of candidates and let >, be a relation on C that
represents the preference of voter v on the set of candidates. =, is a weak order, by
assumption. The decision method consists in constructing a relation R on C that
aggregates {=,, v € V} as follows. Let V(cy,cp) ={vE V, c| >, ¢y} be the set of voters
who find ¢| more valuable than c;, and IV(cy,cp)l the cardinality of that set. Then the

social preference relation R on C is defined as follows by Condorcet :
¢y R ¢y if and only if IV(cy,cp)l > 1V(cyp,cpl.

This is the so-called pairwise majority rule. It is well-known that such a relation is
often not transitive and may contain cycles. More generally, Arrow (1951) proved that
the transitivity of R is impossible with natural requirements of the voting procedure

such as independence of irrelevant alternatives, unanimity, and non-dictatorship (i.e., R
# =, for the same voter v systematically).

The probabilistic version of the likely dominance rule is very similar to Condorcet
procedure, taking V2 S, C = XS, and considering for each s € S the relation R on acts
such that



Vf, g € XS: f R, g if and only if f(s) >p g(s).

Computing the probability Prob([f >p g]) is a weighted version of IV (c;,cy)l with
V =S, ¢; =f, ¢p = g, which explains the intransitivity phenomenon. However, the likely

dominance rule makes sense for any inclusion-monotonic likelihood relation between
events and is then much more general than the Condorcet pairwise majority rule.

The above counter-example suggests that the likely dominance rule is generally
not coherent with axioms (S1-S5) of Savage's setting for DMU since they enforce
comparative probability relations as representing subjective uncertainty, and Sl
assumes the transitivity of the preference relation over acts. Here we shall precisely
describe the reason for this incompatibility.

More precisely, the following result explains why probabilistic version of likely
dominance may violate the transitivity of the strict preference over actsCl

Proposition 2: Suppose that
i)(XS, >) is a weak order satisfying axioms S4, S2,
ii) S and X have at least three elements,
iii) (XS, >) projects on 2X as (2X, >1 ) using axiom S4,
iv) (XS, >) projects on X as (X, >p) where X >p y >p z for some x,y, z€ X,

v) The likely dominance rule generates (XS, >).

Then, there cannot exist three pairwise disjoint non-null events A, B, C such that

CUB> A,CUA> Band AUB > C.

Proposition 2 means that, as soon as some acts are neither constant nor binary, the
likely dominance rule is compatible with axioms S1, S2 and S4 only for uncertainty
orderings such that :

Axiom NGV A, B, C disjoint, BUC > Aand A U C > B imply C> A UB.

The proof precisely shows that the conditions in proposition 2 may create cycles
in preferences. Axiom (N) has been introduced by Friedman and Halpern (1996), and
Dubois and Prade (1995b) in connection with the nonmonotonic logic framework of
Kraus, Lehmann and Magidor (1990). It means that if C > A, the likelihood of C is

much higher than the likelihood of A. Indeed the likelihood of events can never be
attained by lumping events of lower plausibility. So C > A means that the likelihood

of A is negligible in front of the likelihood of C. This result considerably restricts the
applicability of the likely dominance rule in Savage's framework. Indeed, probability
measures almost always violate property (N). More precisely, we can prove the
following result:

Proposition 3: If a likelihood relation = is a comparative probability on S such that
(N) holds, then if S has more than two non-impossible elementsC]



i) there is a permutation of the non-null elements of S, such that s; > s, >1...
>L Sn—1 ZL Sn >L @ and

11) Vi= 1,..n-2, Si>L, {Si+l’ ...,Sn}.

Propositions 2 and 3 trivialize the likely dominance rule in the Savage's
framework since it enforces likelihood relation to be one of comparative probability
property satisfying (N), when there are at least three states and three consequences.
Proposition 3 claims that the likely dominance rule forbids a Savagean decision maker
to believe that there are two equally likely states of the world, each of which is more
likely than a third state. This is clearly not acceptable in practice. If we analyze the
reason why this phenomenon occurs, it is easy to see that axiom S1 plays the crucial
role, in so far as we wish to keep the sure-thing principle. S1 assumes the full
transitivity of the likelihood relation =y . Giving up the transitivity of =; may relax the

unnatural restriction of an almost total ordering of states.

When IXI < 3 or if there are no consequences such that fx > fy > fz the likely
dominance rule cannot generate intransitivities on XS. If X has only two elements x >p

y, then the set of acts is truly isomorphic to the set of events and the likely dominance
rule then follows from S1, S2, S3, S4, S5. Indeed, for any act f consider the event Ay C

S, where A¢is defined as follows: s € A¢if f(s) = x and s & Ayif f(s) = y. Now:
f>g ifandonly if xAgy > xAgy
if and only if x(Ag N (Ag)c)y > x(Ag N (Ap“)y (dueto S2)
if and only if [f >p g] =1 [g >p f].

In particular for binary acts the likely dominance rule yields the same preference
ordering as expected utility. Indeed, if u is a utility function on X and Prob a probability
measure on S, it is obvious that, given f = XAy and g = xBy,

u(x)-Prob(A) + u(y):(1-Prob(A)) > u(x)-Prob(B) + u(y):(1-Prob(B))
if and only if Prob(A) > Prob(B) if and only if Prob(B° N A) > Prob(B N A®)
if and only if [xAy >p xBy] > [xBy >p xAy].

When IXI = 3, the trivialization result in Proposition 3 does not rule out all
probabilistic representations. The search for probability functions satisfying axiom (N)
has been carried out by Snow (1994, 1999) and Benferhat et al. (1997b). They are very
special probability functions such that V A € S, 3 s € A, Prob({s}) > Prob(A \ {s}) so
that Prob(A) = Prob(B) if and only if maxggm [Brob(s) = maxg g Prob(s) (this is due
to Proposition 3): the magnitude of p(s) can never be attained by summing the
probabilities of states that are individually less probable than s. Moreover p(s) > p(sy)
>... > p(sy_1) = p(sy) for states sy,..., s, of nonzero probability. Benferhat et al. (1999)
call these probability functions "big-stepped probabilities". They form what Snow
(1994) calls an atomic-bound system. Clearly a lot of probability measures are ruled out
by this condition.



4 - An ordinal axiomatic framework for decision making under
uncertainty

We now use a relaxed Savage-like framework that tries to overcome the above
trivialization result. In view of this result, the only way of accommodating the likely
dominance rule while retaining most of Savage's framework is to weaken postulate S1.
The lack of transitivity of the strict preference is not acceptable. But it is possible to
modify S1 and drop the transitivity of indifference between acts. Although we shall
have to give up probabilistic representations of uncertainty for the most part, such a
relaxation improves the consistency between the sure-thing principle and the likely
dominance rule. However, is this decision rule the only one that ensures a separate
treatment of uncertainty and preference and avoids making them comparable? To
address this question, we shall add an axiom precisely expressing this non-
comparability requirement. We show that this axiom indeed enforces the likely
dominance rule.

4.1 A relaxed Savage framework

We shall start from a strict preference relation > on the set of acts XS and assume
the following property, a weak form of S1:

WS1: (XS, >) is a transitive, irreflexive, partially ordered set.

Let > denote the transposed complement of >. Because the strict preference >
among acts is irreflexive and transitive, it is obvious that the weak preference > is
reflexive and complete (since it cannot hold that f > g and g > f). Moreover denote f ~

g when f > g and g > f, and call it indifference relation. It is obvious that ~ is reflexive
and symmetric. The following weak transitivity properties hold: f>gand g~ h = >
hand f ~ g and g > h = f > h. Indeed, for instance, f > g and h>f imply h> g
(transitivity of >) and this is inconsistent with g ~ h. However none of >, ~ is supposed

to be transitive. This framework differs from Lehmann's (1996) who assumes that the
weak preference > is not complete but the indifference is transitive.

The lack of transitivity of the indifference relation is not counter-intuitive. If f ~

g is interpreted as "f is close to g" in the sense that their utilities are close (lu(f) — u(g)l <
c), then the lack of transitivity is expected. This is usually the case in preference
modeling for multiple criteria analysis (Roubens and Vincke, 1985). One could
alternatively interpret f ~ g as "f and g are not comparable". However since relation >

is complete, the present framework does not allow to distinguish between genuine
indifference and genuine incomparability. The latter more naturally means that neither f
> g nor g > f holds, a case ruled out by our assumptions here. In our framework,
indifference is equivalent to when neither f > g nor g > f holds. while the latter Treating
indifference and non-comparability as distinct situations requires a weak preference >
that is not complete.

Let us derive the preference relation =p from > according to definition 5. Note



that definition 5 applies to whatever preference relation among acts, so that given such
a relation, the set X is automatically equipped with a preference relation having at least
the same properties as the preference relation on acts it is induced from. The strict part
of =p (resp. =) is denoted >p (resp. > ) and the associated indifference ~p (resp. ~p).

Due to WS, it is obvious that >p is irreflexive and transitive and that >p is reflexive
and complete.

Dropping the transitivity of > cancels some useful consequence of the sure-thing
principle under S1, which are nevertheless consistent with the likely dominance rule.
Typically, WSTP (or equivalently, the unanimity axiom U) will not derive from the
relaxed framework. We shall have to add it so as to keep it. Another very natural
property that is implied by Savage's framework, is that f >p g and g > h implies f> h

(where f >p g means that whatever s, f(s) =p g(s)). Similarly, fI g and g >p h implies

> h. This form of transitivity which could be called "Pareto stability" sounds also very
natural, but is not required in the above setting. However the additional axiom of the
next section obviates the need for assuming Pareto stability, up to a pathological case,
as seen further on.

At this point, and in order to stick as close as possible to the classical framework,
it is natural to assume WS1, WSTP, S2, S3, S4, S5 hold.

4.2 The Ordinal Invariance axiom

Basically, an ordinal description of preference presupposes that preference values
are taken from an ordinal scale A and are attached to each consequence x € X. It means
that the inference drawn from such a representation should be invariant if A is changed
into ¢(A) = {¢p(MA): A € A for any non-decreasing bijection ¢pof A to itself. Here, we
shall not use a preference scale explicitly. All that is needed is the finite set X of
consequences, equipped with a preference relation >p. Intuitively we shall require the
following: if, in each state, the preference pattern between the consequence of act f and
the consequence of act g is not altered when changing g and f into f' and g' then the
preference pattern between f and g should remain the same as the one between f' and g'.

More rigorously, two pairs of acts (f, g) and (f', g') will be called statewise order-
equivalent if and only if VsES, f(s) =p g(s) if and only if f'(s) =p g'(s). This is denoted

(f, g) = (f', g'). The following Ordinal Invariance axiom (Fargier and Perny, 1999)
fully embodies our requirement of a purely ordinal approach to DMU.

OL Vf,f' g, g €XS,if (f,g)=(f,g) then (f>g[] f>g".

This axiom does express that what matters for preference between two acts is the
relative positions of consequences of acts for each state, not the consequences
themselves, nor the positions of these acts relative to other acts. If (f, g) = (f', g'), then
for each state s there is an order-preserving mapping ¢¢ from ({f(s), g(s)}, =zp ) to ({f'(s),

g' (8)},=zp) such that ¢y(f(s)) = f'(s) and ¢(g(s)) = g'(s).

It is easy to check that the likely dominance rule obeys axiom OI. This is obvious
noticing that if (f, g) = (f', g') then by definition, [f >p g] = {s, f(s) >p g(s)} = [f' >p g']



In the following, the consequence of adding OI to the relaxed Savage-like
framework is laid bare. As it turns out the presence of OI makes the explicit statement
of the sure thing principle and of axiom S4 superfluous.

Proposition 4: Under assumptions that OI holds, and that relation > on acts is
reflexive, it follows that S2, and S4 hold too.

For S2, one has to see that (fAh, gAh) = (fAh', gAh'"). For S4, if x >p y and x' >p
y' then (xAy, xBy) = (x'Ay', x'By"). The role of S3 is to ensure that x =p y if and only if
xAf > yAf. It must be kept since it is not true that (fx, fy) = (xAh, yAh), for any act h,
consequences X, y and event A.

Note that axiom OI always holds when IX| = 2 since in that case, (f, g) = (f', g')

and f#g imply ' = f and g' = g. Hence the ordinal invariance assumption makes a
difference only if IXI = 3 and 3x,y, z, x >p y >p z. Moreover , if IX| =2, the transitivity

of =p is trivially satisfied. In fact, if [XI = 2, all non-constant acts are binary, and the
ordinal setting coincides with the Savage setting, since the likely dominance rule
produces the same ordering of acts ad the expected utility, in that case, as pointed out in
the previous section. Hence we may have to strengthen the non triviality axiom S5 into:

¢ S'5: 3fx, fy, fz three constant acts such that fx > fy > fz,

in order to focus on the specific features of the decision rule induced by axiom OI. In
view of the above discussion, motivated by a purely ordinal approach, we propose to
adopt the following axiomatic framework, that is faithful to Savage's as much as
possible: WS1, WSTP (or U), S3, S5 and OL. In the following, this is called the ordinal
decision setting.

This framework (in fact, not all axioms are needed) actually enforces the likely
dominance rule as the only rational decision rule (Fargier and Perny, 1999):

Proposition 5: Under the assumption of ordinal invariance, if the weak preference
on acts is reflexive and the induced weak preference on consequences is complete,
the only possible decision rule is likely dominance.

The proof relies on the statewise order-equivalence between the pairs of acts (f, g)
and (x[f 2p gly, x[g =p fly) for x >p y. The assumptions of proposition 5 are clearly
verified under axiom WSI1. As a consequence, if one insists on sticking to a purely
ordinal view of DMU, and one adopts the very weakly constrained framework defined
by WS1, WSTP (or U), S3, S'S, then ordinal invariance, embodied by axiom OI
enforces the likely dominance rule. There is thus no alternative to this decision rule in a
purely ordinal setting.

It remains to check the type of uncertainty representation this framework leads to,
as it was proved to be almost contradictory with a standard probabilistic representation.
This is the topic of the next section.

S - Subjective comparative likelihood induced by the ordinal
setting



In this section we first consider the weak Savage setting defined by postulates
WSI1, S2, S3, S4, S5, WSTP (or unanimity). In subsection 5.1, we first study the
properties of the likelihood relations >, =1 and ~p induced via S4 without assuming

OL. In that case, the setting is more general than Savage's (but it is finite), since we do
not assume the transitivity of the weak preference. In subsection 5.2, we add the OI
axiom, and the framework then moves away from comparative probability. In
subsection 5.3, it is shown that we get much closer to non-monotonic reasoning based
on preferential inference.

5.1 - Without Ordinal Invariance

Suppose we keep the five basic axioms of Savage framework, just relaxing S1
into WS1. We call this framework the quasi-transitive Savage setting. We first prove
properties that hold without even assuming unanimity (U or WSTP).

Proposition 6: In the quasi-transitive Savage setting, the subjective likelihood
relation > induced by S4 verifies the following properties

*S>. 0 (Non-triviality)
*VACS, Az 0O (Non-Contradiction)
*ANBUC)=0=B= C[] AUBz AUCQC) (Preadditivity)
cAnull[] A~ O (Compatibility with null events)
*ACB,A>. O =B>.0 (Stability of non-null events)
Corollaries -

*A> B[] B> A° Az B[] B> A° (Auto-duality)
*rACB=Bz A (Inclusion-monotony)
c A O=VBC A B~ O (Characterization of null events)

These properties are satisfied by comparative probability, of course. The
preadditivity property is driven by the sure thing principle and it implies that A >; B

0 ANB 2, A°’NBand A> B[] AN B> A°N B. Moreover autoduality and
inclusion monotony are derived from the other properties (non-contradiction, non-
triviality, preadditivity ofl3; . However, the weak comparative likelihood = is not
transitive and transitivity is not even preserved when > is composed with its strict
partCIA > B and B > C do not imply A > C . Moreover :

o {s} ~1. @ and {s'} ~; @ do not imply {s, s'} ~1 @, nor {s} ~ {s'};
o {s} ~1. @ and {s'} > @ do not imply {s, s'} > O;
* E > F does not imply E > @.

In order to recover these properties, what is needed is the weak sure-thing
principle WSTP or the unanimity rule (U) equivalently. Remember they do hold in
Savage's framework due to S1, and have to be added here since the weak preference is
not transitive. This new setting, called the quasi-transitive Savage setting with
unanimity, remains weaker than Savage's, but the situation then slightly improves due
to the following property:



Proposition 7: In the quasi-transitive Savage setting with unanimity: if (AUB)
N (CUD) =@, then Az BandC> D =AUCz BUD

Corollaries:

c{s}op Qand (S}~ D= {s,8} ~ O (7.1)
e {st~p @ and {8} ~] @ = {s} ~ {8} (7.2)

*E> F= E> 0 (7.3)
*ENF=@andGCEand Gz F= E>F (7.4)
* There is at least one non-null state. (7.5)

Hence, the Unanimity axiom added to WS1, S2, S3, S4, S5, ensures that the null
events form a class closed under union (proposition 7.1) and intersection (last item of
proposition 6) since ~ becomes transitive for null events. So there exists a largest null

set, say NULL, such that any set of states A is null if and only if it is a subset of
NULL. It also means that under this weakened Savage framework it is always possible
to assume that no state is null without any loss of information: if we delete all null
states from S as being impossible, a state space where no non empty set is null is
obtained.

Remark: A > C and B ~p @ do not imply AUB >p C, except if C = @. This is
because {s} ~; @ and {s} ~p {s'} do not yet imply {s'} ~; @. (A simple
counterexample is S = {s, s'} with {s'} > @ being the only requirement). It is not
surprising if ~j is interpreted in terms of incomparability. If this transitivity property
were valid, and AUB ~j C, then AUB ~; @ and A ~p @, consequently, which
contradicts A >, C.

5.2 - Consequences of Ordinal Invariance

Let us now add OI to our set of axioms characterizing the preference on acts. This
is called the ordinal decision setting, defined by axioms WS1, S3, S’5, OI, WSTP (or
U). We know that axioms S2 and S4 need no longer be stated explicitly. Under these
conditions we can show that :

Proposition 8: In the ordinal decision setting, if S contains at least two non-null
states, the preference on X is a weak order (but the ordering of states in S may be
partial).

The proof only uses WS1 and OI. The above proposition leads us to consider the
quotient set X/—p using the equivalence relation associated to the consequence

preordering =p. It provides a utility scale. It makes sense to cluster equivalent
consequences and replace X by X/p. For instance if X/p has only two elements, then

the set of acts is truly isomorphic to the set of events and the likely dominance rule then
follows from the quasi-transitive Savage setting as pointed out in Section 3.2.

If there is only one non-null state s* € S such that s* > @, then f> g if and only
if (f > g) ;5+). Hence we can then assume that S reduces to a singleton, that is, the state
is known. This is the case when the agent acts as if the knowledge about the world were



deterministic. Then the likelihood relation = is transitive, since for any event A} S or
A~ 9. Axiom S3 leads to f > g if and only if f(s*) >p g(s*). Hence the set of acts and
the set of consequences coincide. If there is only one non-null state s* € S, axioms S2,
S4, U are trivially satisfied, as well as the OI axiom since f > g if and only if s* € [f >p
g] . However, Proposition 8 may fail to hold when there is only one non-null state and
X has more than three non-indifferent elements because the properties of the ordering
on X reflect the properties of the ordering on acts.

Another important consequence of ordinal invariance OI is a fully coherent
behavior of the strict likelihood relation >y with respect to set inclusion, because it

respect the orderly property of Halpern (1996):

Proposition 9: In the ordinal decision setting, the likelihood relation is orderly, that
18:

A>3 BUC= A> B O.1)
A>B= AUC>_B 9.2)

However the presence of the Ordinal Invariance Axiom leads us away from
comparative probability, since the following very strong, non probabilistic property,
already encountered in Section 3, and denoted (N), holds for the comparative
likelihood:

Proposition 10: In the ordinal decision setting, if A, B, C are disjoint, then

AUC> BandBUC> AimplyC> AUB

This is a variant of Proposition 2, whose proof is based on OI and does not require
from axiom S1 more than the transitivity of the strict part of the preordering > on events
and thus applies here. Unanimity is not needed either.

However Propositions 9 and 10 generally do not hold when X has only two non
indifferent elements x >p y, (i.e., when S'S does not hold), and there are at least two
non-null states'. In that case, consequences belong to two different equivalence classes,
because of Proposition 8 (indeed, WS1, S3, OI and S5 imply that the preference relation
on consequences is a weak order). Because of S4, acts and events coincide, and the
likely dominance rule is a consequence of S2 and S4. In this case, the preference on acts
can be a weak order, as in Savage setting. We thus get a theory of uncertainty, that
satisfies Proposition 6 and, if Unanimity is required, Propositions 7 and 8. But
Propositions 9 and 10 can be violated.

" Indeed, if there is only one non null state, say s*, A >1, BU C implies that A >1 @ and thus s*€E A
and s* € B. It is impossible to have B =1 A, which would lead to xBy > xAy, i.e. xBy(s*) =p xAy(s*)
:y = px. Similarily, A > B implies that A > @ and thus s* € A and s* & B. It is impossible to
have B >z AU C , which would lead to xBy > x(AU CQ)y, i.e. xBy(s*) 2p x(AU C)y(s*) : y = px.

Hence, in this case, proposition 9 still holds, provided that the system obeys S5. Concerning
proposition 10 : A U C > B and B U C > A imply that s* belongs to A U C and B U C, i.e. that s*

belongs to C. A U B 2, C would lead to x(A U B)y > xCy, i.e. x(A U B)y(s*) 2p xCy(s*) : y 2 p x



Violations of proposition 9 when X = {X, y} and x >p y, are easy to find: if S =
{a, b, c}, a likelihood relation generated by {a} > {b, c} >; @ only, is such that {a} ~
{b} and violates no property induced by the ordinal decision setting, except (9.1).
Similarly, a likelihood relation generated by {a} > {b} > @ only (hence {a, c} > {b,
c}), is such that {a} ~; {b, c} and violates no property induced by the ordinal decision
setting, except (9.1). So the case of binary consequence sets is pathological. Proposition
9 directly follows from Pareto-stability of the strict preference over acts, thatis " f=pg
and g > h implies f> h", and f > g and " g =p h implies f > h". Hence Proposition 9 is
recovered even if X = {X, y}, when Pareto stability is added to WS1, S2, S3, S4, S5, U.
In fact, Pareto stability is consequence of Savage framework and it must be added in its
non-transitive relaxation using WS1.

Proposition 10 cannot be deduced in Savage's framework : counterexamples are
easy to find when > is supposed to come from a probability distribution.

5.3. - Savage axioms, ordinal invariance and preferential inference

Property (N) and the orderly property of proposition 9 are closely related to one
of the characteristic properties for uncertainty relations that (Friedman and Halpern,
1996) call "plausibility" relations, which are closely connected to non-monotonic
consequence relations. Given a subjective likelihood relation >p , define an inference

relation as follows:
A —Bifandonlyif ANB> ANB°.

A — B intuitively means that B is more likely than not, when A is true. This
Section gives a self-contained proof that the uncertainty theory induced by the relaxed
Savage framework augmented with the OI axiom generates a full-fledged
nonmonotonic inference, thus giving decision-theoretic foundations to nonmonotonic
reasoning. Of course, this is no longer surprising due to Proposition 10 and Friedman
and Halpern (1996)'s results. Our presentation makes it clear which properties of non-
monotonic consequences are related to which Savage-like axioms.

A conditional assertion is an expression of the form ¢ — 1y, where ¢ and { are
propositional formulae, and — is an inference relation. In the following we shall never
use formulae, but only sets of models thereof, and consider nonmonotonic inferences of
the form A — B. It means that if all that is known by an agent is that event A obtains,
then the agent will reason as if B obtained as well. In other words, in context A, the
agent accepts B. Basic properties of nonmonotonic inference have been advocated by
Kraus, Lehmann and Magidor (1990), and form what is known as “system P”":

R: A — A (reflexivity)

RW: A — B and B C Cimply A — C (right weakening)

AND: A — Band A — Cimply A — B N C (closure by conjunction)
OR: A — Cand B — C imply A U B — C (reasoning by cases)
CM: A — B and A — C imply A N B — C (cautious monotony)
CUT: A —Band AN B — Cimply A — C (modified transitivity)



The above rules of inference embody the notion of plausible inference in the
presence of incomplete information. Namely, they describe the properties of deduction
under the assumption that the state of the world is as normal as can be. The crucial rules
are Cautious Monotony and the Cut. Cautious Monotony claims that if A holds, and if
the normal course of things is that B and C hold in this situation, then knowing that B
and A hold should not lead us to situations that are exceptional for A: C should still
normally hold. The Cut is the converse rule: If C usually holds in the presence of A and
B then, if situations where A and B hold are normal ones among those where A holds
(so that A normally entails B), one should take it for granted that A normally entails C
as well. The other above properties are not specific to plausible inference: OR enables
disjunctive information to be handled without resorting to cases. The Right Weakening
rule, when combined with the Right AND, just ensures that the set of nonmonotonic
consequences {B, AIN B >; A N B} (the set of propositions “@Ecceptedd by >; when

A is true) is deductively closed in every context (see Dubois and Prade, 1995b; Dubois,
Fargier and Prade, 1998). Reflexivity sounds natural but can be challenged for null
events as seen below.

These basic properties can be used to form the syntactic inference rules of a
logic of plausible inference. There exist six semantics that have been proposed for such
a logic: preferential semantics (Kraus, Lehmann and Magidor, 1990), based on a partial
ordering relation on an abstract set, projected to the set S via a mapping (it has little
intuitive appeal); three-valued logic semantics based on an abstraction of conditional
probabilities (Dubois and Prade, 1994); infinitesimal probabilistic semantics (Adams,
1975; Pearl, 1988; Lehmann and Magidor, 1992); possibilistic semantics (Dubois and
Prade, 1995a) whereby a set of conditional assertions is equivalent to a family of
possibility orderings; finitistic probabilistic semantics by means of a very special class
of probability measures, the one encountered in Section 3 (Benferhat et al., 1997b); and
a last semantics (Friedman and Halpern, 1996) based on partial orderings of events
satisfying Property (N).

The above natural properties of these inference relations, for the purpose of
reasoning tolerant to exceptions proposed by Kraus, Lehmann and Magidor (1990) can
be translated as follows:

R: Whatever A, A > @.
AND: ANC> ANC'and ANB> ANB°=ANBNC>; AN(C°UB"

OR: ANC>.  ANC,BNC> BNC°"=(AUB)NC>. (AUB)NC"
RW: BCC,ANB> ANB°=ANC> ANC*
CM: ANB> ANB‘and ANC>  ANC°=ANBNC> ANBNC".

CUT: ANB> ANB°and ANBNC> ANBNC'=ANC> ANC"

Property R does not hold in the setting of likelihood relations. In system P, the
reflexivity property A — A reads VA, A >; @ in our setting. This axiom fails due to the

presence of null events. Moreover it implies @ > @ which is also wrong since > is
irreflexive. This is not so important at the technical level for getting representation
results, as shown in Benferhat et al. (1997a). Moreover, it is not clear that A — A
makes sense when reasoning under exceptions, when A = @ : one may admit that a



contradiction preferentially infers nothing. Reflexivity can be replaced by two
conditions conjointly (Benferhat et al. 1997):

—[estricted reflexivity: VA0, A — A, thatis, A> O

—[donsistency preservation: ~(A — @), which expresses that @ > A holds for no event
A, a property that relation >y satisfies.

Since the set of null events has a maximal element NULL for inclusion and every
subset of NULL is null, system P with restricted reflexivity and consistency
preservation is satisfied on S \ NULL. Null events can be defined directly in system P
by just dropping the restricted reflexivity axiom and calling an event A null whenever A
— A does not hold. Using right weakening and OR, it is clear that A — A and B — B
imply AU B — A U B. Hence if A — A does not hold then V B € A, B — B does not
hold either. So there will always be a maximal event NULL such that reflexivity holds
except for subsets of NULL.

The other properties of system P are induced by the ordinal decision setting on the
inference relation based on subjective likelihood:

Proposition 11: OR and AND follow from (WS1, S3, S’5,DI).

At this point of our axiomatisation, we cannot get all the properties of system P,
but only some of them. In order to prove RW, CUT and CM, we need the properties:

BNC=@and ACBandAz C=Bz C (Proposition 7)
BNC=@and ACBandA> C=B> C (Proposition 9)

which cannot be derived without the unanimity axiom®. The next proposition holds if
this axiom is valid.

Proposition 12: If the relation on XS satisfies the axioms of the ordinal decision
setting, then the nonmonotonic inference built from the relation projected from XS to
28 satisfies the properties following of system P: OR, AND, RW, CM, CUT.

This result establishes a bridge between decision theory and non-monotonic
reasoning. It also show the similarity of spirit between the axiomatic approaches of
Savage and Lehmann.

6 - Ordinal invariance enforces qualitative possibility theory.

A concrete non-trivial example of a subjective likelihood relation that fits
decision theory based on ordinal invariance can be provided in the setting of qualitative
possibility theory (Lewis, 1973; Dubois, 1986; Dubois and Prade, 1998).

? Except if there are no null events. Null events generally never appear in nonmonotonic reasoning nor
belief revision theories. But supposing that there is no null event is not appropriate in the context of a
Savage-like theory of decision.



6.1 Qualitative possibility theory

Assume that a decision maker supplies a weak order of states = on S, describing

their relative plausibility. This relation is called a comparative possibility distribution.
Intuitively s = s' means that state s is at least as plausible, normal, expected as state s'.
The simplicity of possibility theory stems from the fact that it uses weak orderings of
events completely characterized by the comparative possibility distribution. Namely, a

pair of dual possibility and necessity orderings on events can be generated on events,
from a weak order > on states only. Namely denoting max(A) any (most plausible)

state s € A such that s > s’ for any s” € A.
A 27 B if and only if max(A) =, max(B)
and A >y B if and only if max{B} > max{B‘}.

This lifting rule must be completed by the property {s} =y @ for all s € S. If we
enforce the property {s} > 9, for all states, the obtained possibility ordering on events
is called non-dogmatic as it does not rule out any state in an absolute manner. Of course
there are other ways of lifting weak ordering relations from elements to subsets, that are
less intuitive here, for instance changing max into min (see Dubois and Prade, 1998).
Halpern (1997) has studied in detail the process of lifting a plausibility relation from
elements of a set to its subsets, assuming only a partial ordering of states. See Appendix
1 for the axiomatic definitions of possibility and necessity orderings and their set-
function representations.

The main idea behind this modeling is that the state of the world is always
believed to be as normal as possible, neglecting less normal states. Thus B =; C means

that there is a normal state where B holds that is at least as normal as any normal state
where C holds. B > C also means that B is at least as plausible as C where plausibility

refers to consistency with an agent's knowledge: B is plausible when it does not

contradict the agent's beliefs described by the comparative plausibility distribution. The
dual ordering B >y C is intuitively understood as "B is at least as certain as C", in the

sense that all situations where B fails to hold are less normal than the most normal
situation where C does not hold. In particular the events accepted as true are those
which hold in all the most plausible situations.

Note that as soon as A N B> AN B and A N B > A N B events A and B are

of equal possibility and/or certainty. To overcome this lack of discrimination, consider
the following comparative likelihood relation between events:

Definition 7: A possibilistic likelihood relation >y is defined from a weak order >
on S by

A= Bifandonly if ANB > A°NB (*)
where >y is the possibility ordering on events induced by 2.

This relation has been proposed independently by various authors like Brewka
(1989), Brass (1991), Cayrol et al. (1992), Geffner (1992) and Delgrande (1994),



mainly for the purpose of ordering subsets of formulas from a prioritized knowledge
base, in the scope of non-monotonic reasoning and inconsistency management. Here it
is used as a tool to define a comparative likelihood relation among events.

Note that >7 and > coincide when restricting to mutually exclusive events A
and B since then B° N A = A and B N A® = B. Similarly >y and >y coincide when
restricting to events A and B whose union is the whole state space, since then B° N A =
B and B N A° = A°. The possibilistic likelihood relation >py; is a refinement of both

possibility and necessity orderings since it may discriminate among events of equal
possibility and/or certainty, when this equality is due to the common parts of A and B
or their complements.

The possibilistic likelihood relation is only a partial ordering. In particular, the
relation A ~pp, B if and only if neither A >p; B nor B >p. A hold on 25 is not
transitive. Namely, in terms of possibility measures (Appendix 1), the assumptions TT(A
N B°) =TI(A° N B) and II(B N C°) = T[I(B N C°) do not imply TTI(A N C) = TI(A° N C).
This is because, even if II is two-valued, max(sts, 7T3) = max(7y, Tg) and max(7m,, 7Tg) =
max(7t3, 77) do not imply max(sty, 7T7) = max(fy, 7t5) denoting 7t; = n(s;), A = {8y, s3,
55}, B = {82, S4, 86}, C= {83, S4» S7} (just take TUy = T3 = Tt5 =T =1, Ty =1y = 0)

Finally, the preadditivity condition (iv) of comparative probabilities holds, and
the relation >y turns out to be self dual:

Proposition 13:

*ANBUC)=0= Bz Cl0 A UBz AU C) (preadditivity).

s Azq B[ Bz A° (self duality)
*A>mL.BUC= A>q. B (orderly)
*A>q.B= AUC> B (orderly)

* AUC> Band BUC >, A imply C>p AUB (N)

So, the relation >y, possesses all properties of a comparative likelihood induced

by the ordinal decision setting. It is similar to a comparative probability, except for the
transitivity of indifference. Because of the lack of transitivity of the indifference
relation, we cannot generally represent such relations by means of probability measures,
nor can we assume properties that are usually derived from comparative probabilities.
For instance, the following property of comparative probability is NOT satisfied in
general by possibilistic likelihood:

IfAﬂB=®andCﬂD=®,thenA~HLCandB~HLD[] AUB~HLCUD

Counter-example:
S={a,b,c,d,e, f, g h}
A={a,b,c} B={e,f, g} C={b,g,h} D={c,d,e}
m(a) = 7(f) = 7(c) = m(g) = 1
m(b) =n(d) =m(e) = mth) = 0.



IMANC)=I({a,cy)=1and II(ICNA)=TI({ g,h}) = 1: A ~11C

II(B N D) =II({f, g}) = 1 and II(D N B°) =II({c,d})=1: B ~1L D
HAUBYNC ' NDY)=II({a, f}) =1 >I({(C UD) N A° N B°) =TI({d, h}) = 0.
Thus : AUB >, CUD.

6.2 Possibilistic likelihood as a model of subjective uncertainty in the ordinal
decision setting

It is easy to verify that possibilistic likelihood is a model of subjective likelihood
consistent with our ordinal decision setting. Assume that a decision maker supplies a
weak order of states in the form of a possibility distribution 7t on S and a weak order of
consequences =p on X. Let >y be the induced possibilistic ordering of events. Let >y
denote the associated possibilistic likelihood relation (*). The two relations coincide for
disjoint sets. Define the preference on acts in accordance with the likely dominance
rule, that is , for any two acts f and g:

f>g[] [f>pgl>pplg>pfl0 [>p gl>nlg>pf]
f>g] —(g>f).

The OI axiom holds for this preference relation, by construction. In the following
we prove that the obtained preference on acts also satisfies the other axioms of the
ordinal decision setting (WS1, S3, S'5, U, OI). To do it, we shall use the properties of
the possibility ordering of events (definition A1 in the appendix). First we show that the
notions of constant acts, null events, and conditional preference are well-defined.

Proposition 14:
eVx,yeX fx>fy[] x=zpy (14.1)

c(fzg)al [f>pglNAzglg>pflNA(14.2)
c Anull[] A~p®@(14.3)

Proposition 15: If the preference on acts derives from a possibilistic likelihood
relation on events and a weak order of consequences via the likely dominance rule,
then (XS, >) satisfies WS1, S3, OI and WSPT.

Hence all properties of the ordinal decision setting are satisfied when the
preference on acts derives from a possibility distribution on S and a weak ordering on
X.

Example 1 (continued)
Consider again the 3-state/3-consequence example of Section 3. If a uniform probability is changed
into a uniform possibility distribution, then it is easy to check that the likely dominance rule yieldsC]
f ~ g ~ h.However, if s >89 > s3 then
[f>pgl={s1.s2 } > [g>p f] = {s3};
g >p h]l ={sq, s3}>1qL, [h>p gl = {s7};
[f >p h] = {Sl}>HL [h >p f]= {82, 53}.
So f> g > h follows. It contrasts with the cycles obtained with a probabilistic approach.

The lack of transitivity of the indifference relation can be observed in very simple
cases, where only 3 states and 2 consequences are used:



Counterexample for the transitivity of _ for acts

Consider again the 3-state example of Section 3, with a uniform possibility distribution. Suppose
X={x,y}andx>py.

f: f(s) ) =xf(sp) =x f(s3) =y
g g(sp) =y g(sp) =y g(s3) = x
h:h(s; )=y h(sp) =x h(s3) =y

One can verify that:

[fzpgl={s1. s}~ L [gzpfl= {s3}thus:f_g;
[ezph]l={sq,s3}~ . [h=zp gl ={s1,59}) =0  thus: g~ h;
[f=p h] ={sq, 89,83} >, [h =2p {] = {89, 83} thus: > h.

6.3 Representation results

Possibility theory is closely related to preferential inference in nonmonotonic
reasoning, as defined by Kraus, Lehmann and Magidor (1990). Indeed, they call
rankings what we call comparative possibility distributions. Assume no null events.
Then, Dubois and Prade (1995a) have shown that an inference relation — is preferential
if and only if there exists a set of non-dogmatic possibility orderings F such that if A #

?:
A —Bifandonlyif V>3 €EF,ANB >y ANB°

Non-dogmatic possibility orderings are such that A >y @ if and only if A # @.
According to non-dogmatic possibility orderings, no event is impossible, but . Since
the likelihood relation coming from our decision-theoretic setting >y satisfies OR,
AND, RW, CM, CUT, this result applies when restricting > to disjoint events :

Proposition 16: If the relation on XS satisfies the axioms of the ordinal decision
setting, there is a family F of possibility orderings such that VX,Y disjoint,

X> Yifandonlyif V> €F, X > Y

Sketch of proof
Consider non null events : all the properties of system P are satisfied, including reflexivity. So, there
is a family of possibility orderings such that
A—=B[] V>q€FANB>yANB'[] ANB> ANB°
withX=ANBandY=ANB , wegetV>gEF,X>qY [] X>_Y.
To encompass null events, it is enough to extend these possibility orderings so that whatever Y null,
Y~ 11 0. Indeed, the set of null events is the family subsets of NULL. In terms of possibility
distributions, a possibility distribution assigns degree O to each null state.

Since > is an autodual additive relation, the ordering between non disjoint
events is completely defined by the ordering between disjoint events. Hence Proposition
16 holds for any pair of events X, Y without restricting to disjoint events.Overall,
putting together the results obtained so-far and the ones of Dubois and Prade (1995a) on
the possibilistic representation of the non-monotonic system P, one gets the bridge
between the ordinal decision making framework and possibility theory:

Theorem 1: If a partially ordered set of acts (XS, >) satisfies the axioms of the
ordinal decision setting, then there is a family F of possibility orderings on S and a
relation =p on X such that f > g[] V >y € F, [f >p g] > [g >p f]. Generally,



relation =p is a weak order unless there is only one non null state.

Proof:
Su%pose 2 non null states at least. A consequence of Proposition 8 we know that the projection of
(X®,>) on X is a weak order. Let us denote =p this weak order. If holds that f > g [] [f=p g] >,
and that [g=p f][] [f>p gl >, [g>pfl.
From proposition 15 we also know that the projection (XS, >) on the disjoint events of S defines a
family of possibility orderings such that X >1 Y ifandonly if V> €F, X > Y where X and Y
are disjoint. With X =[f>pgland Y =[g>pf],f>g[] V>gEF, [f>pgl>qlg>pfl
When there is only one non null state the theorem obviously holds since the likelihood relation
reduces to a single, very particular possibility ordering.

So, starting from a general framework on acts, that respects Savage's approach to
a large extent, we find a likelihood relation which can be represented by a family of
possibility orderings, since the preferential entailment of system P can always be
represented in terms of such a family. Notice in particular that the relation on states
obtained from our axiomatic framework is not necessarily a weak order, so that it
cannot always be represented by a single possibility ordering. However, given any
family F of possibility orderings, it is routine to check that the induced likely
dominance decision rule such that:

f>g[] V>q€F, [f>pgl>nlg>pfl

does satisfy propositions 14 and 15. All above proofs for a single possibility
distribution straightforwardly extend to families thereof. Hence Theorem 1 can be
strengthened into a genuine representation theorem.

Theorem 2: A partially ordered set of acts (XS, >) satisfies the axioms of the ordinal
decision setting, if and only if there is a family F of possibility orderings on S and a
relation =p on X such that: f>gl] V>q€F, [f>pgl>nlg>pfl

In order to get a unique possibilistic likelihood relation as the representation of
uncertainty, first recall that the nonmonotonic inference which expresses that A N B >y

A N B for one possibility ordering >py coincides with the so-called "rational" inference

of Lehmann (Lehmann and Magidor, 1992), that is an inference relation which satisfies
rational monotony (Benferhat et al., 1997) .

Rational monotony: A — Candnot A — B imply ANB — C

In the above, "not A — B® " means that it is not the case that B generally does not

hold, in situations where A holds. Indeed if B® is expected then it might well be an
exceptional A-situation, where C is no longer normal. In terms of the subjective
likelihood relation this axiom reads:

Axiom RM: ANC> ANC'andANB2 ANB'=ANBNC>ANBNC"

Adding the RM axiom to system P forces the relation on states to be a weak order,
thus corresponding to a single possibilistic ordering as proved in (Benferhat et al.,
1997). However, it is not easy to express RM in terms of acts in a non-trivial way. The
proof of CM in Proposition 12 could be mimicked assuming A NC > A N C and A N



B >; A N B° (instead of A N B > A N B°). Then we get respectively f> g and g > h
for the corresponding acts. RM implies AN C N B> A N C° NB which means > h.

It yields : "f > g and g > h implies f > h". However this axiom is equivalent to requiring
the transitivity of > on acts. It makes the system collapse to the usual Savage setting and
then leads to special orderings on S such as described in Proposition 3. It thus captures
only very special possibility orderings. Decision axioms for deriving unique general
comparative possibility orderings are under study (Dubois et al, 2002).

To summarize this Section, we have proved that in the presence of the ordinal
invariance assumption, the only underlying "rational" subjective theory of uncertainty
can be expressed in terms of possibilistic likelihood relations. Then the uncertainty on
states must be represented by one or several possibility distributions instead of a
probability distribution. By adopting an ordinal invariance assumption, we rule out
additive numerical representations. Moreover, it leads to a unique decision rule that
reconstructs the ordering on acts from the uncertainty on events and the preference
relation on consequences: the likely dominance rule, whose expressiveness turns out to
be limited as shown now.

7 - What is the Behavior of the Ordinal Decision Maker under
Uncertainty?

Let us study the likely dominance rule induced by a single possibility distribution
(i.e., the possibilistic likelihood relation it induces). It is clear that when the subjective
likelihood relation derives from several possibility distributions, it only produces more
reasons for incomparability between acts. So the case of a single possibility distribution
is the most favorable for the likely dominance rule to be decisive.

If the decision maker is ignorant about the state of the world, all states are

equipossible, and all events but @ are equally possible as well. Possibilistic likelihood
then coincides with set-inclusion. Namely, A >y, B if and only if BC A. So, if f and g

are such that [g>p f] # @ and [f >p g] # @ hold, then none of f > g and g > f hold as per

the likely dominance rule, since such events are always disjoint. Then XS is partially
ordered only via Pareto dominance in the sense of =p that is:

f> g if and only if Vs, f(s) =p g(s) and 3s, f(s) >p g(s).

This method, although totally sound, is not decisive at all (it corresponds to the
unanimity rule in voting theory).

Conversely, if there is an ordering sy, ..., s, of S such that 7t(s;) > 7t(sp) >... >
7(s,), then for any A, B, A N B =@, either A >q;. B or B > A. Hence V f # g, either f

> g or g <{f. Moreover this is a lexicographic ranking:

f> g if and only if 3k such that f(s}) >p g(sy) and f(s;) ~p g(sy), Vi <k.

It corresponds to the procedure: check if f is better than g in the most normal
state; if yes prefer f; if f and g give equally preferred results in sy, check in the second

most normal state, and so on recursively. This comes down to a lexicographic ranking



of vectors (f(sy), ..., f(sy)) and (g(sy), ..., g(sy))- It is a form of dictatorship by most
plausible states, in voting theory terms.

More generally any weak order splits S into a well ordered partition S|0VS, U...
US,=8,5NS§S;= @ (i # j), such that states in each S; are equally plausible and states
in S; are more plausible than states in S, YV j > i. In that case the ordering of events is

defined as follows: A >p 17 B if and only if min{i: S; NANB‘} < min{i: S; NBNA°}, and
the ordering of acts is defined by:

ef>gifandonlyif 3k =1 suchthat: Vs €S;{ U S, U... US;_4, f(s) ~p g(s), and
Vs €Sy, f(s) zp g(s) and s € Sy, f(s) >p g(s)

ef~gifandonlyifd k=1 suchthattVs €S U S, U... US;_4, f(s) ~p g(s), and
As#s' € Sy f(s) >p g(s) and g(s") >p f(s").

Informally, the decision maker proceeds as follows: f and g are compared on the
set of most normal states (S;): if f performs better than g in each s € Sy, then f is

preferred to g; if there is a disagreement in S about the relative performance of f and g
then f and g are indifferent. If f and g have equally preferred consequences in each most
normal state then the decision maker considers the set of second most normal states S,
etc. In other words, the decision maker applies a unanimity rule on the most plausible
states, and a prioritized (lexicographic) procedure when a situation of indifference
between acts is metClthe next most plausible states are used to break ties. In a nutshell it
is a prioritized Pareto-dominance relation.

This behavior contrasts, although a clear similarity exists, with Lehmann (1996)'s
approach which keeps the prioritized procedure across unequally plausible states
(implausible states are neglected) and recommends a standard expected utility rule
among the equally plausible ones. Moreover it is striking to notice the similarity
between the decision rules displayed above, that require Pareto-dominance of best acts
over the most plausible states, and voting procedures found in social choice (Mas-Colell
and Sonnenschein, 1972, Weymark 1984LC] see also Sen,1986) by relaxing the
transitivity of the social preference and assuming the transitivity of its strict part. They
do find that decisions should be made unanimously by an oligarchy of voters (here, the
most plausible states), but they do not insist on the prioritized sequence of oligarchies.

Example 2:
Consider the omelet example of Savage (1972, pages 13 to 15) recalled on Table 1. The problem is
how to make a six-egg omelet from a five-egg one. The new egg can be fresh or rotten. There are
three feasible acts : break the egg in the omelet (BIO); break it apart in a cup (BAC); or throw it
away (TA). The set of 6 consequences is given in Table 1. Integers between parentheses indicate the
intuitive ordering of consequences, and the greater the number the higher the preference. Since only
two states are present, the ordering of events can always be represented by only one possibility
ordering. Let us apply the likely dominance rule. If fresh egg is more likely than rotten egg, then
[BIO >p BAC] = [BIO >p TA] = [BAC >p TA] = {fresh}
>1, [BAC >p BIO] = [TA >p BIO] = [TA >p BAC] = {rotten}

and the best act is clearly BIO. If the decision maker thinks the egg is rotten, then the best act is TA.
In case of total ignorance, the three acts are indifferent. So the decision making attitude induced by
the approach is: break the egg in the omelet if you think the egg is fresh, throw it away if you think it
is rotten, and do anything you like if you have no opinion (all acts equally preferred then). Clearly,




this may result in many starving days, and garbage cans filled with lots of spoiled fresh eggs, in the
case when the state of the egg is usually hard to tell.

ACTS fresh egg rotten egg
STATES
break the egg in the omelet | a 6 egg omelet (6) nothing to eat (1)
BIO
break it apart in a cup BAC | a 6 egg omelet, a 5 egg omelet,

a cup to wash (5) a cup to wash (3)
throw it away TA a 5 egg omelet, one spoiled| a 5 egg omelet (4)

eggll)

Table 1

Of course the extreme peculiarity of this example masks the richness of possible
blends between unanimity and dictatorship occurring in the case of more than two
states, when a single possibility ordering is involved.

It is interesting to compare the ranking of acts obtained above on the egg example
with the one obtained using the pessimistic possibilistic utility proposed in (Dubois, and
Prade, 1995c). This criterion presupposes that utilities and degrees of necessity belong
to the same totally ordered scale, here L = {0, 1, 2, 3, 4, 5, 6}, equipped with its order-
reversing map n. The pessimistic utility of an act f when the knowledge of the state is
given by a L-valued possibility distribution ;t: S — L and the utility of consequence
given by a L-valued utility u: X— L, is expressed as:

u, (f) = ming = g max(n(se(s)), u(f(s))) = ming = g max(N(S\{s}), u(f(s))).

This utility is a mild extension of the pessimistic maximin decision rule (that rates an
act on the basis of its least preferred consequence) advocated and axiomatized by

Brafman and Tennenholtz (2000) in terms of conditional policies (rather an acts). See
Dubois Prade and Sabbadin (2001) for the act-driven axiomatization of u(f).

The utilities of the three acts in the egg example are then given as a function of states
F and R:
u,(BIO) = min(max(N(R), 6), max(N(F), 1)) = max(N(F), 1)

u,(BAC) = min(max(N(R), 5), max(N(F), 3))

u,(TA) =min(max(N(R), 2), max(N(F), 4))

Table 2 exhibits the best acts as a function of the decision-maker's knowledge about
the egg. The model recommends act BAC in case of relative ignorance on the egg state,
that is when max( N(F), N(R)) is not high enough (less than 3). In practice, it is indeed
advisable to act cautiously, and to break the egg in a spare cup in case of serious doubt.
The pessimistic possibilistic criterion seems to deliver a more realistic advice than the



one prescribed by the likely dominance rule
commensurability between uncertainty and utility.

which does not presupposes

N(F) N(R) u,(BIO) |u,(BAC) |u(TA) [Bestacts
6 0 6 5 2 BIO
5,4,3 0 N(F) N(F) 2 BIO or BAC
2 0 2 3 2 BAC
1,0 0,1,2 1 3 2 BAC
0 3 1 3 3 BAC or TA
0 >4 1 3 4 TA
Table 2

Other decision rules proposed in the literature could benefit from the above study.
For instance Boutilier (1994) compares acts on the basis of the worst (or the best)
consequences in the set of most plausible states. This decision rule lacks discrimination
power. It can be made more discriminating by allowing ties to be broken by checking
the second most plausible states, and so on like for the likely dominance rule. The
above possibilistic decision rule and the maximin rule can consider two acts as
indifferent while one Pareto-dominates the other. Of course, the acts are then totally
preordered. On the contrary, the likely dominance rule respects the Pareto dominance,
but it may lead to incomparabilities that can sometimes be solved using a maximin rule.
This complementarity suggests a combination of ideas of prioritization and respect of
Pareto-dominance stemming from our study and the maximin rule. The maximin rule
can be forced to respect Pareto-dominance by comparing acts f and g on the basis of
their worst discriminating consequences (in [f >p g] U[g >p f] only). This decision rule
was proposed and axiomatized by Cohen and Jaffray (1980). Clearly, acts will be only
partially ordered using this improved maximin decision rule, but this partial ordering
refines the maximin rule. Again one may apply this rule in a prioritized way: the
improved maximin decision rule can be substituted to unanimity within the likely
dominance rule inside the oligarchies of states. The Savagean-like framework proposed
by Lehmann (1996) also leads to a sequence of oligarchies of states, with a comparative
probability inside the oligarchies. No decision rule is propose but it is easy to imagine a
counterpart of the likely dominance rule where expected utility applies inside the
oligarchies of states. However reasonable these refined decision rules may look, they
need further work to be formally justified.

8 - Conclusion

This paper suggests that purely symbolic approaches to both rational and
practically useful criteria for decision making under uncertainty have serious limitations
in terms of expressive power. We have tried to adapt Savage's decision theory to a
purely ordinal setting. The addition of the OI axiom to the relaxed Savage turns out to
drastically restrict the type of uncertainty that can represent the decision maker's
knowledge about the world, as well as the possible decision rules that can be rationally
applied. Despite the presence of well-known Savage axioms, including the sure-thing



principle, the admissible uncertainty functions contain only very special kinds of
probability functions ("big-stepped probabilities" pointed out in Section 3.2), due to a
Condorcet-like intransitivity effect. By relaxing the weak order assumptions for
comparing acts, decision-theoretic foundations of non-monotonic reasoning based on
preferential entailment have been laid bare as a by-product.

The decision rule obtained from first principles in this way is likely dominance. It
is either overconfident by overfocusing on most plausible states, or indecisive because
requiring Pareto-dominance of acts on these most plausible states. Since preferential
inference is very cautious, the relations on acts which do not correspond to a total
likelihood ordering on states will not be very discriminating. On the contrary, if the set
of states is totally ordered in terms of plausibility (when the weak preference on acts is
transitive), the decisions will be very risky: as usual with nonmonotonic inference, the
decision maker must assume that the world is in the most normal state. Cautious
decisions will never be preferred. The decision rules obtained by means of a purely
ordinal representation of uncertainty and utility have common features with other ones
proposed on intuitive grounds in the nonmonotonic reasoning literature (especially
Boutilier, 1994). They logically recommend to stick to the most plausible states when
discriminating between acts, in the tradition of preferential entailment. While being
natural when modeling acceptance of statements for the purpose of making inferences
about the world, this view may be questioned in the case of making decisions whose
results affect the world, and where focusing on a few plausible states may be harmful if
very unlikely states have very undesirable consequences.

It is thus difficult to maintain that the decision guidelines offered by the theory
developed in this paper are completely reasonable since they reject the most usual
decision rules, like expected utility and the maximin criterion. In contrast, the
possibilistic extension of the maximin criterion, based on an absolute finite scale for
utility and likelihood looks more intuitively satisfactory as shown in the example of the
previous Section. However the possibilistic criterion relies on a commensurability
assumption between uncertainty and preference, which may be questioned by tenants of
a purely symbolic approach, (although it is part of Savage's framework proper).

The results of this paper are rather negative for decision theory when only ordinal
information about uncertainty and preference on consequences is available and no
common evaluation scale is assumed for uncertainty and preference. This is not really a
surprise for anybody familiar with voting theory and aware of its similarity with DMU
(Fargier and Perny, 1999) emphasize this point). In voting theory, the ordinal setting
leads to either complex and rationally debatable procedures, or simple but morally
dubious ones, or yet indecisive ones. This paper seems to conclude that there is no
alternative to the likely dominance rule that would enable a reasonably cautious and
albeit decisive ordering on acts to be computed on the single basis of ordering relations
on events and consequences, under the constraints induced by the sure thing principle.
In other words, we cannot do away with comparability assumptions between preference
and uncertainty, nor avoid numerical approaches if human-like decision attitudes under
uncertainty, that remain decisive and rational are to be captured.

This view is probably too pessimistic. Actually, there might be some unexplored
possibilities by weakening axiom OI while avoiding the notion of certainty equivalent



of an uncertain act. It must be stressed that OI requires more than the simple ordinal
nature of preference and uncertainty (i.e. more than separate ordinal scales for each of
them). Condition OI also involves a condition of independence with respect to
irrelevant alternatives (in the sense of Arrow 1969, Sen 1986). It says that the
preference f = g only depends on the relative positions of quantities f(s) and g(s) on the
preference scale. This unnecessary part of the condition could be cancelled within the
proposed framework, thus leaving room for a new family of rules not considered in this
paper, for instance involving a third act or some prescribed consequence considered as
an aspiration level.

Besides, it is noticeable that neither the set of axioms proposed by Savage nor the
ones suggested in this paper contain one that refers to the decision maker attitude
towards uncertainty (like in the maximin rule). This may explain why cautious
decisions seem to be ignored. Sometimes, this is due to overfocusing on plausible
states, which tend to assume the decision maker thinks the state of the world is indeed
what he/she considers most plausible, while other states may not be so implausible as to
justify their being neglected. Sometimes it is due to indecisiveness, when the decision
maker has little knowledge of the state, and cautious acts that might be advisable never
dominate other ones. In order to explicitly handle the decision maker 's level of
confidence in front of incomplete information, one might think of reverting the likely
dominance rule by exchanging the role of states and consequences. It would lead to
express the preference on acts in terms of a comparison of sets of consequences instead
of sets of states as done here. Since only single consequences are compared by the
utility relation, this method presupposes that the preference relation on consequences be
itself lifted to subset of consequences. Then pessimistic and optimistic attitudes can be
captured in the sets of axioms, by specifying whether a set of consequences is appraised
in terms of best or worst consequence in the set. This is explicitly done when
axiomatizing the maximin criterion, or its possibilistic extensions, already mentioned.
Future works should also strive towards exploiting the complementarities of prioritized
Pareto-efficient decision methods as the likely dominance rule, and of the pessimistic
decision rules related to the maximin criterion. Lastly, our results also apply, with
minor adaptation, to multicriteria decision making, where the various objectives play
the role of the states of nature in DMU (Dubois et al., 2001).

Appendix 1 Comparative Possibility Relations

The most natural framework for representing uncertainty without numbers is to
define a comparative likelihood relation among events, viewed as subsets A, B, C... of a
state space S. Comparative probabilities, introduced in Section 2, are examples of such
relations. Perhaps the simplest types of other comparative likelihood relations are those
induced by possibility and necessity measures:

Definition Al: =y is a possibility ordering if and only if
1) =py 1s complete and transitive

i) S>pp 9,

iii) VA, Az O

iv) B2 Cimplies AUB =2 AUC



B =y C reads B is at least as possible (= plausible) as C.

Definition A2: > is a necessity ordering if and only if
1) =y is complete and transitive

i) S>\ 9,

iii) VA, Sy A

iV)BZNC=>AmBZNAmC

B = C reads B is at least as necessary (= certain) as C.

Necessity orderings, introduced by Dubois (1986), coincide with epistemic
entrenchment relations in the sense of Gardenfors (1988) (see Dubois and Prade, 1991),
and possibility orderings have been introduced by Lewis (1973), then rediscovered by
Dubois (1986), and also studied by Grove (1988) in the scope of belief revision.
Possibility and necessity orderings are dual in the sense that for a given possibility
ordering >y, the relation defined by ARy B if and only if B = A® is a necessity
ordering, and conversely. A pair (=, >;) such that AR B if and only if B® >, A® is called

a pair of dual uncertainty relations (while comparative probability in the sense of
definition 2 is autodual).

A pair of dual necessity and possibility orderings is a particularly simple on finite
sets since that they both derive from a weak order >, on states only.

Any necessity ordering on a finite set can be represented by a necessity function
on a linearly ordered scale L:

Proposition A3 (Dubois, 1986): =y is a necessity ordering if and only if there is a

finite totally ordered set L and AN: 28— L such that: B >y C[] N(B)=N(C), where
N(F) € L and N(F N G) = min(N(F), N(G)) V F and G.

L is isomorphic to the quotient set 28 / ~y when ~y is the indifference part of
=N. 0 € L denotes the bottom element of L (equivalence class of @) and 1 € L denotes
the top element of L (equivalence class of S), and N(S) = 1 > N(@) =0.

The same kind of property holds for possibility orderings with respect to
possibility functions:

Proposition A4 (Dubois, 1986): =y is a possibility ordering if and only if 3I1:

285— L such that B >q C[0 II(B) = II(C) where II(B) € L and II(B U C) =
max(I1(B), IT1(C)) VIB and C.

The comparative possibility distribution >, can be encoded as a possibility
distribution 7, which is a mapping S — L. Namely II(A) = maxep 7(s) and N(A) =

n(I1(A)) = minsgg A Nn(7t(s)) where n is the order reversing function L — L. In terms of
possibility measures (Zadeh, 1978), ITI(A) = n(N(A®)) = 1B N(A®) if L = [0,1].



Appendix 2: Proofs

Proof of Proposition 1
Assume (U) and fAg> g, gAf > g. Then using S2, fAh > gAh for any h, and h'Af > h'Ag for any h'.
The first preference statement reads (f > g) o, and the second (f > g)5° noticing that h'Af is the same
act as fAh'. Hence f > g by (U). Conversely assume (f > g), (f > g)5° and WSTP. The two first

assumptions mean Vh, fAh > gAh and Vh', h'Af > h'Ag. Now just specialize these with h = g and h'
= g and apply WSTP to get f>g.

Proof of Proposition 2

Let x, y, z € X be such that X >p y >p z. Suppose 3 A, B, C, pairwise disjoint, such that BU C >1
AISLIID, AUC> B> ?,AUB > C. Consider the three acts f, g, h as follows

f g h
A x y z
By z X
Cz X y

and Vs AUBU C,f(s) = g(s) =h(s). Let D=A U B U C. Note that
[fzpgl=AUBUD,[g2pf]l=CUD

[gzph]=AUCUD, [hzpg]|=BUD

[h=pfl=BUCUD, [fzph]=AUD

BUC> A=BUCUD> AUD (using S2) = h > f (using the likely dominance rule).
Similarly g > h derives from A U C > B. Lastly, using again the likely dominance rule we find that

A U B 2 Cimplies f > g. However since >is a weak order, the strict part of >is transitive so that g
> h follows. Contradiction.

Proof of proposition 3:

Assume 3i, j, k, s; ~p, 8 > § >, O then the preadditivity axiom leads to accept {s;, sy} > s; and
{8, s} > ;. Indeed sy >1 @ implies {sy, s;} > s; using the preadditivity axiom (that derives from
§2)) and since s; ~q_ s;, using transitivity of 2 we find {sy, s;} > s;. Now using (N) we conclude s
> {s;, s;} contrary to the assumption. Hence if s; > s> @ and s; > s> @ we have that either s; >
sj or s; > s;. This proves (i). As .for (11.) just notice that s; >L S and s; > Sk 1mply {s;» s!(} > sj and
{s;» s j} >1. s and apply (N). It is noticeable that the transitivity of the likelihood relation plays no
role in the latter result.

Proof of proposition 4

First let us prove that S2 holds, that is, VA, f, g, h, h', fAh > gAh if and only if fAh' > gAh'. It is
enough to notice that (fAh, gAh) = (fAh', gAh'"). Indeed if s € A then the consequences remain the
same; if s & A, then since relation >on acts is reflexive, it holds that h(s) =p h(s) and h'(s) =p h'(s).
Now for S4, a similar reasoning applies. S4 reads Vx,y,x',y' EXst.x>py, x' >py', XAy > xBy
0 x'Ay'>x'By'. We shall show that (xAy, xBy) = (x'Ay', x'By'). There are four cases:

-)s € ANB: xAy (s) = x zp xBy (s) = x and x'Ay'(s) =x'=2p x'By' (s) = x' using reflexivity.

-)s € A‘NB: xBy (s) = x >p XAy (s) =y and xBy' (s) =x' >p x'By' (s) =y'

-)s € ANB’: XAy (s) =x >p xBy (s) =y and x'By' (s) =x' >p x'By' (s) =y'

-)s € A'NB*: xAy (s) =y 2p xBy (s) = y and x'By' (s) =y'=p x'By'(s) =y using reflexivity.

Hence S4 holds under OI.

Proof of Proposition 5

Note that since OI holds S2 and S4 hold too. Let 2p is the restriction of > on X (due to definition 5)
and 27 be the projection of > on events (due to S4). If all consequences on X are indifferent then all
acts are indifferent and the problem is trivial since [f =zp g] = [g =p f] = X and =p is complete. So,
for all acts, f ~ g and [f2p g] ~1, [g2p{].

Due to S5, there are x, y € X such that x >p y. Under S4 the likely dominance rule also reads > g
0 x[f=pgly =1, x[g=p f]y, in terms of binary acts. Now we just have to show that (f, g) = (x[f =p




gly, x[g =p fly). Indeed,
-) if s is such that f(s) ~p g(s), then s € [f =p g]N[g =p f]. Hence
x[f=p gly(s) =x[g =zp f] y(s) = x
and x[f =p gly(s) ~p x[g =p f] y(s) using reflexivity of =p
-) if s is such that f(s) >p g(s), then s € [f =p g] and s Elg >p f]. Hence
x[f =p gly(s) = x and x[g =p f] y(s) =y and x[f =p gly(s) >p x[g=p f] y(s)
-) if s is such that g(s) >p f(s), then x[g =p fly(s) >p x[f =p g] y(s) using the same reasoning.
There are no other cases since =p is complete. Hence under the assumptions of completeness and
reflexivity of the preference relations, Ol is strictly equivalent to the likely dominance rule.

Proof of Proposition 6
By S5 it holds that: 3x, y s.t. fx > fy.
Non-triviality: Since xSy = fx and x@y = fy, we get xSy > x@y i.e., by S4: S> O.
Non-Contradiction: By S3, if A is not null, it holds that (fx > fy) ,, that is xAh > yAh for all acts h.
Take h = fy, we find xAy > yAy = x@y, hence using S4: A >; @.If A is null, fAh > gAh, for all f, g,
h. Choosing f = fx; h = fy; g = fy leads to xAy > yAy = x@y, hence using S4: A =; @.
Compatibility with null events: Continuing the proof with a null event A, we now let f = h = fy;
gBOk and get yAy = x@y > xAy, i.e., @ =; A. Hence if A is null then A ~; @. And it is proved
above that if A is not null then A >; @.
Preadditivity: By definition of >; between events and S4, B =; C[] xBy >xCy.
Write xBy as (xBy)(B U C)y, and xCy as (xCy)(B U C)y.
Then using (S2) (xBy)(B U C)y >(xCy)(B U C)y is equivalent to (xBy)(B U C)h > (xCy)(B U C)h
for all h. Choose h = xAy. Then xBy > xCy if and only if (xBy)(B U C)(xAy) > (xCy)B U C(xAy).
Now A N (B U C) =@, then act (xBy)(B U C)(xAy) has value x on B U A, and y otherwise and is
equal to x(B A)y, similarly (xCy)(B U C)(xAy) =x(C U A)y.
Hence B =] CisequivalenttoBU A= CU A.
Stability of non null events: From S5, 3 x >py, fx > fy. A >| @ writes XAy >x@y; suppose AL
and B ~1 @, then B is null. Then V£, g, (f ~ g)p, i.e., fBh ~ gBh, Vf, g, h. Assume f =xAy, g=1fy =
h then (xAy)By = xAy, yBy = x@y. Hence B ~; @ implies XAy ~ x@y, i.e., A ~ @ contradiction.

Autoduality: A= B[] (ANB)U (AN B2 (AN B)UA°N B)

0 ANB'>2 A°NB (from preadditivity)
0 (ANB)U(A N B2 (A°NB)U (A N B)
0 Bz A°

A > B[] B> Ais proved by contraposition of the previous property.

Inclusion-monotony: By non-contradiction, we have: B\A=A°N B > @. Since A C B, it also
reads AN B2 AN B°=0, ie., using preadditivity: B > A.

Characterization of null events comes from stability of non null events (contraposition)

Proof of Proposition 7
Let x and y be two consequences such that x>py. Let f = fx(AUC)fy and g= fx(BUD)fy.
A 21 B implies that (f > g)Aoypg. C =1, D implies that (f > g)cp. Since (AUB) N (CUD) =@, i.e
(CUD) C (A°NB®) and f = g = fy on A° NB* NC° ND", we get (f>g)A°‘AR"- By (U), we get f> g,
ie. AUCz BUD.
e 7.1 : direct from Prop. 7 with A=C=0,B = {s} and D = {s'}.
7.2 : direct from Prop. 7 with A=D =@, B={s} and C = {s'}.
* 7.3 By contraposition: E~1 @ = F = E. Suppose that E~ . Since for any F, F= @ : Prop.
7 yields: E ~1 @ and F =1 @ imply Fz E as for (7.2)
7.4 This property is verified without using WSP nor U if E\ D >, @ or G >1, F (propositions 7.2
and 7.3). Suppose that G ~[ Fand E\ G 1, @. From Prop. 7, we get E > F (withA=G,B=F,C
=E\G, DE1.)
7.5 : if every state is null, then by 7.1, S is null : contradiction with Prop. 6 (non triviality).

Proof of Proposition 8
By (WS1), we know that >is complete and > transitive. We now have to show that the indifference



relation ~ that one can define from > is also transitive on constant acts. If X has only 2 elements the
problem is trivial. Suppose more than 2 elements.

Suppose that x,y, and z are three elements of X s.t. X ~p y,y ~p Z and x >p z.

Suppose that at least two states of S are not null states. Let s; and sy be two of the non null states and
compare the decisions g, h, k:

g: g(sp) =X, g(s2) =y, g(s) =xif s & {s1,s2}
h: h(sy) =z, h(sp) = x, h(s) =x if s & {sq, sy}
k: k(s1) =y, k(sp) =z, k(s) =xif s & {sq,sp}

Thus, [g =p h] = S and [h =p g] = S\ {s1}. Since {s1} > @, applying auto-duality and OI, the likely
dominance rule leads to obtain: g> h. Similarly, [h 2zp k] =S and [k 2p h] =S — {s2}.Since {sp} >
@, we get h > k. Similarly, [g =p k] =S and [k =p g] = S. Hence g ~ k.

Hence, assuming X ~p ¥,y ~p Z and X >p z leads to get: g >h,h>k, g ~ k,

which is in contradiction with the transitivity of >. Hence, ~p is transitive on X.

Proof of Proposition 9
Let x, y, z € X be such that x >p y >p z. Suppose first A,B,C disjoint. Let D=A U B U C,
* 9.1, Suppose A3y BU C. Define three acts f, g, h as follows:

f g h
A x y z
By X X
Cy X y

and Vs& A UBU C,f(s) = g(s) = h(s).
Note that [fzpg]=AUD,[g=pfl=BUCUD

[gzph]=AUBUCUD,[hzpg]=BUD

[h=pfl=BUCUD, [fzph]=AUCUD

A> BUC =AUD> BUCUD(S2)= f> g (likely dominance).
Since A>1 BU C,also A > @ (7.3) and A U C>1 @ (Proposition 6). Thus (S2, OI) imply g > h.
By transitivity : f> h. Thus, by likely dominance : AU CU D >1 BU CU D : and by S2, we get A
>1, B
* 9.2, Suppose A>1 B. Define three acts f, g, h as follows: V s €D , f(s) = g(s) = h(s)

f g h

A x y z
Bz X y
C x X y

Note that [fzpg]l=AUCUD, [gzpf]=BUCUD

[gzph]=AUBUCUD, [hzpg]=D

[hzpf]=B UD, [fzph]=AUCUD
A> B= AU CU D> BUCU D(S2) = f> g (likely dominance)
Since A>1 B,A>] @ (7.3)and AUB UC > @ (7.4). Thus (S2, OI) imply g > h..
By transitivity : f > h. Thus, by likely dominance : AU C U D >; B U DClby S20A U C >1 B.
Now we do not assume A, B, C, disjoint.
9.1 general case : A>] BUC= A N B‘NC* > A° N (BUC) (preadditivity).
By 9.1 disjoint case : A N B°'NC® > A° N B.
By 9.2, disjoint case (ANB°NC*)UANB'NC) > A°N Bie. ANB > A"N B.
Thus, by preadditivity, A>] B.
9.2 general case : From A>[ B, we get A N B> A° N B. Thus, by 9.1, disjoint case,
A N B> A° N BNCS; by 9.2, disjoint case, (A‘NB‘NC) U (A N BY) > A° N BNC".
Thus adding A N B and A° N BNC on both sides, we get by S2: A U C> B

Proof of Proposition 11
AND: Consider the following acts where X >py >pz
ABC ABC° AB°C AB‘C’

f x y z zZ
gy z X y
h z X y X



[f>pgl=ANBand[g>pf]=AN B:hencef>g
[g>ph]l=ANC, [h>pg]l=AN C':hence g>h
Since [f>p h] =A N B N Cand [h>p f] = A N (C° U B®),by transitivity of > we get:
A NBNC> AN (C UB
OR: Consider the following acts:
ABC ABC° AB°C AB‘C° A°BC A°BC°

f x z X y X y
gy y y X X y
h z X y X y X

Since [f>pgl=A NC> AN C*=[g>pf], wehavef >g.

Since [g>ph]=ANB>A N B°=[h >p gl, we have g > h.

Thus f > h: hence [f > h] > [h> f].

Since [f>ph]=(AUB)N Cand [h>pf]=(AUB)NC:(AUB)NC > (AUB)NC".

Sketches of proofs for proposition 12
RW can be easily proved from Propositions 8 and 10 : if BC C, A N B > A N B° writes
ANBNC > (ANB°NC)UA N B°N C.
By Proposition 9, we get : ANBNC > AN B NC*
andthen ANBNCUAN B°NC) > AN BN Cie. ANC> AN C°
CM: Consider the following acts where X >py >p z:
ANBNC ANBNC ANBNC ANBNC

f X y y z
g y z X y
h z X y X

FromANB> AN B, wegetf>g FromANC> AN C wegetg>h.
By transitivity of >: f>h,ie, ANBNC> (ANBN C)U(AN B'N C.
From proposition 9,ANBNC> ANBN C.

We can also obtain the CUT in the same way.

Proof of Proposition 13

*AUBzLAUCO (AUB)NA'"NC 'z (AUC)NA"N B
0 BNA*NC'zgCNA"NB*

Since ANBUC)=@,BNA°NC°=BNC°andCNA°NB°=CNB".
Thus: AUB=AUC[ BNCzCN B[] Bz C
*A>mLB [0 ANB)UANB) 2L (AN B)U (A" N B)
0 (A NB° =L (A° N B) (preadditivity)
0 (AN BY) U (A NB°) 2 (A° N BY) U (A° N B) (preadditivity again)
|:| B¢ 2T1L Al
The other properties are very easy to check.

Proof of proposition 14
14.1:y >p x = [fx >p fy] = @ and [fy >p fx] = S = [fx >p fy] > [fy >p fx] (due to def. Al ii).
Hence fy > fx. And x zp y = [fy >p fx] = @ = [fx>p fy] =7 [fy >p fx] (def. Al (iii)) = fx > fy

14.2: (f 2 g)p [1 fAh >gAh, Vh. Let us denote B = [fAh >p gAh] and C = [gAh >p fAh]. Note that,
by definition, whatever h: B = [f>pg] N Aand C = [g>pf] N A. Hence: Bz C[] (f=g)A.

14.3: Consider f, g s.t. f(s) >p g(s) if s € A, f(s) = g(s) if s & A: then, [f>pg] = A and [g>pf] = O.
= Suppose A is null: Vf, g, (f ~ g)a,ie: [f>pgl N A~ [g>pfl N A, thus A~ @.

<= Suppose A~119: VB, BN A <1 A~@. Hence: Vf, g, [f>pg]l NA~[g>p 1IN A~
A~ 9 ie, Vig (f ~ g thatis, Aisnully

Proof of Proposition 15
* WS1: [f >p f]~q[f >p {]: there is no act f s.t. f > f: the relation > is obviously irreflexive.
* > is transitive. Let f, g, h be three acts s.t. f>g, g >h,h>f, i.e.,

[f>p gl > [g>p fl, [g>p h]) >y [h>p g] and [h>p f]) 2y [f>ph] ()



Let us partition S in 13 subsets:

A ={s/f(s)=g(s) =h(s)}; B={s/h(s) >p f(s) = g(s)}; C={s / f(s) =g (s) >p h(s)};

D ={s/g(s)>pf(s) =h(s)}; E={s/f(s) =h(s) >p g(s)}; F={s/f(s) >p g(s) =h(s)};
G={s/g()=h()>pf(®)}: H={s/h(s)>pg(®) >pf(®)}: I={s/g(s)>ph(s) >pf(s)};
T={s/h(s) >p f(s) >p &)} K ={s/g(s) >p f(s) >ph(s)}; L= {sIf(s) >p h(s) >pg(s)}:
M = {s/1(s) >p g(s) >p h(s)}.

The system of inequations (i) can be rewritten as (where c is the possibility degree of C, etc.):
max(e, f, j, I, m) > max(d, g, h, i, k) (ii-1)

max(c, d, i, k, m) > max(b, e, h, j, 1) (ii-2)

max(b, g, h, i, j) = max(c, f, k, 1, m) (ii-3)

It is inconsistent. Indeed, from ii-1 and ii-2, one must have max(f, c, m) greater than all of b, d, e, g,
h, 1, j, k, 1, and this is in contradiction with ii-3.

WSP: [fAg >p f] = [g >p f] ﬂACand[gAf>Pf]=[g>Pf] N A
[f>p fAg]=[f>pglN A° and [f>p gAfl=[f>pg]NA
By construction fAg>f[] [g>pfIN A"z [f>p gl N A°
gAf>f[] [g >pfINA zplf>pglNA
Since: s1 = sp and s3 = s4= {s1 , sp 3y {53,584} , this implies [g>p fl =y [f>p g] [] g>f
Clearly, the unanimity property U also holds using a similar proof.

S3: fx ~ fy[J x ~py=> [fx >p fy] = [fy >p fX] = @ thus:
VA, [fx>ptyl N Ay [fyzpfx] N A[] VA, (fx ~fy)A ()
o fx>fy[] x>py=>[fx>pfy] =S and [fy >p fx] = @ thus:
VA, [fx>pfy] N A=A and [fy >p fx] N A=Q;
since A is not null: A >y @ and [fx >p fy] N A7 A >17 [fy >p fx] N A.
Hence: (fx > fy)p  (ii)
¢ By (i) and (ii): x 2py = (fx > fy)a.
Moreover, by (ii) contraposed: (fy > fx)A = y&Rp x.

OI: The result is trivial due to the use of the likely dominance rule.
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