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Abstract

We introduce a framework for qualitative reasoning
about directions in high-dimensional spaces, called
EER, where our main motivation is to develop a
form of commonsense reasoning about semantic
spaces. The proposed framework is, however, more
general; we show how qualitative spatial reason-
ing about points with several existing calculi can
be reduced to the realisability problem for EER (or
REER for short), including LR and calculi for rea-
soning about betweenness, collinearity and paral-
lelism. Finally, we propose an efficient but incom-
plete inference method, and show its effectiveness
for reasoning with EER as well as reasoning with
some of the aforementioned calculi.

1 Introduction

High-dimensional Euclidean spaces play a prominent role
in areas such as computational linguistics, information re-
trieval and cognition [Turney and Pantel, 2010; Deerwester
et al., 1990; Gärdenfors, 2000]. These Euclidean spaces,
often called semantic or conceptual spaces, are typically
learned from large text corpora, using dimensionality reduc-
tion methods such as singular value decomposition or multi-
dimensional scaling [Turney and Pantel, 2010]. In the result-
ing representations, points or vectors are used to encode the
meaning of words, documents, concepts or entities.

The coordinates of the points or vectors in such a seman-
tic space are essentially arbitrary; what matters is their spa-
tial relationship. For example, the relative distance between
points in a semantic space is used to discover synonymous
words [Turney and Pantel, 2010] or to find the documents that
best satisfy a query [Deerwester et al., 1990]. The extent to
which four points approximately form a parallelogram can be
used to discover analogical proportions [Miclet et al., 2008;
Schockaert and Prade, 2011; Mikolov et al., 2013]; e.g.
the approach from [Mikolov et al., 2013] was able to learn
that “king is to queen what man is to woman”. Geomet-
ric betweenness has been used for implementing a form of
commonsense reasoning called interpolation. For example,
the approach from [Derrac and Schockaert, 2014b] discov-
ered that “candy store is conceptually between grocery store
and toy store”, meaning that natural properties that are true

for both grocery stores and toy stores tend to be true for
candy stores as well. Finally, it is possible to identify di-
rections in a semantic space that correspond to interpretable
semantic relations, such as e.g. “more violent than” in a
space of films [Vig et al., 2012; Kovashka et al., 2012;
Derrac and Schockaert, 2014a].

In this paper, we focus on qualitative reasoning about the
latter type of direction relations. To date, semantic spaces
have only received limited attention from the spatial reason-
ing community. Some authors have looked at logics of com-
parative similarity [Williamson, 1988; Sheremet et al., 2010]

in semantic spaces (including non-Euclidean spaces). Fur-
thermore, [Davis et al., 1999] discusses a language for ex-
pressing betweenness, collinearity and parallelism. Although
the results in [Davis et al., 1999] are proven for points in R

2,
they are relevant for higher-dimensional spaces (see Section
3). To the best of our knowledge, qualitative reasoning about
directions has not yet been considered for high-dimensional
spaces.

Although we only focus on reasoning aspects in this pa-
per, our overall aim is to improve methods for extracting
semantic relations from large text corpora. Most relation
extraction approaches in the literature are based on lexical
or syntactic patterns [Hearst, 1992; Carlson et al., 2010;
Nakashole et al., 2012], which typically leads to high-recall,
low-precision results. To increase precision while keeping
recall high, implausible assertions are usually removed based
on some form of constraint reasoning [Carlson et al., 2010;
Nakashole et al., 2011], e.g. based on learned constraint rules
such as “city X can only be the capital of country Y if X
is located in Y ”. In this paper, we are specifically interested
in relations that encode relative properties between entities of
the same type, e.g. relations such as “funnier than” for films,
for which suitable constraint rules are difficult to find. As
an alternative to constraint rules, we propose to measure the
plausibility of such relational facts in terms of the consistency
of an associated set of spatial constraints. In particular, we
consider relational facts plausible if they can be interpreted
as direction relations in a semantic space. An important ad-
vantage of our approach is that it allows us to use existing
semantic space representations of entities (as points) and rel-
ative properties (as directions) to help assess the plausibility
of relational facts about entities or properties for which no
such representation can be obtained (e.g. because they are too



Figure 1: Directions corresponding to the relative properties
‘more hilarious than’ and ‘more gripping than’.

infrequent in the text corpus).

The remainder of this paper is structured as follows. In
the next section, we introduce EER, a formalism for reason-
ing about directions in high-dimensional spaces. Section 3
subsequently shows how reasoning in several existing calculi
can be reduced to the consistency problem for EER and char-
acterises the computational complexity of the main decision
problem. Then, in Section 4, we propose an efficient, but
incomplete method for finding models of consistent sets of
EER formulas, after which we provide experimental results
in Section 5. In addition to evaluating the feasibility of rea-
soning about EER instances, we show how our implemen-
tation can be used to find solutions to problem instances of
existing calculi such as LR, based on the reductions from
Section 3. To the best of our knowledge, this constitutes the
first practical method that can find solutions for these calculi.

2 Euclidean Embedding of Rankings

Several authors have proposed to model relative properties
as directions in a suitable semantic space. For example,
[Kovashka et al., 2012] learns directions modelling relations
such as “shinier than” and “more formal than” in a seman-
tic space of shoes (based on visual features), while [Derrac
and Schockaert, 2014a] learns directions modelling relations
such as “more gripping than” in a semantic space of films
(based on textual features). The latter approach is illustrated
in Figure 1, which shows directions corresponding to the rela-
tions “more gripping than” and “more hilarious than”. Given
these directions, we can rank films according to how much
they have these properties by comparing the orthogonal pro-
jections of the corresponding points. For example, in the case
of Figure 1, the Hangover is considered to be more hilarious
than Fight Club, which is in turn considered more hilarious
than Terminator 2. Note that while Figure 1 illustrates the
principle for R2, semantic spaces will typically be of higher
dimension.

Formally, each relative property, modelled as a vector v ∈
R

d, induces a total preorder �v on R
d, ranking points based

on the relative position of their orthogonal projections on the

directed line λv, λ ∈ R. We define:

p �v q iff vT (q − p) ≥ 0 (1)

We also use p ∼v q as an abbreviation for (p �v q) ∧ (q �v

p). Similarly, a strict partial order ≺v is defined as follows:

p ≺v q iff vT (q − p) > 0 (2)

Definition 1. Let a set of variables {x1, ..., xn} and a positive
integer m be given. An EER-formula1 is a statement of the
form xi �ℓ xj or a statement of the form xi ≺ℓ xj , with
1 ≤ i, j ≤ n and 1 ≤ ℓ ≤ m. We call the pair (π, ρ)
a d-dimensional solution of a set of EER-formulas Θ, with
π : {x1, ..., xn} → R

d and ρ : {1, ...,m} → R
d, if for every

formula in Θ of the form

xi �ℓ xj (or xi ≺ℓ xj)

it holds that

π(xi) �ρ(ℓ) π(xj) (or π(xi) ≺ρ(ℓ) π(xj)),

which means that π(xi) is (strictly) before π(xj) when pro-
jected orthogonally on the directed line λρ(ℓ), λ ∈ R (cf. (1)
and (2)). If such a d-dimensional solution exists, we say that
Θ is realisable in R

d. The problem of deciding whether an
EER-formula is realisable is called REER.

In the following, we will use abbreviations such as p ≺ℓ q ∼ℓ

r, which corresponds to the set {p ≺ℓ q, q �ℓ r, r �ℓ q}.

Definition 2. We say that a set of EER formulas Θ contains
a cycle if there are formulas α1, ..., αr in Θ, with each αi of
the form yi ≺ℓ yi+1 or yi �ℓ yi+1, such that yr+1 = y1 and
at least one of the formulas αi is of the form yi ≺ℓ yi+1.

The following proposition is easy to show.

Proposition 3. Let Θ be defined as in Definition 1. For d ≥
m, it holds that Θ is realisable in R

d iff Θ does not contain
any cycles.

Example 4. The EER-formulas

Terminator 2 ≺hilarious Fight Club ≺hilarious Hangover

Hangover ≺gripping Terminator 2 ≺gripping Fight Club

are realisable for d = 2. A solution is depicted in Figure 1.

Given a set of EER-formulas Θ, we write dim(Θ) for the
lowest d ∈ N such that Θ is realisable in R

d, where we define
dim(Θ) = +∞ if Θ is not realisable for any d ∈ N (i.e. if
Θ contains a cycle). Intuitively, dim(Θ) reflects the degree
to which the set of assertions encoded by Θ is regular. To
identify implausible assertions, we can impose a level of reg-
ularity by treating a set Θ as inconsistent if dim(Θ) > d∗,
for some d∗ ∈ N. Such inconsistencies can be restored in the
usual way, e.g. by choosing a maximal subset Θ∗ for which
dim(Θ∗) ≤ d∗ based on confidence scores for each of the as-
sertions in Θ. The view that dim(Θ) reflects the regularity of
Θ could also be used to identify plausible conclusions which
are missing from Θ: we say that an EER-formula x ≺i y
is a plausible consequence of Θ if dim(Θ ∪ {x ≺i y}) <

1
EER stands for Euclidean Embedding of Rankings.



dim(Θ ∪ {y �i x}), and similarly for formulas of the form
x �i y.

In this way, our approach supports a form of commonsense
reasoning about relational facts based on dimensionality re-
duction, similar in spirit to how singular value decomposition
was used for automatically extending ConceptNet in [Speer
et al., 2008] or how tensor decomposition was used for auto-
matically extending YAGO in [Nickel et al., 2012]. However,
due to its geometric nature, our approach also allows us to
combine qualitative knowledge with existing semantic space
representations: given a set of EER-formulas, one merely
needs to find a solution (π, ρ) in which the maps π and ρ are
fixed for objects and rankings with a known semantic space
representation.

3 Reductions from Existing Calculi

In this section, we first show how the realisability problem for
atomic LR-formulas can be reduced to REER in R

2, which
will enable us to apply the implementation from Section 4
for checking the consistency of sets of atomic LR-formulas.
Subsequently, in Section 3.2 we will show how reasoning
about betweenness, collinearity and parallelism can be re-
duced to REER in R

d for any d. This will allow us to char-
acterise the computational complexity of REER, and could
again be useful for using EER reasoners to check the consis-
tency of constraints about betweenness, collinearity and par-
allelism.

3.1 Reduction from LR

The LR calculus [Ligozat, 1993; Scivos and Nebel, 2005] is
based on a set of 9 jointly exhaustive and pairwise disjoint
relations between triples of points: l (left), r (right), b (be-
hind), c (closer), f (further), e12, e13, e23 and eq . The main
relations are l and r, where intuitively l(p1, p2, p3) holds if
p3 is located left of the oriented line defined by −−→p1p2 and
r(p1, p2, p3) holds if p3 is right of this line. Formally:

l(p1, p2, p3) iff sin(ang(−−→p1p2,
−−→p1p3)) > 0

r(p1, p2, p3) iff sin(ang(−−→p1p2,
−−→p1p3)) < 0

where ang(−→pq,−→pr) is the oriented angle between −→pq and
−→pr. The remaining relations cover the cases where the three
points are collinear or coincide:

b(p1, p2, p3) iff ∃λ > 1 .−−→p3p2 = λ · −−→p1p2

c(p1, p2, p3) iff ∃0 < λ < 1 .−−→p3p2 = λ · −−→p1p2

f(p1, p2, p3) iff ∃λ < 0 .−−→p3p2 = λ · −−→p1p2

e13(p1, p2, p3) iff p1 = p3 6= p2

e23(p1, p2, p3) iff p2 = p3 6= p1

e12(p1, p2, p3) iff p1 = p2 6= p3

eq(p1, p2, p3) iff p1 = p2 = p3

Definition 5. An LR-formula is an expression of the form
∨k

i=1 ξi(x1, x2, x3) with ξi ∈ {l, r, b, c, f, e12, e13, e23, eq}
and x1, x2, x3 are taken from a set of variables X . An LR-
formula is called atomic, if k = 1. We call an X → R

2

mapping π a solution of a set of LR-formulas Ψ if the con-
straint ξ(π(x1), π(x2), π(x3)) is satisfied for every formula

of the form ξ(x1, x2, x3) in Ψ. If such a solution exists, we
say that Ψ is satisfiable.

The satisfiability problem for LR is ∃R-complete and the sat-
isfiability problem for atomic LR-formulas NP-hard [Lee,
2013], where ∃R is the class of problems that can be reduced
in polynomial time to the problem of checking the consis-
tency of a set of algebraic equations over the real numbers
[Schaefer, 2010]. The class ∃R is known to be in PSPACE
and to contain NP, but its exact relationship with the polyno-
mial hierarchy is still unknown.

We now show that for every set of atomic LR-formulas Ψ,
in polynomial time we can construct a set of EER formulas
Θ such that Ψ is satisfiable iff Θ is realisable in R

2. For a
formula in Ψ of the form eq(x1, x2, x3), we add the following
formulas to Θ:

x1 ∼i x2 ∼i x3 ≺i y ≺i z

x1 ∼j x2 ∼j x3 ≺j z ≺j y

where fresh rankings i and j and fresh variables y and z
are used for every formula. Note that x3 ≺i y ≺i z and
x3 ≺j z ≺j y imply that rankings i and j will correspond to
different lines in any two-dimensional solution, in which case
x1 ∼i x2 ∼i x3 and x1 ∼j x2 ∼j x3 implies that x1, x2 and
x3 coincide. For a formula in Ψ of the form e12(x1, x2, x3),
we add the following formulas to Θ:

x1 ∼i x2 ∼i x3 x1 ∼j x2 ≺j x3

where i and j are again fresh rankings for every formula. The
formulas x2 ∼i x3 and x2 ≺j x3 are sufficient to guar-
antee that the lines corresponding to rankings i and j can-
not coincide and that x3 cannot coincide with x2. From
x1 ∼i x2 and x1 ∼j x2 we then find that x1 and x2 will
coincide in any two-dimensional solution. Formulas of the
form e23(x1, x2, x3) and e13(x1, x2, x3) are treated in an en-
tirely analogous way.

For a formula in Ψ of the form b(x1, x2, x3) we add the
following EER formulas to Θ:

x1 ∼i x2 ∼i x3 x3 ≺j x1 ≺j x2

with i and j fresh rankings. Indeed, x1 ∼i x2 ∼i x3 guaran-
tees that x1, x2 and x3 are collinear in any two-dimensional
solution, while x3 ≺j x1 ≺j x2 guarantees that the points ap-
pear in the correct order. Formulas of the form c(x1, x2, x3)
and f(x1, x2, x3) are treated entirely analogously.

For a formula in Ψ of the form l(x1, x2, x3) we add the
following EER formulas to Θ:

x3 ≺i x2 ≺i x1 x3 ≺j x1 ≺j x2 (3)

Similarly, for a formula of the form r(x1, x2, x3) we add:

x2 ≺i x1 ≺i x3 x1 ≺j x2 ≺j x3 (4)

where each time, i and j are fresh rankings. These formulas
alone are not sufficient, as the following lemma reveals.

Lemma 6. Suppose Θ contains the EER formulas in (3). In
any solution (π, ρ) of Θ in R

2 it holds that:

l(π(x1), π(x2), π(x3)) iff sin(ang(ρ(i), ρ(j))) > 0

r(π(x1), π(x2), π(x3)) iff sin(ang(ρ(i), ρ(j))) < 0



(a) (b)

Figure 2: (a) A solution of the constraints in (3); (b) Illustra-
tion of Lemma 8.

Similarly, if Θ contains the formulas in (4) then for any solu-
tion (π, ρ) it holds that:

l(π(x1), π(x2), π(x3)) iff sin(ang(ρ(i), ρ(j))) < 0

r(π(x1), π(x2), π(x3)) iff sin(ang(ρ(i), ρ(j))) > 0

This lemma is illustrated in Figure 2(a), showing a solu-
tion of (3) where sin(ang(ρ(i), ρ(j))) > 0, which implies
l(π(x1), π(x2), π(x3)). Unfortunately, there is no obvious
way to enforce sin(ang(ρ(i), ρ(j))) > 0 using additional
EER formulas. We can overcome this issue by fixing the
rankings 0 and 1 and adding EER constraints to Θ that im-
pose that sin(ang(ρ(0), ρ(1))) > 0 iff sin(ang(ρ(i), ρ(j))) >
0. We say that a vector v is between the vectors u and w if
µv = λu+ (1− λ)v for some µ > 0 and 0 < λ < 1.

Lemma 7. Suppose Θ contains the following constraints:

a ≺i b ≺i c b ≺j a ≺j c b ≺k c ≺k a (5)

Then it holds that ρ(j) is between ρ(i) and ρ(k) in any two-
dimensional solution (π, ρ) of Θ.

Using this lemma, we can show the following result.

Lemma 8. Suppose Θ contains the following constraints:

a1 ≺0 a2 ≺0 a3 a2 ≺1 a1 ≺1 a3 a2 ≺r a3 ≺r a1 (6)

b1 ≺1 b2 ≺1 b3 b2 ≺r b1 ≺r b3 b2 ≺s b3 ≺s b1 (7)

c1 ≺r c2 ≺r c3 c2 ≺s c1 ≺s c3 c2 ≺t c3 ≺t c1 (8)

d1 ≺s d2 ≺s d3 d2 ≺t d1 ≺t d3 d2 ≺i d3 ≺i d1 (9)

e1 ≺t e2 ≺t e3 e2 ≺i e1 ≺i e3 e2 ≺j e3 ≺j e1 (10)

In any solution (π, ρ) of Θ it holds that:

sin(ang(ρ(0), ρ(1))) > 0 iff sin(ang(ρ(i), ρ(j))) > 0

As illustrated in Figure 2(b), the reason we need five in-
stances of (5) in (6)-(10) is to ensure that the constraints
have a solution for every choice of ρ(i) and ρ(j) such that
sin(ang(ρ(i), ρ(j))) > 0 iff sin(ang(ρ(0), ρ(1))) > 0, pro-
vided that ρ(i) is not between ρ(0) and ρ(1). As we will see
below, we can always ensure that the latter requirement is sat-
isfied in our construction.

Hence, for every LR-formula of the form l(x1, x2, x3)
in Ψ, we add the formulas in (3) to Θ, in addition
to the formulas in (6)–(10), where a1, a2, a3, b1, b2, b3,
c1, c2, c3, d1, d2, d3, e1, e2, e3 are fresh variables and r, s, t,
i, j are fresh rankings for every LR-formula; for every LR-
formula of the form r(x1, x2, x3) in Ψ we similarly add the
formulas in (4) and (6)–(10).

Let (π, ρ) be a solution of Θ. It is clear that π sat-
isfies all formulas of the form ξ(x1, x2, x3) from Ψ with
ξ ∈ {b, c, f, e12, e13, e23, eq}. From Lemma 6 and 8 it fol-
lows that:

1. either r(π(x1), π(x2), π(x3)) holds for every formula
r(x1, x2, x3) ∈ Ψ and l(π(x1), π(x2), π(x3)) holds for
every formula l(x1, x2, x3) ∈ Ψ; or

2. l(π(x1), π(x2), π(x3)) holds for every formula
r(x1, x2, x3) ∈ Ψ and r(π(x1), π(x2), π(x3)) holds for
every formula l(x1, x2, x3) ∈ Ψ.

In the former case, we find that the restriction of π to X is
a solution of Ψ. In the latter case, we define a new solution
(π′, ρ′) by reflecting all points and vectors over the Y-axis.
It is easy to see that (π′, ρ′) is a solution of Θ and that the
restriction of π′ to X is a solution of Ψ. In each case, we
have that if Θ is realisable in R

2 then Ψ is satisfiable.
Conversely, if π is a solution of Ψ, we need to construct a

solution (π, ρ) of Θ. For a formula of the form l(x1, x2, x3),
it is easy to verify that we can always find rankings i
and j such that (3) is satisfied and sin(ang(ρ(i), ρ(j))) >
0. For formulas of the form r(x1, x2, x3) we can simi-
larly find rankings i and j such that (4) is satisfied and
sin(ang(ρ(i), ρ(j))) > 0. Once these vectors have been
fixed, we choose ρ(0) and ρ(1) such that none of the other
vectors ρ(i) is between ρ(0) and ρ(1). Then π and ρ can
always be extended such that the formulas (6)–(10) are sat-
isfied. For formulas of the form ξ(x1, x2, x3) with ξ ∈
{b, c, f, e12, e13, e23, eq} it is straightforward to see how ρ
needs to be extended to ensure that (π, ρ) is a solution of Θ.
Hence we obtain the following proposition.

Proposition 9. Let Ψ be a set of atomic LR-formulas and let
Θ be the corresponding set of EER formulas. It holds that Ψ
is satisfiable iff Θ is realisable in R

2.

3.2 Betweenness, Collinearity and Parallelism

In this section, we will consider the following spatial relations
between points in R

d:

• Col(x, y, z) iff x, y and z are distinct and collinear.

• Bet(x, y, z) iff Col(x, y, z) and y is between x and z.

• Gen(x, y, z) iff x, y and z are in general linear position
(i.e. distinct and not collinear).

• Par(w, x, y, z) iff the line wx is distinct from and paral-
lel to yz, with w 6= x and y 6= z.

These relations are studied in [Davis et al., 1999], with the
exception of Gen. They are of particular interest in the con-
text of semantic spaces, as they form the basis for common-
sense reasoning methods such as interpolation and analogical
reasoning [Miclet et al., 2008; Schockaert and Prade, 2013;
Derrac and Schockaert, 2014b].

Definition 10. An L-formula is an expression of the form
ξ(x, y, z), with ξ ∈ {Col,Bet,Gen}, or Par(w, x, y, z). Let
Ψ be a set of L-formulas over the set of variables X . An
X → R

d mapping π which satisfies each of the L-formulas
in Ψ is called a solution of Ψ. If such a solution exists, we
say that Ψ is realisable in R

d.



It follows from Lemma 1 in [Davis et al., 1999] that checking
the realisability in R

2 of a set of L-formulas is ∃R-hard (even
when only the predicates Col and Par are considered). We
can extend this result to R

d for any d > 2.

Proposition 11. The problem of checking whether a set of
L-formulas is realisable in R

d is ∃R-hard for any d ≥ 2.

Proof. Let Ψ1 be a set of L-formulas over X and let d ≥ 2.
We define a new set of L-formulas, imposing that every x in
X is in the convex hull of three fresh variables a, b, c:

Ψ2 = Ψ1 ∪ {Bet(a, dx, b),Bet(dx, x, c) |x ∈ X}

where dx is a fresh variables for every x ∈ X . It is easy to
see that Ψ1 is realisable in R

2 iff Ψ2 is realisable in R
d.

We now show how the realisability problem for a set of L-
formulas Ψ can be reduced to the realisability problem for a
corresponding set of EER-formulas Θ. To express that x, y
and z are collinear, we will use EER formulas that encode
that they are located on the intersection of d − 1 linearly in-
dependent hyperplanes. In particular, for every formula in Ψ
of the form Col(x, y, z) or Bet(x, y, z), we add the following
EER formula to Θ for every i ∈ {1, ..., d− 1}

x ∼ri y ∼ri z (11)

where ri is a fresh ranking. To impose that the directions cor-
responding to rankings r1, ..., rd−1 are linearly independent,
we also add the following EER-formulas to Θ:

a2 ∼r1 a3 ∼r1 a4 ∼r1 ... ∼r1 ad−1 ∼r1 ad ≺r1 a1 (12)

a1 ∼r2 a3 ∼r2 a4 ∼r2 ... ∼r2 ad−1 ∼r2 ad ≺r2 a2 (13)

a1 ∼r3 a2 ∼r3 a4 ∼r3 ... ∼r3 ad−1 ∼r3 ad ≺r3 a3 (14)

... (15)

a1 ∼rd−1
... ∼rd−1

ad−2 ∼rd−1
ad ≺rd−1

ad−1 (16)

where a1, ..., ad are fresh variables. For a formula of the form
Col(x, y, z) we finally add three additional EER-formulas to
Θ, to impose that x, y, z need to be distinct:

x ≺rd y y ≺rd+1
z x ≺rd+2

z (17)

with rd, rd+1, and rd+2 fresh rankings. For a formula of the
form Bet(x, y, z), instead of (17), we add x ≺rd y ≺rd z. For
a formula of the form Gen(x, y, z), we only need to add the
following three formulas to Θ:

x ≺r1 y ≺r1 z y ≺r2 x ≺r2 z x ≺r3 z ≺r3 y

with r1, r2 and r3 fresh rankings. Finally, for a formula of
the form Par(w, x, y, z), we add the following formulas to Θ
(i ∈ {1, ..., d− 1}):

w ∼ri x ≺ri y ∼ri z

as well as w ≺rd x and y ≺rd+1
z. We can show the follow-

ing result.

Proposition 12. Let Ψ be a set of L-formulas and let Θ be
the corresponding set of EER-formulas. For any d ≥ 2 it
holds that Ψ is realisable in R

d iff Θ is realisable in R
d.

From (1) and (2) it immediately follows that REER can be
formulated as checking the consistency of a set of polynomial
inequalities, and thus belongs to ∃R. From Propositions 11
and 12, also it follows that REER in R

d is ∃R-hard for d ≥ 2.
Hence we have the following result.

Corollary 13. For any d ≥ 2, REER in R
d is ∃R-complete.

4 An Iterative Method for Finding Solutions

Let Θ be a set of EER constraints without cycles. Finding a
solution of Θ (or deciding that no solution exists) in R

d boils
down to solving a set of inequalities of the form vT (q− p) ≥
0 or vT (q − p) > 0. While this can be accomplished, in
principle, using generic solvers for polynomial inequalities
over the reals, initial experiments revealed that solvers such as
QEPCAD2 and Redlog3 do not scale beyond trivial instances.

Instead we propose a heuristic method, based on the ob-
servation that the inequalities can be efficiently solved using
linear programming if either all direction vectors or all points
are known. This gives rise to a procedure, inspired by the
well-known Expectation-Maximisation method, which alter-
natingly (1) fixes the points and estimates optimal coordinates
for the direction vectors, and then (2) fixes the direction vec-
tors and estimates optimal coordinates for the points. Note
that this procedure can only be used to find solutions of con-
sistent problem instances (or approximate solutions of incon-
sistent instances), which is what is usually needed in applica-
tions. We now discuss the method in more detail.

Initialisation: A simple method for initialising the coor-
dinates (c1, ...., cd) of a point π(xi) is to sample each cj
from a uniform distribution. As a more informed alterna-
tive, we also consider a method which uses multi-dimensional
scaling to assign the coordinates such that two points π(xi)
and π(xj) are close to each other iff they appear in sim-
ilar positions in the rankings. Specifically, we use topo-
logical sort to obtain a complete ranking of the variables
x1, ..., xn for each direction (assuming there are no cycles).
This allows us to define a distance on the set of variables

as dist(xi, xj) =
√

∑

ℓ (rank(xi, ℓ)− rank(xj , ℓ))
2
, where

rank(xi, ℓ) is the position of variable xi in the ℓth ranking.
Multi-dimensional scaling (MDS) is then used to find coordi-
nates π(x1), ..., π(xn) in R

d such that the Euclidean distance
between π(xi) and π(xj) best approximates dist(xi, xj) for
each xi and xj . Finally, we also consider a hybrid method,
where we generate an initialisation using MDS as well as 49
random initialisations. For each of these 50 initialisations,
we estimate the corresponding directions and we select the
initialisation which satisfies most of the given EER formu-
las.

Estimating directions/coordinates: Assume the coordi-
nates of π(x1), ..., π(xn) are fixed, and let us write π(xi) =
(ci1, ..., c

i
d). Then we can use linear programming (LP) to find

suitable values for the coordinates of ρ(1), ..., ρ(m), by min-

imizing
∑

i,j,k e
i,j
k s.t.:

d
∑

l=1

(cil − c
j
l ) · λ

k
l ≤ −1 + e

i,j
k ∀(xi ≺k xj) ∈ Θ

d
∑

l=1

(cil − c
j
l ) · λ

k
l ≤ e

i,j
k ∀(xi �k xj) ∈ Θ

e
i,j
k ≥ 0 ∀1 ≤ i, j ≤ n, 1 ≤ k ≤ m

2http://www.usna.edu/CS/qepcadweb
3http://redlog.eu



Figure 3: EER constraints in a semantic space of films.

It is easy to show that the objective function reaches its op-
timal value of 0 iff (π, ρ) is a d-dimensional solution of Θ,
where π(xi) is defined as before and ρ(i) = (λi

1, ..., λ
i
d).

In the same way, we can estimate the coordinates of
π(x1), ..., π(xn) by taking the values λk

l as constants and the

values cil as variables.
We have experimented with a few variations of this ap-

proach. One possibility is to require that e
i,j
k ∈ {0, 1} and use

a Mixed Integer Programming (MIP) solver instead. This has
the advantage that the solution of the linear program would
explicitly maximise the number of satisfied EER formulas.
However, MIP has a higher complexity than LP, and accord-
ingly this approach was found not to be competitive in initial
experiments. We will, however, consider a variant in which
the objective function is replaced by

minimise
∑

{(µi,j
k )N · ei,jk | (xi ≺k xj) ∈ Θ} (18)

where each constant µ
i,j
k is sampled from a uniform distri-

bution over [0, 1] and N ≥ 1 is a parameter. Because in

each step new values µ
i,j
k are used, the method will priori-

tise different EER formulas each time and thus avoid get-
ting stuck in local optima. The parameter N controls the
exploitation-exploration trade-off by determining to what ex-
tent the method prioritises a small number of EER formulas.

Finally, in some variants we reset the values of π(xi) to the
best values encountered so far if there has not been any im-
provement for T consecutive iterations (we used T = 250).

5 Experimental Results

We have used CBC4 for solving the linear programs, with a
timeout of 300 seconds; all reported values are the median
of 50 executions. In Figures 3 and 4, we write rand, MDS
and hyb to denote configurations where the initialisation used
random values, MDS, or the hybrid method. We write uni,
rand1 and rand2 to indicate whether the uniform objective or
the randomised objective (18) was used, and in the latter case,
whether we set N = 1 or N = 2. Finally, names ending with
-R denote configurations where we reset the values of π(xi)
after 250 iterations without improvement.

For the results in Figure 3, we have considered a 20-
dimensional space of films, for which 40 directions have

4https://projects.coin-or.org/Cbc

Figure 4: Results for the LR-LEFT-ALL benchmark.

been obtained using the method from [Derrac and Schock-
aert, 2014a]. From this space, we generate EER instances
with 40 rankings and a variable number of objects. In Figure
3 we observe that (i) MDS substantially outperforms random
initialisations and performs better than the hybrid method
for sufficiently small problem instances, (ii) N = 1 is bet-
ter than N = 2, and (iii) the uniform objective outperforms
the randomised objective. We found that resetting the values
of π(xi) after 250 iterations makes no difference (results not
shown).

Figure 4 illustrates the effectiveness of our reduction from
the LR calculus. The problem we consider is the LR-LEFT-
ALL benchmark problem that was proposed in [Lee and
Wolter, 2011]. To the best of our knowledge, our method
is the first that can find solutions for problem sizes larger
than 5 (e.g. Mathematica, QEPCAD and Redlog could not
find a solution for size 6, even when given several hours).
Interestingly, [van Delden and Mossakowski, 2013] presents
a heuristic method that can derive inconsistencies in sets of
LR-formulas. This means that a general purpose LR solver
could be obtained by combining our method with the method
from [van Delden and Mossakowski, 2013] in a portfolio
solver.

In Fig. 4, we observe that N = 2 leads to better results
than N = 1, and that using the hybrid initialisation and reset-
ting the values of π(xi) after 250 iterations makes a substan-
tial difference. The different conclusions we can draw from
Figures 3 and 4 reflect the different nature of the problem in-
stances: the problems in Figure 3 involve a larger number of
variables5 and dimensions, while the problems from Figure 4
appear computationally harder.

6 Conclusions

We have studied the problem of reasoning about direction
relations in high-dimensional spaces. Our primary motiva-
tion was to support a form of commonsense reasoning about
relative properties, based on the view that relative properties
such as ‘more romantic than’ correspond to direction rela-
tions in a suitable semantic space. Even though the proposed
framework is quite simple, we have shown that several types

5Note however that Fig. 4 only refers to the number of LR ob-
jects, not including the variables introduced in the translation.



of qualitative spatial relations can be reduced to our frame-
work, including LR relations and relations that express be-
tweenness, collinearity and parallelism. As a result we ob-
tained that the consistency problem in our framework is ∃R-
complete. Finally, we have proposed a heuristic method for
finding solutions, based on linear programming, and experi-
mentally showed that it scales sufficiently well to be useful in
practice.
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