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ABSTRACT

Motivation: New developments in post-genomic technology now

provide researchers with the data necessary to study regulatory

processes in a holistic fashion at multiple levels of biological organi-

zation. One of the major challenges for the biologist is to integrate and

interpret these vast data resources to gain a greater understanding of

the structure and function of the molecular processes that mediate

adaptive and cell cycle driven changes in gene expression. In order

to achieve this biologists require new tools and techniques to allow

pathway related data to be modelled and analysed as network

structures, providing valuable insights which can then be validated

and investigated in the laboratory.

Results: We propose a new technique for constructing and analysing

qualitative models of genetic regulatory networks based on the Petri

net formalism. We take as our starting point the Boolean network

approach of treating genes as binary switches and develop a new

Petri net model which uses logic minimization to automate the cons-

truction of compact qualitative models. Our approach addresses the

shortcomings of Boolean networks by providing access to the wide

range of existing Petri net analysis techniques and by using non–

determinism to cope with incomplete and inconsistent data. The

ideas we present are illustrated by a case study in which the genetic

regulatory network controlling sporulation in the bacterium Bacillus

subtilis is modelled and analysed.

Availability: The Petri net model construction tool and the data files

for theB. subtilis sporulation case studyare available at http://bioinf.ncl.

ac.uk/gnapn

Contact: L.J.Steggles@ncl.ac.uk

1 INTRODUCTION

New developments in post-genomic technology now provide

researchers with the data necessary to study regulatory processes

in a holistic fashion at multiple levels of biological organization

(Spellman et al., 1998). One of the major challenges for the biolo-

gist is to integrate and interpret these vast data resources to gain a

greater understanding of the structure and function of the molecular

processes that mediate adaptive and cell cycle driven changes in

gene expression. The visualization and computational representa-

tion of these complex regulatory processes as network structures

facilitates the application of a range of analysis and simulation

techniques that can, in turn, shed light on our understanding of

their organization and behaviour (Uetz et al., 2000). The knowledge

gained from these analyses should then provide valuable insights,

allowing the formulation of hypotheses which can then be tested in

the laboratory. In order to achieve this vision, biologists require new

automated formal techniques to allow pathway related data to be

modelled and analysed.

In this paper, we present a new technique for qualitatively mod-

elling and analysing genetic regulatory networks. We take as our

starting point Boolean networks (Kauffman, 1969; Akutsu et al.,
1999), an existing modelling approach for regulatory networks in

which regulatory entities (i.e. genes, proteins and external signals)

are viewed abstractly as binary switches. While Boolean networks

have proved successful in modelling real world genetic regulatory

networks (Huang, 1999; Szallasi and Liang, 1998), they suffer from

a number of shortcomings: analysis can be problematic due to the

exponential growth in Boolean states and the lack of tool support;

and they do not cope well with the inconsistent and incomplete data

that often occurs in practice. To address these problems, we propose

a new model for genetic regulatory networks based on Petri nets

(Reisig, 1985; Murata, 1989), a well developed formal framework

for modelling and analysing complex concurrent systems (Reisig

and Rozenberg, 1998). We illustrate our modelling approach by

presenting a case study in which part of the genetic regulatory

network for initiating sporulation in Bacillus subtilis (Stragier

and Losick, 1996; Stephenson and Lewis, 2005) is modelled and

analysed.

A range of initial investigations into using Petri nets to model

biological systems have appeared in the literature to date, including:

place/transition nets (Reddy et al., 1996; Chaouiya et al., 2004;

Simão et al., 2005); stochastic nets (Gross and Peccoud, 1998;

Tsavachidou and Leibman, 2002; Shaw et al., 2006); high–level

nets (Heiner et al., 2001; Comet et al., 2005); and hybrid nets

(Matsuno et al., 2000). An interesting comparison of these different

approaches is presented in Peleg et al. (2005). The results we pre-

sent significantly extend the related ideas presented in Chaouiya

et al. (2004), both semantically and in the provision of automated

tool support for model construction and analysis.

This paper is organized as follows. In Section 2 we give a brief

introduction to the theory of Petri nets. In Section 3 we describe a

new approach to modelling the Boolean behaviour of genetic regu-

latory networks using Petri nets. In Section 4 we consider a case

study in which we apply our techniques to modelling and analysing

the genetic regulatory network for sporulation in B.subtilis. Finally,

in Section 5, we present some concluding remarks.

Note in the sequel we assume the reader is familiar with the basic

Boolean operators not, or and and (Grossman, 2002).�To whom correspondence should be addressed.
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2 PETRI NETS

The theory of Petri nets (Reisig, 1985; Murata, 1989) provides a

graphical notation with a formal mathematical semantics for mod-

elling and reasoning about concurrent, distributed systems. A Petri

net is a directed bipartite graph and consists of four basic compo-

nents: places, which are denoted by circles; transitions denoted by

black rectangles; arcs denoted by arrows; and tokens denoted by

black dots. A simple example of a Petri net is given in Figure 1.

The places, transitions and arcs describe the static structure of the

Petri net. Each transition has a number of input places (places with

an arc leading to the transition) and a number of output places
(places with an arc leading to them from the transition). We norm-

ally view places as representing resources or conditions and tran-

sitions as representing actions or events (Murata, 1989). Note arcs

that directly connect two transitions or two places are not allowed.

The state of a Petri net is given by the distribution of tokens on

places within it, referred to as a marking. The state space of a Petri

net is therefore the set of all possible markings. The dynamic prop-

erties of the system are modelled by transitions which can fire to

move tokens around the places in a Petri net. Transitions are said to

be enabled if each of their input places contain at least one token. An

enabled transition can fire by consuming one token from each of its

input places and then depositing one token on each of its output

places. For example, in Figure 1 both transitions t1 and t2 are

enabled. Firing transition t1 would result in a token being taken

from place p1 and a new token being deposited on place p3. Note that

the firing rule is normally generalized to allow arcs to contain

weights indicating the number of tokens to be consumed or pro-

duced when a transition is fired (Murata, 1989). Since such arc

weights are not required in the sequel we have omitted them

from our introduction for simplicity.

At any given instance a number of transitions may be enabled to

fire (as in the example in Fig. 1). In such a case, a transition is chosen

non–deterministically to fire. A marking m2 is said to be reachable

from a marking m1 if there is a sequence of transitions that can be

fired starting from m1 which results in the marking m2. A Petri net is

said to be k–bounded if in all reachable markings no place has more

than k tokens. A Petri net which is 1–bounded is said to be safe.

Safeness is an important property since any safe Petri net is well–

suited to automatic analysis (Reisig and Rozenberg, 1998).

An important advantage of Petri nets is that they are supported by

a wide range of theoretically well–founded techniques and tools for

simulation and analysis. For example, Petri nets can be automati-

cally checked for boundedness and the presence of deadlocks

(markings in which no transitions are enabled to fire) (Reisig

and Rozenberg, 1998). A Petri net can also be analysed by con-

structing its reachability graph (Murata, 1989) which captures the

possible firing sequences that can occur from a given initial

marking. A range of techniques based on model checking (Esparza,

1994; Khomenko, 2003) have been developed for analysing reacha-

bility properties and these provide a means of coping with the

potentially large state space of a Petri net model.

3 MODELLING APPROACH

In this section we present a new qualitative model for genetic

regulatory networks based on Petri nets. The idea is to use an

intuitive Petri net structure to represent the Boolean relationships

that exisit between regulatory entities. We start by defining each

entity’s individual behaviour as a truth-table following the approach

used in Boolean networks (Akutsu et al., 1999). We then extract

from these truth-tables the fundamental relationships between enti-

ties as Boolean terms by applying logic minimization techniques

(Grossman, 2002; Breeding, 1992). In particular, we automate this

process using the Espresso (Brayton et al., 1984) logic minimization

tool. We then directly translate these Boolean terms into appropriate

Petri net control structures to produce a compact Petri net model that

correctly captures the original Boolean behaviour of a genetic regu-

latory network. Both the synchronous and asynchronous semantic

interpretation of Boolean networks (Gershenson, 2002) can be mod-

elled using our approach. We choose to focus on the synchronous

semantics here and develop a simple two phase commit protocol to

allow synchronized state updates within the asynchronous Petri net

framework. Once constructed, our Petri net models can be simulated

and analysed using the wide range of existing Petri net tools. These

tools provide a range of powerful, theoretically well–founded anal-

ysis techniques (Reisig and Rozenberg, 1998; Esparza, 1994) which

allow researchers to investigate the structure and dynamic behavi-

our of a genetic regulatory network.

3.1 Boolean networks

In a Boolean network (Kauffman, 1969; Akutsu et al., 1999) the

state of each regulatory entity is represented as a Boolean value,

either 1 representing the entity is active (e.g. a gene is expressed or a

protein is present) or 0 representing the entity is inactive (e.g. a gene

is not expressed or a protein is absent). The state of a genetic

regulatory network containing n entities is then naturally repre-

sented as a Boolean vector [g1, . . . ,gn] and this gives us a state

space containing 2n states (Akutsu et al., 1999). The behaviour of

each gi is described using a Boolean function fi which, given the

current states of the entities in its neighbourhood (i.e. those entities

which directly affect it), defines the next state for gi. As an example

consider the Boolean network in Figure 2a (Akutsu et al., 1999)

which contains three entities g1, g2 and g3. The next state g0
i of each

entity is defined by the truth-table in Figure 2b or equivalently by

the following Boolean functions:

g0
1 ¼ g2‚ g0

2 ¼ g1g3‚ g0
3 ¼ g1

where the notation �xx, x + y and xy is used to represent the Boolean

operators not, or and and (Grossman, 2002), respectively. The

dynamic behaviour of a Boolean network can be semantically inter-

preted either asynchronously where genes update their state inde-

pendently, or synchronously where all genes update their state

together (see Gershenson, 2002). We focus on the synchronous

semantics in this paper which appears to be widely used in the

literature (Bower and Bolouri, 2001; Gershenson, 2002). The synch-

ronous behaviour for our example Boolean network is shown in the

Fig. 1. A simple example of a Petri net.
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truth-table in Figure 2b, where each row represents a synchronized

state transition.

Boolean networks have proved successful in modelling real world

regulatory networks (Huang, 1999; Szallasi and Liang, 1998). How-

ever, their application in practice is hindered by a number of short-

comings. In particular, analysis can be problematic due to the

exponential growth in Boolean states and the lack of tool support

in this area. They are also unable to cope with the inconsistent and

incomplete regulatory network data that often occurs in practice.

For this reason we consider extending the Boolean network

approach by developing a Petri net based Boolean model.

3.2 Deriving Boolean regulatory relationships

Given a set of truth-tables defining the Boolean behaviour of a

genetic network we would like to extract a compact representation

of the regulatory relationships between entities. We address this

using well–known techniques from Boolean logic (Breeding, 1992;

Grossman, 2002) which allow us to derive Boolean terms describing

the functional behaviour of each entity. The idea is to consider the

truth-table for each entity and to list all the states which result in a

next state in which the entity is active (i.e. in state 1). For example,

in the truth-table given in Figure 2b the entity g1 is active after

the states 010, 011, 110 and 111 (where xyz denotes the state g1 ¼ x,

g2 ¼ y and g3 ¼ z). We can represent each state as a product term,

called a minterm (Grossman, 2002), using the and Boolean operator,

where the variable gi is used to represent that an entity gi is in state

1, and the negated variable gi represents that an entity gi is 0. So the

state 010 for g1 is represented by the minterm g1g2g3. Applying

this approach and then summing the derived minterms using the or
Boolean operator allows us to derive a Boolean term in disjunctive

normal form (Grossman, 2002) that defines the functional behaviour

of an entity. Continuing with our example, we derive the following

Boolean term for gene g1:

g1g2g3 þ g1g2g3 þ g1g2g3 þ g1g2g3

Note that this term completely defines the functional behaviour of

g1, i.e. whenever the term above evaluates to 1 in a state we know g1

will be active in the next state, and whenever the term is 0 we know

g1 will be inactive. Using this technique we can construct a Boolean

network that completely specifies the functional behaviour of a

genetic network.

The Boolean terms derived above are often unnecessarily com-

plex and can normally be simplified using logic minimization
(Breeding, 1992; Grossman, 2002). From a biological point of

view, this simplification process is important as it helps to identify

the underlying regulatory relationships that exist between entities in

a genetic network. The idea behind logic minimization is to simplify

Boolean terms by merging minterms that differ by only one vari-

able. As an example, consider the term g1g2g3 þ g1g2g3 which

contains two minterms. Note that these two minterms differ by only

one variable g3 and this implies that the value of g3 is unimportant

in determining the value of the term. We can therefore simplify the

term by merging the two minterms to produce a simpler term g1g2

which is logically equivalent (Grossman, 2002). For brevity we omit

the full details of Boolean logic minimization here (we refer the

interested reader to Breeding, 1992) and instead illustrate the idea

by simplifying the Boolean terms in our running example:

ðg0
1Þ g1g2g3 þ g1g2g3 þ g1g2g3 þ g1g2g3

) g1g2 þ g1g2g3 þ g1g2g3

) g1g2 þ g1g2 ) g2‚

ðg0
2Þ g1g2g3 þ g1g2g3 ) g1g3‚

ðg0
3Þ g1g2g3 þ g1g2g3 þ g1g2g3 þ g1g2g3

) g1g2 þ g1g2g3 þ g1g2g3

) g1g2 þ g1g2 ) g1:

Note that the minimized Boolean terms presented above correctly

correspond to the Boolean network definition in Section 3.1.

3.3 Modelling Boolean networks using Petri nets

While the Boolean terms derived in Section 3.2 compactly capture

the behaviour of a Boolean network they are not amenable to anal-

ysis in their current form. We address this by translating these terms

into appropriate Petri net control structures. The approach we take is

to represent the Boolean state of each entity gi in a Petri net by the

well–known approach (see for example Reisig, 1985; Chaouiya

et al., 2004) of using two complementary places Pi and Pi,
where a token on place Pi indicates the entity is active, gi ¼ 1,

and a token on place Pi that it is not, gi ¼ 0. Note the total number

of combined tokens on places Pi and Pi will therefore always be

equal to 1.

Since Petri nets fire transitions asynchronously it is straight-

forward to model the asynchronous behaviour of a Boolean network

in this setting (see Chaouiya et al., 2004 for a related approach). We

focus on modelling the synchronous behaviour of a Boolean net-

work here and make use of a two phase commit protocol to synch-

ronise updates in our model. In the first phase of the protocol each

entity gi in the model decides whether it should be active or not in

the next state. This decision is recorded using two places, Pi_On and

Pi_Off, where a token on Pi_On indicates gi is active in the next

state and a token on Pi_Off that it is not. When all the entities have

made a decision about their next state the second phase of the

protocol begins and the state of each entity is synchronously

updated.

Phase one: update decisions. We begin by considering under what

conditions each entity is active (i.e. in state 1) in its next state

and use the process detailed in Section 3.2 to derive a minimized

Boolean term which compactly captures these conditions. We then

model the minimized Boolean term for each entity gi in our Petri

net by adding a separate transition to represent each minterm it

contains. The idea is that each transition will be enabled to fire,

Fig. 2. An example of a Boolean network for three entities g1, g2 and g3.
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placing a token on Pi_On, precisely when the corresponding min-

term is true. As an example, suppose the following minimized

Boolean term

gxgy þ gxgz

has been derived for a gene gx. Then the first minterm gxgy tells us

that gene gx should be expressed in the next state (i.e. gx ¼ 1) when

genes gx¼ 0 and gy¼ 1 in the current state. We model this minterm

using the transition t1 depicted in Figure 3. This transition fires

when places Px and Py contain a token (i.e. when gx¼ 0 and gy¼ 1)

and results in a token being placed on Px_On (indicating gx is

expressed in the next state). Note the use of read arcs (Murata,

1989) here, i.e. bidirectional arcs which do not consume tokens

but just check they are present. This ensures the tokens on places

Px and Py are not removed at this stage (doing so would corrupt the

current state of the genes). The start place Px_Start is used as a

control input to the transition to ensure only one decision is made for

gene gx during a single protocol step (update transitions for gx can

only fire if a token is present on Px_Start). The place Px_Syn is used

to indicate when an update decision has been made for gene gx,

information needed by the protocol to determine when the first

phase is complete. This process is then repeated to model the

complete Boolean term for a given entity. In our example,

this results in transition t2 (Fig. 3) being added to model the

minterm gxgz.

It remains to model the complementary decision procedure for

deciding when an entity is inactive in the next state, that is when

Pi_Off should be marked. To do this we simply apply the process

detailed above again but this time consider the conditions under

which each entity becomes inactive. We then model the resulting

Boolean terms as explained above except that this time each tran-

sition we add will mark place Pi_Off instead of Pi_On.

Phase two: synchronous state update. After all the entities have

made their update decisions all the synchronisation places will be

marked and this allows the control transition depicted in Figure 4a

to fire, initiating the second phase of the protocol. This phase per-

forms a synchronised update step in which the state of each entity gi

is updated in turn by placing a token on Pi if place Pi_On is marked

or on Pi if place Pi_Off is marked. An example fragment of the Petri

net structure used for this update is given in Figure 4b for an

arbitrary entity gi. The fragment contains four transitions which

represent the four possible update situations that can occur:

move token from place Pi to Pi; leave token on Pi; move token

from place Pi to Pi; leave token on Pi. Only one of these transitions

will be enabled to fire. Once the gene gi has updated its state a token

is placed on place Pi_Done to indicate that the next entity can be

updated. When the last entity gn has been updated place Pn_Done
will be marked and the control transition depicted in Figure 4c

initiates a reset step which re-marks the start places, allowing

the whole synchronization protocol to begin again.

3.4 Inconsistent and incomplete data

So far we have assumed that we are always able to derive complete

and consistent truth-tables which correctly capture the behaviour of

each entity in a genetic network. However, in practice it is rarely the

case that a genetic network is fully understood and indeed, this is

one important reason for modelling such networks. The data pro-

vided may be incomplete in the sense that information is missing

about what happens in certain states, or it may be inconsistent in that

we have conflicting information. The result is that the behaviour of

some entities under certain conditions may be unknown.

Such incomplete and/or inconsistent behavioural information is

problematic for standard Boolean network models which are unable

to represent the possibility of more than one next state. However,

Petri nets are a non-deterministic modelling formalism (Reisig,

1985) which are able to represent conflicting choices and unknown

behaviour by incorporating all possible next state transitions. The

idea is to identify for each entity all the problematic states in which

the next state is unknown and then to include these states when

deriving Boolean terms using logic minimization for both the active

and inactive next state behaviour. The result will be a model in

which for any unknown state there will be two conflicting transi-

tions enabled, representing the choice between an active or inactive

next state for the associated entity. In this way we allow these

problematic states to exhibit both possible behaviours and rely

on the non–deterministic choice mechanisms of the Petri net model.

As an example, consider the truth-table defining the behaviour of

an entity g2 presented in Table 1. The question mark indicates that

when g1 ¼ 1 and g3 ¼ 0 the next state for g2 is unknown. Using our

approach, we add the minterm g1g3 representing the unknown state

to the terms derived to define the active and inactive next state of g2,

Fig. 4. Petri net fragments for controlling synchronous updates.

Fig. 3. Transitions modelling the Boolean term gx gy þ gx gz for gene gx.
Table 1. Truth-table for entity g2

g1 g3 g2

0 0 0

0 1 0

1 0 ?

1 1 1

Analysing genetic regulatory networks: a Petri net approach
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resulting in the following defining equations:

g2 ¼ g1g3 þ g1g3‚ g2 ¼ g1g3 þ g1g3 þ g1g3:

Applying logic minimization allows us to simplify these to g2 ¼ g1

and g2 ¼ g1 þ g3 which will then be modelled using three transi-

tions as shown in Figure 5. Note that transitions t1 and t3 are in

conflict since they are both enabled to fire in state g1 ¼ 1 and g3 ¼ 0

(Fig. 5) and this represents the non–deterministic choice between the

two possible next states for g2 in this unknown state.

We can still perform meaningful analysis on the resulting Petri

net models since the Petri net tools are able to cope with such

non–deterministic choices. As more data becomes available for a

genetic network the Petri net model can be refined to reduce the

amount of non-determinism it contains and thus Petri nets provide

an interesting means of documenting the development of knowledge

about a genetic network.

3.5 Tool support for model construction

To support the modelling approach presented above we have

developed a prototype tool to automate the model construction

process. The tool takes as input a series of truth-tables describing

the behaviour of the entities in a genetic network. These truth-tables

are allowed to contain inconsistent and incomplete data as discussed

in Section 3.4 above. From these tables the tool is able to automati-

cally extract the minimized Boolean terms using the Espresso logic

minimization tool (Brayton et al., 1984). It then uses these terms to

construct a Petri net model of the given genetic network which can

be based on either the synchronous or asynchronous Boolean net-

work semantics (Gershenson, 2002). The resulting Petri net model

can then be exported as a PNML (Petri net markup language)

(Billington et al., 2003) file to a wide range of existing Petri net

tools to be simulated and analysed. This prototype Petri net con-

struction tool is freely available for academic use from our project

website http://bioinf.ncl.ac.uk/gnapn.

4 CASE STUDY: SPORULATION IN B.SUBTILIS

In this section we illustrate our approach by presenting a case study

in which part of the genetic regulatory network for initiating sporu-

lation in B.subtilis (Stragier and Losick, 1996; Stephenson and

Lewis, 2005) is modelled and analysed. Using the detailed data

provided in de Jong et al. (2004) we define the Boolean behaviour

of the key regulatory entities involved in initiating sporulation using

truth-tables. We then apply our prototype tool to automatically

construct a qualitative Petri net model capturing the behaviour of

the sporulation regulatory network. This Petri net is then validated

and analysed using PEP (Grahlmann, 1997) and in particular, model

checking techniques (Esparza, 1994) are applied to gain a deeper

understanding of the model’s behaviour.

4.1 Regulating sporulation in B.subtilis

The soil bacterium B.subtilis is able to survive extreme conditions

by forming dormant spores which are resistant to adverse envi-

ronmental conditions (Stragier and Losick, 1996). This process

of sporulation is controlled by a complex regulatory network, a

small part of which is shown abstractly in Figure 6 (adapted

from de Jong et al., 2004). The presence or absence of adverse

environmental conditions, such as nutritional starvation, is repre-

sented by a signalling entity Signal; when Signal is active it indi-

cates that the bacteria is under nutritional stress and needs to

consider initiating sporulation. At the centre of the regulatory net-

work is the phosphorylation of the protein SpoOA, which in turn

activates a cascade of sigma factors which direct the transcription of

genes that initiate sporulation. This phosphorelay (Stragier and

Losick, 1996) transfers a phosphate from the kinase KinA (amongst

others) via a number of intermediate steps to activate the protein

SpoOA by producing SpoOA�P. This in turn activates the produc-

tion of SigF, a key sigma factor whose expression we take as an

indication that the sporulation process has been initiated. The phos-

phatase SpoOE is able to reverse the phosphorylation of SpoOA,

thereby inactivating SpoOA and preventing sporulation. The above

interactions form part of a complex regulatory control mechanism

involving a number of other genes which act as transition state

regulators to inhibit or activate the sporulation process for a

more detailed account of the sporulation process see (Stragier

and Losick, 1996; Stephenson and Lewis, 2005).

4.2 Constructing the Petri net model

The process of constructing a Petri net model for a genetic

regulatory network begins by identifying the entities (i.e. genes,

proteins or stimuli) we need to consider. For our case study, there

Fig. 6. Genetic regulatory network for sporulation in B.subtilis.

Fig. 5. Transitions modelling the partial truth-table for g2.
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are 12 entities (de Jong et al., 2004): SigF, KinA, SpoOA,

SpoOA�P, AbrB, SpoOE, SigH, Hpr, SinR, SinI, SigA and Signal.

In our Boolean model we consider each entity as either being in an

on state (i.e. sufficiently present to have an affect) or an off state (i.e.

not sufficiently present to have an affect). The last two entities, SigA

and Signal, are not regulated within the scope of our network and as

such their state remains fixed once it has been initialized. For each

of the remaining 10 entities we use the available literature to con-

struct a truth-table to abstractly define how each entity’s state is

affected by the state of the entities in its neighbourhood. Note it is

important that the information sources used are carefully docu-

mented so that we are able to clearly see the evidence and assump-

tions our resulting model is based on.

As an example, consider the entity AbrB. Using de Jong et al.
(2004) and Figure 6 we can derive that its neighbourhood consists of

three entities, namely SigA, AbrB and SpoOA�P. We can then

consider how the state of AbrB is affected by these entities (de

Jong et al., 2004; Stragier and Losick, 1996; Stephenson and Lewis,

2005) and this results in the truth-table depicted in Table 2.

The next step is to apply logic minimization to the truth-tables we

have derived to extract Boolean equations which define when each

entity will be active (i.e. in state 1) and inactive (i.e. in state 0). The

resulting Boolean equations extracted from the truth-table for AbrB

above are presented as equations below:

AbrB ¼ ðSigA AbrB SpoOA�PÞ‚
AbrB ¼ SigA þ AbrB þ SpoOA�P:

Applying the above process to each of the remaining entities in our

network results in a set of Boolean equations that define the quali-

tative behaviour of the sporulation genetic network. These equa-

tions are listed in full in the Supplementary information provided

online for this paper. This process is automated by our support tool

(see Section 3.4) which then completes the process by automatically

constructing a Petri net model of the regulatory network (see Sec-

tion 3.3) which contains 75 places and 91 transitions.

4.3 Model validation and analysis

Once we have constructed our Petri net model we can then validate

and analyse it using the wide range of tools available for Petri nets.

In this case study we use the PEP tool (see Grahlmann, 1997, and

the website http://theoretica.informatik.uni-oldenburg.de/~pep/) to

analyse our model and in particular, consider using model checking

techniques (Esparza, 1994; Khomenko, 2003). Our aim is to illus-

trate the range of analysis possible using available Petri net tools,

from simple validation tests to more indepth gene knock out and

overexpression analysis.

4.3.1 Model validation We begin the analysis process by valida-

ting our model to ensure it is a reasonable representation of the

regulatory system in question. The idea is to perform a range of tests

on the model to ensure that it satisfies the basic behavioural prop-

erties indicated by the experimental results in the literature. In the

case of the sporulation regulatory network the main control struc-

ture is the phosphorelay (de Jong et al., 2004; Stragier and Losick,

1996), which is responsible for the phosporylation of SpoOA under

nutritional stress conditions to activate the expression of sigF and so

initiate sporulation. To validate that this control structure has been

correctly modelled we formulate a range of tests on our Petri net

model and compare the results with those presented in de Jong et al.
(2003, 2004). We begin by running a simulation test in which the

model’s initial state is set to represent vegative growth but Signal is

activated to represent the presence of nutritional stress. The

sequence of states resulting from this simulation is presented in

Table 3, where the first column of the table represents the model’s

initial state and each subsequent column the next state observed

after a synchronized update. The simulation shows that SpoOA�P

accumulation is allowed to occur and SigF production is correctly

activated indicating that the bacterium is able to sporulate. We then

initialize our model so that Signal is inactive, representing the

absence of nutritional stress, and simulate the model again. The

results correctly show that sporulation does not occur, i.e.

SpoOA�P is not produced from the phosphorelay when Signal

is inactive and so sigF is not expressed.

We can further validate the model using the model checking tools

provided by PEP (Grahlmann, 1997; Khomenko, 2003) to confirm

that basic properties of the genetic regulatory network are respected.

For example, we know that in the absence of nutritional stress

sporulation should never be initiated (de Jong et al., 2004). We

can use model checking to show this holds in our model by proving

that no reachable state exists with SigF ¼ 1 starting from any initial

state in which Signal ¼ 0, SigF ¼ 0 and SpoOA�P ¼ 0. Using a

similar approach we can prove that sporulation can not occur in the

absence of SigA (de Jong et al., 2004).

4.3.2 Property analysis Having gained some confidence in

the correctness of our model from the validation process above

we can now consider a more detailed analysis of the properties

Table 3. Simulation results in the presence of nutritional stress

Entity States

SigF 0 0 0 0 0 1

KinA 0 0 0 1 0 0

SpoOA 1 1 1 1 1 0

SpoOA�P 0 0 0 0 1 0

AbrB 1 0 1 0 1 0

SpoOE 1 0 1 0 1 0

SigH 0 0 1 0 1 0

Hpr 1 1 0 1 0 0

SinR 1 0 0 0 0 0

SinI 0 0 0 0 0 0

Table 2. Truth-table for AbrB

SigA AbrB SpoOA�P AbrB

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 0
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of the model. The idea is to begin by performing a range of

simulations on the model, starting from biologically plausable

initial states, and to then examine the results using standard tech-

niques (Gershenson, 2002) to gain insight into the model’s beha-

viour. As an example, consider the simulation shown in Table 4

which indicates there is a strong attractor cycle of period two

(Wuensche, 2003) (last two columns in table) which correctly

describes the physiological conditions for the exponential growth

phase (de Jong et al., 2004).

Next we consider using our model to investigate experimental

hypotheses which we formulate by examining the available experi-

mental literature and using the insights gained from the simulations

that have been performed. For example, in our case study the avai-

lable literature indicates an important relationship between SigF and

SpoOA�P; the phosphorylated protein SpoOA�P is reported to

activate the production of SigF but also repress its own produc-

tion (de Jong et al., 2004). Thus, it seems likely that the two

entities should never be active at the same time, a property

known as mutual exclusion (Murata, 1989). We verify this property

by using model checking to show that no reachable state exists in

our model in which SigF and SpoOA�P are both active, specified

by the following constraints:

ðSigF þ SpoOA�PÞ ¼ 2‚ SinI_Done ¼ 1

Note the condition SinI_Done ¼ 1 is used here to ensure we only

consider states reached after a complete pass of the two-phase-

commit protocol, where SinI is the last entity to be updated.

The above model checking technique provides a template which

can be used to test other types of relationships between entities in a

model. For example, by inspecting the simulation results above (see

Tables 3 and 4) it appears that SpoOE and AbrB always have the

same state. We can attempt to verify this hypothesis by using model

checking to see if a contradictory state can be reached, which we

specify using the following constraints:

ðSpoOE þ AbrBÞ ¼ 1‚ SinI_Done ¼ 1

Model checking shows that such a contradictory state is in fact

reachable, disproving our hypothesis. The tool returns a transition

firing sequence which leads to a contradictory state in which SpoOE

and AbrB have different states as a counter example and this can be

automatically simulated in PEP giving important insight into how

this behaviour occurs.

4.3.3 Mutant analysis We complete the analysis by investiga-

ting the affect of ‘fixing’ a gene in the model to either be perma-

nently active or inactive. This corresponds to the experimental

approach of creating mutants in which genes are knocked out or

overexpressed and is a useful analysis technique which can provide

important insight into a genetic regulatory network. The idea is to

construct a new model for each entity to be fixed where the input

data used by the support tool has had the truth-table for the entity in

question removed. As such the chosen entity will be treated as an

input entity, as SigA and Signal are, and so its state will remain fixed

once initialized. We have applied this technique to a range of enti-

ties in the sporulation model and then investigated how this affects

the sporulation process using simulations and model checking. The

observed results are summarised in Table 5 and correspond well

with the experimental results available in the literature (see de Jong

et al., 2004). Interestingly, we see that abrB is the only gene which

has an affect when either knocked out or overexpressed. This fits

with our understanding of abrB being a transition state regulator

gene that lies at the center of three competing feedback loops

(de Jong et al., 2004).

5 DISCUSSION

In this paper we have developed a new approach to qualitatively

modelling genetic regulatory networks based on using the well–

developed formal framework of Petri nets. The results we have

presented significantly extend existing work on using Boolean

models to analyse genetic regulatory networks (e.g. Chaouiya

et al., 2004). In particular, the key contributions of this paper are

as follows: (1) A new compact approach to qualitatively modelling

genetic regulatory networks based on using logic minimization and

Petri nets; (2) Both synchronous and asynchronous semantics of

Boolean networks (Gershenson, 2002) are catered for; (3) Approach

able to model incomplete and inconsistent data; (4) Provision of

tool support to automate model construction; and (5) A detailed

case study investigating the application of Petri net tools to analyse

a genetic regulatory network.

The case study we have presented provides important insight

into the practical application of Petri net analysis techniques for

validating and investigating models of complex regulatory systems.

It highlighted the important role that model checking techniques

can play in investigating a range of interesting model properties

such as mutual exclusion. More work is needed to extend the set of

biologically relevant properties that can be tested and the use of

temporal logic as a property description language appears promising

here (Chabrier-River et al., 2004).

Table 5. Results of mutant analysis

Entity Knock out Overexpressed

KinA No sporulation Normal

SpoOA No sporulation Normal

AbrB No sporulation No sporulation

SpoOE Normal No sporulation

SigH No sporulation Normal

SinR Normal No sporulation

Table 4. Simulation results starting from a state without nutritional stress

Entity States

SigF 0 0 0 0

KinA 0 0 1 0

SpoOA 1 1 1 1

SpoOA�P 0 0 0 0

AbrB 0 1 0 1

SpoOE 0 1 0 1

SigH 0 1 0 1

Hpr 1 0 1 0

SinR 0 0 0 0

SinI 0 0 0 0

Signal 0 0 0 0
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An important area not considered in this paper is the automatic

extraction of truth-table definitions for entities in a genetic network.

We are working to address this by linking our techniques with an

existing network inference tool SARGE (Shaw et al., 2004). One

drawback of using a Boolean model is that the high–level of abstrac-

tion used means we can fail to capture important dynamic network

behaviour. We aim to address this by extending our work to multi–

valued networks (Mishchenko and Brayton, 2002), with a particular

emphasis on ensuring our Petri net models remain tractable to

analysis. Finally, we intend to integrate our qualitative modelling

tools into related work on stochastic Petri net modelling (Shaw

et al., 2006) and so provide much needed support in this area.
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