Quality and Efficiency in High Dimensional Nearest
Neighbor Search

Yufei Tao* Ke Yi2

'Chinese University of Hong Kong
Sha Tin, New Territories, Hong Kong
{taoyf, csheng}@cse.cuhk.edu.hk

Cheng Sheng!
2Hong Kong University of Science and Technology

Panos Kalnis?

Clear Water Bay, Hong Kong
yike@cse.ust.hk

3King Abdullah University of Science and Technology
Saudi Arabia
panos.kalnis@kaust.edu.sa

ABSTRACT

Nearest neighbor (NN) search in high dimensional space is an im-
portant problem in many applications. Ideally, a practical solu-
tion (i) should be implementable in a relational database, and (ii)
its query cost should growub-linearlywith the dataset size, re-
gardless of the data and query distributions. Despite the bulk of
NN literature, no solution fulfills both requirements, exckymal-

ity sensitive hashin(. SH). The existing LSH implementations are
either rigorous or adhocRigorous-LSHensures good quality of

query results, but requires expensive space and query cost. Al-

thoughadhoc-LSHis more efficient, it abandons quality control,
i.e., the neighbor it outputs can leebitrarily bad. As a result,
currently no method is able to ensure both quality and efficiency
simultaneously in practice.

Motivated by this, we propose a new access method called
the locality sensitive B-tregLSB-tree) that enables fast high-
dimensional NN search with excellent quality. The combination
of several LSB-trees leads to a structure calledLtBB-foresthat
ensures the same result quality régorous-LSH but reduces its
space and query cost dramatically. The LSB-forest also outper-
formsadhoc-LSHeven though the latter has no quality guarantee.
Besides its appealing theoretical properties, the LSB-tree itself also
serves as an effective index that consumes linear space, and su
ports efficient updates. Our extensive experiments confirm that the
LSB-tree is faster than (i) the state of the art of exact NN search
by two orders of magnitudend (ii) the best (linear-space) method
of approximate retrieval bgin order of magnitudeand at the same
time, returns neighbors with much better quality.

ACM Categories and Subject Descriptors
H.3.1 [Content Analysis and Indexing]: Indexing Methods.

General Terms
Algorithms, Theory.

Permission to make digital or hard copies of all or part of thaknfor
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage aatidbpies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

SIGMOD’09,June 29-July 2, 2009, Providence, Rhode Island, USA.
Copyright 2009 ACM 978-1-60558-551-2/09/06 ...$5.00.

Keywords

Nearest Neighbor Search, Locality Sensitive Hashing.

1. INTRODUCTION

Nearest neighbofNN) search is a classic problem with tremen-
dous impacts on artificial intelligence, pattern recognition, infor-
mation retrieval, and so on. Le&P be a set of points ini-
dimensional space. Given a query pointits NN is the point

* € D closest tog. Formally, there is no other point € D
satisfying|o, q|| < ||o*, q||, where||, || denotes the distance of two
points.

In this paper, we considdrigh-dimensionaNN search. Some
studies argue [9] that high-dimensional NN queries may not be
meaningful. On the other hand, there is also evidence [6] that
such an argument is based on restrictive assumptions. Intuitively, a
meaningful query is one where the query pairi$ much closer to
its NN than to most data points. This is true in many applications
involving high-dimensional data, as supported by a large body of
recent works [1, 3, 14, 15, 16, 18, 21, 22, 23, 25, 26, 31, 3B, 34

Sequential scatrivially solves a NN query by examining the
entire dataseD, but its cost grows linearly with the cardinality of
D. ldeally, a practical solution should satisfy two requirements: (i)

Pit can be implemented in a relational database, and (i) its query

cost should increassub-linearlywith the cardinality forall data

and query distributions. Despite the bulk of NN literature (see Sec-
tion 7), with a single exception to be explained shortly, all the exist-
ing solutions violate at least one of the above requirements. Specif-
ically, the majority of them (e.g., those based on new indexes [2,
22, 23, 25, 32]) demand non-relational features, and thus cannot
be incorporated in a commercial system. There also exist relational
solutions (such a®istance[27] andMedRanK16]), which are ex-
perimentally shown to perform well for some datasets and queries.
The drawback of these solutions is that they may incur expensive
query cost on other datasets.

Locality sensitive hashin@.SH) is the only known solution that
fulfills both requirements (i) and (ii). It suppor¢sapproximate NN
search Formally, a point is ac-approximate NN of; if its dis-
tance toq is at mostc times the distance from to its exact NN
o*, namely,||o, ¢|| < c|lo*, q||, wherec > 1 is theapproximation
ratio. It is widely recognized that approximate NNs already fulfill
the needs of many applications [1, 2, 3, 15, 18, 21, 23, 25, 26, 30,
31, 33, 34]. LSH is originally proposed as a theoretical method
[26] with attractive asymptotical space and query performance. As
elaborated in Section 3, its practical implementation can be either
rigorous or adhoc. Specificallyigorous-LSHensures good qual-

ity of query results, but requires expensive space and query cost.retrieval, time-series databases, etc. Hence, our technique can be

Although adhoc-LSHis more efficient, it abandons quality con- immediately applied in those applications, too.

trol, i.e., the neighbor it outputs can lagbitrarily bad. In other We studyc-approximate NN queries, whereis a positive in-

words, no LSH implementation is able to ensure both quality and teger. As mentioned in Section 1, given a pajntsuch a query

efficiency simultaneously, which is a serious problem severely lim- returns a poinb in the dataseD, such that the distandp, ¢|| be-

iting the applicability of LSH. tweeno andq is at mostc times the distance betwegrand its real
Motivated by this, we propose an access method cédleality NN o*. We assume thatis not inD. Otherwise, the NN problem

sensitive B-treéLSB-tree) that enables fast high-dimensional NN becomes a lookup query, which can be easily solved by standard

search with excellent quality. The combination of several LSB- hashing.

trees leads to a structure called th®B-forestthat combines the We consider that the datasetresides in external memory where

advantages of botligorous-andadhoc-LSHwithout sharing their each page ha® words. Furthermore, we follow the convention

shortcomings. Specifically, the LSB-forest has the following fea- that every integer is represented with one word. Since a poird has

tures. First, its space consumption is the samadi®c-LSH and coordinates, the entir® occupies totallyin/B pages, where is

significantly lower thamigorous-LSH typically by a factor over an the cardinality ofD. In other words, all algorithms, which do not

order of magnitude. Second, it retains the approximation guaran- have provable sub-linear cost growth withincur 1/0O complexity

tee ofrigorous-LSH(recall thatadhoc-LSHas no such guarantee). Q(dn/B). We aim at designing eelational solution beating this

Third, its query cost is substantially lower thadhoc-LSHand as complexity.

an immediate corollary, sub-linear to the dataset size. Finally, the Finally, to simplify the resulting bounds, we assume that the di-

LSB-forest adopts purely relational technology, and hence, can bemensionalityd is at leastog(n/B) (all the logarithms, unless ex-

easily incorporated in a commercial system. plicitly stated, have base 2). This is reasonable because, for prac-
All LSH implementations require duplicating the database mul- tical values ofrn. and B, log(n/B) seldom exceeds 20, whereas

tiple times, and therefore, entail large space consumption and up-d = 20 is barely “high-dimensional".

date overhead. Many applications prefer an index that consumes

only linear space, and supports insertions/deletions efficiently. The 3., THE PRELIMINARIES
LSB-tree itself meets all these requirements, by storing every data Our solutions leverage LSH as the building brick. In Sections 3.1

point _oncet 'Tl a conventl?r:lall_lz-ér?e. I?a?sd Sn treal_ o'l[atas?ts, Weand 3.2, we discuss the drawbacks of the existing LSH implementa-
experlmentz;\] %i(;:_;)‘rrlpare 2? d-l\;le?jRo kelsesf exis Intg (|gear- tions, and further motivate our methods. In Section 3.3, we present
space)_me odibistance([27] an viedran [16] for exact an the technical details of LSH that are necessary for our discussion.
approximate NN search, respectively. Our results reveal that the
LSB-tree outperformgDistanceby two orders of magnitudewell 3.1 Rigorous-LSH and ball cover

confirming the advantage of approximate retrieval. Compared to As a matter of fact, LSH does not solveapproximate NN
MedRankourtechmqqe 1S congllstently superior in b(.)th query effi- queries directly. Instead, it is designed [26] for a different prob-
ciency and result quality. Specifically, the LSB-tree is fasteaby lem calledc-approximate ball covefBC). LetD be a set of points

order of magnitudeand at the same time, returns neighbors with in d-dimensional space. Denote By(¢,) a ball that centers at the

much better quality. p : :
. . . uery pointg and has radius. A c-approximate BC query returns
The rest of the paper is organized as follows. Section 2 presents?he f?)/ll%wir% results: capp query

the problem settings and our objectives. Section 3 points out the de-
fects of the existing LSH-based techniques. Section 4 explains the (1) If B(q,r) covers at least one point, return a point whose
construction and query algorithms of the LSB-tree, and Section 5 distance tay is at moster.

establishes its performance guarantees. Section 6 extends the LSB-
tree to provide additional tradeoffs between space/query cost and
the quality of query results. Section 7 reviews the previous work (3) Otherwise, the result is undefined.
on nearest neighbor search. Section 8 contains an extensive exper-

imental evaluation. Finally, Section 9 concludes the paper with a

summary of our findings.

(@)
2. PROBLEM SETTINGS 3

Without loss of generality, we assume that each dimension has

(2) If B(q, cr) covers no pointirD, return nothing.

a range|0, t], wheret is an integer. Following the LSH literature N N

[15, 21, 26], in analyzing the quality of query results, we assume B(q1,r) B(q1,2r) B(qx, 1) B(qa, 2r)
that all coordinates are integers, so that we can put a lower bound

of 1 on the distance between two different points. In fact, this is Figure 1: lllustration of ball cover queries

not a harsh assumption because, with proper scaling, we can con-
vert the real numbers in most applications to integers. In any case, Figure 1 shows an example whefe has two pointso; and
this assumption is needed only in theoretical analysis; neither the o.. Consider first the 2-approximate BC query (the left black
proposed structure nor our query algorithms rely on it. point). The two circles centering at represent ball$(q:,) and
We consider that distances are measured,byorm, which has B(q1, 2r) respectively. Sincé(q1,7) covers a data poini;, the
extensive applications in machine learning, physics, statistics, fi- query will have to return a point, but it can be eithgror o2, as
nance, and many other disciplines. Moreover/,agorm general- both of them fall inB(q1,2r). Now, consider the 2-approximate
izes or approximates several other metrics, our technique is directly BC queryg.. SinceB(q2,2r) does not cover any data point, the
applicable to those metrics as well. For example, in case all dimen- query must return empty.
sions are binary (i.e., having only= 2 distinct values){: norm Interestingly, an approximate NN query can be reduced to a num-
is exactly Hamming distance, which is widely employed in text ber of approximate BC queries with different radij23, 26]. The

rationale is thatif ball B(q,r) is empty butB(q, cr) is not, then B(q, 2r») B(q, 2r) B(g,)
any point in B(q, cr) is a c-approximate NN of;. Consider the N 9 'm
query pointg in Figure 2. Here, balB(q, r) is empty, butB(q, cr)

. : 07
is not. It follows that the NN of; must have a distance between)
andcr to ¢g. Hence, any point iB(q, cr) (i.e., eithero; or oz) is a q
c-approximate NN of;. 006
05
03 0y
06 B(q7 rm) © O O O 0
O 1
004
(a) rm too large (b)rr, too small

Figure 3: Drawbacks of adhoc-L SH

all. To see this, consider Figure 3b. Again, the white points consti-
tute the dataséP, and the two circles arB(q, r.,) andB(q, 21).
As B(q, 2r) is empty, the 2-approximate BC querynust not re-
Figure 2: The rationale of the reduction from nearest neighbor turn anything. As a resulgdhoc-LSHreports nothing too, and is
to ball cover queries said to havenissedhe query [21].
Adhoc-LSHoerforms well ifr,,, is roughly equivalent to the dis-

Based on this idea, Indyk and Motwani [26] propose a struc- tance betweer and its exact NN, which is whgdhoc-LSHcan
ture that supports-approximate BC queries at= 1, ¢, ¢?, ¢, be effective when given the right,, [21]. Unfortunately, finding
..., respectively, where is the smallest power afthat is larger such anr,, is non-trivial. Even worse, such,, may not exist at
than or equal tad (recall thatt is the greatest coordinate on each all; namely, anr,,, good for some queries may be bad for others.
dimension). They give an algorithm [26] to guarantee an approxi- Figure 4 presents a dataset with two clusters whose densities are
mation ratio ofc? for NN search (in other words, we need a struc- drastically different. Apparently, if a NN quegyfalls in cluster 1,
ture for y/c-approximate BC queries to supperapproximate NN the distance frong to its NN is significantly smaller than i falls
retrieval). Their method, which we caiigorous-LSH consumes in cluster 2. Hence, it is impossible to chooseranthat closely
O((log, t + log,d) - (dn/B)'*1/¢) space, and answers a query captures the NN distances of all queries. Note that clusters with
in O((log, t + log, d) - (dn/B)"/¢) 1/0s. Note thatt can be a different densities are common in real datasets [11].
large value, thus making the space and query cost potentially very

expensive. Our LSB-tree will eliminate the factog, ¢ + log, d © ©
completely. 030

Finally, it is worth mentioning that there exist complicated NN- 00 o o
to-BC reductions [23, 26] with better complexities. However, those cluster 1 ©
reductions are highly theoretical, and are difficult to implement in)
relational databases. cluster 2

3.2 Adhoc-LSH

Although rigorous-LSHis theoretically sound, its space and
query cost is prohibitively expensive in practice. The root of
the problem is that it must support BC queries at too many (i.e.
log,. t + log, d) radii. Gionis et al. [21] remedy this drawback with
a heuristic approach, which we refer to ashoc-LSH Given a

NN queryg, they return directly the output dhe BC query that In summary, currently a practitioner, who wants to apply LSH,

is at locationg and has radius,,, wherer,, is a “magic" radius f : - L
. e m > aces a dilemma between space/query efficiency and approximation
pre-determined by the system. Since only one radius needs to be P query y pp

supported adhoc-LSHimprovesrigorous-LSHby requiring only guarantee. If the quality of the retrieved neighbor is crucial (as in
O((dn/B)l“/C) space an«D((dn/B)l/C) query time. security systems such as finger-print verification), a huge amount

. of space is needed, and large query cost must be paid. On the other
Ulr)tfortun?telly, the cost sal\:lnchaf(_::roi-LtSHtradg(sj aV\'/:a_\y theS hand, to meet a tight space budget or stringent query time require-
ql;]a' ytﬁondrot og@q#ery;esy tS. 0 lflustrate, gotrr:s'bler klgur_et % ment, one would have to sacrifice the quality guarantee of LSH,
where the datase has / point$, oz, ..., o7, and the black poin which somewhat ironically is exactly the main strength of LSH.
is a NN queryg. Suppose thaadhoc-LSHis set to support 2-

approximate BC queries at radius,. Thus, it answers the NN 3.3 Details of hash functions
querygq by finding a data _point that satisfigs the_2-a_pproximate BC et h(o) be a hash function that mapsiadimensional poinb
query located af with radiusr,. The two circles in Figure 3arep- ;5 gne.dimensional value. It iscality sensitivef the chance of

resentB(q, 7m) and B(g, 2rr) respectively. AsB(q, rm) covers mapping two points, o- to the same value grows as their distance
some data oD, (by the definition stated in the previous subsection) llor, 0| decreases. Formally:

the BC queryg may returnany of the 7 data points iB(q, 27,).
It is clear that no bounded approximation ratio can be ensured, as DEeFINITION 1 (LSH). Given a distance, approximation ra-
the real NNo; of ¢ can bearbitrarily close tog. tio ¢, probability value®, andp, such thap, > p2, a hash func-

The above problem is caused by an excessively lasgeCon- tion h(.) is (r, cr, p1, p2) locality sensitivef it satisfies both con-
versely, ifr,, is too smalladhoc-LSHnay not return any result at ditions below:

Figure 4: No goodr,,, exists if clusters have different densities

Recently, Lv et al. [33] present a variation aflhoc-LSHwith
' less space consumption. This variation, however, suffers from the
same drawback (i.e., no quality control)aghoc-LSHand entails
higher query cost thaadhoc-LSH

1. If Jo1, 02| < 7, thenPr[h(o1) = h(o2)] > p1;

2. If ||o1, 02|| > cr, thenPr[h(o1) = h(02)] < pa. 0O
LSH functions are known for many distance metrics. Epr
norm, a popular LSH function is defined as follows [15]:

a-o+b
|

Here, o represents the-dimensional vector representation of a
point o; @ is anotherd-dimensional vector where each component
is drawn independently from a so-callgestabledistribution [15];

a- o denotes the dot product of these two vectarss a sufficiently
large constant, and finally,is uniformly drawn from[0, w).

Equation 1 has a simple geometric interpretation. To illustrate,
let us considep = 2, i.e., ¢, is Euclidean distance. In this case,
a 2-stable distribution can be just a normal distribution (mean O,
variance 1), and it suffices to set= 16 [15]. Assuming dimen-
sionalityd = 2, Figure 5 shows the line that crosses the origin, and
its slope coincides with the direction &f For convenience, assume
that@ has a unit norm, so that the dot proddcto'is the projection
of pointo onto lined, namely, pointA in the figure. The effect of
@ - o+ bis to shift A by a distancé (along the line) to a poinB.
Finally, imagine we partition the line into intervals with length
then, the hash valuie(o) is the ID of the interval covering.

h(o)

@)

A

Figure 5: Geometric interpretation of LSH

The intuition behind such a hash function is that, if two points
are close to each other, then with high probability their shifted pro-
jections (on linez) will fall in the same interval. On the other hand,
two faraway points are very likely to be projected into different in-
tervals. The following is proved in [15]:

LEmMMA 1 (PROVED IN [15]). Equation 1ig1, ¢, p1,p2) lo-
cality sensitive, wherep; and p» are two constants satisfying

Inl/py 1
In1l/pa S ¢ O

4. LSB-TREE

This section includes everything that a practitioner needs to
know to apply LSB-trees. Specifically, Section 4.1 explains how to
build a LSB-tree, and Section 4.2 gives its NN algorithm. We will
leave all the theoretical analysis to Section 5, including its space,
query performance, and quality guarantee. For simplicity, we will
assumée, norm but the extension to arbitrafy norms is straight-
forward.

4.1 Building a LSB-tree

The construction of a LSB-tree is very simple. Givenda
dimensional datasé?, we first convert each point€ D to anm-
dimensional point (o), and then, obtain th&-order valuez (o) of

G (o). Note thatz(o) is just a simple number. Hence, we can index
all the resulting Z-order values with a conventional B-tree, which
is the LSB-tree. The coordinates @fre stored along with its leaf
entry. Next, we clarify the details of each step.

From o to G (o). We set the dimensionality: of G(0) as

m = log, ,,, (dn/B) @

whereps is the constant given in Lemma 1 undee 2, n is the
size of dataseb, andB is the page size. As explained in Section 5,
this choice ofm makes it rather unlikely for two far-away points
01, o2 to haveG(o1), G(02) that are similar on alin dimensions.
Note that, the choice of = 2 is not compulsory, and our technique
can be adapted to any integep 2, as discussed in Section 6.

The derivation of7 (o) is based on &amily of hash functions:

H(o)=d -3+ ®)

Here,a is ad-dimensional vector where each component is drawn
independently from the normal distribution (mean 0 and variance
1). Valueb™ is uniformly distributed in0, 2/ w?), wherew is any
constant at least 16, and

f = [log, d + log, t]. 4)

Recall thatt is the largest coordinate on each dimension. Note that
while @ andw are the same as in Equationdl,is different, which
is an important design underlying the efficiency of the LSB-tree (as
elaborated in Section 5 with Lemma 2).

We randomly seleet: functionsHi (.), ..., Hn (.) independently
from the family described by Equation 3. TheH(o) is them-
dimensional vector:

G(o) = (Hi(0), H2(0), ..., Hm(0)). (5)

From G(o) to z(o). Let U be the axis length of then-
dimensional spacéi(o) falls in. As explained shortly, we will
choose a value df/ such that//w is a power of 2. Computation

of a Z-order curve requires a hyper-grid partitioning the space. We
impose a grid where each cell is a hyper-square with side langth
therefore, there ar&/w cells per dimension, and totally//w)™

cells in the whole grid. Given the grid, calculating the Z-order
valuez(o) of G(o) is a standard process well-known in the litera-
ture [20]. Letu = log,(U/w). Eachz(o) is thus a binary string
with wm bits.

Example. To illustrate the conversion, assume that the datBset
consists of 4 two-dimensional points, o2, ..., 04 as shown in
Figure 6a. Suppose that we select= 2 hash functiondd, (.) and
Hs(.). Letd; (@2) be the ‘@-vector” in functionH (.) (Hz(.)). For
simplicity, assume that bot#, andads, have norm 1. In Figure 6a,
we slightly abuse notations by also usi#g(a:) to denote the line
that passes the origin, and coincides with the direction of vegtor
(a@2).

Let us taken; as an example. The first step of our conversion is
to obtainG(o1), which is a 2-dimensional vector with components
Hq(01) and Hz2(02). The value ofH1(01) can be understood in
the same way as explained in Figure 5. Specifically, first praject
onto lined;, and then move the projected poiat(along the line)
by a distanceb] to a pointB. Hi(o01) is the distance fronB to
the origint. H2(02) is computed similarly on lin&, (note that the
shifting distance i$3).

'Precisely speaking, it isH; (o1)| that is equal to the distance.
Hi(o1) itself can be either positive or negative, depending on
which side of the originB lies on.

—-

4 4
H(04)
. H(03)
a
{ o1 bi¥ /B 004
Hy(o)X\b2* © deciding H,(0,)
A []
q
Hy(04 Hy(02) 003
H2(02) O()z
Hy(03)
(a) Computing hash values
Hy(o1) w
111 h
|
(o=~ "__CI)G 0y)
101
100 ©
G 04) U
011
%
O
010 G(02) o
001 (o5
000

000 001010011100 101110 111
(b) Computing Z-order values

Figure 6: lllustration of data conversion

TreatingH1(01) and H2(o02) as coordinates, in the second step,
we regardG(o1) as a point in a data space as shown in Figure 6b,
and derivez(o01) as the Z-order value of poird (o1) in this space.

In Figure 6b, the Z-order calculation is based o# & 8 grid. As
G(o1) falls in a cell whose (binary) horizontal and vertical labels
are 010 and 11@espectively,z(o1) equals 01100 (in general, a

Z-order value interleaves the bits of the two labels, starting from

the most significant bits [20]).

Choice ofU. In practice,U can be any value making/w a suf-
ficiently large power of 2. For theoretical reasoning, next we pro-
vide a specific choice fd/. Besided//w being a power of 2, our
choice fulfills another two conditions: (i /w > 27, wheref is
given in Equation 4, and (ii)H;(o)| is confined to at modt//2 for

anyi € [1,m].

In the form of Equation 3, for eache [1,m], write H;(0) =
@; - &+ b;. Denote byl|@; ||, the#;, norn? of @;. Remember thad
distributes in spac, t]%, wheret is the largest coordinate on each

dimension. Henceg H;(.)| is bounded by

Ho = (- £+ b7).
i

We thus determin@/ by settingU/w to the smallest power of 2

that bounds both” and2H .« /w from above.

2Given ad-dimensional vectofl = (a[1],a[2], ..., a[d]), ||@|l: =

i laldll.

4.2 Nearest neighbor algorithm

In practice, a single LSB-tree already produces query results
with very good quality, as demonstrated in our experiments. To el-
evate the quality to a theoretical level, we may independently build
a numbel of trees. We choose

= +/dn/B. @)

which, as analyzed in Section 5, ensures a high chance for nearby
pointsos, o2 to have close Z-order values in at least one tree.

Denote the trees aslh, 7>, ..., T; respectively, and call them
collectively as aLSB-forest Use z;(0) to represent the Z-order
value ofo in treeT; (1 < j < I). Without ambiguity, we also
let z; (o) refer to the leaf entry ob in 7;. Remember that the
coordinates ob are stored in the leaf entry.

Given a NN queryq, we first get its Z-order value;(g) in
each treeT; (1 < j < I). As with the Z-order values of
data points,z;(q) is a binary string withum bits. We denote
by LLCP(z;(0),z;(q)) thelength of the longest common prefix
(LLCP) of z;(0) andz;(q). For example, suppose(o) = 100101
andz;(¢g) = 100001; thenLLCP(z;(0), z;(¢)) = 3. Whengq is
clear from the context, we may refer fod.C' P(z;(0), z;(q)) sim-
ply as theLLCP of z; (o).

Figure 7 presents our nearest neighbor algorithm at a high level.
The main idea is to visit the leaf entries of atfees in descending
order of their LLCPs, until either enough points have been seen, or
we have found a point that is close enough. Next, we explain the
details of lines 2 and 3.

Algorithm NN

1. repeat

2. pick, from all the tree§7, ..., T3, the leaf entry with
the next greatest LLCP

until conditionE; or E- holds

return the nearest point found so far

Pw

Figure 7: The NN algorithm

Finding the next greatest LLCP. This can be done by a syn-
chronous bi-directional expansion at the leaf levels of all trees.
Specifically, recall that we have obtained the Z-order vale) in
eachtred) (1 < j <). Searcll} to locate the leaf entry;- with
the lowest Z-order value at least(q). Lete; be the leaf entry im-
mediately preceding;-. To illustrate, Figure 8 gives an example
where each Z-order value hasn = 6 bits, andl = 3 LSB-trees
are used. The values of(q), 22(q), andzs(q) are given next to
the corresponding trees. In, for instan@g, z1(01) = 011100 is
the lowest among all the Z-order values at leagyy) = 001110.
Hence,eyr is z1(01), andei is the entryz; (o3) = 001100 pre-
cedingzi(01).

- €1 €l —»

21(02)= | zi(03)= | zi(o1)= | zi(os)= —
000100 | 001100 | 011100 | 110010 | ¥1(4) = 001110

T, leaf level

- 6 € —»
2(0D= | 220)= | 2(03)= | (0= | (g)=011111
010001 | 011110 | 110001 | 110100 | <*

- €3 e —»

23(02)= | z3(03)= | z3(04)= | z3(01)= =
011110 | 100111 | 101100 | 101110 | %(9) = 101001

T, leaf level

T; leaf level

Figure 8: Bi-directional expansion wm = 6,1 = 3)

The leaf entry with the greatest LLCP must be in the Set
{e1-, e14, ..., e, ei4}. Lete € S be this entry. To deter-
mine the leaf entry with the next greatest LLCP, we mesavay
from ¢ by one position in the corresponding tree, and then re-
peat the process. For example, in Figure 8, the leaf entry with
the maximum LLCP isea4 (whose LLCP is 5, as it shares the
same first 5 bits witte2(q)). Thus, we shifteo to its left, i.e.,
to z2(01) = 010001. The entry with the next largest LLCP can be
found again infeir, e1, ..., €3, €34 }.

Terminating condition. Algorithm NN terminates when one of
two eventsE;, and E. happens. The first event is:

E;: the total number of leaf entries accessed fronh B$B-trees
has reachedBI/d.

EventE is based on the LLCP of the leaf entry just retrieved from
line 2. Denote the LLCP by, which bounds from above the LLCP
of all the leaf entries that have not been processed.

E5: the nearest point found so far (from all the leaf entries already
inspected) has distancegat most2®~ v/ +1,

Let us use again Figure 8 to illustrate algoritiniN. Assume
that the dataset consists of points o2, ..., 04 in Figure 6a, and
the query is the black poit Notice that the Z-order values in tree
T, are obtained according to the transformation in Figure 6b with
u = 3 andm = 2. Suppose thdfos, ¢|| = 3 and||os, ¢|| = 5.

As explained earlier, entry2(o4) in Figure 8 has the largest
LLCP v = 5, and thus, is processed firshN obtains the ob-
ject o4 associated withz2(04), and calculates its distance o
Sincel|os, q|| = 5 > 2v~v/™I+1 — 4 condition E2 does not
hold. AssumingE; is also violated (i.e., letBi/d > 1), the
algorithm processes the entry with the next largest LLCP, which
is z1(03) in Figure 8 whose LLCPy = 4. In this entry,NN
finds o3 which replaces, as the nearest point so far. As now
llos, ql| = 3 < 2v~lv/m+1 — 4 B, holds, andNN terminates by
returningos.

Retrieving k neighbors. A direct extension of NN search s
nearest neighboi(kNN) retrieval, which aims at finding thé
points in the datase® nearest to a query poigt Algorithm NN
can be easily adapted to ansvi@N queries. Specifically, it suf-
fices to modifyE> to “q is within distance2*~*/™I+1 to the k
nearest points found so farAlso, apparently line 4 should return
thek nearest points.

kNN search with a single tree Maintaining a forest of LSB-trees

datasetD. Namely,R = [0, t}d, wheret is the maximum coordi-
nate on each axis. Recall that, to construct a LSB-tree, we convert
each poinb € D to anm-dimensional poin& (o) as in Equation 5.
Denote byG the space wheré/(o) is distributed. By the way we
selectU in Section 4.1G = [-U/2,U/2]™.

5.1 Quality guarantee
We begin with an observation on the basic LSH in Equation 1:

OBSERVATION 1. Given any integet > 1, define hash func-
tion

W= | ®)

where @, b, and w are the same as in Equation 1h'(.) is
(1, ¢, p1,p2) locality sensitive, and2/2L < 1/c.

PROOF (Sketch) Due to the space constraint, we point out only

the most important fact behind the correctness. Imagine a line that
has been partitioned into consecutive intervals of lengtiiet A,
B be two points on this line with distange< w. Shift both points
towards right by a distance uniformly drawn frdfh w?z), where
x is any integer. After thisA and B fall in the same interval with
probability1 — y/w. This probability does not depend en [

a-o+ bwx
w

For anys € [0, f] with f given in Equation 4, define:

a-o+b*
25w

H (0, 5) = { ©

wherea, b* andw follow those in Equation 3. We have:

LEMMA 2. H*(o,s) is (2°,2°!,p1,p2) locality sensitive,

wherep, andps satisfy% <1/2.

PrROOF. Create another spa@ by dividing all coordinates of
R by 2°. Itis easy to see that the distance of two pointRiis 2°
times the distance of their converted point®in Consider

@-o + (b* /25 w) (2 w)

h// / —
(©) =

(10)

whereo’ is a point inR’. Asb*/(2fw) is uniformly distributed in
[0, w], by Observation 14" (.) is (1, 2, p1, p2) locality sensitive in
R’ with (In1/p1)/(In1/p2) < 1/2. Leto be the corresponding
point of o’ in R. Clearly,d@ - o' = (a@- 6)/2°. Hence,h' (') =
H,(o, s). The lemma thus holds.[]

incurs large space consumption and update overhead. In practice, As shown in Equation 5(G(o0) is composed of hash values

we may prefer an index that has linear space and supports fast dateHl(O)' o Hyp(0)

insertions/deletions. In this case, we can build only one LSB-tree,
and use it to procegsNN queries. Accordingly, we slightly mod-
ify the algorithmNN by simply ignoring even#- in the terminat-

ing condition (as this event is designed specifically for querying
trees). ConditionE-, however, is retained. As a tradeoff for effi-

. In the way we obtaind* (o, s) (Equation 9)
from H (o) (Equation 3), letH; (o, s) be the hash function corre-
sponding toH;(o) (1 < i < m). Also remember that(o) is

the Z-order value of7(o) in spaceG, and functionLLCP(.,.)
returns the length of the longest common prefix of two Z-order val-
ues. Now we prove a crucial lemma that is the key to the design of

ciency, querying only a single tree loses the theoretical guaranteesihe | SB-tree.

of the LSB-forest (as established in the next section). Neverthe-
less, this approach is expected to return neighbors with high qual-

LEMMA 3. Letos, o2 be two arbitrary points in spade. A

ity, because the converted Z-order values adequately preserve thejalues satisfiess > u — | LLC P(z(01), z(02))/m] if and only if

proximity of the data points in the original data space.

5. THEORETICAL ANALYSIS

H; (01,s) = Hj (02,s) foralli € [1,m].

PrRoOF Recall that, for Z-order value calculation, we impose
on G a grid with2" cells (each with side lengtia) per dimension.

We now proceed to study the theoretical characteristics of the Refer to the entirés as a level tile. In general, a leved (2 <

LSB-tree. Denote byR the original d-dimensional space of the

s < u) tile define2™ level-(s — 1) tiles, by cutting the levek-tile

in half on every dimension. Thus, each cell in the grid partitioning In case the termination is due #6,, by P>, we know thatNN

G is alevel-O tile. has seen at least one poimtnside B(q,2r). Hence, the point
As a property of the Z-order curvé;(o1) andG(o2) belong to a returned has distance tpat most2r < 4r*. Finally, Lemma 4
level-s tile, if and only if their Z-order values share at leastu—s) indicates thaf?; and P are true with at least constant probability,

most significant bits [20], namely,LC' P(z(01), z(02)) > m(u— thus completing the proof.]
s). On the other hand, note that a lewdile is a hyper-square with
side length2*w. This means tha€ (o) and G(o2) belong to a Also, the proof of Theorem 1 actually shows:

level-s tile, if and only if H; (01, s) = H; (02, s) foralli € [1,m)].

Thus, the lemma follows. [] COROLLARY 2. Letr™ be the distance from to its real NN.

With at least constant probabilitiyN returns a point within dis-
Lemmas 2 and 3 allow us to rephrase the probabilistic guaranteestance2r to ¢, wherer is the lowest power of 2 bounding' from

of LSH using LLCP. above. 0
COROLLARY 1. Letr be any power of 2 at mogt’. Given a As a standard trick in probabilistic algorithms, by repeating our
query pointg and a data point, we have: solution a constan®(log 1/p) number of times, we boost the suc-

cess probability of algorithhIN from constant to at leasdt— p, for

1. If ||g,0|| < r, thenLLCP(z(q),2(0)) > m(u — logy) any arbitrarily lowp > 0.

with probability at leasp?”.

2. 1f [|g, 0] > 2r, thenLLCP(2(q), 2(0)) > m(u—log,r) 9-2 Space and query time

with probability at mosps®.
P y b2 THEOREM 2. We can build a forest of LSB-trees that con-

Furthermore% <1/2. O sume totallyO((dn/B)*-*) space. Given these trees, algorithi
answers a 4-approximate NN query({(E+/dn/B) 1/0s, where

The above result holds for any LSB-tree. Recall that, for NN E'is the height of a LSB-tree.

search, we need a forest bfreesT1, ..., T; built independently. PROOF Each leaf entry of a LSB-tree stores a Z-order value
Next, we will explain an imperative property guaranteed by these z(o0) and the coordinates of z(o0) hasum bits whereu = O(f) =
trees. Lefg be the query point, and be any power of 2 up taf O(log, d + log, t) andm = O(log(dn/B)). Aslog, d + log, t
such that there is a point in the ballB(g,). Consider event#; bits fit in 2 words,z(0) occupiesO (log(dn/B)) words. It takes!
andPs: words to store the coordinates @f Hence, overall a leaf entry is

O(d) words long. Hence, a LSB-tree consuni#ggdn/B)) pages,

Pr: LLOP(2;(q), 2i(07)) 2 m(u — logy r) in atleastone ree) \/dn/B of them require totalyO((dn/B)"-°) space.

L=5=0 Algorithm NN (i) first accesses a single path in each LSB-tree,
P, There are less thahBl /d leaf entriesz; (o) from all treesT; and then (i) fetches at modtB//d leaf entries. The cost of (i) is
(1 < j < I)such that ()LLCP(z;(q), zj(0)) > m(u — bounded byO(IE). As a leaf entry consume3(d) words,4Bl/d
log, 7), and (ii) o is outsideB g, 2r). of them occupy at mosP(/) pages. [
The property guaranteed by theees is: By implementing each LSB-tree asstring B-tree[19], the

)) height E is bounded byO(log;(n/B)), resulting in query com-
LEMMA 4. P; andP: hold at the same time with at least con- plexity O(log; (n/B) - \/dn/B).

stant probability.
PROOF. Equipped with Corollary 1, this proof is analogous to 9-3 Comparison with rigorous-LSH

the standard proof [21] of the correctness of LSH. As discussed in Section 3, for 4-approximate NN search,
. o . _ rigorous-LSHconsume®)((log, d+log, t)(dn/B)'*) space, and
Now we establish an approximation ratio of 4 for algorithiN. answers a query i@((log, d + log, t)\/dn/B) /Os. Comparing

In the next section, we will extend the LSB-tree to achieve better {hese complexities with those in Theorem 2, itis clear that the LSB-
approximation ratios. forest improvesigorous-LSHsignificantly in the following ways.

First, the performance of the LSB-forest is not sensitivg the
greatest coordinate of a dimension. This is a crucial improvement
becausé can be very large in practice. As a resuigorous-LSH

PROOF Leto* be the NN of query;, andr* = |jo*,¢q||. Let is suitable only when data are confined to a relatively small space.
r be the smallest power of 2 bounding from above. Obviously The LSB-forest enjoys much higher applicability by retaining the
r < 2r* andr < 2¢ (notice that* is at mosttd < 2/ under any same efficiency regardless of the size of the data space.

THEOREM 1. Algorithm NN returns a 4-approximate NN with
at least constant probability.

£, norm). If whenNN finishes, it has already found in any tree, Second, the space consumption of a LSB-forest is lower than that

apparently it will returro™ which is optimal. Next, we assuniéN of rigorous-LSHby a factor oflog, d + log, t. For practical values

has not seen™ at termination. of d andt (e.g.,d = 50 andt = 10000), the space of a LSB-
We will show that when bothP; and P> are true, the output forest is lower than that afigorous-LSHby more thanan order

of NN is definitely 4-approximate. Denote hy the j stated in of magnitude Furthermore, note that the LSB-forest is as space

P;. Recall thatNN may terminate due to the occurrence of either efficient asadhoc-LSH even though the latter does not guarantee

eventE, or E». If itis due to E2, and given the fact thatiN the quality of query results at all.

visits leaf entries in descending order of their LLCP, the LLCP Third, the LSB-forest promises higher query efficiency than

of the last fetched leaf entry is at ledsL.C P(z;+(q), z;j+ (0*)) > rigorous-LSH As mentioned earlier, the heiglit can be strictly

m(u — log, r). It follows that|v/m| > u — log, r. E2 ensures confined toO(log z (n/B)) by resorting to the string B-tree. Even
that we return a point with ||o, ¢|| < 2r < 4r*. if we simply implement a LSB-tree as a normal B-tree, the height

Algorithm NN2 (r)

1. o =the output of algorithnNN on F'

2. o' =the output of algorithrNN on £’

3. return the point between ando’ closer tog

Figure 9: The 3-approximate algorithm

E never grows beyond 6 in our experiments. This is expected to be

much smaller thatog, d + log, ¢, rendering the query complexity
of the LSB-forest considerably lower than thatrigforous-LSH

In summary, the LSB-forest outperformigiorous-LSHsignif-
icantly in applicability, space and query efficiency. It therefore
eliminates the reason for resorting to the theoretically vulnera-
ble approach ofdhoc-LSH Finally, remember that the LSB-tree
achieves all of its nice characteristics by leveraging purely rela-
tional techniques.

6. EXTENSIONS

The above idea can be easily extended2er ¢)-approximate
NN search for any € (0, 2]. Specifically, we can maintaif2/e|
LSB-forests, such that thieth forest 0 < ¢ < |2/¢]) supports
2-approximate BC queries at = (1 + a),2(1 + «),2%(1 +
a),...2 (1 + a), wherea = ie/2. Given a queryg, we run
algorithmNN on all the forests, and return the nearest point found.
By an argument similar to proving Theorem 3, we have:

THEOREM 4. For anye € (0,2], we can build|2/¢] LSB-
forests that consume totally (1 (dn/B)"'*) space, and answer a
(2 + €)-approximate NN query i® (X E\/dn/B) 1/Os, whereE
is the height of a LSB-tree. 0

By further generalizing the idea, we can achieve the approxima-
tion ratio ¢ + ¢ for any integerc > 3 with space and query time
that monotonically decrease aincreases. This provides a grace-
ful tradeoff between quality and efficiency. We leave the details to
the full paper.

7. RELATED WORK

NN search is well understood in low dimensional space [24, 35].

This section presents several interesting extensions to the LSB-Tpig problem, however, becomes much more difficult in high di-
tree, which are easy to implement in a relational database, and ex-mensional space. Many algorithms (e.g., those based on data or

tend the functionality of the LSB-tree significantly.

Supporting ball cover. A LSB-forest, which is a collection

of | LSB-trees as defined in Section 4.2, is able to support 2-
approximate BC queries whose radiuis any power of 2. Specif-
ically, given such a query, we run algorithmNN (Figure 7) using
the query point. Leb by the output ofNN. If |0, ¢|| < 2r, we
returno as the result of the BC query Otherwise, we return noth-
ing. By an argument similar to the proof of Theorem 1, it is easy to
prove that the above strategy succeeds with high probability.

(2 4+ €)-approximate nearest neighbors. A LSB-forest en-
sures an approximation ratio of 4 (Theorem 1). Next we will
improve the ratio to 3 with only 2 LSB-forests. As shown ear-
lier, a LSB-forest can answer 2-approximate BC queries with any
r = 1,2,22,...,27 where f is given in Equation 4. We build
another LSB-forest to handle 2-approximate BC queries with any
r=15,15x21.5x 22 ...1.5 x 2/, For this purpose, we only
need to create another datag¥tfrom D, by dividing all coordi-
nates inD by 1.5. Then, a LSB-forest o’ is exactly what we
need, noticing that the distance of two pointsIti is 1.5 times
smaller than that of their original points id. Denote byF" and F”’
the LSB-forest orD andD’ respectively.

Given a NN queryy, we answer it using simple the algorithm in
Figure 9.

THEOREM 3. Algorithm NN2 returns a 3-approximate NN
with at least constant probability.

PROOF Let R be thed-dimensional space of datasBt and
R’ the space of>’. Denote byr* the distance betweepand its
real NN o*. Apparently,r* must fall in either(2”,1.5 x 2] or
(1.5 x 27,2%1] for somez € [0, f]. Refer to these possibilities
as Case 1 and 2, respectively.

For Case 1, the distance’ betweeng and o* in spaceR’ is
between(2¥ /1.5, 27]. Hence, by Corollary 2, with at least constant
probability the distance between andgq in R’ is at most2®*1,
whereo’ is the point output at line 2 dIN2 It thus follows thab’
is within distancel.5 x 2**! < 3¢* in R. Similarly, for Case 2,
we can show thad (output at line 1) is a 3-approximate NN with
at least constant probability.[]

space partitioning indexes [20]) that perform nicely on low dimen-
sional data, deteriorate rapidly as the dimensionality increases [10,
36], and are eventually outperformed even by sequential scan.

Research on high-dimensional NN search can be dividediito
actandapproximateretrieval. In the exact category, Lin et al. [32]
propose theTV-treewhich improves conventional R-trees [5] by
creating MBRs only in selected subspaces. Weber et al. [36] de-
sign theVA-file, which compresses the dataset to minimize the cost
of sequential scan. Also based on the idea of compression, Berch-
told et al. [7] develop théQ-tree, combining features of the R-tree
and VA-file. Chaudhuri and Gravano [12] perform NN search by
converting it to range queries. In [8] Berchtold et al. provide a solu-
tion leveraging high-dimensional Voronoi diagrams, whereas Korn
et al. [28] tackle the problem by utilizing the fractal dimensionality
of the dataset. Koudas et al. [29] give a bitmap-based approach.
The state of the art is due to Jagadish et al. [27]. They develop the
iDistancetechnique that converts high-dimensional points to 1D
values, which are indexed using a B-tree for NN processing. We
will compare our solution téDistanceexperimentally.

In exact search, a majority of the query cost is spenvenify-
ing a point as a real NN [6, 14]. Approximate retrieval improves
efficiency by relaxing the precision of verification. Goldstein and
Ramakrishnan [22] leverage the knowledge of the query distribu-
tion to balance the efficiency and result quality. Ferhatosmanoglu
et al. [18] find NNs by examining only the interesting subspaces.
Chen and Lin [13] combine sampling with a reduction [12] to range
search. Li et al. [31] first partition the dataset into clusters, and
then prunes the irrelevant clusters according to their radii. Houle
and Sakuma [25] develoBASHwhich is designed for memory-
resident data, but is not suitable for disk-oriented data due to severe
1/0 thrashing. Fagin et al. [16] develop tihdéedRanktechnique
that converts the dataset to several sorted lists by projecting the
data onto different vectors. To answer a quéfgdRankraverses
these lists in a way similar to thieresholdalgorithm [17] for topk
search. We will also evaluadedRankin the experiments.

None of the aforementioned solutions ensures sub-linear growth
of query cost in the worst case. How to achieve this has been
carefully studied in the theory community (see, for example, [23,
30] and the references therein). Almost all the results there, how-
ever, are excessively complex for practical implementation, except

LSH. This technique is invented by Indyk and Motwani [26] for Color. This is a 32-dimensional data3etith 68,040 points, where

in-memory data. Gionis et al. [21] adapt it to external memory, each point describes the color histogram of an image in the Corel

but as discussed in Section 3.2, their method loses the guaranteeollection [27]. We randomly remove 50 points to form a query set.

on the approximation ratio. The locality-sensitive hash functions As a result, oucolor dataset has cardinality 67,990.

for I, norms are discovered by Datar et al. [15]. Bawa et al. [4]

propose a method to tune the parameters of LSH automatically. Mnist. The originalmnistdatasetis a set of 60,000 points. Each

Their method, however, no longer ensures the same query perfor-point is 784-dimensional, capturing the pixel values @Bax 28

mance as LSH unless the adopted hash function has a so-calledmage. Since, however, most pixels are insignificant, we reduce

“(e, f(€)) property” [4]. Unfortunately, no existing hash function ~dimensionality by taking the 50 dimensions with the largest vari-

for Zp norms is known to possess this property_ LSH has also re- ances. Thennistcollection also contains a test set of 10,000 pOintS

ceived other theoretical improvements [1, 34] which cannot be im- [16], among which we randomly pick 50 to form our workload.

plemented in relational databases. Furthermore, several heuristicObviously, each query point is also projected onto the same 50 di-

variations of LSH have also been suggested. For example, Lv et al. mensions output by dimensionality reduction.

[33] reduce space consumption by probing more data in answering

a query, while recently Athitsos et al. [3] introduce the notion of 8.2 Methods

distance-based hashinghe solutions of [3, 33] guarantee neither

sub-linear cost nor good approximation ratios. Sequential scan $egScan). The brute-force approach is included
because it is known to be a strong competitor in high dimensional
NN retrieval. Furthermore, the relative performance with respect to

8. EXPERIMENTS SeqScarserves as a reliable way to compare against methods that

Next we experimentally evaluate the performance of the LSB- '€ reported elsewhere but not in our experiments.

tree, using the existing methods as benchmarks. Section 8.1 dey o . . .) i
scribes the datasets and queries. Section 8.2 lists the techniquel‘SB forest, As discussed in Section 4.2, this method kepSB

to be evaluated, and Section 8.3 elaborates the assessment metricggereslj’;nd ?ggggsiglgorlthNN in exactly the way given in Figure 7
Section 8.4 demonstrates the superiority of the LSB-forest over al- query p 9

ternative LSH implementations. Finally, Section 8.5 verifies that | g5 nog,. Same ag SB-foresexcept that it disables the termi-
the LSB-tree significantly outperforms the state of the art in both nating conditionE> in algorithmNN. In other words L SB-ndZs
exact and approximate NN search. terminates on conditio; only.

8.1 Data and queries LSB-tree. This method deploys a single LSB-tree (as opposéd to
in LSB-fores}, and hence, requires only linear space and can be up-
dated efficiently. As mentioned at the end of Section 4.1, it disables
condition E1, and terminates oo, only.

We experiment with both synthetic and real datasets. Synthetic
data are generated according teemdendistribution to be clarified
shortly. As for real data, we deploy datasettor andmnist which
are used in the papers [16, 27] that develop the best linear-spac
method for exact and approximate NN retrieval, respectively. Each
workload contains 50 queries that follow the same distribution as
the underlying dataset. All data and queries are normalized such
that each dimension has dom#in10000]. The distance metric is
Euclidean distance. The details\arden color, andmnistare as
follows.

e'Rigorous- [26] and adhoc-LSH [21]. These are the existing
LSH-implementations as reviewed in Sections 3.1 and 3.2, respec-
tively. Recall that both methods are designed dapproximate

BC search. We setto 2 because a LSB-forest also guarantees the
same approximation ratio as mentioned in Sectio@hoc-LSH
requires a set of hash tables to enable BC queries at a magic ra-
dius (to be tuned experimentally later), whéris the same as in
Equation 7.Rigorous-LSHan be regarded as combining multiple

Varden. This distribution contains two clusters with drastically dif- X)
Jersions ofadhoc-LSHone for every radius supported.

ferent densities. The sparse cluster has 10 points, whereas all th

other points belong to the Qense cluster. _Fur?hermore, the dense|Distance [27]. The state of the art for exact NN search. As men-
cluster has the shape of a ring, whose radius is comparable to th

average mutual distance of the points in the sparse cluster. The twgtloned in Section 7, it indexes a dataset using a single B-tree after

clusters are well separated. Figure 10 illustrates the idea with aconverting all points to 1D values. As wiltBB-treg it consumes
2D example. We vary the cardinality ovardendataset from 10k linear space and supports data insertions and deletions efficiently.

to 100k, and its dimensionality from 25 to 100. In the sequel, we pjedRank [16]. The best linear-space method for approximate NN
will denote ad-dimensionalv.ardendataset with cardinality, by search. Given a dataséedRanlcreates\/ sorted lists, such that
vardennd. The corresponding workload of\vardendataset has gyery data point has an entry in each list. Each entry has the form
10 and 40 query points that fall in the areas of the sparse and densqid' key), whereid uniquely identifies a point, aniey is its sorting
clusters, respectively. No query point coincides with any data point. key (a point has various keys in different lists). Each list is indexed
by a B-tree on the keys. Point coordinates are stored in a separate
hash table to facilitate probing biy. The numbeiM of lists equals
logn (following Theorem 4 in [16]), where is the dataset cardi-
nality. It should be noted th&fledRankis not friendly to updates,
because a single point insertion/deletion requires updating all the

O log n lists.

) o ®http://kdd.ics.uci.edu/databases/CorelFeatures/.
Figure 10: The varden distribution “http:/lyann.lecun.com/exdb/mnist.

average overall ratio

average overall rati
; ; ; *Aif jpa}%‘se 4%% d::?nse

,,,,,,,,,,,,,,,,,,

oo [

100

margic radius

(a) Quality vsry,

» A
26 2] 0 214 2| 8 222

margic radius r,,

Figure 11: Magic radius tuning for adhoc-L SH (varden-10k50d)

8.3 Assessment metrics

We compare alternative techniques by their quality of results (forl2 1
approximate solutions), query cost, and space consumption. FQqu |

query cost, we measure the number of 1/0s. CPU time is ignore
because it is significantly dominated by 1/0 overhead for all meth-
ods. The page size is fixed to 4,096 bytes.

We evaluate the quality of /NN result by how many times far-
ther a reported neighbor is than the real NN. Formallypletos,
..., o be thek neighbors that a method retrieves for a quenn
ascending order of their distancesjtaLet o7, 05 ..., o;, be the ac-
tual first, second, ..k-th NNs ofg, respectively. Forany< [1, k],
we define theank- (approximation ratio, denoted byR;(q), as

Ri(q) = lloi, qll/llo7 , qll.

The overall (approximation ratio is the mean of the ratios of all
ranks, namely(z:f:1 R;(q))/k. When a query result is exact, all
ratios are 1.

Given aworkloadV, define itsaverage overall rati@as the mean
of the overall ratios of all queries iW. This metric reflects the
general quality of alk neighbors, and is used in most experiments.

(11)

In some cases, we may need to scrutinize the quality of neighbors

at individual ranks. For this purpose, we will inspect theerage
rank< ratio (1 < 4 < k), which is the mean of the rankratios of
all queries inl, namely,(> -, v Ri(q))/|W].

8.4 Behavior of LSH implementations

This section explores the properties ld8B-forest LSB-nd¥,
rigorous-LSH andadhoc-LSH Since their theoretical guarantees
hold onk = 1 only, we focus on single NN search, where the
overall ratio of a query is identical to its rank-1 ratio. We deploy
vardendata, as it allows us to examine different dimensionalities
and cardinalities. Unless otherwise statedjazdendataset has
default cardinalityn = 10k and dimensionality = 50.

Recall thatadhoc-LSHanswers a NN query by processing in-
stead a BC query with a magic radits. As argued in Section 3.2,
there may not exist an,, that can ensure the quality of all NN

[d [25 1 50 [75 [100 |
rigorous-LSH 1
adhoc-LSH 43 | 66.4| 87 | 104.2
LSB-forest 1.02| 1.02| 1.02| 1.01
LSB-n@¥2 1

(a) Average overall ratio vs. dimensionalify(n = 50k)

n 10k | 25k | 50k | 75k | 100k
rigorous-LSH 1
adhoc-LSH || 66.4 [68.1 | 70.3| 76.5| 87.1
LSB-forest || 1.02 | 1.02 | 1.03 | 1.02 | 1.02
LSB-nd&2 1

(b) Average overall ratio vs. cardinality (d = 50)

(b) Quality of sparse and dense queries

Table 1: Result quality onvarden data

—+— rigorous-LSH —— adhoc-LSH —A— LSB-forest —5— LSB-nokEy
4 1/0 cost (x 100) 1/0 cost (< 100)
1 ST 7 :

50 75
dimensionality d

(a) Cost vsd (n = 50k)

10k 25k 50k 75k 100k
cardinality n

(b) Cost vsn (d = 50)

100

Figure 12: Query efficiency onvarden data

Conversely, ifr,,, is considerably largegdhoc-LSHmay output a
point that is much worse than the real NN. Next, we will experi-
mentally confirm these findings. Recall that a workloadviarden
has queries in both the sparse and dense clusters. Let us call the
former (latter)sparse(densé queries We observe that the average
NN distance of a sparse (dense) query is around 12,000 (15). The
phenomenon in Figure 11a occurs becavseaes ofr,, good for
sparse queries are bad for dense queries, and vice véigsaup-
port the claim, Figure 11b plots the average overall ratios of sparse
and dense queries separately. Fpr < 2'% = 8,192, it is much
lower than the NN-distances of sparse queries, for whidhoc-
LSH returns nothing (hence, ttsparsecurve in Figure 11b stays
at oo for all r,,, < 2'3). Starting at,, = 2'2, on the other hand,
adhoc-LSHoften returns very bad results for dense queries. Since
the situation gets worse for largey,, thedensecurve Figure 11b
increases continuously sing&’. In all the following experiments,
we fix r,,, to the optimal valu@'*.

The next experiment compares the result qualityrigbrous-
LSH adhoc-LSHLSB-forestandLSB-nd%;. Table 1a (1b) shows
their average overall ratios under different dimensionalities (cardi-

queries. To demonstrate this, Figure 11a shows the average overnalities). Bothrigorous-LSHandLSB-nd~; achieve perfect qual-

all ratio of adhoc-LSHas r,,, varies from22 to 222, For small
m, the ratio isco, implying at least one query in the workload
whichadhoc-LSH misseehamely, returning nothing at all. The ra-
tio improves suddenly to 66 wher, reache®'*, and stabilizes as
rm grows further. It is thus clear that, given any,, the result of

ity, namely, they successfully return exactly the real NN for all
queries.LSB-foresincurs slightly higher error because it accesses
fewer points tharLSB-nd@¥,, and thus, has a lower chance of en-
countering the real NNAdhoc-LSHs by far the worst method, and

its effectiveness deteriorates rapidly as the dimensionality or cardi-

adhoc-LSHs at least 66 times worse than the real NN on average! nality increases.

As discussed in Section 3.2,1f,, is considerably smaller than
the NN-distance of a quergidhoc-LSHnay return an empty result.

To evaluate the query efficiency of the four methods. Figure 12a
(12b) plots their 1/0O cost as a function of dimensionalitycar-

| d [25 50 [75 | 100 | —+— iDistance —— MedRank —%— adhoc-LSH

rigorous-LSH|| 894 | 1,670 | 2,587 | 3,420 —&A— LSB-forest —8— LSB-tree
adhoc-LSH || 55 | 106 167 223 3 /0 cost 4 I/0 cost
LSB-forest || 55 | 106 | 167 | 223 [7 | 107
(a) Space vs. dimensionalitl/(n = 50k)] e — X

| n [10k | 25k | 50k | 75k | 100K | 107 b

rigorous-LSH || 1,670 | 7,206 | 20,695 | 43,578 | 66,676
adhoc-LSH 106 460 | 1,323 | 2,785 | 4,262
LSB-forest 106 460 | 1,323 | 2,785 | 4,262

(b) Space vs. cardinality (d = 50)
Table 2: Space consumption ovarden data in mega bytes

1
dinality n). LSB-forestconsiderably outperforms its competitors

L L i [: : :
11020 40 60 80 100 11020 40 60 80 100

in all cases. Notice that whileSB-nd?, is slightly more costly number k of neighbors number k of neighbors
thanadhoc-LSHLSB-foresentails only a fraction of the overhead | Cost ofSeqScar 2194| | Cost ofSeqScamr 3000|
of adhoc-LSH This phenomenon reveals the importance of having (a) Color (b) mnist

terminating conditionE in the NN algorithm. Rigorous-LSHs
much more expensive than the other approaches, which is consis-
tent with its vast asymptotical complexity.

Tables 2a and 2b show the space consumption (in mega bytes)
of each solution as a function dfandn, respectively.LSB-nd~,
is not included because it differs fronSB-forespnly in the query
algorithm, and thus, has the same space cosiS&sforest Fur-
thermore,adhoc-LSHalso occupies as much spacel&B-forest
because a hash table of the former stores the same information a%
a LSB-tree of the latter. As predicted by their space complexities,
rigorous-LSHrequires more space th&tsB-forestby a factor of
logd + log t, wheret (the largest coordinate on each dimension)
equals 10,000 in our experiments.

It is evident from the above discussion th&B-foresis overall
the best technique. Specifically, it retains the query accuracy of
rigorous-LSH consumes the same spac@adhoc-LSHand incurs
significantly smaller query cost than both.

Figure 13: Efficiency of kNN search

a function ofk. Sinceadhoc-LSHmaymissa query (i.e., unable to
returnk neighbors), we present its results as a table in Figure 14c,
where each cell contains two numbers. Specifically, the number in
he bracket indicates how many queries are missed (out of 50), and
he number outside is the average overall ratio of the queries that
are answered properly. No ratio is reportecddhoc-LSHmisses
more than 30 queries.

LSB-forestincurs low error in all cases (maximum ratio below
1.5), owing to its nice theoretical propertiésSB-treealso has good
precision (maximum ratio 2), indicating that the proposed conver-
sion (from ad-dimensional point to a Z-order value) adequately
preserves the spatial proximity of data poinddedRank in con-
trast, exhibits much worse precision than the proposed solutions.
8.5 Practical comparison In particular, observe thafledRankis not effective in the impor-

tant case of single NN search & 1), for which its average overall
ratio can be over 4.5. Finallgdhoc-LSHs clearly unreliable due
to the large number of queries it misses.

The average overall ratio reflects the general quality ofkall
neighbors reported. It does not, however, indicate how good the
neighbors are at individual ranks. To find out, we B¢b 10, and
measure the average rankatios at each € [1,10]. Figures 15a
and 15b demonstrate the results ayior and mnist respectively
(adhoc-LSHs not included because it misses many queries). Ap-
parently, botH_SB-foresandLSB-treeprovide results that are sig-
nificantly better thatMedRanlat all ranks. Observe that the qual-
ity of MedRankdeteriorates considerably at high ranks, whereas
our solutions return fairly good neighbors even at the greatest rank.
Note that the results in Figure 15 should not be confused with those
of Figure 14. For example, the average rank-1 ratidk(ef 10) is
different from the overall average ratio bf= 1°.

Table 3 compares the space consumption of different methods.
LSB-treerequires a little more space th@bistanceandMedRank
but this is well justified by its excellent query efficiency and accu-
‘racy. Remember that bottSB-treeandiDistancesupport efficient
data insertions/deletions, because they require updating only a sin-
gle B-tree.MedRank however, entails expensive update overhead
because, as mentioned in Section 8.2, inserting/deleting a single
point demands modifyinipg n B-trees, where: is the dataset car-

Having verified the correctness of our theoretical analysis, in
the sequel we assess the practical performanceqScanLSB-
tree LSB-forestadhoc-LSHMedRank andiDistance Rigorous-
LSHandLSB-ndv, are omitted because the former incurs gigantic
space/query cost, and the latter is merely an auxiliary method for
demonstrating the importance of conditila. Remember thabe-
gScanandiDistancereturn exact NNs, whereas the other methods
are approximate.

Only real datasetolor or mnistis adopted in the subsequent
evaluation. The workload otolor (mnis) has an average NN dis-
tance of 833 (11,422). We set the magic radiusdfioc-LSHo
the smallest power of 2 that bounds the average NN distance from
above, namely, 1,024 and 16,384 &mlor andmnist respectively.
The numberk of retrieved neighbors will vary from 1 to 100. A
buffer of 50 pages is allowed for all methods.

Let us start with query efficiency. Figure 13a (13b) illustrates the
average cost of NN query on datasetolor (mnis) as a function
of k. LSB-treeis by far the fastest method, and outperforms all
the other approaches by a factor at least an order of magnitude
In particular, onmnist LSB-treeeven achieves a speedup of two
orders of magnitude ovéDistance(the state of the art of exact NN
search), justifying the advantages of approximate retriek&B-
forestis also much faster thaibistance MedRank and adhoc-
LSH, especially in returning a large number of neighbors.

The next experiment inspects the result quality of the approxi- Sthe average rank-1 ratio is lower because processing a query with

mate techniques. Focusing oolor (mnis), Figure 14a (14b) plots k = 10 needs to access more data than a query with 1, and
the average overall ratios MedRankLSB-forestandLSB-treeas therefore, has a better chance of encountering the nearest neighbor

—o— MedRank —&— LSB-forest —8— LSB-tree

average overall ratio 5 average overall ratio

{

A

— [+—— : : :
11020 40 60 8 100 11020 40 60 80 100
number k of neighbors number k of neighbors
(a) Color (b) mnist
k 1 10 20 40 60 80 100
color || 1.2 (0) | 1.3(30) | -(42) -(46) | -(46) | -(47) | - (48)
mnist | 1.2 (0) | 1.3(13) | 1.3(19) | 1.4 (28) | -(37) | -(39) | - (41)

(c) Results oidhoc-LSH(in each cell, the number inside the

bracket is the number of missed queries, and the number outside is

the average overall ratio of the queries answered properly)
Figure 14: Average overall ratio vs.k

—o— MedRank —&— LSB-forest —8— LSB-tree

7 average rank-i ratio

9 average rank-i ratio

(a) Color

(b) mnist

Figure 15: Average ratios at individual ranks for 10NN queries

dinality.
iDistance | MedRank| adhoc-LSH| LSB-forest| LSB-tree
color 14 17 1,503 1,503 32
mnist 18 19 1,746 1,746 32

Table 3: Space consumption on real data in mega bytes

Recall thatLSB-forestutilizes a large numbet of LSB-trees,
where the numbel equals 47 and 55 farolor andmnist respec-
tively. LSB-treerepresents the other extreme that uses only a single
tree. Next, we explore the compromise of these two extremes, by
using multiple, but less thah trees. The query algorithm is the
same as the one adopted bgB-tree In general, leveraging
trees increases the query, space, and update cost by a faator of
The benefit, however, is that a largealso improves the quality of
results. To explore this tradeoff, Figure 16 shows the average over-
all ratio of 10NN queries on the two real datasets, whegrows
from 1 to the correspondinigof LSB-forest Interestingly, the pre-
cision improves dramatically with just a small number of trees. In

1.9 dverage overall ratio

1.3

10 20 30 40
number of LSB-trees

1
Figure 16: Benefits of using multiple LSB-trees § = 10)

other words, we can obtain much better results without increasing
the space or query overhead considerably, which is especially ap-
pealing for datasets that are not updated frequently.

In summary, the exact solutidbDistanceis not adequate due to

its costly query time.Adhoc-LSHis not reliable because it fails

to report enough neighbors for many queries. Furthermore, it also
entails large query overhealledRanks even more expensive than
adhoc-LSHand is not friendly to updates. On the other har®iB-
forestguarantees high quality of results, and sub-linear query cost
for any data/query distribution. Overall the best solution id18B-

tree which demands only linear space, permits fast updates, offers
very good results, and is extremely efficient in query processing.

9. CONCLUSIONS

Nearest neighbor search in high dimensional space finds numer-
ous applications in a large number of disciplines. This paper devel-
ops an access method called the LSB-tree that enables efficient ap-
proximate NN queries with excellent result quality. This structure
carries both theoretical and practical significance. In theory, it dra-
matically improves the (asymptotical and actual) space and query
efficiency of the previous LSH implementations, without compro-
mising the result quality. In practice, it is faster than the state of the
art of exact NN retrieval by two orders of magnitude. Compared to
the best existing approach for approximate NN queries, our tech-
nigue requires only a fraction of its query overhead, and produces
results of considerably better quality. Furthermore, the LSB-tree
consumes space linear to the dataset cardinality, supports updates
efficiently, and can be easily incorporated in relational databases.

Acknowledgements

Yufei Tao and Cheng Sheng were supported by Grants GRF
1202/06, GRF 4161/07, and GRF 4173/08 from HKRGC. Ke Yi
was supported by Hong Kong Direct Allocation Grant DAG07/08.

REFERENCES

[1] A. Andoni and P. Indyk. Near-optimal hashing algorithms for

approximate nearest neighbor in high dimension&@CS

pages 459-468, 2006.

S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and

A. Y. Wu. An optimal algorithm for approximate nearest

neighbor searching fixed dimensiodsACM

45(6):891-923, 1998.

[3] V. Athitsos, M. Potamias, P. Papapetrou, and G. Kollios.
Nearest neighbor retrieval using distance-based hashing. In
ICDE, pages 327-336, 2008.

(2]

[4] M. Bawa, T. Condie, and P. Ganesan. Lsh forest: self-tuning [22] J. Goldstein and R. Ramakrishnan. Contrast plots and

indexes for similarity search. WWW pages 651-660, p-sphere trees: Space vs. time in nearest neighbour searches.
2005. In VLDB, pages 429-440, 2000.

[5] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger. The [23] S. Har-Peled. A replacement for voronoi diagrams of near
R*-tree: An efficient and robust access method for points linear size. IFOCS pages 94-103, 2001.
and rectangles. IBIGMOD, pages 322-331, 1990. [24] G. R. Hjaltason and H. Samet. Distance browsing in spatial

[6] K. P. Bennett, U. Fayyad, and D. Geiger. Density-based databasesTODS 24(2):265-318, 1999.
indexing for approximate nearest-neighbor queries. In [25] M. E. Houle and J. Sakuma. Fast approximate similarity
SIGKDD, pages 233-243, 1999. search in extremely high-dimensional data set$CIDE,

[7] S. Berchtold, C. Bohm, H. V. Jagadish, H.-P. Kriegel, and pages 619-630, 2005.

J. Sander. Independent quantization: An index compression [26] P. Indyk and R. Motwani. Approximate nearest neighbors:
technique for high-dimensional data spaceddDE, pages Towards removing the curse of dimensionalitySMOG
577-588, 2000. pages 604—613, 1998.

[8] S. Berchtold, D. A. Keim, H.-P. Kriegel, and T. Seidl. [27] H. V. Jagadish, B. C. Ooi, K.-L. Tan, C. Yu, and R. Zhang.
Indexing the solution space: A new technique for nearest idistance: An adaptive b+-tree based indexing method for
neighbor search in high-dimensional spatéDE, nearest neighbor searchODS 30(2):364-397, 2005.
12(1):45-57, 2000. [28] F. Korn, B.-U. Pagel, and C. Faloutsos. On the

[9] K. S. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. ‘dimensionality curse’ and the ‘self-similarity blessing’.
When is “nearest neighbor” meaningful?IldDT, pages TKDE, 13(1):96-111, 2001.

217-235, 1999. [29] N. Koudas, B. C. Ooi, H. T. Shen, and A. K. H. Tung. Ldc:

[10] C. Bohm. A cost model for query processing in high Enabling search by partial distance in a hyper-dimensional
dimensional data spaceBODS 25(2):129-178, 2000. space. INCDE, pages 6-17, 2004.

[11] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. Lof: [30] R. Krauthgamer and J. R. Lee. Navigating nets: simple
Identifying density-based local outliers. iIGMOD, pages algorithms for proximity search. IBODA pages 798-807,
93-104, 2000. 2004.

[12] S. Chaudhuri and L. Gravano. Evaluating top-k selection [31] C. Li, E. Y. Chang, H. Garcia-Molina, and G. Wiederhold.
queries. INVLDB, pages 397-410, 1999. Clustering for approximate similarity search in

[13] C.-M. Chen and Y. Ling. A sampling-based estimator for high-dimensional spaceSKDE, 14(4):792-808, 2002.
top-k query. INNCDE, pages 617-627, 2002. [32] K.-I. Lin, H. V. Jagadish, and C. Faloutsos. The tv-tree: An

[14] P. Ciaccia and M. Patella. Pac nearest neighbor queries: index structure for high-dimensional dafdhe VLDB
Approximate and controlled search in high-dimensional and Journal 3(4):517-542, 1994.
metric spaces. IKCDE, pages 244-255, 2000. [33] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li.

[15] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Multi-probe Ish: Efficient indexing for high-dimensional
Locality-sensitive hashing scheme based on p-stable similarity search. I'VLDB, pages 950-961, 2007.
distributions. INSoCG pages 253-262, 2004. [34] R. Panigrahy. Entropy based nearest neighbor search in high

[16] R. Fagin, R. Kumar, and D. Sivakumar. Efficient similarity dimensions. IFBODA pages 1186-1195, 2006.
search and classification via rank aggregatiorSI@MOD, [35] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest
pages 301-312, 2003. neighbor queries. ISIGMOD, pages 71-79, 1995.

[17] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation [36] R. Weber, H.-J. Schek, and S. Blott. A quantitative analysis
algorithms for middleware. IRODS 2001. and performance study for similarity-search methods in

[18] H. Ferhatosmanoglu, E. Tuncel, D. Agrawal, and A. E. high-dimensional spaces. \fLDB, pages 194-205, 1998.

Abbadi. Approximate nearest neighbor searching in
multimedia databases. IGDE, pages 503-511, 2001.

[19] P. Ferragina and R. Grossi. The string b-tree: a new data
structure for string search in external memory and its
applicationsJ. ACM 46(2):236—280, 1999.

[20] V. Gaede and O. Gunther. Multidimensional access methods.
ACM Computing Survey80(2):170-231, 1998.

[21] A. Gionis, P. Indyk, and R. Motwani. Similarity search in
high dimensions via hashing. MLDB, pages 518-529,

1999.

