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Abstract

Qualitative spatial reasoning (QSR) abstracts metrical details of the physical world. The two main

directions in QSR are topological reasoning about regions and reasoning about orientations of point

configurations. Orientations can refer to a global reference system, e.g. cardinal directions or instead

only to relative orientation, e.g. egocentric views. Reasoning about relative orientations poses

additional difficulties compared to reasoning about orientations in an absolute reference frame.

Qualitative knowledge about relative orientation can be naturally expressed in the form of ternary

point calculi. Designing such calculi requires compromising between desired mathematical properties

and the power to describe and model concrete ‘‘real-world’’ problems. Research has shown that using

basic notions such as granularity leads to imprecise reasoning and as a consequence to

underdetermined knowledge which is difficult to handle efficiently.

Concrete problems need a combination of qualitative knowledge of orientation and qualitative

knowledge of distance. We present a calculus based on ternary relations where we introduce a

qualitative distance measurement based on two of the three points. Its main advantage is that it

utilizes finer distinctions than previously published calculi. Furthermore, it permits differentiations

which are useful in realistic application scenarios such as robot navigation that cannot be directly

dealt with in coarser calculi.
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1. Introduction

Qualitative spatial reasoning (QSR) abstracts metrical details of the physical world and

enables computers to make predictions about spatial relations even when precise

quantitative information is unavailable [1]. From a practical viewpoint QSR is an

abstraction that summarizes similar quantitative states into one qualitative characteriza-

tion. A complementary view from the cognitive perspective is that the qualitative method

compares features within the object domain rather than by measuring them in terms of

some artificial external scale [2]. This is the reason why qualitative descriptions are quite

natural for humans.

The two main directions in QSR are topological reasoning about regions [3–5] and

positional reasoning about point configurations, like reasoning about orientation and

distance [2,6–8]. More recent approaches in QSR that model orientations are a cyclic

relation algebra [9] and the dipol calculus [10].

What is the motivation for considering calculi of relative orientation and relative

distance? First, for robot navigation, the notion of path is central [11] and requires the

representation of orientation and distance information [12,13]. Therefore we would like to

provide this field with a calculus which has only a small number of relations but is fine-

grained enough for solving reasoning problems. The reason for using only a small number

of relations is the fact that we intent to have a small representation complexity. Second,

we want to provide a calculus which can be used for cognitive modelling as well. For

this reason this calculus is based on results of psycholinguistic research on reference

systems [14].

An additional aim of this paper is to show with a small sample application how to apply

QSR-based knowledge integration to robotics—to present a calculus which can be directly

used for communicating with robots and is expressive enough to be helpful in tasks

concerning spatial reasoning. For these reasoning steps to be successful, we need a

minimum number of base relations. By connecting these two fields explicitly, we hope to be

able to achieve synergy effects, i.e. by reducing the representation complexity—substituting

quantitative descriptions such as exact position data through qualitative descriptions that

are fine-grained enough to discern important informations—we aim at providing the field

with a calculus which can be used to model strategic planning about scenarios, and to

eliminate inconsistent scenarios easily.

In a first step, we initiate the use of ternary calculi and investigate the consequences of

adding a relative distance measurement. Then, in a second step, we present complexity

results concerning constraint satisfaction problems and investigate the notion of

composition. The different calculi are additionally motivated by problems from robotics.

Positional calculi are influenced by results of psycholinguistic research [14] in the field of

reference systems. The results point to three different options to give a qualitative

description of spatial arrangements of objects labelled by Levinson [15] as intrinsic,

relative, and absolute.

We can find examples of all three options of reference systems in the QSR literature.

For instance, an intrinsic reference system was used in the dipol calculus [10,16],

a relative reference system in QSR was introduced by Freksa [2], and finally Frank’s

cardinal direction calculus corresponds to an absolute reference system [17,18].

More details about human reference systems and their relations to QSR can be found in

Section 3.4.
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Qualitative position calculi can be viewed as computational models for projective

relations in relative reference systems. To model projective relations (like ‘‘left’’, ‘‘right’’,

‘‘front’’, ‘‘behind’’) in relative reference systems, all objects are mapped onto the plane D.

The mapping of an object O onto the plane D is called p
D
ðOÞ. The center m of this area can

be used as point-like representation O0 of the object O: O0 ¼ mðp
D
ðOÞÞ. Using this

abstraction, we will henceforth consider only point-like objects in the 2D-plane.

Fig. 1 shows a simple model for the left/right-dichotomy in a relative reference system,

which is given by origin and relatum (corresponding to Levinsons terminology [15]). In this

figure origin and relatum define the reference axis. The reference axis naturally partitions

the surrounding space in a left/right-dichotomy. The spatial relation between the reference

system and the referent is then described by naming the part of the partition in which the

referent lies. In the configuration depicted in Fig. 1 the referent lies to the left1 of the

relatum as viewed from the origin.

This scheme ignores configurations in which the referent is positioned on the reference

axis. Freksa [2] used a partition that splits these configurations into three sets,

corresponding to the relatum: the referent is either behind, at the same position or in

front of the relatum. Ligozat [19] subdivided the arrangements with the referent in front of

the relatum in those cases where the referent is between the relatum and the origin, at the

same position as the origin, or behind the origin. We then obtain the partition shown in

Fig. 2. Ligozat calls this the flip-flop calculus. For a compact notation, we use

abbreviations for the relation symbols.

For A, B, and C as origin, relatum, and referent, Fig. 3 shows point configurations and

their qualitative descriptions, respectively. Isli and Moratz [8] introduced two additional

configurations in which the origin and the relatum have exactly the same location. In one

of the configurations the referent has a different location, this relation is called dou (for

double point). The configuration with all three points at the same location is called tri

ARTICLE IN PRESS

left

right

origin relatum

referent

Fig. 1. The left/right-dichotomy in a relative reference system.

1The natural language terms used here are meant to improve the readability of the paper. For issues of using

QSR representations for modelling natural language expressions please refer to [14].
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(for triple point). A system of qualitative relations which describes all the configurations of

the domain and does not overlap is called jointly exhaustive and pairwise disjoint (JEPD).

Such a calculus was formulated in the scheme of a relation algebra [20] by Scivos and

Nebel [21].

The simple flip-flop calculus models ‘‘front’’ and ‘‘back’’ only as linear acceptance

regions. Vorwerg et al. [22] showed empirically that a cognitively adequate model for

projective regions needs acceptance regions for ‘‘front’’ and ‘‘back’’, which have a similar

extent as ‘‘left’’ and ‘‘right’’. Freksa’s single cross calculus [2] has this feature (see Fig. 4).

The front region consists of ‘‘left/front’’ and ‘‘right/front’’, the left region consists of ‘‘left/

front’’ and ‘‘left/back’’. The intersection of both regions models the left/front relation.

This paper is organized as follows: in Section 2, we review some basic concepts of

ternary relation calculi in general and introduce the ternary point configuration calculus

(TPCC) and investigate some questions concerning relative distance measurement. Then,

in the Section 3, we investigate the structure of such calculi and we show that these calculi

are not ternary relation algebras [9]. A natural but not trivial result of closing any relation

algebra with a ‘‘sensible’’ qualitative distance measure leads to a non-closedness of the

composition operator. Furthermore, we present some complexity results concerning

constraint solution problems. In Section 4, we investigate spatial reasoning in a knowledge

integration scenario. Finally, Section 5 summarizes the results of the paper and gives a

short overview of some questions that are left open in this paper.

2. The TPCC

The calculus we present is derived from the single cross calculus but makes finer

distinctions. These finer distinctions are motivated by robot application domains like the

ARTICLE IN PRESS

same as origin (so) same as relatum (sr)

behind origin (bo) front (fr)

left (le)

right (ri)

back (ba)

Fig. 2. Adding relations for referents on the reference axis.

BCA

A

A, B ri C A, B fr C A, B tri C

B

C

B

C

A

Fig. 3. Examples of point configurations and their expressions in the flip-flop calculus. We use an infix notation

where the reference system consisting of origin and relatum is in front of the relation symbol and the referent is

behind the relation symbol.
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one presented at the end of this paper. The consequences of these finer distinctions are

compared with other calculi in Section 3.4. The partition of the calculus is shown in Fig. 5.

The letters f, b, l, r, s, d, c stand for front, back, left, right, straight, distant and close,

respectively. The use of the TPCC relations in natural language applications is shown in

[14]. These authors use the TPCC relations for natural human robot interaction by

linguistic spatial references using projective predicates. Certain aspects of modelling

linguistic predicates by QSR relations are discussed in Section 3.4.

The configuration in which the referent is at the same position as the relatum is called

sam (for ‘‘same location’’). The two special configurations in which the origin and the

relatum have the same location are dou and tri and are also base relations of this calculus.

This system of qualitative spatial relations and the inference rules described in the next

ARTICLE IN PRESS

sam

origin

csf

crf

dfr

csr

dsr dbr

csb dsb

dsl

csl

dfl

dlf

clf
clb

drf

cfr cbr

drb

crb

dlb
cbl

cfl

dbl

relatum

dsf

Fig. 5. The reference system used by the TPCC.

left / front

right /front right /back

left /back

Fig. 4. The single cross calculus.

R. Moratz, M. Ragni / Journal of Visual Languages and Computing 19 (2008) 75–98 79



Author's personal copy

section is called TPCC. When assigning a precise, formal definition of the relations, we

describe the corresponding geometric configurations on the basis of a Cartesian coordinate

system represented by R
2. First we define for A ¼ ðxA; yAÞ, B ¼ ðxB; yBÞ, and C ¼ ðxC ; yCÞ

the special cases:

A;B dou C:¼xA ¼ xB ^ yA ¼ yB ^ ðxCaxA _ yCayAÞ,

A;B tri C:¼xA ¼ xB ¼ xC ^ yA ¼ yB ¼ yC .

For the cases with AaB, we define a relative radius rA;B;C and a relative angle fA;B;C :

rA;B;C :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxC � xBÞ
2 þ ðyC � yBÞ

2
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxB � xAÞ
2 þ ðyB � yAÞ

2
q ,

fA;B;C :¼tan
�1 yC � yB

xC � xB
� tan�1

yB � yA
xB � xA

.

With this we are able to define a partition on the Euclidean plane:

Semirelation Angle

sb fA;B;C ¼ 0

lb 0ofA;B;Cpp=4

bl p=4ofA;B;Cop=2

sl fA;B;C ¼ p=2

fl p=2ofA;B;Co3=4 p

lf 3=4ppfA;B;Co p

sf fA;B;C ¼ p

rf pofA;B;Cp5=4 p

fr 5=4 pofA;B;Co3=2 p

sr fA;B;C ¼ 3=2 p

br 3=2 pofA;B;Co7=4 p

rb 7=4 ppfA;B;Co2 p

How can we now introduce different granularities? By setting c:¼0orA;B;Co1 and

d:¼1prA;B;C , we can partition the plane in the two qualitative distance measures close and

distant. For instance, the relation csb:¼c ^ sb is defined by 0orA;B;Co1 ^ fA;B;C ¼ 0.

From this it follows that we can define all relations of Fig. 5. Furthermore, by applying this

technique, we can easily construct a set of JEPD relations of any granularity.

From this definition it follows that this new set of 24 relations is a partition of the

Euclidean plane.

There are cases in which we only have rough spatial knowledge or in which we are at the

border of a segment of the partition and cannot decide safely due to measurement errors.

In such cases we use sets of the above defined relations to denote disjunctions of relations.

Fig. 6 shows a situation where it is not sensible to decide visually between the alternatives

A;B clb C and A;B cbl C. Such a configuration is described by the relation

A;B ðcbl; clbÞ C.
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3. The structure of a ternary representation algebra

The well-known concept of relation algebra has been widely investigated and there exist

many well-known techniques [23,24] for handling this kind of structure. However, there

are some algebras (Double-Cross and even RCC-8 for non-regular sets) which are natural

from a human viewpoint, but whose structural properties cannot be captured by the notion

of relation algebra.

In order to ‘‘capture’’ these algebras, we propose and generalize the concept of

representation algebra [25]. The purpose for using this structural type is merely that the

most interesting question is whether a given set of constraints (over a set of relations) is

satisfiable in a given model. The reason for this statement lies in the fact (due to [26]) that all

other reasoning problems (for constraint systems) can be reduced in polynomial time to

satisfiability. The (strong) composition is used as a reasoning ‘‘tool’’ for deriving facts or for

reducing the search tree, but it does not imply a greater expressiveness of the structure. This

leads to the idea that the two concepts of reasoning and representing should not be part of the

same structure, instead, as common in AI, there is a Knowledge Base (a model), where the

facts are expressed in a knowledge representation language [27] and a set of inference rules,

which provides the framework for reasoning. It is obvious that any representation structure

needs at least the expressiveness of propositional logic to be useful. In other words, any sort

of algebra which is used for representation needs to be at least a Boolean algebra. For these

reasons we next investigate various structures. We start with the concept of relational algebra.

We then present the concept of a representation algebra, which up to now is defined for

binary relations. Then, finally, we discuss a weak representation algebra, which is the

generalization of the representation algebra for non-binary algebras.

3.1. Generalization of binary representation algebras

We begin by recalling the definition of ternary relations.

Definition 1 (Ternary relation). Let U be a set. A subset R of the Cartesian product

U �U �U is called a ternary relation on M.

Definition 2 (Logical characterization of operators). Let a; b; c 2 U and R;S be relations

of U :

R t S ¼ fða; b; cÞjða; b; cÞ 2 R _ ða; b; cÞ 2 Sg,

R u S ¼ fða; b; cÞjða; b; cÞ 2 R ^ ða; b; cÞ 2 Sg,

R ¼ fða; b; cÞjða; b; cÞeRg.

ARTICLE IN PRESS

A

C

A, B (cbl, clb) C

B

Fig. 6. Coarser spatial knowledge.
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This is an obvious generalization of the binary operators t;u;�. The binary operators �

and the unary operator T [24] cannot be so easily generalized because there are not only six

possible generalizations of the ‘‘converse’’ operator but also more than one possible

generalization of the operator of composition. In the previous section we defined relations

between triples of points on the 2D-plane. Now we define a set of unary and binary

operations that allows deducing new relations about point sets from given relations about

these points. Unary operations (transformations) use relations about three points to

deduce a relation which holds for a permuted sequence of the same points. Binary

operations (compositions) deduce information from two relations which have two points

in common (the set consists of four points). The result is then a relation of one of the

common points with the two other points.

As we have three arguments, we have 3! ¼ 6 possible ways of arranging the arguments

for a transformation. Following Zimmermann and Freksa [7] we use the following

terminology and symbols to refer to these permutations of the arguments (a,b : c):

Term Symbol Arguments

Identical ID a,b : c

Inversion INV b,a : c

Short cut SC a,c : b

Inverse short cut SCI c,a : b

Homing HM b,c : a

Inverse homing HMI c,b : a

The transformation table for the TPCC is in Fig. 8. For any permutation p there exists

an inverse permutation p0 such that R R � p0ðpðRÞÞ for any relation R.

Permutation Inverse

ID ID

INV INV

SC SC

SCI HM

HM SCI

HMI HMI

The TPCC is not closed under transformations This means that results of a

transformation can constitute proper subsets of the base relations. Since we need many

sets of relations as a result of transformed relations, we introduce here an iconic notation

of these relations, which makes the presentation more compact.

The segments corresponding to a relation are presented as filled segments (see Fig. 7 for

the correspondence between icon segments and atomic relations). Unions of relations then

simply have several segments that are filled. The reference axis and the dividing lines

between left, right, front, and back are also presented in the icon to make the visual

identification of the relation symbols easier. The iconic representation is easier to translate
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into its semantic content (the denoted spatial point configuration) compared with a

representation that uses the textual relation symbol (Fig. 8). Furthermore, unions can be

expressed in a compact way.

In order to reduce the size of the table, the trivial cases for dou and tri are omitted.

Symmetric cases can be derived by using a reflection operation (reflection on an axis). The

results of SC(dsf) and SCI(dsf) also include dou as a result.

As mentioned above the TPCC is not closed under transformations since results of a

transformation can constitute proper subsets of the base relations. For a given calculus one

can try to build the closure with respect to a set of operations by iteratively adding the

operation results (e.g. potential subsets of the original base relations) to a new set of base

relations until a fix point is reached. This construction was performed for Freksa’s single

cross calculus [2] (see Section 1) by Scivos and Nebel [28]. The resulting calculus is an

extension of Freksa’s original Double-Cross calculus [2]. The acceptance regions of the

extended Double-Cross calculus are depicted on Fig. 9.

With ternary relations, one can think of different ways of composing them. However

there are only a few ways to compose them in such a way that we can use them to enforce

ARTICLE IN PRESS

dou

dou

HM

SCI

SC

INV

ID

HMI

Fig. 8. Permutation table for TPCC relations.

dsl

csl

dfl

dlf
cfl

dbl

dlb

drf

crf

dfr

cfr

dsr
dbr

drb

clf

crb

cbr

clb

cbl

csr

sam csb dsbdsf csf

Fig. 7. Iconic representation for TPCC relations.
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local consistency [28]. By trying to generalize the path-consistency algorithm [29], we want

to enforce 4-consistency [9]. We use the following (strong) composition operation:

8A;B;D : A;Bðr1 � r2ÞD29C : A;Bðr1ÞC ^ B;Cðr2ÞD.

It can be concluded from the granularity, that the TPCC is not closed under strong

composition. This is an inherent problem, but there are other algebras, as well, such as

RCC-5 for non-regular sets which are not closed under composition. As a consequence

the 4-consistency cannot be directly enforced. Nonetheless, a weak composition

operation r1Br2 for two relations r1 and r2 can be defined. This is the most specific

relation such that

8A;B;D : A;Bðr1Br2ÞD 9C : A;Bðr1ÞC ^ B;Cðr2ÞD.

While using the weak composition, we cannot enforce 4-consistency, as we have

mentioned, though we still get useful inferences. We use this weak composition for

inferences in the application scenario in Section 4.

The table for weak composition of TPCC relations is shown in Fig. 10. The first operand

determines the row, the second operand the column. Again, the table omits entries which

can be found by reflection in order to reduce the size of the table. And the trivial cases for

dou and tri are again omitted.

We now show that the composition is not closed. In [21] it was shown that calculations

with relations can be done by calculating with complex numbers. For this reason a relation

R � ð>nsumneqÞ can be identified with the region RegR:¼fz ¼ xþ {y 2 C j ðð0; 0Þ;
ð1; 0Þ; ðx; yÞÞ 2 Rg. Examples are csb ¼�1; 2½ and dsb ¼�2;1½. In [21] it was proven that

there is an easy description for all composition using this formalism. In our case we get

R1 � R2 ¼ fz1 þ ð1� z2Þ � z1ð1� z2Þ j z1 2 RegðR1Þ and z2 2 RegðR2Þg.

Hence,

Regðcsb � csbÞ ¼ fz1 þ ð1� z2Þ � z1ð1� z2Þ j z1 2 Regð�1; 2½Þ and z2 2 Regð�1; 2½Þg.

In other words, the range of the function z1 þ ð1� z2Þ � z1ð1� z2Þ on the domain

�1; 2½��1; 2½ is �1; 3½. Thus we see that the composition of csb � csb, which is a subset of

fcsb; dsbg is actually a proper subset, because csb � csb ¼ fcsb; dsbp�2;3½gD! csb � csb.
In a paper by Isli and Cohn [9] the notion ternary relation algebra was introduced for

the first time. We set T1 :¼Sc and T2 ¼ Sci:
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Fig. 9. Acceptance regions of the extended Double-Cross calculus.
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Fig. 10. Composition of TPCC relations.
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Definition 3 (Ternary relation algebra). A ternary relation algebra is a structure RA ¼

ðR;t;u;�;>;?; id; �;T1 ;T2 Þ where ðR;t;u;�;>;?Þ is a Boolean algebra, R is a set of ternary

relations, and � is a binary operation, T1 ;T2 are unary operations, where for all relations

x; y; z 2 R the following holds:

ðx � yÞ � z ¼ x � ðy � zÞ, ð1Þ

ðx t yÞ � z ¼ ðx � zÞ t ðy � zÞ, ð2Þ

x � id ¼ id � x ¼ x, ð3Þ

ðxT1ÞT1 ¼ x, ð4Þ

ðx t yÞT1 ¼ xT1 t yT1 , ð5Þ

ðx � yÞT1 ¼ yT1 � xT1 , ð6Þ

ððxT2ÞT2 ÞT2 ¼ x, ð7Þ

ðx t yÞT2 ¼ xT2 t yT2 , ð8Þ

xT2 � ðx � yÞ u y ¼? . ð9Þ

It is not hard to see that Double-Cross or TPCC are not ternary relation algebras

because those algebras are not closed under permutations or composition. For this reason

we want to analyze the structure of these algebras and find out the properties we need. It

must follow that if an algebra is not closed under transposition, the conditions ð4Þ; ð7Þ
cannot be generally satisfied.

A weak representation algebra is a representation algebra [25] that is not closed under

transformation. More precisely:

Definition 4 (Weak representation algebra). A weak representation algebra is a structure

RA ¼ ðR;t;u;�;>;?; id;T1 ; . . . ;Tn Þ, where T i are transformations, over a universe U

where the ternary relations are interpreted with the following properties:

(1) R is a relation partition on U �U �U .

(2) A Boolean algebra for ðR;t;u;�;?;>Þ with the usual semantics.

(3) Both structures are connected in a way that for each transformation T and the inverse
T 0 they form a normal Boolean algebra with operators for

ðx t yÞT ¼ xT t yT ,

x � ðxT ÞT
0

,

0T ¼ 0.

Definition 5 (Reasoning representation algebra). A reasoning representation algebra is a

structure ðRA; �Þ, whereRA is a representation algebra and � is an inference calculus with

the following additional properties:

ðx t yÞ � z ¼ ðx � zÞ t ðy � zÞ,

x � id ¼ id � x ¼ x.

The reasoning representation algebra ðRA; �Þ is a relation algebra if it is

closed under composition and under transformation. If � is the weak composition ðBÞ
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it is called [28] constraint algebra. It is now possible to identify these new kinds of

structures.

Lemma 1. TPCC is a weak representation algebra, with weak composition it is a constraint

algebra.

3.2. Reasoning about ternary relations

The standard method for reasoning with relation algebras is to use Ladkin and

Reinefeld’s algorithm [30] which uses backtracking and employing the path-consistency

algorithm as a forward checking method. This scheme was extended by Isli and Cohn [9]

for ternary relation algebras. It can be easily applied to the flip-flop calculus, which was

described in Section 2.

A prerequisite for using the standard constraint algorithms is to express the calculi in

terms of relation algebras in the sense of Tarski [24]. But since the TPCC is neither closed

under transformations nor under composition, we cannot use this scheme. However,

simple path-based inferences can be performed using the following scheme. The last two

relations of a path are composed. Then the reference system is incrementally moved

towards the beginning of the path following backward chaining.

Definition 6 (CSP). A constraint satisfaction problem (CSP) is characterized by

	 a set V of n variables fv1; . . . ; vng,
	 the possible values Di of variables vi,

	 constraints (sets of relations) over subsets of variables.

Sets of constraints on spatial formulae are called TPCC CSP. The variables are

interpreted over pairs of the real numbers R in the Euclidean plane. We call an

interpretation a model of a TPCC CSP iff all constraints are satisfied. If such a model

exists, we say that the TPCC CSP is satisfiable.

Theorem 1. The general satisfiability problem of TPCC is in PSPACE.

Proof. The algebraic semantics of the relations implies that reasoning problems in

the TPCC can be expressed as inequalities over polynomials of power 2 with

integer coefficients. Systems of such quadratic inequalities can be solved using poly-

nomial space [31]. &

A natural question might now be: How hard is the problem at least, i.e. how difficult is it

to solve the general satisfiability problem? Are there some tractable subclasses? Do the

base relations and the universal relation form a tractable subclass? Or do the base relation

and the universal relation alone already form an NP-hard problem? Unfortunately the

proof of [28] cannot be repeated because there is nothing like an ‘‘equal’’ relation fcsbg in

our calculus. However, we are able to prove:

Theorem 2. Satisfiability over fcsf ;>g is NP-hard.

Before we prove this, let us recall the definition of the Betweeness problem:

Given: A finite setM, a set C of ordered triples ða; b; cÞ of distinct elements ofM.
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Question: Is there a one-to-one function f : M ! f1; 2; . . . ; kMkg such that for each

ða; b; cÞ 2 C we have either f ðaÞof ðbÞof ðcÞ or f ðcÞof ðbÞof ðaÞ ?

Proof. This will be proven by a reduction from the Betweeness problem. For a given

instance of Betweeness y we construct a constraint set y0 as follows: for each m 2M we add

csf ðx;m; yÞ, where x and y are two fixed elements not in M. This enforces that all m are on

a line. Now, we add csf ða; c; bÞ for each tuple ða; b; cÞ 2M. It is easy to show that y is true if

and only if y0 is true and the transformation is of course a polynomial reduction. &

Corollary 1. The general satisfiability problem of TPCC is NP-hard.

3.3. Fix-point computation for ternary representation algebras

We want of course to be able to test the arc-consistency of a given set of constraints. For

this reason we present here a ternary variant of the Mackworth algorithm with a runtime

of Oðn4Þ.

A scenario consists of a set of objects O. Every three objects correspond to a relation,

which is a proposition about an ordered triple ChX ;Y ;Zi with X ;Y ;Z 2 O. In the following

we may refer to this object triple as a node. A point configuration on the other hand is a

(not ordered) set of three objects X ;Y ;Z 2 O. Then, in a fully connected constraint

network, 3! nodes refer to the same point configuration.

The set of all possible triples of n objects is denoted by V ð3Þn . This is the number of nodes

in a fully connected ternary constraint network about n objects. It clearly follows that the

number of nodes is jV ð3Þn j ¼ 3! n
3

� �

on3.

jRelTPCC j constitutes the number of base relations of the TPCC. Then each node has

only mpjRelTPCC j possible base relations that are claimed to be true for the given node

constraint. The situation m ¼ jRelTPCC j corresponds to a disjunction over all base

relations (e.g. no information is given by this constraint).

To combine all information about the same point configuration given in all the 3!

corresponding nodes, a subprogram enforceUnaryRules uses the rules INV, SC, SCI, HM,

and HMI to propagate knowledge from all 3! permutations of the same three objects to a

given node with a specific permutation of these objects.

The subprogram enforceBinaryRule returns TRUE if by using the composition table a

constraint is replaced by a stricter constraint. For a comparison with other ternary

constraint propagation algorithms, we refer to Dylla and Moratz [32].

The variable ‘‘change’’ is true if and only if for one node at least one base relation has

been excluded. If this happens, then the queue0 has been extended by a new element. For

this reason we have in the worst case no more than n3jRelTPCC j nodes in the queue (for

each Chxi ;yi ;zii with hxi; yi; zii 2 queue). In the iteration of the loop each element leads to n

calls of CheckBinaryRule. Therefore the complexity of this algorithm is Oðn4Þ.

Algorithm 1. A ternary variant of the Mackworth algorithm.

procedure TernaryMackworthðhO;D;CiÞ
1. queue fhX ;Y ;ZijChX ;Y ;Zi 2 Cinitg

2. while queuea; do

3. initialize queue0

4. for all Chxi ;yi ;zii with hxi; yi; zii 2 queue do
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5. enforceUnaryRules(Chxi ;yi ;zii)

6. for all oi 2 O do

7. if oiay ^ oiaz then

8. changed  enforceBinaryRule(Chx;y;zi;Chy;z;oii)
9. end if

10. if changed then

11. queue0 ¼ queue0 [ hx; y; oii
12. end if

13. end for

14. end for

15. queue ¼ queue0

16. end while

3.4. Comparison between the different ternary point-based reasoning algebras

As mentioned in the introduction ternary point configuration calculi can model

linguistic spatial location descriptions by human speakers. In this section we compare

different calculi in more detail.

Previous research on reference systems for spatial descriptions has led to the

identification of three different reference systems labelled by Levinson [15] as intrinsic,

relative, and absolute.

In intrinsic reference systems, the relative position of one object (the referent) to another

(the relatum) is described by referring to the relatum’s intrinsic properties such as front or

back. In such a situation, the speaker’s or hearer’s position are irrelevant for the

identification of the object. However, the speaker’s or hearer’s front or back may also

serve as origins in intrinsic reference systems. These reference systems can be modelled by

binary orientation calculi that use oriented objects (e.g. oriented line segments) as basic

elements [10,16].

Humans employing relative reference systems use the position of a third entity as origin

instead of referring to inbuilt features of the relatum. Thus, a ball (¼ referent) may be

situated to the left of a chair ð¼ relatumÞ from the speaker’s or the hearer’s point of view

ð¼ originÞ. In Fig. 11 the human speaker might refer to an object by the expression ‘‘The

object in front of the chair’’. Then the speaker would be the origin, the chair would be the

relatum.2

In absolute reference systems, neither a third entity nor intrinsic features are used

for reference. Instead, the earth’s cardinal directions such as north and south serve as

anchor directions. Calculi like Frank’s cardinal direction calculus model these reference

systems [17,18].

An established method in the multidisciplinary research field of Spatial Cognition is to

start with psychological findings and theories and build initial computational models of

human spatial concepts [33]. These computational models can then iteratively be improved

based on experimental observations (in our context experiments about human–robot

interaction). There would be no last, perfect model, but a sequence of iteratively improved

models.
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2A chair has a natural intrinsic direction (e.g. the direction of the backrest as anchor for ‘‘behind’’). We focus

here on the use of relative reference systems.
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When developing the TPCC our intention was to keep the set of distinctions which

generate the base relations as simple as possible. The distinctions have to be capable of

expressing projective location statements adequately. Preference was given to the simplest

model which explains our empirical data [34]. This procedure enables meaningful research

in the interdisciplinary and highly complex field of human–robot interaction without the

prerequisite of sophisticated and expensive system parts, which may not even be required

for enabling effective interaction.

In our human–robot interaction studies [34] we did not consider distance related

concepts since the introduction of every new parameter increases the number of necessary

human test subjects. However, current work of our students is consistent with the simple

distance feature in the TPCC acceptance region partition. To sum up, the TPCC

acceptance regions which are shown in Fig. 12 have been tested on human test subjects and

are found to be a valid approximation to linguistic behavior observed in the real world. In

contrast, the flip-flop calculus and the Double-Cross are less adequate for modelling

projective predicates (see the table in Fig. 12). Their strength lies in their feature to be

closed under transformations,3 or even composition (flip-flop) (see the table in Fig. 13).

Point-based representations are more adequate for configurations in which the

represented objects are small and are distant (e.g. they have a large distance to size ratio).

In other configurations objects cannot be represented by a single point adequately. Point-

based calculi then can represent these extended objects by representing the corners of their

bounding boxes. However, for many domains it has advantages to use a region-based

calculus to model extended objects directly. More details can be found in Section 5.

The main design decision for the TPCC relations was rather to make the distinctions

necessary in a group of domains than to enforce closedness with respect to transformations

or even composition. Equally sized, overlapping angular applicability areas of 90� each

and a single distance distinction is a natural choice then for the areal acceptance regions of

projective predicates in relative reference systems. The set of JEPD base relations of the

TPCC is constructed to support these 90� sectors, iteratively rotated by 45�. The

motivation for the linear acceptance regions (straight continuation and right angle) lies

in our experiences with qualitative instruction maps for graphical human–robot inter-

action [35]. In these applications walls are represented by their endpoints (corners).

Straight continuation and right angles are also important for representing idealized street

networks [36].

However, the TPCC model is especially suited to interpret human spatial references. In

cases in which the robot itself generates linguistic descriptions the acceptance regions do
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chairin front of behind

human speaker

Fig. 11. Human relative reference by projective predicates.

3The extended Double-Cross is closed under the transformations, the original Double-Cross does not have this

feature. With respect to projective predicates both variants are equal.

R. Moratz, M. Ragni / Journal of Visual Languages and Computing 19 (2008) 75–9890



Author's personal copy

not have to overlap [37]. Then a set of base relations of 45� each (with an 22.5 offset to the

reference direction) would be the simplest adequate model.

Also the addition of more distance distinctions has advantages for specific applications.

But the very simple geometric features of the TPCC support the construction of a sound

composition table. More complex calculi demand more effort for the construction of their

composition tables.

4. Spatial reasoning in a knowledge integration scenario

We will now demonstrate how to integrate local knowledge into survey knowledge with

the presented TPCC. The context is a mobile robot able to perceive colors and to segment

simple objects (see Fig. 14). Furthermore, the system is able to perform straight motion

steps and turnings. Since the robot has no prior knowledge about the sizes of the objects

and does not know whether the ground is perfectly flat, it cannot estimate their distances.

Thus, the robot has only access to local orientation information relative to its position.

Users interact with our system by verbally issuing simple requests to the system. These

requests to identify items in the system’s perceptual range are detected with a Nuance

Speech Recognizer.4 These requests are then fed to a semantic analysis component (for a

detailed description of the linguistic aspects please refer to [14]). To demonstrate the

capabilities of our system we first give a detailed description how the system performs
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linguistic adequacytransformations

Flip
Flop

extended
Double
Cross

TPCC

closed

closed

not closed

closed

composition

not closednot closed

weak

strong

moderate

Fig. 13. Main differences between the point-based calculi.

leftbackbehindleft

Double
Cross

Flip
Flop

TPCC

impossible ? 

Fig. 12. Relative reference by projective predicates for the different calculi.

4www.nuance.com.

R. Moratz, M. Ragni / Journal of Visual Languages and Computing 19 (2008) 75–98 91



Author's personal copy

knowledge integration on a specific example (see Fig. 145). The task is to ‘‘move to the

yellow cube behind the red disk’’, i.e. one of the relations clb, csb, or crb must hold for

ðR1;D;C1Þ or ðR1;D;C2Þ. We will refer to the disjunction of the three relations as c?b.

Fig. 15 shows the configuration from a bird’s eye view, using icons for the objects. The

perceived constraints are also listed with respect to what is known about C1 and C2.

The agent must move to deduce the desired knowledge. How a good action is selected is

beyond the scope of this paper. Therefore we limit our description here to given actions. In

our example the robot moves straight towards a position roughly in the center of the

perceived scene.

In Fig. 16 it reaches a position (R2) which provides new local perceptions. Relation 3

simply describes the agent’s move to a position where the red disk is orthogonal6 to the

moving direction of the robot which is still aligned with the directed line beginning with the

starting point R1. Note that the robot only made straight movements which is because it

still knows the direction of its starting point. The agent’s perception gives additional

knowledge on C1 and C2 relative to ðD;R2Þ. More relations are perceivable, but we

concentrate on the relations relevant for this example. In order to make a composition, we

have to transform relation 3 with the SC transformation leading to relation 3’ (Fig. 16).

Now 3’ can be composed with 5 leading to the fact that c?b is not valid for ðR1;D;C2Þ

Composing 3’ and 4 (Fig. 17) shows that C1 has a position behind or left of the red disk

seen from R1. Since C2 is not a candidate for being behind the red disk seen from the

initial position of the robot, C1 is the only cube which the instructor could have meant

with his command.

The corresponding constraint net has a set of five objects and therefore needs 60 nodes

(one for each object triple). The fixpoint computation needs 420 unary and 504 binary
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Fig. 14. Speech commands to an AIBO robot in a knowledge integration scenario.

5The distances on the image are smaller than in the real experiments for illustration purposes.
6For aspects of more adequate modelling of sensor-based information please refer to the discussion in the next

section.
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update rule applications For this scenario we generated 11 random configurations and

tested the TPCC reasoning. From the 11 cases two could already be solved by local

perception. Six cases made successful use of constraint propagation, two cases were still

ambiguous after constraint propagation, and one case could not be solved due to

insufficient precision of the AIBO’s odometry. This means that in eight out of 11 cases the

TPCC relations were an adequate representation in our scenario.
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C1
R2

D, R2

R1

R1, D 

R1, D
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R1, R2 
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C1    (1)

C1    (2)

C1    (4)

D   (4)

C1    (5)

R2

C2 !

Fig. 16. Path-based integration of 30 with 5, resulting C2 being right of D.

C2

D

C1

R1

R1, D 

D, R1

D, R1

CX ? 

C1    (1)

C2    (2)

Fig. 15. The initial situation and the perceived relations.
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5. Related work and outlook

Clementini et al. [6] suggested a framework for representing qualitative orientation and

distance. They also derived a family of algorithms for composing two distance segments.

Our TPCC can be directly expressed in their framework. We focused on a specific set of

base relations and elaborated reasoning mechanisms which were originally designed for

binary relation algebras. These constraint-based techniques are necessary to combine

arbitrary knowledge sources by enforcing path consistency.

Isli and Cohn [9] developed a ternary relation algebra for reasoning about orientations.

Their algebra has a tractable subset containing the base relations. However, Isli and

Cohn’s algebra is too coarse to directly represent linguistic projective relations like ‘‘left’’

or ‘‘front’’ [14].

The recent approach introduced by Klippel et al. [36] is an approach motivated by

interdisciplinary investigations about modelling route information. Their wayfinding choreme

theory proposes a formal treatment of conceptual route knowledge which is based on qualitative

calculi and refined by behavioral experimental research. The wayfinding choreme representation

uses a similar granularity level as the TPCC. The theory focuses on the modelling of chunking

operations rather than constraint-based reasoning as performed by the TPCC.

The newly designed calculus GPCC [38] which is based on TPCC but uses more fine-

grained base relations would be better suited to robotic applications in which a more

precise modelling of sensor-based information is necessary. However, the formal status of

GPCC compositions is still somewhat unclear. The composition tables derived so far are

only approximations to minimal composition tables.

As mentioned in Section 3.4 the abstraction of extended objects by a point-like

representative (e.g. centroid) is not adequate for many applications of orientation-based

QSR. There are several region-based QSR calculi for orientation-based reasoning.

Skiadopoulos and Koubarakis [39] developed a calculus for cardinal directions between

regions. Since their calculus models absolute reference systems it cannot directly be

compared to the TPCC. A calculus which can be viewed as a region-based counterpart to

the TPCC was developed by Clementini and Billen [40]. They constructed a model for

projective relations between regions. This model is based on a ternary point-based calculus

which is very similar to the flip-flop calculus. Regions are modelled as point sets. Relations

between the set of all points which belong to one object and the corresponding sets of two

other objects can be represented by this point-based calculus. Thereby 34 projective base

relations between the three regions can be constructed.

One can compare the application of Clementini’s and Billen’s calculus to linguistic

projective predicates with the application of the TPCC presented in Section 3.4. For

extended objects which are close to each other the ‘‘behind’’ region modelled in their
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Fig. 17. Integration of 30 with 4 resulting in C1 being somewhere behind D.
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calculus has a very natural acceptance region since it is simply the ‘‘visually occluded’’

region behind the relatum. For more angular concepts like ‘‘left’’ finer grained angular

resolutions might be beneficial which are supported by our TPCC. So both calculi seem to

complement each other. There are also tables for the transformations and for the

composition operation of the region-based calculus for projective relations [41]. Therefore

one can apply the ternary variant of the Mackworth algorithm also this calculus. And our

new result about the Oðn4Þ-complexity of this algorithm also holds for the region-based

calculus.

In the field of robotics itself there were methods for representing uncertain position data

in robotics using small acceptance areas with sharp boundaries even as early as the 1980s

[42]. However, this approach to modelling was not followed up on, as probabilistic

modelling became available [43]. In laboratory situations in which systematic errors could

be excluded through calibration methods, as a result only statistically independent

measuring and movement errors remain. Probabilistic approaches return very realistic

estimates. There the particularly favorable property of independently sourced errors will be

used: they can mutually partially compensate each other. One then obtains, in contrast

with propositions relying on fixed regions of error, more precise estimations. However,

these estimations are optimistic and are not adequate when a pessimistic estimation is

necessary for a critical application in the real world. Propagation-based reasoning with

fine-grained qualitative calculi derived from TPCC could be applied in these scenarios and

produce more reliable results because they would be more pessimistic results.

Another even more important situation where probabilistic methods are not aedequate

is one in which generic spatial configurations need to be described. As already pointed out

by Hernández [44], qualitative, symbolic spatial expressions can express underdetermined

knowledge in a systematic way. Generic instructions can be given by linguistic, symbolic

descriptions in a straightforward and intuitive way, for example by issuing a permanent or

habitual instruction to a future semi-autonomous robot such as: ‘‘If there are shoes in

front of a room door in a hotel, then polish the shoes’’, ‘‘Whenever there is a risk of a

collision with another robot or a person, avoid it by moving towards the right wall’’. These

generic spatial configurations can be quite well described and reasoned about using coarse,

cognitively motivated calculi like our TPCC. However, these settings are still too

technically demanding for the procedural modules of today’s autonomous robots, which is

the reason why we gave a different sample application in the previous section.

Future investigations also aim to temporalize these calculi (comparable with Erwig’s and

Schneider’s [45] temporalization of a topological calculus) in order to express dynamic

problems and to bring deterministic planning into play.

6. Conclusion

In this paper we have presented the new TPCC for representing and reasoning about

qualitative relative position information. The TPCC representation is based on results of

psycholinguistic research on reference systems and is a combination of a relative position

calculi with a qualitative distance measure. By this combination, it is possible to identify a

system of 27 JEPD atomic relations between point triples on the real plane. An essential

part of constraint-based reasoning methods are composition tables. Thus, we have

provided these for TPCC. Theoretical investigations of TPCC has identified this calculus

ARTICLE IN PRESS

R. Moratz, M. Ragni / Journal of Visual Languages and Computing 19 (2008) 75–98 95



Author's personal copy

as part of the weak representation algebra class, and that the general satisfiability problem

lies in the same class as classical (deterministic) planning PSPACE.

Potential applications of the calculus are demonstrated with a robotics scenario. In the

scenario, linguistic commands and coarse perceived configuration information have to be

integrated by constraint propagation to get survey knowledge. In the conceptualization of

a qualitative calculus, a compromise must be made between a fine resolution, necessary for

robotic applications, versus the expenditure which must be made to develop a verifiable

table of compositions. The accuracy of the calculus permits robotic applications, in

particular in cognitively driven scenarios featuring linguistic communication and

approximate visual perception.
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constraint propagation algorithm and computing the composition table. This work was

supported by the DFG Transregio TR 8 ‘‘Spatial Cognition’’.

References

[1] A. Cohn, Qualitative spatial representation and reasoning techniques, in: G. Brewka, C. Habel, B. Nebel

(Eds.), KI-97: Advances in Artificial Intelligence, Lecture Notes in Artificial Intelligence, Springer, Berlin,

1997, pp. 1–30.

[2] C. Freksa, Using orientation information for qualitative spatial reasoning, in: A.U. Frank, I. Campari,

U. Formentini (Eds.), Theories and Methods of Spatial-Temporal Reasoning in Geographic Space, Springer,

Berlin, 1992, pp. 162–178.

[3] D. Randell, Z. Cui, A. Cohn, A spatial logic based on regions and connection, in: Proceedings KR-92, San

Mateo, Morgan Kaufmann, Los Altos, CA, 1992, pp. 165–176.

[4] J. Renz, B. Nebel, On the complexity of qualitative spatial reasoning: a maximal tractable fragment of the

region connection calculus, Artificial Intelligence 108 (1–2) (1999) 69–123.

[5] M.F. Worboys, E. Clementini, Integration of imperfect spatial information, Journal of Visual Languages and

Computing 12 (2001) 61–80.

[6] E. Clementini, P. Di Felice, D. Hernandez, Qualitative representation of positional information, Artificial

Intelligence 95 (1997) 317–356.

[7] K. Zimmermann, C. Freksa, Qualitative spatial reasoning using orientation, distance, path knowledge,

Applied Intelligence 6 (1996) 49–58.

[8] A. Isli, R. Moratz, Qualitative spatial representation and reasoning: algebraic models for relative position,

Technical Report FBI-HH-M-284/99, Universität Hamburg, FB Informatik, Hamburg, 1999.

[9] A. Isli, A. Cohn, Qualitative spatial reasoning: a new approach to cyclic ordering of 2d orientation, Artificial

Intelligence 122 (2000) 137–187.

[10] R. Moratz, J. Renz, D. Wolter, Qualitative spatial reasoning about line segments, in: W. Horn (Eds.), ECAI

2000, Proceedings of the 14th European Conference on Artificial Intelligence, IOS Press, Amsterdam, 2000.

[11] J.-C. Latombe, Robot Motion Planning, Kluwer Academic Publishers, Dordrecht, 1991.
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