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Résumé

Nous étudions I'impact sur les performances d’une modification des paramétres (fré-
quence des appels, intensité des trafics, etc.) dans un modéle d’Erlang généralisé. Des
propriétés de monotonicité et de concavité sont mises en évidence pour les principales
caractéristiques du modéle (probabilités de congestion, débit des canaux, etc.), a la fois
en régime transitoire et en régime stationnaire. Ces résultats sont obtenus en utilisant

des méthodes de comparaison et de couplage stochastiques.

Mots-Clés: Intégration de services, réseaux a commutation de circuits, évaluation des

performances, couplage, ordre stochastique, monotonicité, concavité.



Qualitative Properties of the Erlang Blocking Model
with Heterogeneous User Requirements

Philippe NAIN*
INRIA
2004, Route des Lucioles
06565 Valbonne Cedex
France

Abstract

We study the effect of increasing the model parameters (e.g. arrival rates and traffic intensi-
ties) in the Erlang blocking model with heterogeous user requirements. First-order (monotonic-
ity) and second-order (concavity) qualitative results are obtained for the performance measures
of interest (loss probabilities, throughput, channel occupancy, etc.) both in the trénsient and
in the steady-state cases. Stochastic and likelihood-ratio orderings together with coupling tech-

niques are used to indicate the effect of modifying the model parameters.

Keywords: Service integration, circuit-switched network, performance evaluation, cou-

pling, stochastic ordering, monotonicity, concavity.

1 Introduction

We consider the classical Erlang blocking model with heterogeneous user requirements. We suppose
that K types of traffic or calls arrive at a switching center according to K independent Poisson
processes with state-dependent rates Ax(ny), where ny denotes the number of type-k transmissions
in progress, & = 1,2,...,K. The switching center has N outgoing channels (see Figure 1). On
arrival, a type-k call requires by channels. If there are fewer than by free channels the call is lost,
otherwise b; channels are immediately seized for a random time. When n type-k transmissions
are in progress, the type-k call-completion rate is pi(n). The by channels are arbitrarily chosen
among the free channels and are simultaneously released at the end of the transmission period. For

each type of call, we assume that the holding times form a sequence of i.i.d. random variables with

*Work performed while the author was visiting the Department of Systems Engineering of the University of

Pennsylvania, Philadelphia, USA.
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Figure 1: Switching center

an arbitrary common distribution. We further assume that the call holding-times are mutually
independent and are independent of the arrival processes.

The equilibrium behavior of Erlang-like traffic models has received considerable attention in
the past where both the analytical (e.g. [1], [2], [3], [15]) and the numerical aspects (e.g. [4], [7],
[8], [10], [16]) have been investigated. These papers provide closed-form expressions and numerical
procedures for computing the basic performance measures. Some of these results are recalled below.

Until recently, no satisfactory expressions for the transient behavior had been reported. Part
of this gap has been filled by Mitra and Weiss [9] who have used the theory of large deviations
to give an asymptotic analysis of the probability of blocking at time ¢ assuming that all channels
are initially idle (resp. busy). Simonian [14] has recently carried out a very detailed asymptotic
analysis of the channel occupancy (see also [1]).

The approach we take in this paper is different from prior work since our objective is to study the
effect of increasing the model parameters on the performance measures of interest. More precisely,
we focus on monotonicity properties and on concavity properties of the main performance measures
(loss probabilities, throughput, channel occupancy, etc.), both in the transient and in the steady-

state cases.
This study is motivated by the ever-growing interest in circuit-switched networks that support

different services with different characteristics (e.g. different bandwidth requirements, arrival rates

and call holding-times for services such as telephone, video and facsimile).

For future reference, we now recall some well-known equilibrium results of the Erlang traffic
model.

Let pg(n) = npy, lor k = 1,2,..., K, n > 0 (constant service rates) and let X; be the number



of type-k calls in progress in steady-state. We have [7]

P(X=n)= 1<N)H{ %5 *"(’)}, (1)

for b-n < N, where X := (X1, X2, ..., XK), 0 := (n1,n2,...,nk) and b := (b, b, ..., bx).
The normalization constant G(NV) in (1.1) is given by

c= ¥ H{”'*_l“")}- | )

bn<N k=1
Denote by
K
Z:=3 b Xy, (1.3)
k=1

the total number of calls in progress in steady-state. Also define B; and T} as the loss probability
and the throughput for type-k calls, respectively, k = 1,2,..., K.
Clearly (cf. (1.1)-(1.3))

G(N —b)
G(—N)’°-, (1.4)

Ti = mE(Xp), (1.5)

B = P(Z>N—-b)=1-

fork=1,2,...,K.
If we further assume that Ax(-) = A for k = 1,2..., K (constant arrival rates), then

T = Me(1-PB) (1.6)
_ G(N - bk) - e
= A Gy fork=1,2,...,K, (1.7)

from (1.4).
These results show, in particular, that the main steady-state performance measures can be
expressed in terms of the normalization constant G(N). However, because of the shape of G(N),

a straightforward derivation of monotonicity/concavity results is not feasible in most cases.

In Section 2, a coupling technique is employed as in [17] to derive time-dependent monotonicity
results for K = 2. In particular, we show that the number of type-1 (resp. type-2) transmissions in
progress at timne s sipchasiically increasing (resp. decreasing) with respect to the vector arrival

rates of the type-1 calls. Section 3 addresses the equilibrium behavior. In particular, we show that



for K = 2 and b1 < bg, Z is increasing as a function of A2 in the sense of likelihood-ratio ordering if
and only if certain conditions on b; and b, prevail. Additional results are also obtained for K > 2
(more results in the case K > 2 can be found in [11] where a different approach is followed). In
Section 4 we study concavity properties of the original Erlang model (i.e. K = 1). We show that
E (f(X(t)), where X(?) denotes the number of busy channels at time ¢, is a concave increasing

function of the arrival rate for all increasing mappings f : R — IR and for all ¢ > 0.

2 Monotonicity: Time-Dependent Analysis

We assume throughout this section that K = 2. A mapping f: IR" — IR is said to be increasing
(resp. decreasing) if f(z) < f(y) (resp. f(z) 2 f(y)) for all z,y € IR™ such that & < y, where the
last inequality is interpreted componentwise whenever n > 2.

We first introduce some notation and definitions. For k = 1,2, define:
o X = (Ak(0), Ak(1), ., AR([N/br] — 1));
o p = (1), 2k(2), - (L V/ b)),

where |z] denotes the largest integer less than or equal to x. We shall use the symbol [);, ;] to

identify the system when the vector arrival rates are )\; and ), (the other model parameters By

I N and b will be kept constant, so there will be no possible confusion with this notation). We

replace A; by Ax in the above notation when the type-k call arrival rate is constant and equal to
A, k=1,2. For k= 1,2, and t > 0, we define:

¢ X (%) as the number of type-k transmissions in progress at time t;
o Byi(t) as the number of type-k calls that have been lost by time t;

o D(t) as the number of completed type-k transmissions by time t.

Definition 2.1 Let U(v) be a real-valued random variable parameterized by some vector v € R,

n > 1. U(v) is said to be stochastically increasing in v if

E(f(U(V)) < E(f(U(W)))

for all increasing mappings f : R.— R and all w € IR™ such that v < w, where the last inequality

is interpreted componentwise whenever n > 2. The notation U(v) <;: U(w) will be used.

We have the following theorem:



Theorem 2.1 Assume that A(-), p1(-) and pa(-) are increasing functions. Assume also that
do(n) := Az > 0 forn = 0,1,...,[N/by| — 1 (constant arrival rate for type-2 calls). If the call
holding-times are exponentially distributed, then for all t> 0,

1. X1(t), Ba(t) and Dy(t) are stochastically increasing in Ay;
2. X,(t) and D,(t) are stochastically decreasing in ).

The same results holds when indices 1 and 2 are interchanged.

Proof. The proof is based on a coupling argument as in [17]. Fix A} := (A1(0),..., A\ ([N/b1] — 1))
such that A\; < Aj. We construct four birth-death processes Yy := {Yi(t), ¢t >0} and Y} :=
{Y{(t),t > 0} (k = 1,2) on a common probability space by generating transitions using a single

Poisson process with rate
¥ == max Ay (n) + Az + [pa (| V/b1]) + p2 (N /b2 )] N (2.1)

Suppose a point in this Poisson process occurs at time ¢. Then, at time ¢,
(T1) with probability A;(Y1(2—))/7 a birth occurs

e in Y1 if blYl(t—) +b2Y2(t—) < N — bl,
e in Y] if 5, Y (t—)+ 02Y7(t—) < N — by;

(T2) with probability [A](Y{(t—)) — A1(Y1(¢-))] /7 a birth occurs
[ ] mY{ if bl}/l'(t—) + bz}/zl(t—) < N — bl;
(T3) with probability Az/v a birth occurs

e in Yy if 1Y1(¢-) + szz(t-—) < N — by,
e in Y if b1Y{(t-) + boY (t—) < N —by;

(T4) with probability u;(Y1(¢—))/7y a death occurs in Y, and in Y{;
(T5) with probability [p(Y{(t-)) — p1(Y1(t—))] /v a death occurs in Y7;
(T6) with probability pa2(Y5(t—))/v a death occurs in Y, and in Y3;
(T7) with probability [pa(Ya(t—)) — u2(Y3(t—))] /v a death occurs in Yo;

(T} with probability 1 — MUY/ (1)) + Ay + 161 (Y (t=)) + p2(Y2(t=))] /v no event occurs in Y7,
Ys, Y, Y. '



The above construction, together with the initial conditions Yx(0) = Y}/(0) := y; (k = 1,2), implies

the following inequalities:

n(t)
10

IA

Y(2); (2.2)
Y5 (1), (2.3)

v

forallt > 0.
Before proving (2.2) and (2.3) it should be noted that these inequalities together with the

assumptions on the monotonicity of the functions Ay(-), #1(:) and po(:) fully justify the validity of
transitions (T2), (T5) and (T7).

The proof of (2.2)-(2.3) proceeds by induction. Consider the transition (T1). We first notice
that both inequalities hold for £ = 0. Let ¢ > 0 be a point of the Poisson process and assume that
(2.2)-(2.3) hold in [0,2). If Y1(t-) < Y{(t-) then clearly Y;j(¢) < Y{(t) since there is at most one
birth in Y; and in Y{ at time ¢. If ¥1(¢—) = Y{/(¢—) then

b1Y{(1-) + b2 Y (1—) < b1Ya(t-) + b2 Ya(t-), (2.4)

from the induction hypothesis (2.3). So, either Y1(¢) = Y{(¢) (this is the case if bY1(t-) +
baYo(t—) < N — by or if b1Y{(t-) + b2Yj)(1—) > N — b1) or Yi(t) < Y{(¢) (this is the case if
biY{(t=) + bYy(t—) < N — by < b1 Y1(t—) + boYa(t-)).

On the other hand, the induction hypothesis Y5(f—) > Y;(t—) entails Y2(¢) > Y;(¢) since no
event occurs at time ¢ in Y, and Y5 under a transition of type (T1). The remaining “birth-
transitions” (T2) and (T3) are treated similarly.

Consider now (for instance) the transition (T5). If Y;(¢—) = Y{(¢~) then (T5) cannot occur at
time ¢ (the probability of this event is zero) and so Y1(t) = ¥/(t). If Y1(t~) < Y{(¢-) then clearly
Y1(t) < Y{() since there is only one departure from Y.

Finally, Ya(t—) > Y;(¢—) implies Ya(t) > Y;(t) since Y2 and Y} are not modified under a tran-
sition of type (T5). The remaining “death-transitions” (T4), (T6) and (T7) are treated similarly.

We now use the previous results as follows. First, we observe that the above construction yields

the following key properties:

e Y; (resp. Y3) has the same distribution as {Xj(t), t > 0} (resp. {X2(%),t > 0}) in the
system [Ay, Aol;

¢ Y] (resp. Y3) has the same distribution as { X{(¢), t > 0} (resp. {X}(t), t > 0}), where X/(t)
denotes the number of type-k calls in progress at time ¢ in the system [A}, 2] , k = 1,2.



Secondly, we apply the so-called coupling theorem of Kamae, Krengel and O’Brien [5, Theorem 1],
which gives us (cf. (2.2)-(2.3))

Xi(t) <ot Xq(1);
Xa(t) 20 X3(1),
for all ¢ > 0. This proves the first part of statements 1 and 2.
Consider now Dg(t), k = 1,2. Let
e Ei(t) (resp. Ei(t)) be the number of deaths in Y (resp. Y;) by time ¢, k= 1,2.

We observe from transitions (T4)-(T5) and (T6)-(T7) }espectively, that

Eq(2) Eq(t); (2:5)
Ey(t) > Ex®), ' (2.6)

IA

forallt > 0.
Since {Ey(%), t > 0} has the same distribution as {Dr(t)t > 0} in [}, 2], and {E}(?), t > 0}

has the same distribution as {Dj}(t)t > 0}, where Dj(t) is the number of type-k calls that have
been completed by time ¢ in [A},A2] (k = 1,2), we deduce from (2.5) (resp. (2.6)) and Theorem 1
in [5] that D;(t) (resp. D2(t)) is stochastically increasing (resp. decreasing) with respect to A;.

Let us now show that Bj(t) is stochastically increasing in A;. We have:

Yo(t) = y2+ A2(t) — Ca(t) — E2(2); (2.7)
Y,(t) Y2 + A2() — Ca(t) — E(2), (2.8)

for all t > 0, where
o {As(t), t > 0} is a Poisson process with rate Ap;

o Cy(t) (resp. C4(t)) is the number of potential (T3) transitions that did not fire (i.e. rejected
calls) for Yy (resp. Y3) by time ¢.

From (2.7)-(2.8) we get
CL(t) - Ca(t) = [%a(t) - Y3(®)] + [Ea(t) - E5()], (2.9)

forallt > 0.



The first term in the right-hand side of (2.9) is nonnegative from (2.3). The second term in the
right-hand side of (2.9) is also nonnegative (see (2.6)). So,

Calt) < CY(1), (210)

forallt > 0.
Noting now that {Ca(t),t > 0} has the same distribution as {By(t),? > 0} in [);, 2], and

that {C5(t), t > 0} as the same distribution as the number of type-2 rejected calls in [A], X2], we
conclude with (2.10) and Theorem 1 in [5] that Ba(t) is stochastically increasing in ;. g

To avoid unnecessary complications, and also because this is the only case of interest in the

context of circuit-switched networks, we shall assume in the remainder of this section that ui(n) :=

npk, for n = 1,2,..., [N/bg] and k =1,2.
Many monotonicity results for steady-state performance measures can be derived from Theo-

rem 2.1. These results are collected in Corollary 2.1.
Define p, = (pk(0), (1), .. ., pk([V/bk| — 1)), where pi(-) := A () pie, k = 1,2.

. Corollary 2.1 Assume that the call holding-time distributions are arbitrary. Then:

1. E(f(X1)) is increasing (resp. decreasing) in Ay and in p, (resp. 1) for all increasing map-

pings f : IR = IR;
2. E(f(Xz)) is decreasing (resp. increasing) in Ay and in p, (resp. p1) for all increasing map-
pings f: IR - IR,
3. Ty is increasing in A;;
4. T is decreasing (resp. increasing) in A; and in 2, (resp. p1);
5. B2 is increasing (resp. decreasing) in Ay and in p, (resp. p1).
The same results hold when indices 1 and 2 are interchanged.

Proof. Assume first that the holding times are exponentially distributed, and consider X}, B and
Ty (k = 1,2) as functions of ;. Then, statements 1-5 directly follow from Theorem 2.1.

Noting now that X depends on A;(-) and p only through p(+), cf. (1.1)-(1.2), we immediately
get the extensions of statements 1, 2, 4, 5 to the parameters p, and u; (use also (1.5) and (1.4) for
4 and 5, respectively).

Finally, the validity of Corollary 2.1 for arbitrary call holding-time distributions is a consequence

of the insensitivity of the distribution of X to the call holding-time distributions.



Many questions remain open at this point. In particular, does Ay — E (f(Z)) have a monotonic
behavior for k = 1,2 if K = 27 Does A\, — Pk (resp. pr — Ti) have a monotonic behavior for
k = 1,2 if K = 27 We shall see in the next section that the answers to these questions are negative
in general. For K = 2, we shall show that the answer to the first question (and therefore to the
second ones if K = 2) is positive, provided some additional restrictions are put on b; and b2. Some

results will also be obtained for the case K > 2.

Remark 2.1 Unfortunately, for K > 2 we have been unable to extend the coupling technique used

in the proof of Theorem 2.1.

3 Monotonicity: Steady-State Analysis

We assume throughout this section that the call holding-times have general distributions and
that pp(Xi) := Xy for k = 1,2,..., K. Define p, := (p(0), pr(1),...,px([N/bg| — 1)), where
pi() = Ae(:)/pg for k =1,2,..., K.

As mentioned earlier, the presence of the normalization constant G(V) in (1.1) is 2 major ob-
stacle in the search for qualitative properties. A similar problem was encountered by Shanthikumar
and Yao in their qualitative study of product-form closed queuing networks [13]. They nevertheless
got over this difficulty by using the notion of likelihood-ratio ordering for random variables. We
shall show in this section that this approach also yields interesting results in our case.

We first recall the definition of the likelihood-ratio ordering (see [6] and [12] for further infor-

mation).

Definition 3.1 Let U and V be two random variables with common support {z¢,z1,...,ZMm},
where z, < Tnyp for 0 < n < M — 1. We say that U is smaller than V in the sense of likelihood-

ratio ordering, and write U <;, V, if

P(Uzil)n) > P(szn)
P(U= 27,—,,.1.1) - P(V= $n+1)’

foralln=0,1,...,M - 1.

It is known that U <, V implies U <, V (stochastic ordering) [12]. A very short proof of this

result specialized to the case of discrete random variables is given in Appendix A.
Fork =1,2,...,K define:

Z(k) = Z b[Xl;
1<I#k<K



I (),

gn) = TR HE
b-ngy := Z biny.
1<I#k<K

We have the following theorem:

Theorem 3.1 With respect to A, Xy is increasing and Z(y) is decreasing in the sense of likelihood-
ratio ordering for k =1,2,...,K.

Proof. From (1.1) we get

P(Xe=n) _ (n+1)m Giy(N — nby)
P(Xr=ntl) M) Gy (N —(n ¥ 1)’ o (3)

where

Gyl(z):= Y II o).
b-n(k)s:c 1<I£k<K
Since G(r)(N — 1bg) (0 < 1 < [N/b]) does not depend on Jy, it follows from (3.1) that Xj is
increasing in A, in terms of the likelihood-ratio ordering.

Let {zo,21,...,2m} be the support of Z(;). Recall that z, < x4y forn =0,1,...,M - 1.
Then, cf. (1.1),

Y ok(m)

P(Z(k) = zn) — H(k)(xn) % byng<N—z,
P(Zuy = 2nt1)  Hpy(zrs1) Z gk(nk)’

beng SN—2zniy

(3.2)

where

H(k)(x) = Z H gl(nl).

b-n(k)=z‘ 1<i#k<K

Since H(yy(z:) (0 <1 < M) does not depend on Jy, it suffices to show that the second term on the

right-hand side of (3.2) is decreasing in ).

Define a := [(N —z,41)/bi] and b:= |[(N —z,)/bi] (a < b). Let W be a random variable with
support {0,1,...,b} such that

P(W=3)=P(W=0)a(j), 0<jst.

10



\Y

Since W is clearly increasing in )y in the sense of likelihood-ratio ordering, this implies that

E (f(W)) is increasing in )y for all increasing mappings f : R — IR. In particular, -

> gi(4)

igea

> ge(d)

j<h

P(W<a)=

is increasing in Ag, which concludes the proof. g

Corollary 3.1 Fork =1,2,...,K:

1. X is increasing (resp. decreasing) w.r.t. Py (resp. ux) for the likelihood-ratio ordering;
2. Z(k) is decreasing (resp. increasing) w.r.t. p, (resp. pi) for the likelihood-ratio ordering;
3. Ty 1s increasing w.r.t. Ag;

4. For K =2, Ty is decreasing (resp. increasing) w.r.t. \; and p, (resp. w) for 1<k #1<2.

Remark 3.1 Theorem 3.1 and Corollary 3.1 extend the statements 1-4 of Corollary 2.1 both to
K > 2 and to arbitrary vector arrival rates (i.e. the Ag(-)’s need not be increasing functions,

k=1,2,...,K).

Let px := A\i/uk, k = 1,2,..., K. The next theorem partially answers the questions listed at

the end of Section 2. We assume from now on that K = 2, unless otherwise stated.

Theorem 3.2 Assume by < by < N and Ai(:) := A, k = 1,2.- Then, Z the total number of calls
in progress in [Ay, Az] is increasing as a function of Az in the sense of likelihood-ratio ordering if

and only if by /by is an integer or |[N/by|by < by.

Proof. Take A\, > ), and define Z’ as the total number of calls in progress in the system [A;, A3].
Also introduce for 0 < n < N,

¢n:=P(Z=n) and ¢, :=P(Z' =n).

It has been shown by Kaufman {7] and Roberts [10] that

1
0= (b1P1 Gn—b; + 5202 Gnt,) (3.3)

11



forn=1,...,N—1,withg, =0ifn < 0.

Sufficient condition. Assume first that by/b; is an integer. We can assume without loss of

generality that b; = 1. From the recursion (3.3) we deduce that the set of inequalities,

q; q'. !
— > L (3.4)
25+1 G4
qj4+2-b Qiyp2-b
p SR < gy IR, (3.5)
dji+1 941

is satisfied for 0 < j < N, where p} := A}/ pa. ‘

Note that (3.4) shows that Z is increasing for the likelihood-ratio ordering w.r.t. Az (cf. Defi-
nition 2.1).

The proof proceeds by induction. Using (3.3) we first check that (3.4) and (3.5) both hold true
for j = 0. Assume that (3.4) and (3.5) are still true for j < n — 1. Then, cf. (3.3),

' '
o1 _1 [Pl + b2p2 ———q"“_bz] < [Pl + baph qn+l_b2] = qnfl ,
dn n+1 dn qn qn

from the induction hypothesis on (3.5).
On the other hand,

dn+1 — 1 P_l qn + by Qn+1—bz.
P2 Qnt2-b; n+1 P2 Gni2-b, In+2-b, 4
1 [ ¢ Gniib, | b
> B. 2 jp,mtl=h | (induction hypothesis on (3.4))
n+1 | P2 Qnt2-b; Int2-5, |
> _L A, In +b Inti-by | _ _ Gnia
= 1150 7 275 =7 ’
n+1{p; Guioy, Int2-b] P29ny2—b,
since
! 7 '
dn — dnt1-b, . qn > qn+1—b2 . In qn

= 7 ’ 7 =T ?
P29nt2-b, Int2-b; P2Y9n4+1-b, qn+2_52 pzqn+1_b2 qun+2_52

from the induction hypothesis on (3.4) and (3.5).

Let us now assume that b,/b; is not an integer and that | N/by|b; < bp. This implies that the
support of Z and Z’ is {0,b;1,...,ab1,b2}, where a := [ N/bq].
We have, cf. (1.1),
gin _ _P(X=5X=0) _j+1
G+, P(X1=7+1,X2=0) n

(3.6)

12



for j = 0,1,...,a — 1. Since the rightmost term in (3.6) does not depend on Az, we obviously have

b _ ik
9G4 b Q41

’

for j = 0,1,...,a — 1. Moreover,

Qah:P(Xl:a?X?:O): pf > P? =P(Xl=a9X£=0)__q¢’xbg
qb, P(X1=0,X2=1) pza!"pga! P(X1=0,Xé=1) - qlbg’

which shows that Z is increasing as a function of A, in the sense of likelihood-ratio ordering.

Necessary condition. Assume that (i) by/b; is not an integer and (iz) |(NV /bljbl > by. Let
{0, %1,...,ZMm} be the support of Z and Z'. Let k be the integer such that

zx = bo. (3.7)
We show that
T o 51_";; : | | : (3.8)
4z Iz,
and
o e (3.9)

!
qzk-{-l qu+1

so that Z £, Z' under conditions (i) and (ii).
We first observe that '

g; = jbh, forj=0,1,...,k-1; (3.10)
Tk = kby, (condition (ii)). (3.11)

Again, using the recursion (3.3) along with (3.7), (3.10), we get

qx); i b pl sz-—bl + b

1 2 . 3.12
Gry_, b2 q(k-1)b, 2 q(k-1)by (7 )

But gp,—5, = 0 (b2 — by is not a feasible state from condition (i)) and clearly go/q(x-1)s, does not

depend on A;. Consequently, cf. (3.12),

which is exactly the inequality (3.8).
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On the other hand,

Azy 41 — 1 [blpl Qzpy1-by + bypy q$k+l-b2]
qz; Tk+1 T 7
. . .

= [bl o =L 4 b, 2"—"—&] (cf. (3.10) and (3.11))
Tk41 Qzs Qzy
b

L Vs W : (3.13)
Tk41 qz,

since kb; — by is not a feasible state (condition (i)). Now using now (3.8) in (3.13) gives us (3.9),
which concludes the proof. g

Corollary 3.2 Ifby/by € N or [N/by by < by then:
1. Z is increasing (resp. decreasing) for the likelihood-ratio ordering w.r.t. p; (resp. p2);

2. E(f(2)) is increasing (resp. decreasing) w.r.t. A2 and p; (resp. pz) for all increasing map-
pings f: IR — IR;

3. B, is increasing (resp. decreasing) w.r.t. Az and p; (resp. pa);

4. T, is increasing w.r.l. py.

Proof. Statements 1 and 2 are obvious. Statement 3 follows from statement 2 by choosing f(z) =

1(z > N - by), cf. (1.4). Statement 4 follows from statement 3 and (1.6). g

Corollary 3.3 If K > 2, b:=b, (1< k<K -1) andb < bxk < N, then Z is increasing (resp.
decreasing) w.r.t. A and pg (resp. pg) in the sense of likelihood-ratio ordering if and only if
bx /b is an integer or [N/b|b < bg.
Proof. For K > 2, Kaufman-Roberts’ recursion reads:

1 X

n = = E bk Pk Gr—b -

n k=1

Therefore, the proof is analogous to the proof of Theorem 3.1 provided that p, is replaced by

K-
zk\=11 Pk- &

Since the stochastic ordering is weaker than the likelihood-ratio ordering, we may want to know

whether Z is also increasing for the stochastic ordering w.r.t. py if ba/by is not an integer and if

14
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[N/bi]by > ba. Also, we may want to know whether the mapping p; — [ is increasing under
the aforementioned conditions, in the case where the answer to the first question is negative. The

examples below show that the answer is no in both cases.

Example 1.
b, = 2, b, = 3, N = 4. Then, Z is stochastically increasing w.r.t. p; (hint: use (1.1)).

Example 2.
by = 2, b, =3, N = 7. Then, Z is not stochastically increasing w.r.t. p; (g7 is not increasing).
However, 37 is increasing w.r.t. ps. '

Example 3.
b =3, by =5, N = 10. Then, B, is not increasing w.r.t. p; (for large p;, 882/p2 < 0 for p; = 0).

The last point we would like to discuss is concerned with the monotonicity of 8y w.r.t. p;. The

example below shows that this function is not monotone in general, even if by/b; is an integer.

Example 4.
by =1, by =2, N = 2. For fixed p; > 0, B, is decreasing in [0,—1 + +/T + 2p;) and increasing in

(-1 + /1T ¥2p2,+0) w.r.t. p1.

Finally, since 71 = A;(1 — 1), Example 4 implies that 77 is not monotone in general w.r.t. u;.
All the monotonicity properties that have been discovered throughout Sections 2 and 3 are
collected in Table 1. More steady-state results can be found in [11] for K > 2 (the method used by

Ross and Yao in their paper is similar to the method employed in [13]).

4 Concavity

We consider the original Erlang blocking model (K = 1 and b; = 1). Denote by A the call arrival
rate and by 1/u the average call holding-time. Let X(t) be the number of ongoing transmissions

at time t. We have the following result:

Theorem 4.1 For all increasing mappings f : IR — IR and for all t > 0, E(f(X(t))) is concave

increasing as a function of A .

Proof. The proof is similar to the proof of Theorem 2.1. Let (A;)1<ic4 be four real numbers such
that 0 < A1 < Az, Az < Ay and Ay < Az. We furthermore assume that Ay — A; = Ay — As.
We construct four birth-death processes Y; := {Y;(¢),¢ > 0}, ¢ = 1,2,3,4, on a common

probability space by generating transitions using a single Poisson process with rate

v := As+ pN. (4.1)

15



Time-dependent behavior (K = 2) |

Exponential call holding-times
A1(4), pa(+), p2(+) increasing functions; Az(:)= constant

Xl(t) T.,t w.r.t. L\.l
Xo(t) ot wort. Ay
By(t) Tt wart. A
Dy(t) Ts¢ wort. A

Dy(t) st wrt. )y
(The above results hold whenever indices 1 and 2 are interchanged)

=

Steady-state behavior (K = 2) |

Arbitrary call holding-times with constant rates
Ak() arbitrary function (k = 1,2)

T | wrt. )y (resp. p,)
Tn T wrt. y
Br T w.at. Ag (resp. p,) if Az(-) is increasing
B | w.rt. pg if Ag(¢) is increasing
(The above results hold whenever indices 1 and 2 are interchanged)

If constant arrival rates and b; < by < N then:

Z Tir w.r.t. Ay (resp. p2) iif. ba/by € N or |[N/by]by < b2 (1)
Z iy wrt. pe dif (1)
B2 T wr.t. Az and po if (1)
Bz | w.rt. p if (1)
T wrt op2if (1)

Steady-state behavior (K > 2) |

If constant arrival rates, bg :=b (1 <k < K —1)and b < bxg < N, then:

Arbitrary call holding-times with constant rates
Ax(+) arbitrary function (1 <k < K)

Xk Tir wart. )y (resp. p,)
Xi lir Wt pyy
Zy Lir wart. Ag (resp. p,)
Z(k) Tir w.r.t. g
T T wrt. AL

Z 1, wa.t. Ag (resp. pk) iff. brx/b€ Nor |[N/bjb < bk (1)
Z Lir wrt pr iff. (1)

Table 1: Summary of the monotonicity results
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Suppose a point in this Poisson process occurs at time . Then, at time ¢,
(T1) with probability A1/ a birth occurs
e inY;if Y;(1-) < N fori=1,2,3,4;
(T2) with probability (A2 — A1)/7 a birth occurs
e in Y;if Yi(t—) < N fori=2,4;
(T3) with probability (A3 — A1)/7 a birth occurs
e in Y;if Y;(1—) < N fori=3,4;
(T4) with probability uY1(t—)/v a death occurs
e in Y; for:=1,2,3,4;
(T5) with éroba,bility ulYa(t—) + Ya(t—) — Y1(t—) — Ya(2-)]/7 a death occurs
e in Y; for : = 2,3,4;
(T6) with probability p[Y4(t—) — min(¥z(2-), Y3(t-))]/v a death occurs
e in Y; for ¢ = M, 4;
(T7) with probability u[Ys(t—) — max(¥z(t-), Y3(t—))]/7 a death occurs
e in Y; for ¢ = my, 4;
(T8) with probability u(N — Ya(t—))/v no event occurs in Y;, ¢ = 1,2,3,4,
where my, M; € {2,3}, m: # M,, are defined by
my = arg min(Xa(t-), X3(t—)); (4.2)
M; := arg max(Xa(t-), Xs3(t-)), . (4.3)

for all t > 0.
The above construction together with the initial conditions ¥;(0) = y, ¢ = 1,2, 3,4, entails the

following inequalities:
(1) +Ya(t) < Ya(t) + Ya(1); ' (44)
Yi() < min(Y2(2),Ys(1)) < max(Ya(2), Ya(t)) < Ya(2), (4.5)

for all £ > 0. It should be noted that (4.4)-(4.5) fully validate the transitions (T5), (T6), (T7).
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The proof proceeds by induction. Note first that (4.4)-(4.5) hold for t = 0. Let ¢t > 0 be a point
of the Poisson process and let us assume that (4.4)-(4.5) hold in [0,2).
Assume that one of the transitions (T1)-(T3) occurs at time ¢ (birth transition). Then, by

considering successively the five following cases: "
(1) Ya(t=) < N;
(2) max(¥a(t-), Ya(t-)) < N = Ya(t-);
(3) min(Ya(t-), Ya(t-)) < N = max(¥a(t-), Ya(t-)) = Ya(t-);
(4) Yi(t-) < N = Ya(t-) = Ys(t=) = Ya(t-);
(5) ¥i(t=) = N,

it is readily seen that (4.4)-(4.5) still hold at time ¢.
Assume now that one of the events (T'4)-(T7) (death transition) occurs at time ¢. Consider the

transition (T6). Then, cf. (T6),
min(Y2(t-), Ya(t-)) < Ys(t-). (4.6)

Since (4.6) implies that Yz(¢—) + Y3(t—) > O (otherwise (4.4) would imply, in particular, that
Y4(t—) = 0, which would contradict (4.6)), we have

Yi(t) + Yy(2)
Ya(t) + Ya(t)

Yi(t—) + Yy(t—) - 1;
Yg(t—) + Y3(t—) -1,

(4.7)

which shows that (4.4) still holds at time ¢ under the transition of type (T6).

In order to show that (4.5) also holds at time ¢, we have to examine the following two cases:
(1) Y1(t-) < min(Y2(t-), Ya(t—)) < max(Yz(t—), Ya(t—)) < Yy
(if) Y1 (t—) < min(¥z(t-), Y5(t-)) < max(¥(t-), ¥a(t-)) < Ya.

In case (i), the inequality (4.5) clearly propagates to time ¢ under the transition of type (T6) . In
case (ii), we may have a problem if Y; (¢-) = min(Y2(t—), Y3(t~)) = max(Yz(t-), Y3(t-)) < Ya(t-),
or, equivalenﬂy, if Y1(t-) = Y2(t-) = Y3(t—) < Y4(t—). However, this situation cannot occur since
it would contradict the induction hypothesis (4.4). The remaining transitions (T4), (T5), (T7) can

be treated in a similar way.
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These results are used as follows. First, we observe that the above construction implies that
Y; has the same distribution as {X;(t), t > 0}, where X;(?) denotes the number of transmissions
in progress at time ¢ when the arrival rate is A;, ¢ = 1,2,3,4.

Secondly, we apply the coupling theorem in [5] to (4.4)-(4.5), which gives us

X1(t) + Xa(t) <st Xao(t) + Xa(t); (4.8)

X1(t) Sst min(Xg(t),Xa(t)) Sat ma.X(Xz(t),X:;(t)) Sat X4(t), (4.9)

forall t > 0.
The inequality (4.9) shows, in particular, that X () is stochastically increasing in A forall ¢ > 0

(note that this property also follows from Theorem 2.1 by setting A2 = 0). By combining this
result with the inequality (4.8) we get that A — E(f(X(t))) is concave increasing for all increasing
mappings f: IR > R andallt>0. g

Corollary 4.1 Let X be the number of ongoing transmissions in steady-state. Then, E(f(X)) is
concave increasing as a function of A for all increasing mappings f : R — IR. In particular, E(X),
the blocking probability 8 (8 = P(X > N —1)) and the throughput T (T = pE(X)) are all concave

and increasing in A.

Suppose now that the arrival rate depends on the state of the system. Let A(¢) be the arrival
rate when there are 7 transmissions in progress, ¢ = 0,1,..., N — 1. Then, by proceeding as in the

proof of Theorem 4.1, it can be shown that:

Theorem 4.2 For all increasing mappings f : R — IR and for allt > 0, E(f(X(t))) is concave

increasing as a function of A(¢), fori =10,1,...,N -1,
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A Appendix
We give below a short proof of the fact that
USITV=>USStV7

when U and V are discrete random variables with support {zo, z1,...,zMm}.

19



Assume there exists (at least one) n € {0,1,..., M} such that P (U = z,) # P(V = z,) (otherwise

the result is obviously true), and define
l:=min{n e {0,1,...,M}: P(U =2,) < P(V =2z,)}.

Note that ! is well-defined, since the case where P(U = z,) > P(V = z,) foralln = 0,1,...,M is
impossible (this would imply that P (U = z,) = P(V = z,,) foralln = 0,1,..., M, since otherwise
Zf‘f: oP(V = z,) < 1, but then this would contradict the assumption on the distributions of U

and V).
» So,
PU=zx)2P(V=u2a,), forn<l-1,

and
PU<Lz,)2P(V<z,), forn<l-1. (A1)

Now, (A.1) together with the fact that U <; V (cf. definition 3.1) implies that
PU=z,)<P(V =u2z,), forn2>l,

and
P(U<z,)>P(V<ay,), forn>lI

which completes the proof. g
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