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Abstract. The success of any object recognition system, whether biological or artificial, 
lies in using appropriate representation schemes. The schemes should efficiently encode 
object concepts while being tolerant to appearance variations induced by changes in 
viewing geometry and illumination. Here, we present a biologically plausible 
representation scheme wherein objects are encoded as sets of qualitative image 
measurements. Our emphasis on the use of qualitative measurements renders the 
representations stable in the presence of sensor noise and significant changes in object 
appearance. We develop our ideas in the context of the task of face-detection under 
varying illumination. Our approach uses qualitative photometric measurements to 
construct a face signature (‘ratio-template’) that is largely invariant to illumination 
changes. 

 
1    Introduction 
 
The appearance of a 3D object can change dramatically with variations in illumination 
conditions and viewing position. The challenge a recognition system faces is to classify 
all these different instances as arising from the same underlying object. The system’s 
success depends on the nature of the internal object representations, against which the 
observed images are matched. Here we describe a candidate representation scheme that 
possesses several desirable characteristics, including tolerance to photometric variations, 
computational simplicity, low memory requirements and biological plausibility.  
 
We develop the scheme in the context of a specific recognition task – detecting human 
faces under variable lighting conditions. Two key sources of difficulty in constructing 
face detection systems are (a) the variability of illumination conditions, and (b) 
differences in view-points. Experimental evidence [Bruce, 1994; Cabeza et al., 1998] 
suggests that the prototypes the visual system uses for detecting faces may be view-point 
specific. In other words, it is likely that distinct prototypes are used to encode facial 
appearance corresponding to different view-points. This hypothesis leaves open the 
question of how to collapse the illumination induced appearance variations for a given 
view-point into a compact prototype. The representation scheme we propose provides a 
candidate solution to this problem. Of course, many schemes for face detection have 
already been proposed in the computer vision literature [Govindaraju et al., 1989; Yang 
& Huang, 1993, 1994; Hunke, 1994; Sung & Poggio, 1994; Rowley et al, 1995; Viola & 
Jones, 2001]. What distinguishes our proposal from past work is that it is motivated 
primarily by psychophysical and physiological studies of the human visual system, as 
summarized in the next section. Our problem domain is shown in figure 1. 
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Fig. 1. Our problem domain. (a) Front facing upright heads being imaged under varying 
illumination conditions to yield images such as those shown in (b). 
 
2    Face detection by human observers 
 
In order to investigate the roles of different image attributes in determining face detection 
performance by human observers, we conducted a series of psychophysical experiments, 
details of which can be found in [Torralba and Sinha, 2001]. Here we focus on two 
experiments that are most relevant to the design of our representation scheme. The first 
seeks to determine the level of image detail needed for reliable face-detection and the 
second investigates the encoding of contrast relationships across a face.  
 
2.1    Experiment 1: Face detection at low-resolution 
What is the minimum resolution needed by human observers to reliably distinguish 
between face and non-face patterns? More generally, how does the accuracy of face 
classification by human observers change as a function of available image resolution? 
These are the questions our first experiment is designed to answer. 
 
2.1.1    Methods 
Subjects were presented with randomly interleaved face and non-face patterns and, in a 
'yes-no' paradigm, were asked to classify them as such. The stimuli were grouped in 
blocks, each having the same set of patterns, but at different resolutions. The presentation 
order of the blocks proceeded from the lowest resolution to the highest. Ten subjects 
participated in the experiment. Presentations were self-timed. Our stimulus set comprised 
200 monochrome patterns. Of these, 100 were faces of both genders under different 
lighting conditions (set 1), 75 were non-face patterns (set 2) derived from a well-known 
face-detection program (developed at the Carnegie Mellon University by Rowley et al 



 

 

[1995]) and the remaining 25 were patterns selected from natural images that have similar 
power-spectra as the face patterns (set 3). The patterns included in set 2 were false alarms 
(FAs) of Rowley et al's computational system, corresponding to the most conservative 
acceptance criterion yielding 95% hit rate. Sample non-face images are shown in figure 2. 
Reduction in resolution was accomplished via convolution with Gaussians of different 
sizes (with standard deviations set to yield 2, 3, 4, and 6 cycles per face; these correspond 
to 1.3, 2, 2.5 and 3.9 cycles within the eye-to-eye distance. 
 

 
 

Fig. 2. A few of the non-face patterns used in our experiments. The patterns comprise false alarms 
of a computational face-detection system and images with similar spectra as face images.  
 
From the pooled responses of all subjects at each blur level, we computed the mean hit-
rate for the true face stimuli and false alarm rates for each set of distractor patterns. These 
data indicated how subjects’ face-classification performance changed as a function of 
image resolution. 
 
2.1.2    Results of Experiment 1 
Figure 3 shows data averaged across 10 subjects. Subjects achieved a high hit rate (96%) 
and a low false-alarm rate (6% with Rowley et al’s FPs and 0% with the other distractors) 
with images having only 3.9 cycles between the eyes. Performance remained robust (90% 
hit-rate and 19% false-alarm rate with the Rowley et al's FA distractor set) at even higher 
degrees of blur (2 cycles/ete). 
 

 
 

Fig. 3. Results from experiment 1.The units of resolution are the number of cycles eye to eye. 



 

 

 
The data suggest that faces can be reliably distinguished from non-faces even at just 2 
cycles eye-to-eye. Performance reaches an asymptote around 4 cycles/ete. Thus, even 
under highly degraded conditions, humans are correctly able to reject most non-face 
patterns that the artificial systems confuse for faces. To further underscore the differences 
in capabilities of current computational face detection systems and the HVS, it is 
instructive to consider the minimum image resolution needed by a few of the proposed 
machine-based systems: 19x19 pixels for Sung and Poggio [1994]; 20x20 for Rowley et 
al [1995]; 24x24 for Viola and Jones [2001] and 58x58 for Heisle et al. [2001]). Thus, 
computational systems not only require a much larger amount of facial detail for detecting 
faces in real scenes, but also yield false alarms that are correctly rejected by human 
observers even at resolutions much lower than what they were originally detected at. 
 
2.2    Experiment 2: Role of contrast polarity in face detection 
In studies of face identification, it has been found that contrast negation compromises 
performance [Galper, 1970; Bruce & Langton, 1994]. However, it is unknown how this 
affects the face-detection task. A priori, it is not clear whether this transformation should 
have any detrimental effects at all. For instance, it may well be the case that though it is 
difficult to identify people in photographic negatives, the ability to say whether a face is 
present may be unaffected since contrast negation preserves the basic geometry of a face. 
Experiment 2 is designed to test this issue. The basic experimental design follows from 
experiment 1. However the stimulus set of experiment 2 was augmented to include 
additional stimuli showing the faces and non-faces contrast negated. 
 
2.2.1    Results of Experiment 2 
Figure 4 shows that contrast negation causes significant decrements in face-detection 
performance. These results suggest that contrast reversal of face-patterns destroys the 
diagnostic information that allows their detection at low-resolution. Figure 5 also 
highlights the important role of contrast polarity in recognizing a pattern to be a face. 

 

 
 

Fig. 4. Face detection performance following contrast negation. 
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Fig. 5. Preserving absolute brightnesses of image regions is neither necessary nor sufficient for 
recognition. The patches in (a) and (b) have very different brightnesses and yet they are perceived 
as depicting the same object. The patches in (a) and (c), however, are perceived very differently 
even though they have identical absolute brightnesses. The direction of brightness contrast appears 
to have greater perceptual significance. (Mooney image courtesy: Patrick Cavanagh, Harvard 
University) 
 
The significance of low-resolution image structure and contrast polarity rather than 
contrast magnitude per se is also reflected in the response properties of neurons in the 
early stages of the mammalian visual pathway. Beginning with the pioneering studies of 
Hubel and Wiesel, it has been established that many of these cells respond best to contrast 
edges. Many of these cells have large receptive fields and are, therefore, best suited to 
encoding coarse image structure. Additionally, studies exploring changes in response 
magnitude as a function of contrast strength have revealed that most neurons exhibit a 
rapidly saturating contrast response curve [DeAngelis et al, 1993]. In other words, the cell 
reaches its maximal response at very low levels of contrast so long as the contrast polarity 
is appropriate. For higher values of contrast, the cell-response does not change and is, 
therefore, uninformative regarding contrast magnitude. Such a cell thus serves as an 
ordinal comparator indicating whether the contrast polarity across the regions in its 
receptive field is correct and providing little quantitative information about contrast 
magnitude. The idealization of such a cell serves as the basic building block of our 
‘qualitative’ image representation scheme. 
 
3    'Ratio Templates': A qualitative scheme for encoding faces 
 
The psychophysical results summarized above lead to two clear conclusions. First, human 
face detection performance is robust even at very low image resolutions and, second, it is 
sensitive to contrast polarity. The challenge is to devise a representation scheme that can 
take into account these results. 
 
We propose a representation that is a collection of several pair-wise ordinal contrast 
relationships across facial regions. Consider figure 6. It shows several pairs of average 
brightness values over localized patches for each of the three images included in figure 
1(b). Certain regularities are apparent. For instance, the average brightness of the left eye 
is always less than that of the forehead, irrespective of the lighting conditions. The 
relative magnitudes of the two brightness values may change, but the sign of the 
inequality does not. In other words, the ordinal relationship between the average 
brightnesses of the <left-eye, forehead> pair is invariant under lighting changes. Figure 6 



 

 

also shows several other such pair-wise invariances. By putting all of these pair-wise 
invariances together, we obtain a larger composite invariant (figure 7). We call this 
invariant a 'ratio template', given that it is comprised of a set of binarized ratios of image 
brightnesses. It is worth noting that dispensing with precise measurements of image 
brightnesses not only leads to immunity to illumination variations, but also renders the 
ratio-template robust in the face of sensor noise.  It also reconciles the design of the 
invariant with known perceptual limitations - the human visual system is far better at 
making relative brightness judgments than absolute ones. The ‘ratio-template’ is not a 
strict invariant, in that there exist special cases where it breaks. One such situation arises 
when the face is strongly illuminated from below. However, for almost all ‘normal’ 
lighting conditions (light sources at or above the level of the head), the ratio-template 
serves as a robust invariant. 
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Fig. 6. The absolute brightnesses and even their relative magnitudes change under different lighting 
conditions but several pair-wise ordinal relationships are invariant. 
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Figure 7. By putting together several pair-wise invariants, we obtain what we call a ‘ratio-
template’. This is a representation of the invariant ordinal structure of the image brightness on a 
human face under widely varying illumination conditions. 
 
3.1    The match metric 
Having decided on the structure of the ratio-template (which, in essence, is our model for 
a face under different illumination setups), we now consider the problem of matching it 
against a given image fragment to determine whether or not that part of the image 
contains a face. The first step involves averaging the image intensities over the regions 
laid down in the ratio-template's design and then determining the prescribed pair-wise 
ratios. The next step is to determine whether the ratios measured in the image match the 
corresponding ones in the ratio-template. An intuitive way to think of this problem is to 
view it as an instance of the general graph matching problem. The patches over which the 
image intensities are averaged constitute the nodes of the graph and the inter-patch ratios 
constitute the edges. A directed edge exists between two nodes if the ratio-template has 
been designed to include the brightness ratio between the corresponding image patches. 
The direction of the edge is such that it points from the node corresponding to the brighter 
region to the node corresponding to the darker one. Each corresponding pair of edges in 
the two graphs is examined to determine whether the two edges have the same direction. 
If they do, a predetermined positive contribution is made to the overall match metric, and 
a negative one otherwise. The magnitude of the contribution is proportional to the 
'significance' of the ratio. A ratio's significance, in turn, is dependent on its robustness. 
For instance, the eye-forehead ratio may be considered more significant than the nose-tip-
cheek ratio since the latter is more susceptible to being affected by such factors as facial 
hair and is therefore less robust. The contributions to be associated with different ratios 
can be learned automatically from training examples although in the current 
implementation, they have been set manually. After all corresponding pairs of edges have 
been examined, the magnitude of the overall match metric can be used under a simple 
threshold based scheme to declare whether or not the given image fragment contains a 
face. Alternatively, the vector indicating which graph edges match could be the input to a 
statistical classifier. 
 
3.1.1    First order analysis 
It may seem that by discarding the brightness ratio magnitude information, we run the risk 
of rendering the ratio-template too permissive in terms of the patterns that it will accept as 



 

 

faces; several false positives would be expected to result. In this section, we present a 
simple analysis showing that the probability of false positives is actually quite small. We 
proceed by computing how likely it is for an arbitrary distribution of image brightnesses 
to match a ratio-template. In the treatment below, we shall use the graph representation of 
the spatial distribution of brightnesses in the image and the template. 
 
Let us suppose that the ratio-template is represented as a graph with n nodes, and e 
directed edges. Further suppose that if all the edges in this graph were to be replaced by 
undirected edges, it would have c simple cycles. We need to compute the cardinality of 
the set of all valid graphs defined on n nodes with e edges connecting the same pairs of 
nodes as in the template graph. A graph is ‘valid’ if it represents a physically possible 
spatial distribution of intensities. A directed graph with a cycle, for instance, is invalid 
since it violates the principle of transitivity of intensities. Each of the e edges connecting 
two nodes (say, A and B) can take on one of three directions: 
 1. if A has higher intensity value than B, the edge is directed from A to B, or 
 2. if B has higher intensity value than A, the edge is directed from B to A, or 
 3. if A and B have the same intensity values, the edge is undirected. 
The total number of graphs on n  nodes and e  edges, therefore, is 3e. This number, 
however, includes several invalid graphs. A set of m edges that constitute a simple cycle 
when undirected, introduce 2(2m - 1) invalid graphs, as illustrated in figure 8. For c  such 
sets, the total number of invalid graphs are 
  ∑i=1 to c  2(2mi - 1)             
where mi  is the number of edges in the ‘cycle set’ i. 
 Therefore, the total number of valid graphs on n  nodes, e  edges and c  cycles is 
                3e   -  ∑i=1 to c  2(2mi - 1) 
Of all these graphs, only one is acceptable as representing a human face. For most 
practical ratio-template parameters, the total number of valid graphs is quite large and the 
likelihood of an arbitrary distribution of image brightnesses accidentally being the same 
as that for a face is very small. For instance, for e = 10 and two cycle sets of sizes 6 and 3, 
the number of valid graphs is nearly 59,000. If all the corresponding intensity 
distributions are equally likely, the probability of a false positive is only 1.69 * 10-5. 
 

 
 
Fig. 8.  A cycle set of m  edges yields 2(2m - 1) invalid graphs. A cycle set of 4 edges, for instance, 
yields 30 invalid graphs, 15 of which are shown above (the other 15 can be obtained by reversing 
the arrow directions). Each of these graphs leads to impossible relationships between intensity 
values (say, a and b) of the form a > b & b > a  or a > b & a = b. 



 

 

3.2    Implementation issues 
The face-invariant we have described above requires the computation of the average  
intensities over image regions of different sizes. An implementation that attempted to 
compute these averages over the image patches at each search location would be 
computationally wasteful of the results from previous search locations. A far more 
efficient implementation can be obtained by adopting a multi-resolution framework. In 
such a framework, the input image is repeatedly filtered and subsampled to create 
different levels of the image pyramid. The value of a single pixel in any of these images 
corresponds to the average intensity of an image patch in the original image if the filter 
used during the construction of the pyramid is a diffusing one (like a Gaussian). The 
deeper the pyramid level is, the larger the patch. Thus, a pyramid construction equips us 
with a collection of values that correspond to precomputed averages over patches of 
different sizes in the original image. The process of determining the average value for any 
image patch is thus reduced to picking out the appropriate pixel value from the bank of 
precomputed pyramid levels, leading to a tremendous saving in computation. The 
appropriate scale of operation for a given ratio-template depends on the chosen spatial 
parameters such as the patch sizes and the distances between them. By varying these 
parameters systematically, the face detection operation can be performed at multiple 
scales. Such a parameter variation is easily accomplished in the pyramid based 
implementation described above. By tapping different sets of the levels constituting the 
image pyramid, the presence of faces of different sizes can be determined. To have a 
denser sampling of the scale space, the inter-patch distances can be systematically varied 
while working with one set of levels of the pyramid. The natural tolerance of the approach 
to minor changes in scale takes care of handling the scales between the sample points. It is 
worth noting that the higher the pyramid levels, the lesser is the computational effort 
required to scan the whole image for faces. Therefore, the total amount of computational 
overhead involved in handling multiple scales is not excessive. 
 
3.3    Tests 
Figure 9 shows some of the results obtained on real images by using a ratio-template for 
face detection. Whenever it detects a face, the program pinpoints the location of the 
center of the head with a little white patch or a rectangle. The results are quite 
encouraging with a correct detection rate of about 80% and very few false positives. The 
'errors' can likely be reduced even further by appropriately setting the threshold of 
acceptance. The results demonstrate the efficacy of the ratio-template as a face detector 
capable of handling changes in illumination, face identity, scale, facial expressions, skin 
tone and degradations in image resolution.  
 
3.4    Learning the Signature 
Our construction of the ratio-template in the preceding sections relied on a manual 
examination of several differently illuminated face images to determine whether there 
existed any regularities in their brightness distributions. A natural question to ask is 
whether we can design a learning system that can automatically extract a ratio-template 
from example streams. In principle, to accomplish this task, a learning system needs to 
determine which members of a potentially large set of image measurements are highly 
correlated with the presence of a face in the example images. We have tested this 
conceptually simple idea by extracting a ratio-template from a set of synthetic face 
images. Figure 10(a) shows some of the input images we used. These were generated 
using a program that embedded certain face-like invariances in variable random 



 

 

backgrounds. The task of the learning system was to recover these invariances from 
labeled (face/non-face) examples. 

 

  
 
Fig. 9. Testing the face-detection scheme on real images. The program places a small white square 
at the center of, or a rectangle around, each face it detects. The results demonstrate the scheme’s 
robustness to varying identity, facial hair, skin tone, eye-glasses and scale. 

  
 

     
0

1

Input

Output

+
-

+
- +-

+ - +
-

+
-

+
-

+
-

 
(a)     (b) 

 
Fig. 10. (a) These images are representative of the inputs to the learning system. The images are 
synthetic and are meant to represent differently illuminated faces on varying random backgrounds. 
(b) The receptive fields of the pre-processors and their output function. 
 
The ‘receptive fields’ of the pre-processor units are shown in figure 10(b). These units 
can be thought of as detecting inequality relations between adjacent image patches. The 
learning system needs to estimate the correlation of each measurement with the presence 
of a face. As is to be expected, only the measurements that are part of the invariant 
survive through all the examples while others weaken. This is shown in figure 11. It is 



 

 

important to notice that by the end of the computation, we have not only constructed the 
object concept (the ‘ratio-template’ in this case) but have also implicitly learned to 
segment it from the background. This approach, therefore, simultaneously addresses two 
important issues in recognition: 1. What defines an object?, and 2. How can one segment 
a scene into different objects? In recent work (Thoresz and Sinha, 2002), we have 
successfully tested this learning approach on real images besides the synthetic ones shown 
here.  
 

 
 
Fig. 11. Detecting relevant features via correlational learning over a set of examples. The output is 
the object concept. Segmentation is a side-effect. 
 
4    Endnote 
 
We have suggested the use of a qualitative face signature, that we call a ratio-template, as 
a candidate scheme for detecting faces under significant illumination variations. One can 
think of this specific scheme as an instance of a more general object recognition strategy 
that uses qualitative object signatures. Such a strategy would be attractive for the 
significant invariance to imaging conditions that it can potentially confer. However, it 
also has a potential drawback. Intuitively, it seems that the ‘coarseness’ of the 
measurements they use would render qualitative invariants quite useless at tasks requiring 
fine discriminations. How might one obtain precise model indexing using qualitative 
invariants that are, by definition, comprised of imprecise  measurements? Depicting this 
problem schematically, figure 12(a) shows a collection of object models positioned in a 
space defined by three attribute axes. To precisely index into this model set, we can adopt 
one of two approaches: 1. we can either be absolutely right in measuring at least one 
attribute value (figure 12(b)), or 2. we can be ‘approximately right’ in measuring all three 
attributes (figure 12(e)). Being approximately right in just one or two attributes is not 
expected to yield unique indexing (figures 12(c) and (d)). 
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 Figure 12. (a) A schematic depiction of a collection of object models positioned in a space defined 
by three attribute axes. To precisely index into this model set, we can adopt one of two approaches: 
1. we can either be absolutely right in measuring at least one attribute value (figure (b)), or 2. we 
can be ‘approximately right’ in measuring all three  attributes (figure (e)). Being approximately 
right in just one or two attributes is not expected to yield unique indexing (figures (c) and (d)). 
 
The qualitative invariant approach constructs unique signatures for objects using several 
approximate measurements. The ratio-template is a case in point. It achieves its fine 
discriminability between face and non-face images by compositing several very imprecise 
binary comparisons of image brightnesses. In several real world situations, there might in 
fact be no alternative to using approximate measurements. This could be either because 
precise invariants just might not exist or because of noise in the measurement process 
itself. The only recourse in these situations would be to exploit several attribute 
dimensions and be ‘approximately good’ in measuring all of them. This is what 
qualitative invariants are designed to do. The ‘recognition by qualitative invariants’ 
approach is eminently suited to a complex visual world such as ours. Most objects vary 
along several different attribute dimensions such as shape, color, texture, and motion, to 
name a few. The qualitative invariant approach can exploit this complexity by 
constructing unique object signatures from approximate measurements along all of these 
dimensions. Evidence for the generality of this approach is provided by some of our 
recent work. We have implemented recognition schemes based on qualitative templates 
(that use not only qualitative photometric measurements but also spatial ones) for robustly 
recognizing a diversity of objects and scenes including natural landscapes, graphic 
symbols and cars. 
 
A related observation is that the ratio-template representation is a ‘holistic’ encoding of 
object structure. Since each ordinal relation by itself is too coarse to provide a good 
discriminant function to distinguish between members and non-members of an object-
class, we need to consider many of the relations together (implicitly processing object 
structure holistically) to obtain the desired performance. At least in the context of face-
detection, this holistic strategy appears to be supported by our recent studies of concept 



 

 

acquisition by children learning to see after treatment for congenital blindness [Sinha, 
2002, in preparation]. 
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