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The purpose of this lecture is to present some new
properties of the set of stecady-state solutions to the Navier-
Stokes cquations of a viscous incompressible fluid.

It is known that for small Reynolds numbers, if a
steady excitation is applied to the fluid then there is a
unicque stable steady state which actually appears for t large
(t » »), If the Reynold's number increases, then it .is
conjectured and experimentally well-known (cf. B.T. Benjamin
[1,2], D. Joseph [7]) that new steady states appear some being
stable and some being unstable, As far as we know, very little
has becn proved concerning the set of all stationary solutions
of the equations. 1In joint works with C. Foias (cf [(4][51(6])
the author lhas attempted to find some qualitative informations
on this set, and we are going to summarize the main results
of [51(0].

Section 1 contains the ddscription of Navier-Stokes
equations and their functional setting. Section 2 contains

the description of the results. The plan is the following:

1. Stcady-state Navier-Stokes Equations.
2. Properties of S(f,9,v)

2.1 General propertics
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2,2 Generic properties

2.3 Generic bilfurcation,

1. Stecady-State Navier-Stokes cquations.

Soient 1 be the domain filled by the fluid, Q < RL,

4L = 2 or 3. We assume that is bounded with a smooth
boundary T.

Let wu(x) = (ul(x),...,uk(x)), and p(x) be the
velocity of the particle of fluid at point x and the
pressure at  x (x € N); then u and p satisfy the

cquations

(1.1) -vAu + (u*9)u + yp = f in 0,

(1.2) yu = 0 in 0,

(1.3) | u=¢ on T,

wvhere f represents volumic forces, ¢ 1is the given velocity
of T which is assumed to be materialized and soclid, VvV = Re"l

is the inverse of a Reynolds number, For f, ¢, v (and 0)
given, the problem is to find u and p satisfying (l.l)-
(1.3).

In the functional sétting of the equation, it is usual
to introduce the space Lz(O) = LZ(Q)L and to consider the
orthogonal decomposition of L2(Q) (cf 0.A. Ladyzhenskaya
(8] or R, Temam [14))

L2(Q) =1 & G,

G={vp | pe€ LZ(Q),-§£7 e L2(0), 1< is 4
1

Q) | vu =0, wuwv| =0,

2(
r

H={u€L

with v the unit outward normal vector on [I', VWe denote by
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4
p the projection in L°(Q) onto M.
1f u and p satisfy (1.1)-(1.3) and are sufficient-

ly regular, then u clearly satisfics
(1.4) P(-vAu + (u+¥)u) = £ in 0,

assuming that Pf = f, which is always possible and amounts
to modifying p. Conversely it is classical (cf [8]) that if
u satisfies (1.4) together with (1.2) and (1.3), then there
exisls a scalar function p such that u, p satisfy (l.l)-
(1.3). Therefore the equations (1.2)-(1.4) for u are
equivalent to the original problem.

Now we write u = u + ¢ where & is some extension
of the function ¢ inside ., It is convenient to define

$ = A as the solution of the nonhomogeneous Stokes problem

’

-4 + ym = 0 in Q,
(1.5) S vé = 0 in Q,
$ = (8] on T.

In this case u satisfies

(1.6) Pl-vad + ((G+¢)-v)(G+8)] = £ in 0,
(1.7) va = 0O in Q,
(1.8) G = O on I‘.

We introduce the linear unbounded operator A in H,
whosc domain is
2 1
pD(A) = H°(Q) n HO(Q) n H,
and

Av = -PAv, ¥ v € D(A);

1,
here H"(Q) is the Sobolev space of order m, H™(Q) =[H"(Q))
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and Hi(O) is the space of u € Hl(Q) vanishing on T (ror
the theory of Sobolev spaces cf J.L. Lions - E. Magenes [11]).
It is known (cf [147) that A is a self-adjoint strictly

pogitjve and invertible operator in H, and that A™?t € £(1)

is compact (0 bounded).

We also introduce the operators B such that

B(u,v) = P[ (u-v)v],
B(u) = B(u,u).
For 4 = 2 or 3, we infer from the Sobolev imbedding theorems

that B(*,*) maps HZ(O) X M2(O) into H, and in particular
D(A) x D(A) idinto H.
The equations (1.6)-(1.8) are now equivalent to the

problem

To find u in D(A) such that

(1.9) _ .
VAG + B(u+Ag) = f.

This is the functional form of the steady-state Naviere
Stokes equations which we had in view and on which is based
the following study. We denote by S(f,p,v) the set of

4 € D(A) satisfying (1.9).

2. Properties of S(f,9,v).

We assume that f is given in H, ® is given in
MB/Z(T) = [HB/Z(T)]&., By the Stokes formula, and because of

(1.2), ¢ must verify

f’ vYu dx = f ¢+*v dI" = 0.
0 r

We will impose a slightly stronger condition on @:
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(2.1) (’ ®'v «F = 0, 1< is N,
Ty
whvro Fl,...,FN arc Lhe connected components of T (T =T

) 1
. . . «3/2 i
and N=1 if T is conunccted). We denoiec by #H° “(I') the
. 2
sel of ¢ in 93/ () satisfying (2.1).

2.1 Gencral propcrtinﬁ,

*3/2
For every f given in I and ¢ given in HB/ (),

the scet S(f,9,v) is nonempty, This is an existence theorecm

for the stcady state Navier-Stokes equations., This existence
result appears in O,A, Ladyzhenskaya (8}, J. Leray [9], J.L.
Lions [10] with stronger assumptions on f and/or ¢; for
the weaker assumption £,0 € H x QB/Z(T), cf. C.Foias-R.T.[ 6]

The set S(f,p,v) is reduceed to a single point if Vv

is sufficiently large, more precisely if
(2.2) v > a (1], el )
0 H MB/Z(P)
whore the function Oo: R+XR+H>R+ is increasing with respcct

to cach of its two arguments.

Now let wj, J=2 1, be the orthomormal basis in H

consisting of the eigenvectors of A-l (A-l is compact self-

adjoint in 1), Let Pm denote the orthogonal projector in
H onto the space spannecd by Wireee s W We have the follow-
ingrs

(2.3) For m sufficiently large, m 2 m,(f,9,V), P, is a

one to one mapping on s(f,m,v) and Pm s(f.w,v) is

a rcal compact C-analytic set.
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This mecans that I’"l s(r,p,v) (and in somc scnse
s(r,o,v) itself) is a finite union of points, regular
analytlic curves, regular analytic manifolds of higher

diMonsions (cf Bruhat-Whitney [3]). As a corollary we gect:

(2.4) Either S(f,p,v) is the union of a finite number of
points or S(f,w,V) contains at lcast an analytic

curve.

2.2 Generic Propertics,

We are now going to describe generic propertics of
S(f,m,v). A result which is typical of the results establish-

ed in [4)[ 5] is the following

Theorcem 1 & For every VvV > 0 and ¢ € ﬁB/z(T) fixed, there

exists an open dense set Gl € H, and for every f € Gl,

s(f,p,v) 4is finite, card S(f,9,v) is odd, and card S(f,p,V)

is constant on every connected component of 0,

The principle of the pProof is as follows: we consider

the non linear mapping N, from D(A) idinto H:
Gr> N, (3) = vaa + B(4).

When  4is a regular value of Nl’ the Fréchet derivative

Ni of Nl is regular at every preimage point (i.e. every u

such that Nl(ﬁ) = f). Whence the u's in Nzl(f) are
isolated and there is a finite number of such u's, since
Nll(r) is compact, The fact that the set 6, of regular
values of Nl is dense is the less trivial result and follows

from the infinite dimensional version of Sard's theorem duc

to Smale [13]). The other properties are conscquences of the
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implicit function theorem and some specific probovtiqs of Nl.
Finally the oddness of card S(f,w,v) follows from a
topological degroc argument,

A similar result when f, ¢, Vv, are simultancously

allowved to vary is this one:

Theorem 2 - There exists a densc open sct @2 in HXM3/2(T)X

X m+, and for every f,p,V € ®2, card S(f,w,v) is finite

and odd., Furthermore card S(f,w,v) is constant on every

connected component of Gzl

Same proof as Theorem 1,

We may now think of a result symmetrical to Theorem 1
in the sense of a generic result with respect to ¢ when f

and Vv are fixed, We have:

Theorem 3 o For every V > 0 fixed, for every fixed f in

=4
Ca(Q) nH (a>0), there exists a dense open sect 93 c

c E2+“(r) (U, such that card S(f,p,v) is finite and odd,

v €6 and card S(f,@,v) is constant on every connected

3’

component of 6

3.

The proof of this result due to J.C, Saut and the
author (cf'[l2]) involves different technics, In particular
Sard-Smale's theorem is replaced by a transversality theorem
duc to Abraham and Quinns. As a tool for this proof we also
need the following uniqueness theorem for a Cauchy problem

associated to Stokes equations:

{
For b given in H N Hl’w(Q) , if v and q satisfy

(1)

. 1
CS(T) is the set of functions ¢ in Cz(F) which
satisfy (2.1).
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-Av + (b9)v + (v9)b + 9g = O in 0

(2.5) 9v = 0 in Q
v = 0 and-a—};—o on I
= 3y =
then v = 0 and q 4is a constant,

Remark 1 - The fact that S(f,m,v) is generally finite was

conjectured by B,T. Benjamin.

2.3 Generic Bifurcation.

We now describe a result of generic bifurcation for
the cquation (1.9). Similar results are proved in [ 6] for

the classical Taylor and Bénard problems,

Theorem 4 - We assume that ¢ € HB/Z(T) is fixed. There

exists Gu(w) a dense GS— subset of H and for every

r € @u(¢), the manifold

s = U s(f,p,v)
v>0

has the following form:

(i) 1t is constituted of isolated points and isolated

analytic manifolds which lye above isolated values of Vv,

The number of such values of VvV is finjite on eveyy semi axis

vV >V > 0,
“ o

(ii) It is constituted of one (or more) analytic manifold (s)

of dimension 1, whose projcction on the VvV axis is the whole

interval J0,+o[. The set of singular points of this manifold

is finite in every region VvV 2 vo > 0,

As a Corollary we get
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(2.6) Genecrically, the set of (primary and secundary) bi-

furcating values of VvV for (1.9) is countable and can

only accumulate at VvV = 0,

Remark 2 - As far as we know, this is the first information

available concerning all the primary and sccundary bifurcat-

ing points of a nonlinear equation.

Remark 3 - The methods used for the proof of the above results

are quite gencral and probably apply to the equations of non-

lincar elasticity.
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