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Abstract
This paper describes the use of qualitative reasoning
mechanisms in designing computer-based teachable agents
that users explicitly teach to solve problems using concept
maps.  Users can construct the required problem-solving
knowledge structures without becoming involved in
sophisticated programming activities.  Once taught, the
agent attempts to answer questions using qualitative
reasoning schemes that are intuitive and easy to apply.
Students can reflect on the agent’s responses, and then
revise and refine this knowledge through visual interfaces.
Preliminary studies have demonstrated the effectiveness of
this approach.

Introduction
People have always believed that attempting to teach others
is an especially powerful way to learn.  This may be
attributed to the fact that teaching involves a number of
constructive activities, such as planning and organizing
before teaching, explaining and demonstrating during the
teaching activity, as well as analyzing and reflecting on
student feedback during and after the teaching process.
Researchers such as Bargh and Schul (1980) have shown
that people who prepared to teach others to take a quiz on a
passage learnt the passage better that those who prepared to
take the quiz themselves.

More recently, a number of researchers have performed
extensive analyses of the one-on-one tutoring process.  For
example, Graesser, et al.’s (1995) analysis of tutoring
dialogues indicated that tutors teach by controlling student
thinking and keeping them on track, and this promotes
effective learning. Others have downplayed the role of the
tutor, and focused on the student. The conjecture is that the
one-on-one interactions in tutoring provide students many
more opportunities for generative and constructive
learning, and articulation of their self-explanations than a

traditional classroom environment (Brown and Palinscar
1998; Chi 1997; Chan et al. 1992). Still others, for
example, a recent study by Chi, et al. (2001), surmised that
tutoring effectiveness should be credited to the joint effort
of both tutor and student, i.e., the social interaction process
is the key to improved student learning.

Extensive protocol studies by Chi et al. (2001) support
all of the above observations. In terms of the interaction
process, they found that students were to a larger extent
responsible for initiating interactions.  Also, responses
elicited from the student in response to scaffolding
questions by the tutor resulted in deeper learning than in
situations where students were more involved only in self-
explanation.

Studies conducted at the Learning Technology Center
(LTC) at Vanderbilt University also indicate the students
seem to benefit from activities in the teaching process
(Biswas et al. 2001). For example, students preparing to
teach made statements about how the responsibility to
teach forced them to gain deeper understanding of the
materials. Others focused on the importance of clear
conceptual organization. Still others brought up the notion
of how questions and feedback from students during the
teaching process prompted deeper reflection and better
understanding of the subject material.

A number of studies in the related field of collaborative
learning have also shown that students learn more
effectively when they work in groups that encourage
questioning, explaining, and justifying of opinions
(Cognition and Technology Group at Vanderbilt 1997).
Reflection on these studies and others leads us to
conjecture that creation of a computer-based system, where
students can assume the role of “teacher” (and when
necessary, switch to the role of “learner”) may provide a
motivating environment for learning and self-assessment.
This prompted a full-scale study of the benefits of learning
by teaching in a middle school science classroom.  This



project is briefly described next.

Previous Work
In 1998, Nancy Vye, a member of the Teachable Agents
Group at Learning Technology Center (LTC), Vanderbilt
University, conducted a set of design experiments with
fifth grade students to study the effects of teaching on
individual learning (Biswas et al. 2001).  This experiment
combined classroom instruction with a computer-based
system developed for dynamic self-assessment and
learning, the STAR.Legacy shell (Schwartz et al. 2000).
The topic of study in this science classroom, titled The
River of Life, was water quality monitoring in rivers.

STAR.Legacy employs inquiry cycles to integrate
instructional techniques, resources, and a variety of self-
assessment methods to encourage constructive learning and
overcome inert knowledge.  The STAR.Legacy interface
for the River of Life Project, shown in Figure 1, adopts the
generic step names from the Legacy cycle (Schwartz et al.
2000), and incorporates mechanisms that promote learning
by teaching.  Previous studies conducted by the LTC
faculty members had shown the benefits of teaching
preparation as much as the actual teaching process itself
(Biswas et al. 2001).  These two activities are seamlessly
integrated into the STAR.Legacy cycle.

Figure 1: The STAR.Legacy interface for the
River of Life project

In the River of Life project, the Legacy cycle starts with
an introduction on streaming video to the animated
character, Billy Bashinal, a high school student, who has
been working with his friend, Sally, on a water-quality
monitoring project.  This project involves collecting and
analyzing data from a local river, and writing up a water
quality report.  The introductory video shows Billy’s
negative attitude toward learning, and that results in sloppy
work and very little effort put into the project.  His attitude
is made apparent when he tells Sally that their report
should be good enough to earn a C grade.

At this point, the classroom is introduced to a set of
cartoon characters, the D-Force, a group that has dedicated
themselves to prevent students from making the same
mistakes they had made in school.  They confront Billy
about his negative attitude, and convince him that he needs
help.  He is questioned about various aspects of river
pollution monitoring, which makes the students in the
classroom aware of Billy’s deficiencies.  The video ends
with an appeal by the D-Force to the students in the
classroom to help Billy improve his performance on the
water-quality monitoring project.  After this introduction
the students enter the Legacy cycle, where they will learn
about and help Billy solve a set of Challenges.

Each cycle starts off with a challenge, which is the
problem that the students will teach Billy to solve.  The
students begin preparing to teach Billy by Generating
Ideas, which requires them to make notes of important
ideas that may be relevant to the problem at hand.  This
self-evaluation step allows students to be constructive and
prepare for learning.

In the next step, students can access Mul t ip le
Perspectives.  These are short nuggets of information
provided by a set of experts that help the students to reflect
on different aspects of the problem space (Spiro and Jehng
1990).  This also helps them discover concepts important to
problem solving that they had not thought of earlier
(Schwartz et al. 2000).  The information and clues that the
students gather from this step provides them guidelines to
perform Research and Revise.

In the Research and Revise step, students can access
resources and tools that aid their learning of essential
problem solving concepts and methods.  This step
combines a variation of learning tools, including computer
simulations.  Students work with these resources until they
gain enough confidence and skills to teach Billy in the Test
your Mettle step.

In the Test Your Mettle step, students take on the role of
“teacher” by advising Billy on how to best answer a series
of challenge-related questions. They see each question
along with Billy’s intended response and a set of
alternative responses. They can either agree with Billy or
suggest a better response from the set provided.
Alternatively, they can defer giving any advice until they
have consulted a compendium of online resources linked to
the Teach-Billy environment. Following each question,
Billy gives his “teachers” feedback on whether their advice
enabled him to correctly answer the question.

In the Go Public step, students observe Billy re-solving
the challenge. Note that Billy’s performance here is
prescripted.  Hence, there is no direct link between Billy’s
competence and the students’ performance during the
Teach-Billy phase.

Despite the fact that Billy was only a pre-programmed,
animated character, students who participated in this design
experiment showed great enthusiasm to help Billy
(Schwartz et al. 2000).  This was evidenced in their
comments during exit interviews, and was supported by
data on their use of online resources in the Teach-Billy



phase—students were highly motivated to access resources
to ensure that they gave good advice to Billy. From these
and other findings presented earlier, we concluded that
social interactions in the form of teaching, even if virtual,
could be a strong motivation for learning.  Thus, we
decided to build on this learning by teaching framework,
and let students explicitly teach a computer agent.  Once
taught, the agent would reason about its knowledge and
answer questions.  The students could observe the effects
of their teaching by analyzing these responses.

Unlike other work in Artificial Intelligence (AI) and
agent technologies, our computer agents are not endowed
with machine learning algorithms that learn from
examples, explanations, or by induction.  Our agent
employs AI techniques to present students with an interface
that enables them to input knowledge without having to do
real programming1.  The knowledge structures are
primarily a causal graph that expresses relations between
domain entities.  To these structures the teachable agent
applies simple reasoning mechanisms to answer questions
posed to them, and generates explanations when asked to
do so.  The next section describes Betty’s Brain, our
current implementation of a teachable agent in the River of
Life domain.

Betty’s Brain
As discussed in the last section, our goal is to build an
environment where students can explicitly teach and
directly receive feedback about their teaching through
interactions with a computer agent.  To achieve this goal,
we need a representation scheme for students to create their
knowledge structure as a part of the teaching process.
Realizing that our users are primarily middle-school
students solving complex problems, this representation has
to be intuitive but sufficiently expressive to help these
students create, organize, and analyze their problem
solving ideas.  A widely accepted technique for
constructing knowledge is the concept map2 (Novak 1996,
Spiro and Jehng 1990).

Several researchers have discussed the effectiveness of
concept maps in promoting learning in scientific domains
(e.g., Novak 1996; Novak 1998; Kinchin and Hay 2000;
Stoyanov and Kommers 1999), by providing a mechanism
for structuring and organizing knowledge into hierarchies,
and allowing analysis of phenomena as cause-effect
relations.  The concept map provides a powerful tool to
represent students’ current understanding in a well-
organized format (Kinchin and Hay 2000).  Hence, concept
map structures may provide a framework for reflection and
revision of one’s knowledge with the goal of achieving
improved problem-solving performance.  These high-order
thinking skills may help to raise the students’ motivation to
                                    
1 If there were not the case, our approach would be impractical
and infeasible, especially for middle school students.
2 In particular, the concept map technique developed by J.D.
Novak (1996)

gain a deeper understanding of a domain.  Moreover, an
intelligent software agent based on concept maps can easily
employ reasoning and explanation mechanisms that
students can easily relate to.  Thus the concept map
provides an excellent representation that serves as the
interface between the student and the teachable agent.  The
rest of this section describes the design of our environment
structured around these ideas.

The Concept Map
Novak defines a concept map, a collection of concepts and
relationships between these concepts, as a mechanism for
representing domain knowledge (Novak 1996).  In our
environment, concepts are entities that are of interest in the
domain of study.  For example, common entities in a river
ecosystem are fish, plants, bacteria, dissolved oxygen,
carbon dioxide, algae, and waste.  Relations are
unidirectional, binary links connecting two entities.  They
help to categorize groups of objects or express interactions
among them.

In the current implementation of domain knowledge,
such as for a river ecosystem, students can use three kinds
of relations, (i) cause-effect , (ii) needs , and (iii)
hierarchical relations to build a concept map.  The
primary relation students use to describe relations between
entities is the causal (cause-and-effect) relation, such as
“Fish eat Plants” and “Plants produce Dissolved oxygen”.
The causal relations are further qualified by increase (‘+’)
and decrease (‘-‘) labels.  For example, “eat” implies a
decrease relation, and “produce” an increase.  Therefore,
an introduction of more fish into the ecosystem causes a
decrease in plants, but an increase in plants causes an
increase in oxygen.

The “needs”  relation is similar to the cause-effect
relation.  It also expresses a dependency, but the change in
one entity does not cause a change in the other entity.  For
example, a number of students in our classroom study
created the relation, “Fish live by Rocks”.  In this case, the
“live by” relation is categorized as a need relation.  Fish
use rocks, but an increase or decrease in fish does not
directly change the amount of rocks.  Other more complex
forms of the “needs” relation, e.g., “Plants need Sunlight to
produce Dissolved Oxygen” have not yet been
implemented in Betty’s Brain.

Hierarchical relations let students establish class
structures to organize the domain knowledge.  Consider an
example where students deal with a variety of fish, such as
trout, bass, blue gill, and catfish.  All of these fish types
breathe dissolved oxygen and eat plants.  To simplify the
knowledge construction process, students can first create
the entity “Fish”, and express the “Fish eat Plants” and
“Fish breathe Dissolved oxygen” relations.  Then, they can
create individual fish entities, such as “trout” and “bass”,
and link them to the “Fish” entity using “is_a” links.  All
relations associated with Entity “Fish” are inherited by
these individual types unless they are over-ridden by more
specific links (Russell and Norvig 1995).



Figure 2: A partial concept map

A partial concept map created by a student is shown in
Figure 2.  The labeled boxes correspond to entities (the
labels are entities’ names), and the labeled links correspond
to relations.  The arrow indicates the direction of the
relation, and its name appears by the arrow.  The
parenthesized phrases indicate the relation type.

Reasoning Process
Our teachable agent, Betty, uses a reasoning mechanism
that allows her to apply and analyze the knowledge the
student has taught her in the form of a concept map.  Our
goal is to set up an interaction process, where after being
taught, Betty tries to answer relevant questions in the
domain.  The students observe Betty’s answers, and can
query Betty further to get a more detailed explanation of
how the answer was generated.  In addition, Betty often
makes comments about the correctness of her response.
Examples of such comments are “The teacher said that this
answer was not quite correct.” and “I checked with John,
and he said that …”.  This prompts students to revisit and
reflect on the knowledge structures they have created, and
try to improve them, if necessary.

The reasoning mechanism is based on a simple chaining
procedure to deduce the relationship between a set of
connected entities.  To derive the effect of a change (either
increase or decrease) in Entity A on Entity B, the teachable
agent performs the following steps:
1. Generate all possible paths from Entity A to Entity B.
2. For each path, propagate the effect of the change in

Entity A along the path by pairwise propagation (i.e.,
follow the link from Entity A to its effect) and use the
table in Figure 3 to derive the resulting increase or
decrease on the effect entity.  If a “needs” relation
appears along the path, this results in propagation a “no
change” effect.  Repeat this process until we have a
result for Entity B.

3. Combine the results from all paths, and interpret the
final result.

Change Relation Result
+ + +
+ - -
- + -
- - +

Figure 3: Pair-wise effects

For example, assume that the student asks the teachable
agent to deduce the effect of an addition of fish to the
ecosystem on nutrients using the partial concept map
shown in Figure 2.  Searching the concept map, Betty
discovers two possible paths:

1. Fish – eat – Plants – consume – Nutrients
2. Fish – eat – Nutrients

For each path, the agent starts with the initiating entity and
computes the result on the end entity by sequential
propagation (Step 2 above).  For example, the change,
more fish (+) propagated through the relation “eat” (–)
produces a decrease (–) in plants.  The chaining process
continues on the path, and a decrease in plants (–) with the
relation “consume” (–) results in an increase (+) in
nutrients.  The same reasoning process is applied to paths 2
to get a decrease (–) in nutrients as shown below:

1. Fish (+) eat (-) Plants (-) consume (–) Nutrients (+)
2. Fish (+) eat (–) Nutrients (–)

When some paths imply an increase (+) and others a
decrease (–), one cannot derive a definitive increase or
decrease result.  To keep things simple for middle school
students, this version of Betty’s Brain concludes that there
is an overall increase if the number of increase paths is
greater than that of decrease paths, or an overall decrease if
the reverse is true.  The result cannot be determined if the
numbers of increase and decrease paths are equal.  Thus,
for this example, Betty concludes that she cannot say if
there is a net increase or decrease in nutrients.

The current simple reasoning mechanism proved to be
quite effective, but students were not satisfied with
inconclusive results, as we discuss below.  Along with the
final result, Betty also displays how the answer is derived
by animation on the concept map.

To test the effectiveness of this approach, two of the
authors, Schwartz and Wang, ran a pilot study on a class of
20 undergraduate students majoring in Psychology at
Vanderbilt University. Each student was asked to “teach”
his or her own Betty to be a consultant to help people think
about the high-level things that would help or hurt the
chances of getting a job (e.g., dressing well, studying,
socializing, etc.). At various points, a student’s Betty was
shown on a class-projection system and asked a question
(e.g., “If studying increases what will happen to the
chances of securing a good job”).

Even though Betty did not have a discernable
personality, the results were very encouraging.  Students
were exceptionally attentive to the “front of the class” tests
and spontaneously discussed Betty’s answers and asked to
see her reasoning unfold.  The activity also proved to be
very motivating to the students.  Even though they knew
we had not implemented a “save” function at this point,
65% of the students continued to work on their Betty’s for
an hour after class, until they finally had to vacate the lab.

Importantly, the students had little trouble learning how
to teach and generate questions for Betty. This only took
about 5 to 10 minutes, and was sufficient for students to
learn about knowledge organization based on Betty’s



visual representation. For example, the students were
surprised that there were multiple and conflicting cause-
effect pathways. They started with the “youthful”
assumption that causality is univocal.  In one Betty, for
example, the student discovered that increasing “study
time” increased “knowledge” which increased “chances of
getting a job.”  But the student had also taught Betty that
increasing “study time” decreased “social skills” which
reduced “chances of getting a job.”  Competing pathways
were not something the students had anticipated, and it led
some students to ask if there were ways to qualify the
amount of increase or decrease by specifying weights. This
led to our implementing a more sophisticated qualitative
reasoning scheme that is described in the next section.

The students also felt that the animation mechanism by
itself was not a sufficient illustrator of the reasoning
process.  They wanted a more structured text form of
explanation that they could study and reflect on.  Thus, we
added a hypertext-based explanation mechanism to the
next version.

Extending Betty’s Brain
In our pilot study of Betty’s Brain described above, some
students were confused about Betty’s behavior because she
seemed not to make any conclusion if there were
competing pathways.  Figure 2 illustrates an example of
such a situation in the ecosystem domain.  As discussed
previously, Betty could not conclude what would happen to
nutrients if more fish were added to the system.

Another confusion occurred when the bacteria entity was
added to the partial concept map in Figure 2 (see Figure 4),
and Betty gave the same answer about the effect of adding
more fish on dissolved oxygen (a decrease) based on both
concept maps.  This led the students to believe that Betty
was not considering the effect of adding bacteria to the
concept map.

Our solution to this problem was to make the qualitative
reasoning more fine-grained by letting the user qualify the
degree of change as "small", "normal", or "large".  The
modified pair wise chaining procedure is shown in Figure
5, where ‘+L’, ‘+’, and ‘+S’ represent large, normal, and
small increases, respectively, and ‘-L’, ‘- ’, and ‘- S’
represent large, normal, and small decreases, respectively.

Figure 4: The partial concept map with Entity bacteria

Change in Relation

+L + +S -S - -L

+L +L +L + - -L -L

+ +L + +S -S - -L

+S + +S +S -S -S -
-S - -S -S +S +S +
- -L - -S +S + +L

C

-L -L -L - + +L +L

Figure 5: The extended pair wise effects

Suppose that all the relations in the concept map in
Figure 4 are specified to be normal changes, except for the
relation “Fish eat Plants”, which is classified as a “small”
decrease.  A more precise explanation can now be
generated for the same question applied to this concept
map:

1. Fish (+) eat (-S) Plants (-S) consume (–S)
Nutrients (+S)

2. Fish (+) eat (–) Nutrients (–)

In this case, Betty concludes that adding more fish in the
ecosystem causes a small decease in nutrients.

Similarly, when the question “What would happen to
dissolved oxygen if we add more fish?” is asked of Betty
without bacteria, she answers that there is a normal
decrease in dissolved oxygen (by combining a normal
decrease with a small decrease).  However, when the
bacteria entity is included, Betty concludes that dissolved
oxygen would “decrease a lot” (the resultant combination
of two normal decreases plus one small decrease).

Current System
The interface of Betty’s Brain, displayed in Figure 6, is
implemented in Java with Java Swing components, and can
be accessed via the World Wide Web1.  The environment
has three main parts: (i) the concept map and its editing
panel, (ii) the reasoning process and its visual interface, the
explanation panel, and (iii) the dialog panel for interactions
between Betty and the user.

Students create, edit, and modify the concept map using
features provided in the editing panel.  At any point, the
user can initiate the question panel by clicking on the “Ask
Betty” button.  The question panel, shown in Figure 7, has
templates for three question types:

Type 1    : If Entity A increases/decreases, what will happen
to Entity B?

Type 2    : If Entity A increases/decreases, what will happen?
Type 3    : What can cause Entity B to increase/decrease?

Once the user has created a question, they click on the
“Get Answer” button.  This initiates the animation that
displays the search process as the reasoning system
generates its answer.  Following the animation, the textual
                                    
1 URL:     http://macs1.vuse.vanderbilt.edu/betty/classes/   .



explanation appears in the explanation panel as Betty’s
response.  This explanation panel employs a mini-web-
browser in Java Swing to structure the explanations in a
hypertext form.  Students first get an overall summary of
the answer and a list of the paths that contributed to the
solution.  They can then click on an individual path to
obtain more detailed explanation.  Together, the animation

and explanations enable students to compare and contrast
their thinking with the agent’s reasoning process, and this
often helps them to articulate their understanding of the
relevant concepts (Chi et al. 2001).

Below is a detailed trace of the explanation mechanism
for a type-2 question applied to the concept map in

Figure 6: The current Betty’s Brain Interface

Figure 2.  The explanation for the question, “What will
happen when we add more fish?”, starts with the following
paragraph:

I found that if we add more Fish, the following things
could happen:

Effect 1    : Plants decrease.
Effect 2    : Dissolved Oxygen decreases a lot.
Effect 3    : Nutrients are about the same.

I can explain in more detail if you click on the effect you
are interested in.

When the user clicks on an individual effect, more
details will be shown in the format of the explanation for
the first type of questions.  For example, the following
passage is displayed when the user clicks on the second
effect:

I found that Dissolved Oxygen decreases if Fish
increase.  Here is how I get the result:

Reason 1    : [Fish - Plants - Dissolved Oxygen] -->
Dissolved Oxygen decreases a bit.

Reason 2    : [Fish - Dissolved Oxygen] --> Dissolved
Oxygen decreases.

I can explain in more detail if you click on the reason
you are interested in.  If you want to know how I
deduce the final result,     click here    .

The link for each reason leads the user to the explanation
that is similar to the chaining procedure described in the
previous section but in a natural language.  The last link in
the passage, “click here” shows the details of the overall
conclusion generated by the qualitative reasoning
mechanisms (see the explanation panel in Figure 6).



Figure 7: Question Generator

We conducted a second pilot test on the updated system
focusing on the effectiveness of the concept map and how
Betty’s explanation mechanisms helped the leaning and
understanding process.

Pilot Tests
The second study, conducted at Stanford University by

Dan Schwartz, more directly shows how Betty’s visual
knowledge representation shapes student self-assessments
and their consequent learning.  This work complements
research that demonstrates the benefits of concept mapping
on learning (Kinchin and Hay 2000; Novak 1998;
Stoyanov and Kommers 1999).  However, Betty’s Brain
differs from most concept-mapping activities, because it
enforces specific types of relationships that students might
otherwise violate in paper and pencil activities, and it
shows the implications of those relationships.  We
specifically wanted to explore Betty’s effects on
knowledge of causal relationships and how she affected
student’s self-assessments and learning.  As a simple
source of contrast, we included a control condition in
which students completed the familiar instructional activity
of writing a summary. (We would have used concept
mapping, but these students had not had instruction in
concept mapping.)  Sixteen older teenagers completed the
experiment either in the Summary or Betty condition.
They each worked individually, so we could collect their
think aloud protocols.  In each condition, students began by
reading a four-page passage on exercise physiology.  We
removed the passage and asked the eight students in the
Summary condition to write a summary about cellular
metabolism.  We got them started by suggesting they
should write about things like the relationship between
mitochondria and ATP resynthesis.  In the Betty condition,
we asked students to teach Betty about cellular metabolism
after showing them how to teach Betty a relationship and
how to ask a question.

As in the previous study, every Betty student wanted
to continue working past the cut-off point, compared to
zero students in the Summary condition.  The more novel
findings involve self-assessment and learning.  With

respect to self-assessment, 75% of the Betty students
compared to 12.5% of the Summary students realized that
they had been thinking in terms of correlation rather than
causation.  For example, one student realized that he did
not know whether mitochondria increase ATP resynthesis
or whether it is the other way around.  Similarly, the Betty
students discovered they were not sure which things were
processes and which were entities.  These self-assessments
had positive effects on students’ subsequent learning.

After the students stopped summarizing or teaching, we
asked them to reread the physiology passage.  Afterwards,
we reclaimed the passage and asked the students what, if
anything, they had learned from the second reading.
Students in the Betty condition reported 2.9 cell
metabolism relationships on average, compared to 0.75 for
the summary condition.  Finally, we gave the students a
sheet with a few key words, like mitochondria and oxygen.
For each word, we asked them to “list relationships it has
to other entities or processes in cellular metabolism.”  The
students in the Summary condition tended to assert single
relations; for example, “mitochondria increase ATP
resynthesis.”  The Betty students tended to assert chains of
two or more relations; for example, “mitochondria with
glycogen or free fatty acid increase ATP resynthesis.”
Overall, the Betty students produced 3.75 chains of two or
more relations, whereas the Summary students produced
1.0 on average.

These results demonstrate that the visual concept-
mapping mechanisms our environment employs can help
students structure their knowledge in accordance with an
external representation. Developing chains of causal
relationships is exactly what Betty requires of students.

Currently, we are conducting another study that focused
on the reasoning about and debugging concept maps.  In
this study, students were first shown a model ecosphere,
and then asked to construct a concept map that included the
entities and relation that governed the ecosphere behavior.
In the second part of the study, students were given a
buggy concept map and a set of questions for which Betty
generated incorrect or incomplete answers.  The students
were asked to study the answers, and then used the
information to correct Betty’s concept map structure.

As before, students had very little trouble learning the
concept map structure and using the environment for
creating the knowledge structures, generating questions,
and analyzing Betty’s responses to questions.  Preliminary
analysis of the results shows that the students who used the
question-answer and the explanation mechanisms
frequently, while generating their concept maps tended to
create richer and more complete concept map structures.
They were also more successful in the debugging tasks in
Part 2.  In the feedback provided, the students
overwhelmingly asked for more resources to gain better
understanding of the domain so that they could teach Betty
more precisely.  This again is a very positive indication
that the teachable agent environment encourages students’
learning and self-assessment.  We will provide more



detailed results of this experiment as they become
available.

Summary and Conclusions
Our preliminary studies with the Betty’s Brain system
demonstrate its effectiveness in promoting learning and
self-assessment among students.  Our goal is to develop it
as a general teachable assistant that can be applied to a
variety of scientific domain, where the reasoning of causal-
effect structures is important to learning about the domain.
Our studies also show that students have little trouble and
require very little instruction in using the system for
creating their knowledge structures and using the question-
answer mechanism.  More extensive studies need to be
conducted on middle school students, our ultimate target
group for this project.

The studies also indicate a number of extensions that we
need to incorporate with our knowledge structure and
qualitative reasoning mechanism.  The extensions required
for the “needs” relation were discussed earlier in this paper.
We also need to add bi-directional causal links to make the
concept map structure more expressive and realistic.
Consider the link, “Fish breathe Dissolved Oxygen”.  The
addition of fish cause a decrease in the amount of dissolved
oxygen.  However, this particular link also conveys that a
decrease in the amount of dissolved oxygen should
adversely affect the fish population.  In the next version of
they system, students will be allowed to create bi-
directional links.  This will require changes in the
reasoning mechanism to ensure that cycles created by the
bi-directional links do not result in infinite reasoning loops.

We are currently studying ways in which temporal
information can be added to the reasoning mechanism so
that the system can explicitly reason about multiple cycles
that take place over a period of time.  Once this is in place,
the qualitative reasoning structures in Betty’s Brain can be
linked to qualitative simulation programs that provide
students with a more realistic picture of a system’s
behavior.  Designing and developing these features for
middle school students will be a difficult but very exciting
challenge.
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