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The ionic conductance models of neuronal cells can finely reproduce a wide variety of

complex neuronal activities. However, the complexity of these models has prompted the

development of qualitative neuron models. They are described by differential equations

with a reduced number of variables and their low-dimensional polynomials, which

retain the core mathematical structures. Such simple models form the foundation of

a bottom-up approach in computational and theoretical neuroscience. We proposed

a qualitative-modeling-based approach for designing silicon neuron circuits, in which

the mathematical structures in the polynomial-based qualitative models are reproduced

by differential equations with silicon-native expressions. This approach can realize

low-power-consuming circuits that can be configured to realize various classes of

neuronal cells. In this article, our qualitative-modeling-based silicon neuron circuits for

analog and digital implementations are quickly reviewed. One of our CMOS analog silicon

neuron circuits can realize a variety of neuronal activities with a power consumption less

than 72 nW. The square-wave bursting mode of this circuit is explained. Another circuit

can realize Class I and II neuronal activities with about 3 nW. Our digital silicon neuron

circuit can also realize these classes. An auto-associative memory realized on an all-to-all

connected network of these silicon neurons is also reviewed, in which the neuron class

plays important roles in its performance.

Keywords: qualitative modeling, silicon neuron, non-linear dynamics, low-power circuit, neuronal network

emulation

1. INTRODUCTION

The nervous system allows individual animals and their populations to survive in severe
environments by analyzing a huge amount of information from sensory organs and promptly
generating adequate control signals for motor organs. This complex and intelligent information
processing ability is autonomously obtained and adaptively maintained on its genetically developed
physical basis, the network of neuronal cells. The nervous system consumes a sufficiently low
power to allow for operation within the power supply limit of an animals’ body; for example, the
human brain consumes about 20W (Clarke and Sokoloff, 1999), which is a lower power than
mainstreamCPUs. Because it is a network of neuronal cells with a wide variety of complex activities,
the mechanisms of its information processing function are still poorly understood. It is attracting
increased attention from biological, medical, and engineering fields.

A silicon neuronal network is a network of silicon neurons (SNs) connected via silicon synapses
(SSs), which are electronic circuits that reproduce the electrophysiological activity of neuronal
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cells and synapses, respectively. Unlike neuro-inspired artificial
neural networks, it is an approach to neuromimetic systems
that realize intelligent, autonomous, robust, and power-efficient
information processing via an architecture comparable to the
nervous system (Arthur and Boahen, 2011; Brink et al., 2013b;
Cassidy et al., 2013; Kohno et al., 2014b; Qiao et al., 2015;
Giulioni et al., 2016). Because it is a bottom-up approach
with cell-level granularity and reproduces neuronal spiking
activities, it is also applicable to biohybrid systems including
neuroprosthetic devices that replace damaged nerve tissues
(Ambroise et al., 2013). Generally, SN circuits are required to
have the capability of reproducing complex neuronal activities,
have a low power consumption, and be compact and highly
integratable.

In fields where the reproducibility is important, such as
the biohybrid systems and high-speed simulators, SN circuits
have been designed to solve ionic conductance neuronal models
(Simoni and DeWeerth, 2006; Schemmel et al., 2010; Grassia
et al., 2011; Saïghi et al., 2011). These models describe the
dynamics of ionic currents that generate the dynamical behavior
of the membrane potential by charging and discharging the
membrane capacitance. They can precisely reproduce neuronal
activities, but their equations are described by high-dimensional
non-linear differential equations (DEs). It was demonstrated
that their circuit implementations (conductance-based SNs) can
well reproduce the neuronal activities of their target cells but
require a relatively large amount of hardware resources and
consume a relatively high power in the range of micro- to
milliwatts. The ionic conductance models share a common
structure, namely the Hodgkin–Huxley formalism, which allows
their circuit implementation to mimic a variety of neuronal
cells after fabrication by applying appropriate parameter voltages
(Grassia et al., 2011; Saïghi et al., 2011).

In fields where low power consumption and integratability
are important, SN circuits that solve integrate-and-fire (I&F)
models are widely used. These models describe the neuronal
activities with simple DEs by treating a spike as an event
and focusing on the timing of spike generation. Their analog
and digital circuit implementations (I&F-based SNs) have been
developed (Thomas and Luk, 2009; Arthur and Boahen, 2011;
Cassidy et al., 2013; Merolla et al., 2014; Mayr et al., 2015;
Qiao et al., 2015; Giulioni et al., 2016). Analog I&F-based SNs
achieve ultralow power consumption down to several nanowatts
and several hundreds of them were integrated on a chip with
thousands of SS circuits. Although their digital implementations
consume more power, they are more portable, easy-to-operate,
and highly integratable. A milestone work is the TrueNorth
chip (Merolla et al., 2014) that integrates 1 million SNs and
256 million SSs on an application-specific integrated circuit chip
and consumes less than 70 mW. Silicon neuronal networks
implemented on field-programmable gate array (FPGA) chips
achieve far less integration (about 1000 SNs) and consume
higher power, but their low cost and reconfigurability have
attracted many researchers. Sophisticated I&F-based models
such as the Izhikevich (IZH) (Izhikevich, 2004) and adaptive
exponential I&F (Brette and Gerstner, 2005) models incorporate
the viewpoint of qualitative neuronal modeling described below,

which allows them to reproduce a variety of neuronal activities.
In principle, however, they cannot reproduce some neuronal
properties related to the variability of spikes, which are reported
experimentally and indicated theoretically. For example, it was
reported that the amplitude of spikes at an axon terminal
in the hippocampus is gradedly dependent on the stimulus
intensity (Alle and Geiger, 2006), and a mathematical analysis
of neuronal models indicated that a class of neurons, Class
II in Hodgkin’s classification (Hodgkin, 1948), can generate
spikes in the same manner (Rinzel and Ermentrout, 1998). In
addition, the parameter setting of the I&F-based models requires
careful tuning; for example, we pointed out that the phase
response curve (PRC) of the IZH model in the Class II setting
is discontinuous at θ = 0, which causes a severe reduction in
the retrieval ability of an auto-associative memory in all-to-all
connected networks (Osawa and Kohno, 2015). This problem
can be solved by increasing the parameter d of the model, which
distorts the waveforms of the membrane potential by producing
a huge hyperpolarization after each spike. Another example is
that the spiking patterns of the IZH model in the intrinsic
bursting (IB) setting have different characteristics from IB cells
when a strong stimulus is applied (Nanami and Kohno, 2016).
These facts suggest the possibility that a network of I&F-based
silicon neurons may have limited ability to reproduce particular
information processing in the nervous system.

In the field of qualitative neuronal modeling, the
mathematical techniques of non-linear dynamics have been
effectively applied to ionic-conductance models to produce low-
dimensional and simple polynomial equations that qualitatively
capture their dynamical properties (Rinzel and Ermentrout,
1998; Izhikevich, 2007). In contrast to the I&F approach,
they do not ignore specific phenomena including the spike
generation mechanism. The most well-known qualitative model
is the FitzHugh–Nagumo (F-N) model (FitzHugh, 1961) that
reproduces the dynamical structure in the Hodgkin–Huxley
(H-H) model (Hodgkin and Huxley, 1952). The H-H model
is described by four-variable non-linear DEs, whereas the F-N
model is two-variable and its only non-linear term is cubic. The
F-N model is Class II and can produce the graded spike response
to a pulse stimulus. The first silicon nerve membrane circuit, the
Nagumo circuit (Nagumo et al., 1962), implemented this model
using the tunnel diode. Later, several SNs have implemented the
F-N and other qualitative models using recent analog and digital
circuit technologies (Linares-Barranco et al., 1991; Cosp et al.,
2004; Weinstein and Lee, 2006).

In our previous works (Kohno and Aihara, 2005, 2007, 2008a;
Sekikawa et al., 2008; Kohno and Aihara, 2010; Li et al., 2012;
Kohno and Aihara, 2014a; Kohno et al., 2014b), we proposed
a qualitative-modeling-based design approach for SNs. In this
approach, a qualitative neuronal model that reproduces the
dynamical structure in a target neuronal model is constructed
by combining the formulae for the characteristic curves of
favorable elemental circuit blocks instead of polynomials. The
elemental circuit blocks are selected according to the required
features of the SN; for example, subthreshold metal–oxide–
semiconductor field-effect transistor (MOSFET) circuit blocks
may be used for low-power SNs. Such a model is expected
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to be implemented efficiently in comparison to the direct
implementation of polynomial-based qualitative models. In
addition, a model that supports the mathematical structures in
different classes of neurons can be designed, and one of them
is invoked by appropriately selecting the model parameters. We
developed a configurable low-power analog SN circuit (Kohno
and Aihara, 2008a,b; Sekikawa et al., 2008; Kohno and Aihara,
2010) and a configurable simple digital SN circuit (Kohno and
Aihara, 2007; Li et al., 2012, 2013). Our analog SN supports five
classes of neuronal activities, Class I and II in the Hodgkin’s
classification, regular spiking (RS), square-wave bursting, and
elliptic bursting (Wang and Rinzel, 2003) by appropriately setting
the parameter voltages, and our digital SN supports Class I and
II and Class I∗ (Tadokoro et al., 2011) neuronal activities. Basu
and Hasler (2010) developed two ultralow-power analog SNs that
consume several nanowatts (Brink et al., 2013b) on the basis of a
similar approach; one of them is dedicated to Class I and another
to Class II. We are developing an analog SN that supports both
classes and consumes a low amount of power that is comparable
to their work (Kohno and Aihara, 2014a).

Most silicon neuronal networks incorporate the SS circuits
that mimic the signal transmission in chemical synapses. Their
three important features are the synaptic efficacy, plasticity, and
summation (Destexhe et al., 1998; Song et al., 2000; Dan and
Poo, 2004). A large (small) amount of synaptic current is injected
into the postsynaptic neuronal cell if the synaptic efficacy is
high (low). The synaptic efficacy is modulated on the basis of
some factors including the neuronal spikes generated by the pre-
and postsynaptic neuronal cells (the synaptic plasticity). It is
called the spike-timing-dependent plasticity (STDP) if its rule (a
learning rule) is based on the timing of neuronal spikes in the pre-
and postsynaptic neuronal cells (Song et al., 2000; Dan and Poo,
2004). The synaptic summation allows a bursting spike input to
enhance the effect of synaptic transmission. It was shown that
this feature can play a critical role in spike timing recognition
(Gütig and Sompolinsky, 2006). Note that the information of an
input spike’s magnitude can be transmitted via the time period
of neurotransmitter release. The compactness and low-power
consumption of SS circuits are also an important issue because
the number of SSs in a silicon neuronal network is generally
larger than that of SNs. In Merolla et al. (2014), the integration
of a huge number of digital SSs was realized by limiting the
functionality of the SS to the synaptic efficacy. Their synaptic
weights have to be calculated by a off-chip system, but this is not
a limitation in engineering applications in which “ready-trained”
discriminators are required. They reported that this circuit could
realize a multiobject detection and classification system. Only the
synaptic efficacy was supported also in early FPGA-based silicon
neuronal networks (Rice et al., 2009; Thomas and Luk, 2009),
but in recent works, the synaptic summation is supported in
Ambroise et al. (2013) and all of the three features are supported
in Li et al. (2013) and Cassidy et al. (2013). The analog SS
circuit in Giulioni et al. (2016, 2015) implements the synaptic
efficacy and the plasticity. Their silicon neuronal network chip
integrates 128 leaky I&F SNs and 16384 SSs whose synaptic
efficacy is stored in a bistable memory and controlled by a
Hebbian-type STDP rule (Fusi et al., 2000). They realized an

autoassociative visual memory (Giulioni et al., 2015) and motion
detectors (Giulioni et al., 2016). The analog SS circuit in Qiao
et al. (2015) implements all of the three features of synapses.
The synaptic summation is realized by a low-power current-
mode integrator circuit called a differential-pair integrator (DPI).
To reduce the circuit size, a DPI circuit is shared by multiple
synapses by exploiting its linearity. The synaptic efficacy is
stored in a bistable memory and controlled by an STDP-based
algorithm (Brader et al., 2007). This chip integrates 256 adaptive
exponential I&F SNs with more than 128,000 SSs and was applied
to image classification tasks. Another full-featured analog SS in
Brink et al. (2013b) stores the synaptic efficacy in an analog non-
volatile memory based on a floating-gate device and supports an
asymmetrical STDP learning rule. This chip integrates 100 Class
II SNs with 30000 SSs and realized a winner-take-all network and
a rhythm generator (Brink et al., 2013a).

In this article, we briefly review our SN circuits designed
by a qualitative-modeling-based approach. The next section
summarizes the mathematical methods of qualitative neuronal
modeling that are applied to SN design. Section 3 explains our
analog and digital SNs and Section 4 concludes this review.

2. QUALITATIVE NEURONAL MODELING

In spiking neuronal cells, fast ionic currents such as the fast
sodium and rectifying potassium currents are responsible for
spike generation. Slower ionic currents such as the calcium
currents and the potassium currents that are controlled by the
intracellular calcium concentration modify the dynamics of the
spike generation system. Various types of neuronal cells are
known and each of them has its own combination of expressed
ionic channels, which leads to a variety of neuronal activities. The
mechanisms of these dynamical activities have been considerably
elucidated from the perspective of non-linear dynamics (Rinzel
and Ermentrout, 1998;Wang and Rinzel, 2003; Izhikevich, 2007).

2.1. Spike Generation Systems
It is known that many spike generation systems can be projected
onto two-variable systems without critically distorting their
dynamics. Typically, the equations of the projected system are in
the following form:

dv

dt
= fv(v, n)+ Istim, (1)

dn

dt
= fn(v, n), (2)

where v is the membrane potential and n is a variable that
abstractly represents the activity of ionic channels. A stimulus
current is represented by Istim. Figures 1A,C illustrate the phase
plane of two typical spike generation systems. The v-nullcline, a

set of points on which dv
dt

= 0, is N-shaped in both systems, which
intersects the n-nullcline at three points in (Figure 1A) and at
one point in (Figure 1C). In both cases, dv

dt
is negative (positive)

above (below) the v-nullcline, and dn
dt

is negative (positive) above
(below) the n-nullcline.

Frontiers in Neuroscience | www.frontiersin.org 3 June 2016 | Volume 10 | Article 273

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Kohno et al. Qualitative-Modeling-Based SNs

FIGURE 1 | Illustrations of (A–C) phase planes and (D–F) bifurcation diagrams in the fast subsystem. The characteristics of neuronal activities can be

adjusted by exploiting their mechanisms explained in the main text. For example in (A), the threshold voltage can be increased while the resting membrane potential is

held constant if (T) is displaced rightward while (S) is fixed by tuning the slope of the v- or n-nullcline. The ratio of the time constants of n and v is one of the factors that

determine the shape of the stable and unstable manifolds of (T) and the limit cycle.

In Figure 1A, the leftmost intersection (equilibrium) (S) is a
stable point, the middle (T) is a saddle point, and the rightmost
(U) is an unstable point. Without any perturbation, the state
point stays at (S), which corresponds to the resting state. If an
excitatory instantaneous pulse stimulus is applied to the system,
the system state is displaced horizontally rightward because v is
the differential voltage of the membrane capacitance to which
the stimulus current is directly injected. If the displacement is
sufficiently large and the state point crosses the stable manifold
of (T), it goes back to (S) along the longer branch of the unstable
manifold of (T) by moving upward to the right and then leftward.
This temporal increase in v is the mechanism of spike generation.
Because the trajectory (the orbit of the state point) is attracted
to the unstable manifold of (T), the shape of the spikes is not
strongly dependent on the stimulus intensity. The threshold
voltage for spike generation is determined by the stable manifold
of (T) because if the state point does not cross it, the point goes
back to (S) along the shorter branch of the unstable manifold by
just moving leftward.

The v-nullcline is displaced upward by the application of an
excitatory sustained stimulus Istim. Through this transition, (S)
and (T) move toward each other, coalesce, and then disappear,
which produces a stable limit cycle from the longer branch of
the unstable manifold of (T). While the state point stays on the
limit cycle, its v coordinate repeatedly increases and decreases,
which is the mechanism of repetitive spiking. This process, the

disappearance of two equilibria and the appearance of a limit
cycle, is called a saddle-node on invariant circle bifurcation, and
the critical value of Istim is a bifurcation point. Figure 1D shows
a bifurcation diagram illustrating an overview of this transition.
The horizontal axis is for Istim (the bifurcation parameter), and
the dynamical structure of the phase plane for each value of Istim
is projected onto the 1-d space of the vertical axis, v. Here, the
limit cycle is represented by its maximum and minimum values
of v. As is illustrated in Figure 1B, just above the bifurcation
point, the limit cycle passes through a region near both of the

v- and n-nullclines. Because both dv
dt

and dn
dt

are small in this
region, the state point takes a long time to pass, which extends the
period time of the limit cycle. As Istim is closer to the bifurcation
point, this effect is stronger. It extends the period time, which
diverges to infinity when Istim reaches the bifurcation point.
This mechanism accounts for the Class I property in Hodgkin’s
classification.

If n is sufficiently faster than v, a stable limit cycle is
produced via a homoclinic-loop bifurcation before (S) and
(T) coalesce (Figure 1E). As the system is closer to the
homoclinic-loop bifurcation point, the period of the limit
cycle is extended to infinity by the extended passing time
of a region near (T). Because the limit cycle appears before
(S) disappears, the system is bistable in the range of Istim
between the homoclinic-loop and saddle-node bifurcation
points.
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In Figure 1C, the unique equilibrium (S) is stable, which
corresponds to the resting state. If the state point is displaced
beyond the rising part of the v-nullcline by an excitatory
instantaneous pulse stimulus, it starts moving rightward because
dv
dt

> 0 below the v-nullcline. It then turns to left when it crosses
the v-nullcline again. This is the mechanism of spike generation
in this type of system. The magnitude of the spike, which is
the maximum value of v on the spike’s trajectory, is determined
by its intersection with the v-nullcline, which is dependent on
the starting point to which the state point is displaced by the
stimulus. Thus, the spike shape is dependent on the stimulus
intensity, which is referred to as graded response.

When Istim is a positive sustained stimulus, the v-nullcline
is displaced upward, by which (S) is transferred upward to
the right. At a critical value of Istim, the stability of this
point is reversed via a subcritical Hopf bifurcation. In the
bifurcation diagram (Figure 1F), the appearance of a set of
stable and unstable limit cycles via another bifurcation, a fold
bifurcation, is seen at a smaller value of Istim. Once (S) loses
stability, the state point jumps to the stable limit cycle, and
the system starts to spike repetitively. Because there is no
dynamical structure that suppresses the velocity of the state
point on the stable limit cycle down close to zero, the spiking
frequency is always much higher than 0. This accounts for
the Class II property in Hodgkin’s classification. This system

also has bistability composed of the resting state and the stable
limit cycle.

2.2. System with Slow Dynamics
Slow hyperpolarizing ionic currents activated by depolarization
provide a negative feedback to the spike generation system, which
is a most basic mechanism that maintains the spiking behavior
“convergent.” These currents play a role as inhibitory stimuli to
the spike generation system that modify its dynamical structures.
In a case that their time constants are similar, they can be
projected even onto a single-variable system. It was elucidated
that a simple system composed of a two-variable spike generation
subsystem and a single-variable slow subsystem can explain the
dynamics of several classes of neuronal activities including RS
(Figure 2A), square-wave bursting (Figure 2B), elliptic bursting
(Figure 2C), and low-threshold spiking (LTS). In this section, the
dynamical structures of the first three classes are explained. Here,
a slow subsystem is merged into the spike generation system in
the previous section as follows:

dv

dt
= fv(v, n, q)+ Istim, (3)

dn

dt
= fn(v, n), (4)

FIGURE 2 | Illustrations of firing patterns and the dynamical structures that account for their mechanism. Waveforms of (A) RS, (B) square-wave bursting,

and (C) elliptic bursting. The v–q planes of a simple system that produces the firing patterns of (D,E) RS, (F) square-wave bursting, and (G) elliptic bursting.
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dq

dt
= fq(v, q). (5)

Figure 2D illustrates the q–v plane of a system with a Class I
spike generation subsystem. Because q works as an inhibitory
stimulus to the spike generation subsystem, the dynamical
structure is dependent on q in the opposite manner to Istim.
Thus, the dynamical structure drawn in this figure is similar to
a horizontal flip of the bifurcation diagram in Figure 1D. The
q-nullcline illustrates the characteristics of the slow subsystem;

above (below) it,
dq
dt

< 0 (
dq
dt

> 0). It has an intersection R
with (S), which is a stable equilibrium point and corresponds
to the resting state. In response to an appropriate step stimulus,
this system produces RS, which is repetitive spiking whose
frequency is initially high and then gradually decreases to a lower
value (Figure 2A). Because the dynamical structure of the spike
generation subsystem is displaced rightward by an excitatory
sustained stimulus (Figure 2E), the state point is released at R
at the onset of the step stimulus. It is attracted by the stable
limit cycle, which is a repetitive spiking state. The slow variable
q slowly increases because most parts of the limit cycle are above
the q-nullcline. It converges to a value at which the increase
and decrease in the portion of the limit cycle above and below
the q-nullcline balance. The spiking frequency decreases as q
increases because the spike generation subsystem is Class I, which
produces spikes with a lower frequency in response to a stimulus
closer to the bifurcation point. Some types of excitatory cells in
the neocortex produce this type of activity. In contrast, some
types of inhibitory cells generate faster spikes with a weaker
frequency adaptation (fast spiking) (Harris and Shepherd, 2015).
Such activity can be modeled by the same model with a weaker
adaptation of the spike frequency or a Class II spike generation
system.

Figure 2F illustrates the q–v plane of a system with the spike
generation subsystem in Figure 1E. The dynamical structure of
the spike generation subsystem is similar to its horizontal flip
and the q-nullcline has no intersection with any stable states. If
the state point is near (S) at some moment, it is attracted to (S).
Because (S) is below the q-nullcline, q slowly decreases, and the
state point moves leftward until (S) disappears via the saddle-
node bifurcation. The system does not generate any spikes in
this phase. The state point is then attracted to the stable limit
cycle, which is the only stable state. Because the limit cycle is
above the q-nullcline, q slowly increases, and the state point
moves rightward until the limit cycle disappears via the saddle-
loop bifurcation. Repetitive firing is produced on the limit cycle
in this phase. Then the state point is attracted to (S) again. The
system repeats the alternation between the tonic firing and silent
phases without any stimuli. This is the mechanism of square-
wave bursting (Figure 2B). This class of neuronal activities is
involved in life-supporting rhythm generation networks such as
a respiratory rhythm generator and a heartbeat rhythm generator
(Hill et al., 2001; Negro et al., 2001).

Figure 2G illustrates the q–v plane of a system with the spike
generation subsystem in Figure 1F. As in the previous case, the
state point is attracted to (S) if the state point is near to it. Because
(S) is below the q-nullcline, the state point slowly moves leftward

along (S) until it loses stability via the Hopf bifurcation. No spike
is generated in this phase. Then the state point is attracted to the
stable limit cycle. On the limit cycle, if the increase in q above
the q-nullcline exceeds the decrease below, the state point slowly
moves rightward, repetitively generating spikes. After the limit
cycle disappears by the fold bifurcation, the state point is attracted
to (S) again. The repeated alternation between these two phases
is the mechanism of elliptic bursting (Figure 2C). This class of
neuronal activities is observed in sleep spindles (Destexhe et al.,
1993), which is a characteristic spiking pattern appearing in the
thalamus during non-REM sleep.

3. SILICON NEURON CIRCUITS

The core idea of our qualitative-modeling-based approach is
to design an ideal silicon neuronal model that reproduces the
dynamical structure of a target neuronal class by combination of
“device-native” formulae (Kohno and Aihara, 2008b). For low-
power analog circuit implementation, the formulae of the V–I
characteristic curves for compact and simple low-power analog
circuit blocks can be selected. For digital circuit implementation,
polynomials with the lowest order are appropriate because the
multiplier is the circuit with the highest cost.

3.1. Low-Power Analog Silicon Neuron
We developed a low-power analog SN circuit that can realize
the Class I and II neuronal activities in Hodgkin’s classification,
RS, square-wave bursting, and elliptic bursting. The ideal model
of this circuit was designed for implementation by subthreshold
MOSFET circuits, which are typically chosen for low-power SN
circuits. Because this circuit was intended to be a proof-of-
concept for the application of our qualitative-modeling-based
approach to integrated circuits, elemental circuits were selected
by attaching importance to stability and configurability instead
of low-power consumption. The equations of the ideal model
are constructed by combining the formulae of the sigmoidal V–
I characteristic curves of differential-pair-based circuits and an
integration operation with a leak that can be implemented by the
Tau-cell circuit (van Schaik and Jin, 2003). The equations are

Cv
dv

dt
= −g(v)+ fm(v)− n− q+ Ia + Istim, (6)

dn

dt
=

fn(v)− n

τn
, (7)

dq

dt
=

fq(v)− q

τq
, (8)

where v, n, and q represent the membrane potential, the
abstracted activity of fast ionic channels, and the abstracted
activity of slow ionic channels, respectively. The first two
variables compose a fast subsystem, namely the spike generation
system, and q provides a slow negative feedback to it. Parameters
Cv, Ia, τn, and τq are the membrane capacitance, a constant
current, and the time constants of n and q, respectively. Functions
fx(v) (x = m, n, q) and g(v) are the formulae of the idealized V–I
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characteristic curves of the differential pair and transconductance
amplifier (Figures 3A,B) as follows:

fx(v) = Mx
1

1+ exp (− κ
UT

(v− δx))
, (9)

g(v) = S
1− exp (− κ

UT
(v− θv)/(1+ 1/κ))

1+ exp (− κ
UT

(v− θv)/(1+ 1/κ))
, (10)

where UT and κ are the thermal voltage (approximately 26
mV at room temperature) and the capacitive-coupling ratio

FIGURE 3 | Circuits of our low-power analog silicon neuron. (A–C) Elemental circuits and (D) block diagram. The voltage clamp amplifier placed at the top in the

block diagram is used to measure the nullclines experimentally. It is a transconductance amplifier that provides a negative feedback loop to the active terminal of Cv.

When SWv is closed, it locks v near Vc, which is an input voltage of the amplifier. If SWq and SWn are open, its output current Iv compensates the current generated

by the fm, gv, and Ia circuits. By scanning Vc in an appropriate range and measuring Iv, In, and Iq, the v-, n-, and q-nullclines are measured, respectively. The copied

outputs of those currents are available for this purpose. This circuit is exploited to find the appropriate parameter voltages that replicate the dynamical structure in the

ideal model, which are altered from their ideal values by fabrication mismatch and the transistors’ second effects. Reprinted with modification from Kohno et al.

(2014b).
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(approximately 0.7 in our environment), respectively. Parameters
Mx, δx, S, and θ are controlled by the externally applied voltages
VMx ,Vδx ,VS, andVθv in the figures. The v-nullcline of this model
is given by n = fm(v) − g(v) + Ia + Istim. Because both fm(v)
and g(v) are sigmoidal curves and the latter is shallower than
the former, it can be N-shaped by an appropriate choice of the
parameters.

As is drawn in the block diagram of the overall circuit
that solves the system equations (Figure 3D), Equation (6) is
integrated by Cv whose differential voltage corresponds to v and
Equations (7) and (8) are solved using the Tau-cell (Figure 3C)
whose ideal equation is

dIout

dt
=

Iin − Iout

CUT/Iτ
, (11)

where C is the capacitance in the circuit, and Iτ is a parameter
current by which the time constant is arranged. The solutions
of Equations (7) and (8) are given by the output current of the
Tau-cell circuits (blue boxes in the block diagram) whose input
terminals are connected to the outputs of the fx(v) circuits (x =

n, q). The output current of the lower (upper) Tau-cell, In (Iq),
represents n (q). Parameter currents Iτx (x = n, q) and Ia are
generated by integrated V–I converters that are controlled by the
externally applied voltages, Vτn, Vτq, and Va, respectively.

In this review, we focus on the square-wave bursting mode.
In this mode, the parameters of the model are selected so that
the dynamical structures of the fast subsystem resemble those
in Figure 1A. Figure 4A illustrates an example of the v–n phase
plane on which the v- and the n-nullclines are configured for this

mode. The reversed N-shape of the v-nullcline is produced by a
combination of a rising sigmoidal curve, fm(v), and a shallower
falling sigmoidal curve, −g(v). Thus, Mm is increased to make
its rising phase steeper and S is increased to make its falling
phases steeper. These factors control the deepness of its U-shaped
and reversed U-shaped regions. The threshold voltage for spike
generation depends on the former, which controls the distance
between (S) and (T). Because the magnitude of the spikes is
suppressed by the latter, the former is generally coordinated to
be deeper than the latter to obtain sufficiently high spikes in
comparison to the threshold, which can be realized by selecting
a smaller value for θv than δm. The spike height is also boosted
by increasing the time constant of n, which slightly increases the
spike period as well. The actual spike height can be estimated
by drawing the unstable manifolds of (T) whose maximum v
gives the minimum height. In Figure 4A, the spike height is
estimated to be at least 20mV. In this figure, the longer branch
of the unstable manifold of (T) is pulled back to (T) because a
relatively small value is selected for the time constant of n. In
this situation, as described in the previous section, the system
undergoes a saddle-loop bifurcation instead of a saddle-node on
invariant circle bifurcation in response to the increase in the
stimulus current (Figure 1E). Because the slow variable q is an
inhibitory stimulus current to the v–n subsystem, this bifurcation
structure appears on the v–q plane in a horizontally flipped
manner (Figure 4B).

The appropriate selection of Mq and δq places the q-nullcline
so that it separates the stable limit cycle and the stable equilibrium
(S), which reproduces the dynamical structure in the square-wave
bursting illustrated in Figure 2F. The position of the q-nullcline

FIGURE 4 | Example of a dynamical structure and the activities of our low-power analog SN model in the square-wave bursting mode. (A) An example

of the v–n phase plane of the fast subsystem when q is fixed at 60 pA. (B) Bifurcation diagram of the fast subsystem whose bifurcation parameter is q. (C,D) Activities

of the membrane potential v. Reprinted with modification from Kohno and Aihara (2010) (some parameters are modified).
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relative to the stable states of the fast subsystem is a factor that
controls the number of spikes in a burst. This dependence was
theoretically elucidated in Wang (1993) using the Hindmarsh–
Rose model, which is a qualitative square-wave bursting model.
When the slow variable’s nullcline is close to the limit cycle,
tonic spiking is generated. As it departs from the limit cycle, the
tonic spiking becomes chaotic via a period doubling bifurcation
cascade. Then regular bursting appears and the number of spikes
in a burst decreases one by one down to single-spike bursting. At
those transitions, chaotic bursting can be observed if the number
of spikes is relatively large. This transition was also observed
in an ionic-conductance model of the pancreas β cell (Chay
and Rinzel, 1985), in which the maximum conductance of a
slow current was swept as the bifurcation parameter. The same
transition appears in our circuit model when Mq is swept. This
parameter abstractly represents the activity of the slow ionic
current which corresponds to the bifurcation parameter in Chay
and Rinzel (1985). Examples of regular bursting and chaotic
bursting are shown in Figures 4C,D.

We fabricated this circuit using a Taiwan Semiconductor
Manufacturing Company (TSMC) 0.35 µmmixed-signal CMOS
process (Figure 5A). The parameter voltages were tuned
following the procedure explained in the caption for Figure 5 on
the basis of the dynamical structures in Figure 4. In Figure 5C,
a typical bursting activity observed in the circuit experiments is
shown. Its activity was always unstable and could not be stabilized
by tuning parameters. In Kohno and Aihara (2011, 2013), we
pointed out that this fluctuated behavior arises from the intrinsic
dynamical structure of square-wave bursting, i.e., the sensitivity

to the initial conditions near the saddle-loop bifurcation. By
extending the time constant of q (decreasing Iτq), we could
obtain a bursting pattern with a longer period that is similar to
the activity of autonomous bursting cells in the pre-Bötzinger
complex that generate the respiratory rhythm (Negro et al.,
2001). In this case, the bursting activity is more stable than that in
(c) because the extended time constant of q makes the trajectory
of the state point pass closer to the stable equilibrium (S) and
its sojourn time near the saddle-loop bifurcation point shorter.
In addition to square-wave bursting, we could also realize Class
I and II, RS, and elliptic bursting. For any settings, the power
consumption of this circuit including the bias-voltage generators
for the Tau-cell circuits did not exceed 72 nW.

3.2. Ultralow-Power Analog Silicon Nerve
Membrane
The power consumption of the above circuit is one order
of magnitude higher than low-power-oriented leading-edge
circuits (Basu and Hasler, 2010; Brink et al., 2013b; Qiao
et al., 2015). We developed SN circuitry to attain a lower
power consumption that is comparable to these works. A two-
variable model that supports the Class I and II neuronal activities
was designed on the basis of this circuitry to evaluate its
practicality (Kohno and Aihara, 2014a). Its ideal model is
given by

Cv
dv

dt
= fv(v)− gv(v)+ Iav − r(n)+ Istim, (12)

FIGURE 5 | (A) Photograph of the fabricated circuit. (B) The nullclines measured using the integrated voltage clamp circuit, which resemble those in Figure 4A.

Reprinted with modification from Kohno and Aihara (2011). (C,D) Square-wave bursting in the circuit. In (D), the time constant of q is extended to mimic the activity of

the pre-Bötzinger complex bursting neurons. Reprinted with modification from Kohno et al. (2014b). The appropriate parameter voltages for a fabricated circuit are

found by iteration in small modification steps. The starting values are calculated by converting the parameters in the ideal model as follows: VMx =
UT
κ ln

Mx
I0N

,

VS =
UT
κ ln

Sv
I0N

, Vδx = δx , and Vθv = θ , where I0N is the current-scaling parameter of the common-sized NMOS transistors M0 in Figures 3A,B. In accordance with

the characteristics of the V–I converters used to generate Ia, Iτn, and Iτq, the voltages Va, Vτn, and Vτq are calculated, whose detailed equations are omitted here.

Then, the modification of the parameter voltages is determined so that the shape and position of the v- and n-nullclines measured using the integrated voltage clamp

amplifier resemble those in the ideal model. In the iteration of this modification, VMx , Vδx , VS, Vθv , and Va (x = m, n) are tuned. After the phase plane structure of the

fast subsystem is arranged, Iτn is modified so that the bifurcation diagram of the fast subsystem in the circuit resembles that in the ideal model. The stable states of

the bifurcation diagram can be drawn in circuit experiments by measuring v while slowly scanning −Istim, which is equivalent to q from the fast subsystem’s viewpoint.

In this measurement, SWv and SWq are opened, and SWn is closed. Because Istim is generated by an integrated V–I converter controlled by the voltage input Vstim
and equipped with a copied output of Istim, this bifurcation diagram can be translated to the q–v plane. The parameter voltages related to the q-nullcline are selected

so that the total q-v plane resembles that of the ideal model. Finally, Vτq is tuned to obtain bursting activity with the appropriate period.
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Cn
dn

dt
= fn(v)− gn(v)+ Ian − r(n), (13)

where v and n represent the membrane potential and the
abstracted activity of fast ionic channels, respectively. Parameters
Cv and Cn are the capacitances that are determined at circuit
fabrication, Iav and Ian are parameter currents, and Istim is the
stimulus current. Functions fx(v), gx(v), and r(n) (x = v, n) are
monotonic increasing sigmoidal functions that correspond to
the idealized V–I characteristic curves of the elemental circuits
shown in Figures 6A–C. Their equations are

fx(v) =
Mx

1+ exp (− κ
UT

(v− δx))
, (14)

gx(v) = I0P

√

√

√

√

Rx20 exp (
κ
UT

θx)

1+ Rx21 exp (−
κ
UT

(v− θx))
, (15)

r(n) = I0P

√

√

√

√

exp ( κ
UT

θr)

1+ exp (− κ
UT

(v− θr))
. (16)

The parameters in these equations are explained in the caption
for Figure 6. A block diagram of a circuit that solves this model
is shown in Figure 6D. In this circuit, v and n are coded by the
voltage difference between Vdd and the voltage across capacitors
Cv and Cn, respectively. Blocks fx(v) and gx(v) (x = v, n)
correspond to the circuits in (a) and (b), respectively. For gv(v),
the transistors in the shadowed region are omitted to simplify
the circuit. The two blocks of r(n) correspond to a single circuit
of (c).

Equations (12) and (13) are transformed as follows by defining
the variable ñ ≡ r(n):

Cv
dv

dt
= fv(v)− gv(v)+ Iav − ñ+ Istim, (17)

Cn
dñ

dt
= r′(n)(fn(v)− gn(v)+ Ian − ñ). (18)

By using the two voltage clamp amplifiers, VAV and VAN, in the
block diagram, the v- and ñ-nullclines are measured and r′(n) is
evaluated (see the caption for Figure 6).

The major improvement of this circuitry from the previous
SN is a reduction in the static current consumption. In the fx(v)
circuit, M7, M8, M10, and M11 are used to extend the output
current range without increasing the tail current Is. The current
consumption of the cascode circuitry in gx(v) is equal to the
output current, whereas the transconductance amplifier in the
previous gx(v) circuit constantly consumes its maximum current.
The integration of n is performed by a capacitor instead of the
Tau-cell. The Tau-cell is an easy-to-use current-mode integrator
with a constant time constant, which supports a wide range
of input and output currents. However, it requires additional
circuits that generate Iτ , 2Iτ , and Vofst. The currents required
to drive these circuits are cut off by the direct integration of
the currents into a capacitor. In this case, the acceptable range
of the variables is limited by the range of rn(n), on which the
time constant of n is dependent. The above nullcline-drawing

function helps to find the appropriate parameter values under
these limitations; once rn(n) is specified by the time constant
requirement of n, the appropriate dynamical structure for the
target neuronal class can be constructed within the acceptable
range of the variables by tuning the other parameters utilizing
the nullcline drawing function.

By a similar parameter tuning procedure to that for the fast
subsystem in the previous SN circuit, we found the parameter
values for the Class I and II modes. Figure 7 shows the simulation
results obtained using the Spectre circuit simulator with the
TSMC 0.25 µm mixed-signal CMOS process development kit.
Capacitances Cv and Cn are implemented by metal–insulator–
metal capacitors (MIMCAPs) with capacitances of 1.5 and 2.0
pF, respectively. In the pulse stimulus responses (Figure 7A), the
height of spike is dependent on the intensity of the stimulus
(graded response) in the Class II mode (lower plot), whereas
the dependence is weak in the Class I mode (upper plot). In the
sustained stimulus response (Figures 7B,C), the spike frequency
can be reduced close to 0 by applying a sufficiently weak stimulus
in the Class I mode [(B)], whereas spike generation is terminated
before the spike frequency reaches close to 0 in the Class II mode
[(C)]. In both settings, the power consumption increases with the
spike frequency and is less than 3.2 nWwhen the spike frequency
is less than 70 Hz.

3.3. A Silicon Neuronal Network by Digital
Arithmetic Circuits
Generally, the power consumption of a dynamical digital circuit
is higher than that of the subthreshold analog circuits used
in the previous sections. However, the continuous evolution
of the fabrication process is lowering the power consumption.
In Merolla et al. (2014), a combination of ultrafine processes
and technologies such as asynchronous and near-threshold logic
realized low-power silicon neuronal networks whose power
consumption per neuron is only one order of magnitude higher
than the lowest-power analog silicon neurons. Reduced power
consumption these days is facilitating a fascination with the
scalability and stability of digital circuits.

In Li et al. (2012, 2013), we developed a silicon neuronal
network in an FPGA based on our qualitative-modeling-based
silicon neuronal model for digital arithmetic circuits (Kohno
and Aihara, 2007). Figure 8A is a block diagram of its basic unit,
the silicon neuronal network module (SNNM), which executes a
calculation related to 16 SNs including spike-timing-dependent
learning. Larger-scale networks are constructed by connecting
more than one of these modules in parallel.

The digital spiking silicon neuron (DSSN) Unit calculates the
silicon neuronal model designed with the same principle as above
so that it can be implemented with reduced hardware resources
by using the minimum number of multipliers. Its equations are
given by

dv

dt
=

φ

τ
(f (v)− n+ I0 + Istim), (19)

dn

dt
=

g(v)− n

τ
, (20)

Frontiers in Neuroscience | www.frontiersin.org 10 June 2016 | Volume 10 | Article 273

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Kohno et al. Qualitative-Modeling-Based SNs

FIGURE 6 | Circuits of our ultralow-power analog silicon neuron. (A–C) Elemental circuits and (D) block diagram. In Equations (14)–(16), I0P is the

current-scaling parameter of common-sized PMOS transistors [M1 in (A), M1 to M3 in (B), and all of the transistors in (C)]. Parameter Mx is the drain current of M1 in

(A), which is controlled by Vb. Parameters δx (x = v, n) and θx (x = v, n, r) correspond to Vdd - Vdlt and Vdd - Vm (Vdd = 1.0 V), respectively. Parameter Rx20 is 1 (0.5)

when M6 is on (off) and M7 is off (on) in panel (B). Parameter Rx21 is 1 (2) when M8 is on (off) and M9 is off (on). These two parameters are used to shift the curve of

gx (v) horizontally. The two voltage clamp amplifiers, VAV and VAN, in (D) are for drawing the v- and ñ-nullclines and evaluating r′ (n) in Equations (17) and (18). The

output of these transconductance amplifiers is 0 when the two input voltages are the same and positive (negative) when the “+” input voltage is higher (lower) than that

of the “−” input. When they are activated and the rn (n) block is deactivated, their outputs are equal to the sums of fx (v), gx (v), and Iax (x = v, n). By scanning Vcv and

maintaining Vcn constant, the nullclines are measured. Similarly, when the rn (n) block is activated and the other blocks are deactivated, the output of VAN is equivalent

to rn (n). By scanning Vcn, the dependence of rn (n) on n is measured, from which r′ (n) can be evaluated. Reprinted with modification from Kohno and Aihara (2014a).
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FIGURE 7 | Circuit simulation results of our ultralow-power analog silicon neuron. (A) Responses to a pulse stimulus in the Class I mode (upper) and the

Class II mode (lower). (B,C) Spiking frequency and power consumption in response to a sustained stimulus. The horizontal axes represent the intensity of the stimulus.

(B) is for the Class I mode and (C) is for the Class II mode. Reprinted with modification from Kohno and Aihara (2014a).

FIGURE 8 | (A) Block diagram of our silicon neuronal network module, which solves the equations for 16 SNs. (B) Mexican-hat-type spike-timing-dependent learning

curve utilized in the Hebbian-type learning in our digital silicon neuronal network. Reprinted with modification from Li et al. (2013).

f (v) =

{

afn (v− bfn)
2 + cfn (v < 0),

afp (v− bfp)
2 + cfp (v ≥ 0),

(21)

g(v) =

{

agn (v− bgn)
2 + cgn (v < rg),

agp (v− bgp)
2 + cgp (v ≥ rg),

(22)

where v and n are variables with no unit that represent
the abstracted membrane potential and ionic current activity,
respectively. Parameters φ and τ configure the time scale of the
model’s activity. A stimulus input is represented by Istim. The
other parameters determine the shape of the nullclines on the v–n
phase plane; n = f (v)+ I0 for the v-nullcline and n = g(v) for the
n-nullcline. TheN-shaped v-nullcline is realized by the piecewise
quadratic function f (v) instead of a cubic function, which reduces
the number of multiplications between variables. Multiplication
between a constant and a variable can be implemented by small
numbers of shifters and adders if the number of active bits in
the constant’s binary expression is small. By the parameter tuning
procedure similar to our analog SNs, parameter sets that realize
the Class I and II activities were found with which this model is
solved by Euler’s method with fixed-point operations.

The Synapse Unit calculates the following silicon synapse
model by Euler’s method with fixed-point operations.

dIs

dt
=

{

α (1− Is) when v ≥ 0,
−β Is when v < 0,

(23)

where Is is the post-synaptic stimulus received by other SNs.
Parameters α and β determine the time constants of Is in the
rising and falling phases, respectively. This model was developed
on the basis of the kinetic models of chemical synapses (Destexhe
et al., 1998) so that it can transmit the analog information of the
graded responses in Class II neurons.

The Accumulator Unit calculates the sum of Is given by other
SNNMs as follows:

I
j
ss = c

∑

i

WjiI
i
s, (24)

where c is a scaling parameter,Wji is the synaptic weight from SN
i to SN j, and Iis is Is generated by the Synapse Unit for neuron i.

The sum of I
j
ext and I

j
ss is given to the SN’s stimulus input, Istim.
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The Learning Unit supports spike-time-dependent learning
with exponential-based rules. In Li et al. (2013), we implemented
the following Hebbian-type rule:

1Wji = A+ exp (
−|1tji|

τ+
)− A− exp (

−|1tji|

τ−
), (25)

where 1Wji is the modification applied to Wji, and 1tji is the
time between the two nearest spikes of neuron j and neuron
i. The time of a spike here is defined as the time when v
exceeds 0. Parameters A+ and A− configure the amplitude of the
learning curve and τ+ and τ− specify its time scale. Mexican-
hat-type learning curves can be realized by selecting appropriate
parameter values (Figure 8B).

By implementing 16 SNNMs in an FPGA chip, we constructed
an all-to-all connected silicon neuronal network composed of 256
SNs. To verify its functionality, we executed associative memory
tasks in which the four patterns shown in Figure 9A are stored. A
pattern comprises 256 (16× 16) pixels, each of which has a value
of 1 or−1. In the figure, a black (white) pixel has value of 1 (−1).
Firstly, these patterns were stored by correlation learning without
using the Learning Unit as follows:

Wij =

{ 1
4

∑4
u=1 x

u
i x

u
j when i 6= j,

0 when i = j,
(26)

where xui represents the value of the ith pixel in pattern u. In
the retrieval process, all SNs are repetitively spiking owing to

the application of an appropriate sustained stimulus Iiext for all
i. Their initial spiking phases are arranged by a short positive
external input applied before the sustained stimulus only to the
SNs that correspond to the pixel with a value of 1 in the input
pattern. The input patterns were generated by flipping the values
of randomly selected pixels in a stored pattern. Figure 9B plots
examples of observed retrieval processes, in which the time step
for numerical integration is 375 µs. In the left column, Mu, an
index that reflects the correlation between the current spiking
pattern and the uth pattern, is plotted. This value is 0 when
the spiking pattern has no relation with the uth pattern and
approaches 1 as the pattern matches to it. In the right column,
the phase synchronization index (PSI) that reflects the degree
of synchronization is plotted. It is 0 when the SNs are spiking
fully asynchronously and approaches 1 as their spike timing is
synchronized. In the upper row, 10% of the pixels in pattern
(1) are flipped and applied as inputs. In this case, M1 quickly
increases and remains near 1, which indicates the successful
retrieval of pattern (1). In the lower row, 40% of the pixels
are flipped. Then, none of the values of Mu remain close to 1,
which indicates that no pattern was retrieved. The PSI plotted
in the right column stayed near 1 when a correct pattern was
retrieved but not when no pattern was retrieved. We executed
100 retrieval processes: 10 different levels of flipped (error) pixels
from 5 to 50% in 5% increments and 10 patterns for each error
level. The red and blue plots in Figure 9C show the rate of
successful retrieval when the SNs are in the Class I and II modes,
respectively. The network could retrieve a correct pattern from a

FIGURE 9 | Auto-associative memory tasks executed in our all-to-all digital silicon neuronal networks. (A) Stored patterns. Each pattern is composed of

256 (16 × 16) pixels with a value of 1 or −1. Black (white) pixels have a value of 1 (−1). Reprinted with modification from Li et al. (2012). (B) Examples of the transition

of Mu and PSI when the input pattern has 10 and 40% flipped pixels. Reprinted with modification from Li et al. (2012). (C) Error recovery performance when the

patterns are stored by correlation learning and the SNs are in the Class I mode (red) and in the Class II mode (blue). The yellow plot is for the case where the patterns

are stored by Hebbian-type spike-timing-dependent learning and the SNs are in the Class I mode. The horizontal axis is the ratio of the flipped pixels to the total

number of pixels (the error level). The vertical axis represents the rate of successful retrieval rate. For each error level, 10 trials were executed. Reprinted with

modification from Li et al. (2013).
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larger number of errors when the SNs are in the Class II mode
than when they are in the Class I mode. This indicates that the
spiking dynamics may play important roles in auto-associative
memory tasks.

Second, the four patterns were stored by activating the
Learning Unit as follows. The stored patterns were applied to

the network in the sequence of (1), (1), (1), (1), .. (2), (2), ..
(3), (3), .. (4), (4), .. (1), (1), .., where (n) means the reversed
pattern of (n). A couple of a stored pattern and its reversed
pattern was repeated eight times in a block. This sequence
was applied until one of the values of Wij reached 1 or -1 by
the modification in Equation (26). In the retrieval process, the
Learning Unit was deactivated and input patterns with errors
were applied in the same way as above. The yellow plot in
Figure 9C shows the rate of successful retrieval when the SNs are
in the Class I mode. The error recovery performance exceeded
both results with correlation learning. In our preliminary results
with SNs in the Class II mode, this performance was further
boosted (not shown in the figure). The spiking dynamics may
also be important in auto-associative memory with spike-timing-
dependent learning rules.

4. DISCUSSION

As reviewed above, our silicon neuron circuits can realize
different classes of neuronal activities by selecting appropriate
parameter values and their characteristics can be modified by
finely tuning the parameters as shown in Figure 5D. This high
configurability is advantageous not only for bio-silico hybrid
systems but also for constructing “ field-programmable” silicon
neuronal networks in which each SN can be reconfigured
after fabrication or each SN autonomously obtains appropriate
dynamical properties on the basis of the history of stimulus
inputs as in the brain. This high configurability arises from the
fact that the activity of many neuronal classes can be explained
using common dynamical structures that are reproduced in our
models by a combination of implementation-efficient formulae.
In contrast, the circuitry is simplified by supporting only one
neuronal class in the non-I&F-based SN circuits developed by
a similar approach (Basu and Hasler, 2010; Brink et al., 2013b).
These circuits realize ultralow power consumption down to
several nanowatts at the expense of configurability. In their
SN network systems, the configurability is supplemented by
accommodating a sufficiently large SN circuit pool, in which
the appropriate SNs for a desired network are activated. Our
circuit in Section 3.2 supports both Class I and II neuronal
activities and consumes a similar power; however, it has the
drawback of high configurability. The circuit has to be configured
appropriately by tuning a number of parameter values, and
additional circuits are required for storing parameter values. The
complexity of the configuration process is solved by parameter
tuning procedures that utilize the nullcline drawing circuits
as explained in detail in Section 3.1. This procedure is still
not straightforward, but all of the students who worked on
our circuit learned to be able to finish the tuning procedure
within several tens of minutes. For a large-scale silicon neuronal

network, this procedure has to be automated. It may be done
by metaheuristic approaches similar to those utilized in Grassia
et al. (2011). The power consumption and area occupied
by additional circuits for storing parameter values may be
reduced by evolving non-volatile memory technologies such as
memristors.

In digital silicon neuronal networks, the accumulation of
synaptic inputs consumes a considerably larger amount of
hardware resources than SN circuits. Thus, the compactness of
the SN circuit is not a major issue. The advantage of our circuit
is that its model is non-I&F-based and thus can mimic the spike-
generation-related properties in neuronal activities more finely
than I&F-based circuits. One of these properties is the graded
response in Class II neurons. Because the graded response is
found in the brain, as mentioned in the introduction, there is
possibility that it plays some roles in information processing in
the brain. Our silicon neuronal networkmodel intends to provide
a platform in which a wide variety of neuronal activities including
the dynamics of spike generation is qualitatively reproduced
without a major increase in hardware resource consumption. For
this goal, our SN model is being expanded so that it can realize
more classes of neurons including RS, LTS, and IB as well as
autonomous bursting supported by our analog SN. It has four
variables (two original and two additional slow variables) but still
can be solved by one multiplication per a numerical integration
step. The details of this model is explained in Nanami and Kohno
(2016).

A goal of our analog silicon neuronal circuits is to
establish an ultralow-power general-purpose silicon neuronal
network platform that will be applicable to neuromimetic
computing when the mechanism of information processing
in the nervous system is elucidated. We expect that it has
an advantage also in the application to large-scale neuronal
network simulators (Schemmel et al., 2010; Stromatias
et al., 2013) and brain-prosthetic devices such as an artificial
hippocampus (Berger et al., 2012; Hampson et al., 2013;
Song et al., 2015), an artificial cerebellum (Hogri et al.,
2015), and an artificial prefrontal cortex (Hampson et al.,
2012) because our circuits meet their requirements of a
low power consumption and the ability to mimic various
complex neuronal activities finely. Construction of such systems
may contribute to the elucidation of the brain’s mechanisms
by the “analysis by synthesis” approach. Our digital silicon
neuronal network platform is also applicable to neuromimetic
computing and large-scale neural network simulation. It
consumes more power than analog circuits but has advantage in
scalability.
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