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A bstract

QUALITATIVE PROPERTIES OF THE
FREE-BOUNDARY OF THE REYNOLDS

EQUATION IN LUBRICATION

S .J . ALVAREZ

The hidrodynamic lubrication of a cylindrical bearing is governed by the
Reynolds equation that must be satisfied by the preassure of lubricatiog
oil . When cavitation occurs we are carried to an elliptic free-boundary
problem where the free-boundary separates the lubricated region from the
cavited region .

Some qualitative properties are obtained about the shape of the
free-boundary as well as the localization of the cavited region .

1 . Introduction . Existence and uniqueness

Let S2 be the rectangle (0, 27r) x (0, 1) C VI2 ; jet F o = (0, 27r) x {0}, Fl	=
(0, 211) x {1} and let us introduce the following sets of functions :

V = {O E H'(Q), 0 F ur l = 0, 0 is 27rx - periodic}
Va = {¢ E H1(Q), 0 irp = 0, 0 ir,= pa, ~ is 27rx - periodic}

where Hl(Q) is the Sobolev space of functions
derivatives are square summable .
We consider the following :
Problem (P) .
Find a pair of functions (p, -y)

(1 .1) (p, y) E Vu x L°°(9)
(1 .2)p>OandH(p)<-y<1

such that

a.e . in 9
(1 .3) fs2 h1,7p,71 = fs1 hyá

where h = h(x) = 1+a cos x, with 0 < a < 1, and H is the Heaviside function .
This problem is related to the lubrication with cavitation arising in bearings .

The first unknow is the pressure distribution -p- in a thin film of lubricant
contained in the narrow gap between two circular cylinders of parallel axes (the
shaft and the bearing) ; another unknow is the percentage -y- of oil contained
in an elementary volume .

VI E V,

such that they and their first
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shaft and the bearing) ; another unknow is the percentage --y- of oil contained
in an elementary volume.

Introducing cylindrical coordinates, the gap h depends only on the angular
coordinate, being a the eccentricity ratio of the bearing .
The equation (1 .3) derives from the Reynolds equation, div (h3 Vp) = h',

which must be satisfied for p on the region [p > 0], and from conservation laws
of flow across the free boundary separing the regions [p > 0] and [p = 0] in 2 .
In the lubricated region (completely occuped for oil) y is equal to one, while
over the cavited region ([p = 0]) y must satisfy 0 < y < 1 .
The main goal of this paper is to give some qualitative properties of the

free-boundary,
r=[p>o]n [p=o]n s2 .

The existente of solutions for Problem (P) was proved by Bayada and Cham-
bat in [B-Ch] ; they prove also uniqueness of solutions under the assumption
that the free-boundary is a Lipschitz-continuous function of x . A comparison
result and uniqueness was proved by Carrillo and the author in [A-C], without
any of the previous assumption related to the free-boundary.

For a more general treatment on physical aspects and the formulation of
Problem (P), see [A], [B-Ch], [D-TI, [F] .
About existente and uniqueness, we recall the following results :

Theorem 1.1 . (Existente and Regularáty)
There exist at least one solution for Problem (P); moreover, if (p, y) satisfies

(1 .1), (1.2) and (1.3), then

p E C°(S2) n C°',(9 U ({o} x (0,1)) U ({27r} x (0,1))) .

Proof- See [B-Ch] and [A-C], as well as the proof of existente for the Dam
Problem in [B-K-S] .

Theorem 1.2 . (Comparison) ([A-C]))

Let (pl,yl) and (P2, 72) be two pairs in H1(Q) xL°°(2), with pl and p2 being
211 x-periodic functions and satisfying (1.2) and (1 .3), as well as ¡he condition,

(1.4) pi Ir¡ = Oi

	

for

	

i = 1, 2

	

and j = 0,1
where for O; we assume
(1.5) Oi E Cr;) and 0i < Oz .
Then pl < P2 in 9 .

Like a corollaxy of this theorem, we have :

Theorem 1.3 . (Uniqueness) ([A-C])



There exist an unique solution (p, y) for Problem (P) .

Remark . Theorem 1.2 gives a global comparison result in S2 for pl and P2,
when we can compare their values on Po and P1 : this remain true to compare
solutions of Problem (P) with solutions of a swiftly modified Problem, as we will
precise later in Section 3.

We have :

LUBRICATION WITH CAVITATION : THE FREE-BOUNDARY

	

237

2. Uniforme bounds for solutions in the x-variable

In this section we shall give an upper bound and a lower bound, both inde-
pendents of x, for solutions of Problem (P) .

Let M = maximum h3(X) , and, for 0 < y < 1, let us define,
xE[0,21r]

Such functions satisfy :

v(y) = -2y2 .+ (p« -2)y

v(y) =

	

2y2 + (P. - 2
)y1

+

v_(0) = U(0) = 0
v_(1) = U(1) = Pa

-M
0 if y < 1 - 2p,,/M

-{ Mify>1-2pjM

Theorem 2 .1 .
If (p, y) is the solution of Problem (P), then

Moreover,

P(x,y) :5 v(y) in S2 .

Proof.. Taking 1 = (p - U)+, and as y = 1 on the support of 1, we have

19
h3vPV~ =

19
h'Y¿x = -

19
h'j

h3VUV~ =

	

h3U'1y = -f h3U111
= f h3MI ? f h' j,

n

	

rt

	

~

	

~

	

n



238

	

S. J. ALVAREZ

and, substracting from the above equality :

So, we obtain

and,hence

in
h3 1 7(p -

v)-+ I2=
lo

h3 o(p - U)v1 < 0.

In order to complet the boundedness of p, we have:

Theorem 2 .2 .
If (p, y) is the solution of Problem (P), then

XX, y) ~ v(y)

Proof.. Let 1 = (v_ - p)+ ; we have :

(p - v)+ = constant

	

in 9

(p - v)+ = 0

	

Le.

	

p <U.

in S2 .

f h3ov_v1 =
f

h3v'Iy = _
f

h3 V II I = _ f
h3MI < -

f
h'n

	

~

	

n

	

n

since v_"(y) =M if v_ :~ 0, and hence on the support of 1 .
Now, since Jx = [(v_ - p)+1,,: = 0, on the region [p = 0], we have :

in
h3 VPv1 =

lo
hylx =

f
hjx +

f
h(-y - 1)j. = -

in
h'j

and so :

f
h3

1 7 (2 _ p)+ 12=

	

h37(v_ - p)71 _< 0 .

Similarly to Theorem 2.1, we obtain the conclusion .

Corollary 2 .3 .
If (p, -y) is the solution of Problem (P), with pa > M/2, then p > 0 in 9 and

so there is not free-boundary .

Proof- If Pa > M/2 then v_(y) > 0 and p > 0 for all y E (0,1) . E
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Remark.
The figures one and two illustrate functions v_ and v in the two differents

cases : p,, < M/2 and p,, > M/2.

Fig . 1 (p,, < M/2)

	

Fig . 2 (p. > M/2)

Fig . 3

ym
ró

yi

yo

Figure 1 illustrate the region (0, 27r) x(0,1-2pQ /M) where the free-boundary
(when it exist) lies . The function U attain a maximum in y = z +pQ/M E (0,1) ;
we shall prove later that, fixed x, p(x, .) is a non-decreasing monotone function
up to this point .

Figure 2 corresponds to the case where there is not free-boundary ; when
p,,»M/2 the solution is very close to the function w(y) = p,,y, which satis-
fies that div (h37W) = 0, corresponding to the limit case when the eccentricity
ratio a is equal to zero, and evidencing that this eccentricity is negligible when
the pression on the supply line is very great .

3 . Behaviour of the free-boundary in the y-variable

We consider in this section the case p,, < M/2, denoting by y�, the value
ym = z +p,, /M, where the function U, defined by (2.1), attain a maximum. Let
yo = 2p Q /M, and take yi any value in (y,, l) . Finally, let SZ l = (0, 27r) x (yo , yi ),
denoting by ró and ri the lower and upper boundarys of Q1 respectively . (see
Fig . 3) .
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The equation z = y1 - ~ (y - y1) with /l =

	

i-y1
° , transform the interval

[yo , y1] into [y l , l] .

	

Making use of this transformation we can define a new
function on 521, from the solution p of Problem (P), by means of

We have :

Theorem 3.1 .

for (x, y) E 52 1

	

p(x, y) = p2p(x, z) .

XX, y) < p(x, y)

	

for any (x, y) E 52 1 .

I3efore to give the proof of Theorem ,4 .1 we shall first prove some previous
results about p(x, y) . We remark that the technics to prove this theorem are the
same that the ones used to prove uniqueness . They are based on ¡he construction
of a class of test functions defined in a multidimensional domain . Sucht test
functions appear in (A-C%, [C-11 and [C-2J.

Proposition 3.2 .
If (p, -y) is ¡he solution of Problem (P) and we define y(x, y) = -y(x, z) for

(x, y) E 52 1 , then the pair (p, y) satisfies,
z

(3.1)

	

h3vpV¿+ 1 -f

	

h3px x =

	

hy~x
12 1	121

	

121

for any 1 E H 1 (52 1 ), 27r x-periodic and 1 IróUr;= 0

(3.2)

	

H(p) < 7 < 1

	

a. e.

	

in 52

Moreover

(3.3)

	

p Iróur,1 ~ p Iróuri

Proof.. Let i(x, z) = l;(x, y), J =
(
1

	

-00

	

the matrix for derivatives óf

(x, z) with rapport to (x, y), and 52 2 = (0, 2r) x (y1,1) with lower and upper
boundarys I'ó and r 2 respectively (I'ó = ri, and r 2 = r1) . We get :

f h3
VpVl = f h3Vx,YQ2p(x~ z ) 7x,yj(x, y)dx dy =

121

	

121

_

	

h3(Vx,zp2p(x~ z)J) ' (Ox,zj(x, z)J)Pdx dz =
12x

12
h3{p2pxjx.+ pzjz }dx dz =

2

h3 0x,zp7x,zj-dx dz + p(p2 -1)f h3pxjxdx dz =
122

	

2

f hy&dx dz + l3(Q 2 - 1) J

	

h3px&dx dz
9z

	

122
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since ~ E H1 (52 2 ), is 27r x-periodic and 1 Iróuri= 0 .
Now, coming back to the y-variable in 52 1 , we conclude

2
h3vpo~ + 1 -~

	

h3p.Ix =

	

hylx
~1

	

P .1

	

~1

and H(p) = H(p2p(x, z)) < y(x, z) = y(x, y) < 1 a.e . in 52 1 .
Moreover p :5 p on r;, because y = z and f 2 > 1, and p < p,, < fl2pa = p on

rl .0
We shall distinguish the x-variable for p and p, using the variables (xl, y) E

52 1 for (p, -y) and (x2, y) E 52 1 for (p, y) ; we set Q = (0, 27r) x (0, 27r) x (yo , y,),
and let us consider J(r) and p(r), real functions such that :

For small e > 0 we define p,(r) = (lle)p(rle), and finally for (xl, x2,
let F(x1, x2, y) be defined by

27r - 2E' -

j(r) E C(yo, y1),

	

j>0-0

p(r) E Co(R),

	

p > 0, supp p = [-1,1]
p is a pair function .

F(xl,x2,Y) = I(y)pE( xl 2
x2 ).

This function, is identically zero when 1 x l - x2 J>_ 2e and, since pE is
a pair function, it can be redefined when (xl, x2) E Ti U T2 = {(xl, x2) E
[0, 27r] x [0, 27r] :1 xl - x2 (> 27r - 2e}, by making

pE(
x1 - x2 ) -

pE(
~ x1 - x2 1 -27r )

2

	

2
So we obtain a 211-periodic function in the independents variables xl and

x2 (see Fig . 4) . Moreover F( , ,x2, ), F(xl, ,) E Hl (52 1 ) and F(x1,x2,yo) _
F(xl,x2,y1) = 0-

27r

	

2E'

	

27r - 2E'

x2

2E' ~"

	

T2

	

t 2e'
v

0

	

2e'

	

x1

	

27r - 2E'

	

27r

Fig . 4

27r - 2E'

y)EQ
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Now, let us consider a new parameter ó > 0, and define

Using this function and denoting by 71 and v2 the gradient operator for
(xl , y) and (x2 , y) respectively, we have :

(3.4)

Proposition 3.3 .

77(x1, x2, y) -

	

Min_

	

f (P(xl, y) - P(x2, y))+
, F,Jb

IQ
l(h3 (xl)P.i - h3 (x2)Px2)( 77xi + 71.2) + ( h3 (xl)PY - h3(x2)Py)77y}+

2 _
+ p P2

1 fQ h3(x2)Pxz(71íi + 71x2) = fQ (h(xl) - h(x2)?')(77xi + 77x2)

Proof.. For each x2 E (0, 27r), we have

J

	

h3(xl)O1Pl7177 dxl dy = J

	

h(x1 )77., l dxl dy =

_

	

(h(xl) - h(x2)^l')77xi dxl dy
,

since yl - 1 on supp 7l( ., x 2 , .), and f9 l h(x2)571x, = 0, from the periodicity of
77-
By integrating the above equality in the x2-variable, we get :

and, analogously for p:

IQ
h3(XI)71P7¡17 =

IQ
(h(xl) - h(x2)5)71xt

1- 2

Q
h3(x2)V2P7271 +

	

2

fQ(h(x2)7 - h(xl))77x2

Substracting the above equalities, we get :

IQ
h3 (x2)Px2 77xz =

IQ

	

1 /¡
(h3 (xl)O1P7171 - h3 (x2)02P02 77) + -2 2

-
	JQ

h3(x2)Pxz71x2 =

(3 .5)

=
JQ

(h(xl) - h(x2)y)(77xi + 77x2)



and introducing this terms in (3.5), we conclude (3.4) .

Now, we go to consider the new variables (see [A-C], [C-1]) :

getting for the function 7 7 :

and, for derivatives:

(3.6)
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Moreover

IQ
h3 (x2)Pz2r7x, =

IQ
h3(xl)P., 17 .2 = 0

77(t + z, t - z, y) =

	

Min

	

[_

	

(P(t + z, y) - p(t - z, y))+
, I(y)P,(z)Jó

0,1 = 2 (Ot + Oz),

0= Z = 1 (Ot - Oz),

0., + 0.,

t

	

XI + x2

	

xi - x2= 2 , z=
2

,

what, in the particular case of p = p(x l , y) and p = p(x2, y), being pt (t+z, y) _
p.(t + z, y) and p,(t - z, y) = -p (t - z, y), gives :

P.,(xl,y) = Pt(t + z, y)
Pxz (x2, y) = Pt (t - z, Y)-

for any 0 = O(xi,x2,y)

In the new variables, the equation (3.4) becomes :

I(h3 (t + z),7typ(t + z, y) - h3(t - z)vtj(t - z, y))vty91+
Q«

2 _
+ f ~2 1 f

	

h3(t - z)pt?7t =

	

(h(t + z) - h(t - z)y),7t,
Q«

	

fQt.

where we omite the constant due to the coordinates transformation, and denote
by Qtz the new domain .

If we consider the sets,

AÉ = [(pi - p2)+ > ó1PE[

	

BÉ = [0 < pi - p2 5 ó1PE]I
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(in Q or Qtj and denote :

Il = f (h3(t + z)vtyP(t + z, y) - h3(t - z)Vtygt - z, y))Vty(I(y)PE(z)) _
Aá

=J .(h3(t + z)Py(t + z,y) - h3(t - z)Py(t - z,y))I'(y)PE(z)

I2 -

	

(h3(t + z)vtyp(t + z, y) - h3(t - z)vtyp(t - z, y))Ot,
p

6
P

13 =
#

2
- 1 f

	

h3(t - z)pt (P -
p)t

P2
Bá

	

S

I4 =
JBE (h(t

+ z) - h(t - z).r) (P 6
p)t

,

we can write (3.6) in the form:

(3.7)

For 14 we have:

Lemma 3.4 . ([A])

II +I2+I3= I4 .

lim

	

lim 14

	

= 0.
e-0

I
á-0

I

Lét us prove now, the following:

Lemma 3 .5 .

(3.8)

	

lim

	

lim I1
J

<_ 0
E-+0 ó-0

Proof.

12 + I3
= IB.

(h3(t

6

	

6+ z) 1
Vty_

	

12 +h3(t - z) 1 Vt y P I
2
)_

-
J~

(h3(t + z)vtYPvty

	

+ h3(t - z)vtyP-Vty ~)+B
_

	

/¡

	

2 _

	

/¡
+

	

~2
1
JB~

h3 (t - z)Pt(-)t -

	

R2

1

JB~
h3(t - z)(

	

)2

denoted by Jl - J2 + J3 - J4, with the following balance:
Jl -J4>0because0< Q <1.
J3 1 :51 J2 1 and J2 can be decomposed in two integrals having both of them

limit equal to zero, when we pass to the limit first as 6 -> 0 and later as e ---> 0.
(see [A], [A-C]) .
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From Lemma 3.4 and (3 .7) we conclude (3 .8) .

Proof of Theorem 3.1 : By Lebesgue Theorem,

lió I, = J

	

(h3(t + z)

	

p -h3 (t - z)

	

P)X([P > P]W (y)Mz) _y

	

y

h3(t + z)~y(p - p)X([P > P1)11(y)PE(z)+
- ~Q«

+ f

	

(h3(t + z) - h3 (t - z))aypX([P > p])11(y)PE(z)
Q«

denoted by I1 and Ii respectily .
Ii satisfies

Ii 1C C f ., I h3(t +
z)
- h3(t - z) ~~

	

P I PE (z) <
0

< C11aMIL'(Q«){o. . I h3(t + z) - h3(t -
z) 12 1 PE(z) 12}'/2 < C',~

because h3 is Lipschitz continuous and the measure of supp PE(z) is 47re, and
then

J 1 h3(t + z) - h3(t - z) 12 1 PE(z)1 1<

	

cte

	

1 z 12
1(PE(z/E»2

Qon

	

JQ,

From (3.8) we have :

0 >

	

lim

	

lim I1
J
= lim Ii + lim 1,2 =

E-0 e--o

	

E-o E- o

= lim f

	

h3(t -+- z)a[(p -W11,(y)PE(z) _
Q« y

_ - lim

	

h3 (t -i- z)(p - p)
+
j"(y)PE(z)E-.o jQt .

but, by a classical argument (see [A]) we can elimine e and the z-variable,
concluding:

(3.9)

	

J

	

h3(t)(p(t, y) - P(t, y))
+j"(y)dt dy > 0

Now, setting
211

T(y) = f
0

h3(t» - P)+dt

cte e .
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(3.9) is equivalent to :

and we have that the distribution T satisfies :

d2T
dt2 > 0.

T(0) = T(1) = 0

	

due to (3.3) .

Hence, by the maximum principle, we conclude

and then

That is,

and the proof ends .

yi

yo

/d2T
,\ dy2

	

> 0~
/ D'~Yo~Yi)xD~yo~yi)

f

zn

h3(t)(p - p)+dt < 0
0

p<p in521

p(X,y)
:5
p2p(x,y) =p1p(x,y1 - ~(y - yi))

When y l _< y,n (the point of a maximum for v(y», we can obtain the same
result with /l = 1 . We introduce two cases :

If 1/2 < yl <_ y�,,, we make y o = 2y 1 - 1, 52 1 = (0, 27r) x (yo, yl),
522 = (0, 2-) x (y,,1) and z = 2y1 - y .
If yi < 1/2, we make yo = 0,

	

52 i = (0, 27r) x (0, y,),
522 = (0, 2-) x (y,, 2y1 ) and z = 2y1 - y ( see Fig . 5 and 6 ) .

Fig . 5

r2

r2 = rlo 1

ró
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2y1

yi

For both cases

Corollary 3.6 .
If (p, y) is ¡he solution of Problem (P), then p (x, -) is a monotone incresing

function on [0, y�,] .

Proof. Let yl , y2 E [0,y�,] and such that yl < y2 ; taking y1 =
have y2 = 2yr - y', and applying Theorem 3.1, we conclude

yi
1/2 + p«/M = y,n

2p«lM = yo

Fig . 6

= 1,p lrlC p lri and we

P(x, yl) < P(x, y2) .

r2

rl = r2
1 o

ró

can conclude as in Theorem 3 .1 :

Corollary 3 .7 .
Let (x, z) be such that p(x, z) = 0, then p(x, y) = 0 for any y E [0, z] .

we

Proof.. By the above Corollary we must only to prove that p(x, y) = 0 in
[y., z] when z > y�, .
For y E [y �,, z), we take yl E (y, z) such that y - yl = -~Q(z - yi) (see

Fig . 7), which is equivalent to z = y1 - !-(y - y,) with ,Q = Y' -YO > 1 .
Applying Theorem 3 .1, we conclude :
p(x, y) <_ fl2p(x, z) = 0 for any y E [y �,, z), and hence p(x, y) = 0 for any

y E [0, z] .

Fig . 7

z
y
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Remark . Corollary 3 .7 states that the free-boundary does not have hori-
zontal oscillations .

4 . Behaviour of y in the x-variable

We go to study some properties of y with geometrical consequences on the
free-boundary, when x E (0, 7r) .

Theorem 4.1 .
Let (p, y) be the solution of Problem (P),

	

and let X be the characteristic
function of the set [p > 0] ; then,

(4.1)

	

(hy)x - h'X > 0

	

in D'(S2) .

Proof. Let 0 E D(Q) with 0 >_ 0, and for e > 0 let us consider the test
function 1 = min (eO, p) ; we have :

h37PVI =
f

	

h3 1 Vp
12 +e

	

h3 vpv¢ =

	

h1,= -
f

h'l
(p<£O]

	

IP>£01 in si

since y = 1 on the support of 1. Then

f

	

h3VPVO+

	

h' min (0,ple) =-1lef

	

h3 1 Vp j2 <_ 0 ;
fp>-eO]

	

n

	

[p<Eo]

letting e --+ 0 and using the Lebesgue Theorem, we obtain :

but

concluding that

and, hence

fo
h3vp7¢ +

in
h'X0 < 0

fo
h3
7PVO =

f
hyox

in
hyO. +

in
h'XO < 0

	

d0 E D+(S2),

which equivales to

(h'X - (hy)x, 0) y (Q)xD(9) < 0

	

dO ED+(Q).

h'X - (hy)= < 0

	

in D'(Q).



Corollary 4 .2 .

(4 .2)

	

yx > 0

	

in D'((0, 7r) x (0,1)) .
(4 .3)

	

(hy)= > 0

	

in D'((7r, 27r) x (0,1)) .

Proof- As h' > 0 in (7r, 27r) and from (4.1) we deduce that

In (0,7r) :

so that,

and,hence
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Corollary 4.3 .

(hy)x > h'X > 0

	

in D'((7r, 27r) x (0,1)) .

h'X - (hy)z=h'X-h'y-hyx=h'(X-y)-hyz-<0
h' < 0
X-y<0

yx >-
h'
(Xh y) > 0

	

in D'((0 , 7r) x (0 , 1 ))

If p(xo , yo ) > 0 for some xo < 7r, then there exists e > 0 such that p > 0 on
the set CE = (xo - E, 7r) x (yo - e, yo +E) .

Proof.: From the continuity of p, there exist QE _ (xo - E, xo -}- E) x (yo -
E, yo + E) such that p > 0 in QE (see Fig . 8) and y = 1 a.e . in Q, Like yx > 0
we get y = 1 a.e . in CE .

QE CE

Fig . 8

Now, for ~ E Có (CE ) we have

h3VPVO =

	

hOx
CE	C E

div h3vp = h' < 0

	

in D'(CE ) .
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Using the strong minimum principle, p can not attain the minimum value
zero in CE and hence

Remark. As a consequence of this Corollary the free-boundary can not Nave
vertical oscillations in the interval (0, 7r) .

Taking account the Corollary 3.7, we conclude that the free-boundary is a
monotone decreasing graph -y = F(x)-in the interval (0, 7r) (see Fig . 9) .

Theorem 4.4 .
If (p, y) is the solution of Problem (P), then p satisles :

2r

	

21r
o

	

h3(x )p(x,y)dx = pay f

	

h3(x)dx
0

	

0

Proof.. For «y) E Có (0,1) we have

h3vpv¢ =

	

h3Py0' = 0

Integrating by parts and introducing the function

we have

and hence

p>0

	

in C,

Fig . 9

F(y) =
o

	

h3(x)p(x,y)dxJ0
_d2F

	

=0
dy 2 , / D,(0,1)xD(0,1)

d2F
dv2

= 0

	

in D'(0,1)

but, F(0) = 0 and F(1) = pa fo7r h3 , so we conclude
2n

F(y) = pay

	

h3 (x)dx.f
o

Corollary 4 .5 .
Given y E (0, 1) there exist a region of positive measure in (0, 21r) where

p>0.
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