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Quality Assessment for Omnidirectional Video:
A Spatio-Temporal Distortion Modeling Approach
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Abstract—Omnidirectional video, also known as 360-degree
video, has become increasingly popular nowadays due to its
ability to provide immersive and interactive visual experiences.
However, the ultra high resolution and the spherical observation
space brought by the large spherical viewing range make omnidi-
rectional video distinctly different from traditional 2D video. To
date, the video quality assessment (VQA) for omnidirectional
video is still an open issue. The existing VQA metrics for
omnidirectional video only consider the spatial characteristics
of distortions, but the temporal changes of spatial distortions
can also considerably influence human visual perception. In
this paper, we propose a spatiotemporal modeling approach to
evaluate the quality of the omnidirectional video. Firstly, we
construct a spatiotemporal quality assessment unit to evaluate the
average distortion in temporal dimension at the eye fixation level,
based upon which the smoothed distortion value is recursively
calculated and consolidated by the characteristics of temporal
variations. Then, we give a detailed solution of how to to integrate
the three existing spatial VQA metrics into our approach. Besides,
the cross-format omnidirectional video distortion measurement
is also investigated. Finally, the spatiotemporal distortion of the
whole video sequence is obtained by pooling. Based on the
modeling approach, a full reference objective quality assessment
metric for omnidirectional video is derived, namely OV-PSNR.
The experimental results show that our proposed OV-PSNR
greatly improves the prediction performance of the existing VQA
metrics for omnidirectional video.

Index Terms—Omnidirectional video, objective video quality
assessment, spatio-temporal distortion.

I. INTRODUCTION
Omnidirectional video, also dubbed 360-degree video, is

an emerging multimedia representation, which can provide a
whole spherical space field of view (FoV) [1]. When watching
a 360-degree video, the viewer usually needs to wear a head-
mounted display (HMD) to freely look around through the
movement of his/her head, to gain immersive and interactive
experiences. Unlike two-dimensional (2D) planar video, om-
nidirectional video recording process can be divided into three
major steps: capturing, stitching, and projection. Typically,
omnidirectional video is recorded using multiple cameras or
a dedicated camera that contains multiple camera lenses, to
capture scene information in all directions simultaneously.
Each camera lens corresponds to a separate video file, and
then these footages are merged into one spherical video piece
through the stitching method. The resulting video generally
needs to be mapped to a plane format called panoramic
video for the convenience of encoding and transmission. In
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addition, in order to provide realistic immersive video content,
omnidirectional video usually requires ultra high definition
(UHD) resolution or even higher. Due to the distortion po-
tentially introduced by plane mapping and the extraordinarily
high resolution visual content, traditional 2D video quality-
related solutions are not well suitable for omnidirectional
video. Therefore, there is an urgent need of a new approach
for omnidirectional video quality assessment.

Video quality assessment (VQA) is of fundamental impor-
tance for optimization of the associated algorithms designed
in a variety of video processing fields, such as acquisition,
compression, enhancement, restoration, and transmission. Ba-
sically, VQA methods can be categorized into two classes:
subjective methods and objective methods. Subjective VQA
metrics measure the quality of the video by asking a number
of human observers to rate scores and a mean opinion score
(MOS) is computed for each video. Subjective VQA metrics
may be considered the most accurate and reliable way for
assessing the video quality, since it directly expresses the
feeling of the viewer about the quality of the visual content.
But it is time and resource consuming. Further, the mood of
the subjects and the environment may affect the consistency of
the results. On the other hand, the objective VQA is to design
a mathematical model that can automatically approximate the
evaluation results from subjective VQA. According to the
availability of reference video, the objective VQA metrics can
be classified as full-reference (FR), reduced-reference (RR),
and no-reference (NR) metrics [2]. In this paper, we focus
primarily on the full-reference objective VQA for omnidirec-
tional video.

For conventional 2D video, Peak Signal-to-Noise Ratio
(PSNR) is the most widely used FR objective VQA metric,
because of its simplicity and interpretability. Another well-
known 2D FR objective VQA metric is Structural Similarity
Index (SSIM) [3] and its variants [4]–[6]. However, omni-
directional video is usually produced and stored in planar
representations to be compatible with the existing planar video
coding standards. Two sphere-to-plane projections are wide-
ly used for omnidirectional video nowadays, namely, equi-
rectangular projection (ERP) and cube map projection (CMP).
ERP projects the sphere to a plane forming a panoramic
image. In this projection, a constant sampling density is used
vertically on the sphere, while, horizontally, each latitude is
stretched to a unit length to fit in a rectangle. CMP places the
sphere at the center of a cube with unit length sides. Each face
of the cube is generated by a rectilinear projection with a 90

◦

field of view in horizontal and vertical directions. While, at the
time of rendering and display, the planar representations are
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then mapped back to the sphere space. Due to the different
formats between representation space and observation space
in omnidirectional video, objective VQA becomes extremely
difficult compared to 2D planar video. If we directly use
conventional 2D VQA approaches as the quality measures for
the planar representation of omnidirectional video, the scores
obtained may not correspond well with human perception in
the spherical space. Under this circumstance, several works
[7]–[12] for VQA on omnidirectional video have emerged.
Nevertheless, among these approaches, only the impact of spa-
tial spherical characteristics on the quality of omnidirectional
video has been studied, and the temporal distortion is ignored,
which is however also crucial for VQA.

A simple and straightforward approach to implement VQA
metrics is to apply an image quality assessment (IQA) metric
on a frame-by-frame basis. That is, the quality of each frame
is evaluated independently, and then the video global quality is
obtained by using a simple average or Minkowski summation.
However, unlike still images, videos are perceived by human
eye in spatial as well as temporal dimensions. Thus, the rep-
resentation of distortions in video should contain both spatial
and temporal aspects. As a consequence, a more sophisticated
modeling approach needs to be designed to take into account
both spatial and temporal distortions. For 2D video VQA, a
large number of works considering the temporal distortions
have been proposed. However, all currently existing VQA
methods for omnidirectional video only take into account
spatial degradation effects, and none of them consider the
effect of temporal distortions.

In this paper, we propose a new modeling approach to
objectively evaluate the quality of omnidirectional video by
considering both the spatial characteristics and the temporal
variation of distortions across frames. Accordingly, we propose
a full reference objective video quality assessment method,
namely Omnidirectional Video PSNR (OV-PSNR). To be more
specific, firstly, to simulate temporal change of the areas in
the visual field, we construct a spatial-temporal tube based-
structure on the ERP format, within which the spatial spherical
distortion is measured and temporally filtered. Secondly, we
calculate the gradient of the temporal distortion to evaluate the
most perceptually important temporal variation of distortion at
the eye fixation level. Finally, we derive the spatio-temporal
distortion for the whole video sequence.

In summary, the key contributions of this paper are as
follows.
• We present a spatio-temporal distortion modeling ap-

proach to evaluate the quality of omnidirectional video.
Through constructing the spatio-temporal tube as a basic
quality assessment unit and characterizing temporal vari-
ations of distortions across frames, a more accurate VQA
modeling approach is devised for omnidirectional video.

• We develop a new FR objective VQA metric for omni-
directional video, for short, OV-PSNR, which integrates
the current most popular three existing objective VQA
methods for omnidirectional image/video into our spatio-
temporal distortion modeling approach. We also adapt
the proposed OV-PSNR for the quality evaluation to
the case that the test video has a different projection

format than the reference video. We demonstrate that
the proposed objective VQA metric can significantly
improve the performance of existing VQA metrics for
omnidirectional video.

In order to make reproducible research, the implementation
code of the proposed OV-PSNR in this paper is made publicly
available in this repository1.

This paper is organized as follows. In section II, we will
introduce the related work. Section III describes our proposed
VQA metric and the underlying spatio-temporal distortion
model. Section IV presents the experimental results and related
analysis. Finally, conclusion is given in Section V.

II. RELATED WORK

A. Objective VQA for omnidirectional video

For traditional 2D video, a common practice to implement
objective VQA metrics is to apply IQA methods to each
frame independently and calculate the average value over the
scores of all frames in the whole video sequence. The most
commonly used IQA metric is PSNR. PSNR is calculated
based on the mean squared error (MSE) between the reference
and impaired signals, and it has clear physical meanings
and computational simplicity. However, MSE and PSNR are
criticized for not correlating well with subjective visual quality
perceived by the human visual system (HVS), especially when
the noise is not additive. Structural similarity (SSIM) [3]
developed by Wang et al. is another popular method for quality
assessment of still images which estimates perceptual distor-
tions by considering structural information, and its extension
MultiScale-SSIM (MS-SSIM) [4] provides more flexibility
than the single-scale version by incorporating the variations
of image resolution and viewing conditions. However, these
methods do not utilize temporal characteristics in their HVS
model benefiting for VQA. In [5], the author preliminarily
extended the SSIM metric to the video domain. The Speed
SSIM [6] is also proposed, which uses the SSIM index in
conjunction with statistical models of visual speed perception.
In addition to the PSNR and SSIM based metrics, a VQA
algorithm called video quality metric (VQM) [13] from the
National Telecommunications and Information Administration
(NTIA) was adopted by the American National Standards In-
stitute (ANSI) as a national standard and as a recommendation
of the International Telecommunication Union (ITU), due to
its excellent performance in the Video Quality Experts Group
(VQEG) Phase II validation tests. In [14], the authors proposed
the variation of spatial quality in time as the measure of quality
fluctuation in VQA.

Unlike conventional 2D VQA, in order to evaluate the
quality of omnidirectional video reasonably, it is necessary to
consider the spatial stretching effects caused by the projection
between spherical and planar spaces. The ERP format over-
samples the sphere at the poles, resulting in stretched top and
bottom areas on the ERP picture. When using CMP format,
spherical positions corresponding to the center of a CMP face
are sampled more sparsely compared to those corresponding to

1https://github.com/I2-Multimedia-Lab/360-video-experimental-platform
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the sides of the face. In the latest stage of standardization for
360-degree video coding, several metrics on omnidirectional
video quality assessment taking into account the mapping
between representation space and observation space have been
introduced. As one of the earliest works, Yu et al. [7] proposed
a sphere-based peak signal-to-noise ratio (S-PSNR), which
calculates PSNR based on uniformly sampled point set on
spherical surface instead of 2D plane, and the sample values
are calculated by the corresponding neighboring samples in
original projection plane via the nearest neighbour or bicubic
interpolation methods, generating two variants i.e., S-PSNR-
NN and S-PSNR-I [15]. Additionally, Zakharchenkoa et al.
[8] proposed a craster parabolic projection PSNR (CPP-PSNR)
to convert another projection format to craster parabolic pro-
jection (CPP) plane, and calculate PSNR based on resam-
pled points in CPP domain, where the resampled values are
obtained by interpolation as well. Both VQA methods for
omnidirectional video apply the interpolation algorithm to
obtain the sample values, which may bring inaccuracy to
evaluation results. Sun et al. [9] proposed the weighted-to-
spherically-uniform PSNR (WS-PSNR) metric, which uses all
samples on the original projection plane and considers the
weights according to the corresponding specific point positions
on the spherical surface, but WS-PSNR cannot assess quality
of omnidirectional video across different projection formats.
Similarly, an area weighted spherical PSNR (AW-SPSNR)
[10] is proposed, which can utilize all available samples in
the projected 2D plane and does not rely on interpolation.
In [16], a Voronoi-based objective quality model is proposed
for omnidirectional video quality evaluation, in which the
interactive look around nature and the spherical representa-
tion characteristic are taken into account. In [17], the Video
Multimethod Assessment Fusion (VMAF) is used to measure
the quality of 360VR sequences. In [18], visual attention is
incorporated into VQA of 360

◦
video. In this approach, each

360
◦

image is firstly subdivided into multiple planar patches,
and then the objective quality of each patch is analysed based
on visual attention. Since the main difference between 2D
and omnidirectional videos is that observers only can access
the content inside the FoV in omnidirectional video, there
are a number of objective VQA methods based on viewers
region of interest (ROI) proposed recently. In [11], Yang et al.
proposed a VQA method based on multi-level quality factors,
which calculates the panoramic video quality with region of
interest (ROI) maps. Xu and Li [12] proposed the content-
based perceptual PSNR (CP-PSNR), considering the possible
viewing directions trained and predicted on the video contents.
Recently, there have emerged several deep learning based
approaches for quality evaluation on 360

◦
contents. In [19],

Lim et al. proposed a 360
◦

image quality assessment method
using adversarial learning. Li et al. [20] proposed a viewport-
based convolutional neural network appraoch for VQA on
360

◦
. This network firstly uses a viewport proposal network

to propose potential viewport, and then employs a viewport
quality network for quality prediction. However, all these
mentioned metrics only take into account spatial degradation
effects, and, nevertheless, temporal effects are also essential
to perform quality evaluation for omnidirectional video.

B. Temporal effects in objective VQA

For objective VQA, a more sophisticated modeling approach
needs to be designed since the frame-level averaging of spatial
quality alone is not sufficient. At the early stages of 2D
VQA research, many studies [21]–[27] have been proposed
using models of the HVS to evaluate the spatio-temporal
distortion. In [22], van den Branden Lambrecht has presented
a complete spatio-temporal model of the HVS by considering
three aspects of vision: transient and sustained temporal mech-
anisms, contrast sensitivity, and visual masking. Particularly,
it is believed that two temporal filters need to be implemented
to model the sustained and transient mechanisms of temporal
vision, one low-pass and one band-pass. For example, the
Moving Pictures Quality Metric (MPQM) [23], the Perceptual
Distortion Metric (PDM) [26], and the Digital Video Quality
(DVQ) metric [27], these works utilize two filters or a single
low-pass filter to model the temporal mechanisms. Moreover,
motion information also plays an important role in the percep-
tion of video quality. In [25], the Motion Rendition Quality
Metric (MRQM) was proposed, which is based on an extension
of the previous spatio-temporal model by incorporating human
motion sensing. SSIM was extended to the temporal dimension
by using a weighting scheme that takes into account motion
information in [5] and [6]. In [28], the TetraVQM method
estimates the motion trajectories on the reference sequence
by applying block motion estimation and utilizes the motion
vectors to generate the spatio-temporal distortion map. Further,
Seshadrinathan et al. proposed [29] a general framework for
measuring both spatial and temporal video distortions and
a VQA algorithm called the MOtion-based Video Integrity
Evaluation (MOVIE) index, which is based on their earlier
work [30]. In addition to the models of visual motion sensors,
there are several works that consider the temporal variations
of the spatial distortions and develop a more sophisticated
pooling strategy. In [31], the temporal pooling mechanism
used to model continuous perceived quality recordings is
introduced. In [32], an objective VQA method based on a
short-term and a long-term temporal pooling is proposed.
In the short-term stage, the video sequence is divided into
spatiotemporal segments, which can evaluate the quality of
the temporal distortions at eye fixation level and per-frame
quality scores are obtained. Then the long-term stage computes
the quality score for the whole video sequence by combining
the average of all frame distortion scores with the temporal
variation of distortions over the whole sequence.

However, to our best knowledge, there are few objective
VQA metircs that take temporal mechanism into account
for omnidirectional video. Therefore, we propose a spatio-
temporal distortion modeling approach that the existing VQA
metrics for omnidirectional video can be easily integrated with.
Our analysis shows that the performance of VQA metrics for
omnidirectional video can be improved significantly by the
introduction of our temporal distortion model. A preliminary
study of this work has been presented in [33], in which
an objective model is proposed for VQA on 360

◦
video by

considering temporal aspect of perceived distortion. However,
this model is only applicable to the spatial distortion in
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a panorama frame that is calculated using WS-PSNR. In
particular, this model is only limited to the case that the
reference and impaired 360

◦
videos have the same projection

format, i.e., ERP format. In this paper, we address the problem
of quality evaluation for omnidirectional video thoroughly.
Firstly, we propose a more sophisticated and comprehensive
spatial-temporal approach for modeling the temporal distortion
variations in omnidirectional video, in which a module called
spatial distortion map generation is designed for adapting to
various spherical distortion calculation methods. Secondly, we
extend the most popular three spatial-spherical-quality-focused
omnidirectional video metrics from spatial domain to temporal
domain. The used three metrics are also the ones that JVET
recommended for 360 video quality evaluation. Finally, cross-
format omnidirectional video quality assessment is considered.
Besides these improvements, we also provide a comprehensive
experiment to validate the proposed spatial-temporal model.

III. THE PROPOSED VIDEO QUALITY
ASSESSMENT METHOD

In this section, we develop an objective VQA method for
omnidirectional video. Firstly, we give a brief description
of how a human observer perceives a temporal distortion in
Section III-A. Then, Section III-B elaborates on the proposed
spatio-temporal distortion modeling approach. Finally, in order
to be compatible with the three most common VQA metrics for
omnidirectional video (i.e., S-PSNR, CPP-PSNR, WS-PNSR),
we develop a detailed solution to incorporate them into the
proposed spatio-temporal model in Section III-C.

A. Visual Attention Mechanism

In this paper, we seek to address the temporal effects in
objective VQA by introducing the temporal distortions in the
video sequence. A temporal distortion can be defined as the
temporal evolutions of the spatial distortion, such as mosquito
noise, stationary area fluctuations, jerkiness, ghosting and
smearing [34]. The intense changes or fluctuations, of the
spatial distortions over time can considerably influence human
perception. Consequently, the question arising to know is how
a human observer actually perceives a temporal distortion.

The perception of the temporal distortions is closely related
to the visual attention mechanisms. In video quality evaluation,
for each variation in picture quality, a stimulus is sent to the
human observer, and an associated response is generated. The
time frequency and the speed of the spatial distortion variations
could considerably influence human perception. Generally
speaking, the judgement process of quality evaluation for
video conducting from human cognitive emulator can be very
complicated. However, by considering the characteristics of
HVS, the relationship between the temporal distortion and
visual attention contains four main elements, i.e., smoothing
effect, perceptual saturation, asymmetric behavior, and motion
suppression [24], [31], [35]. The smoothing effect refers to
that human observers integrate distortion temporally over a
time window. More specifically, in a short duration, when the
unimpaired frames are interleaved with the distorted ones, all
frames appear distorted. Therefore, the perceived distortion at

a certain frame is not just the distortion of the current frame.
For perceptual saturation, it means that there are limitation in
the viewer’s ability to observe any further changes in the frame
quality beyond certain thresholds, either toward better or worse
quality. The asymmetrical behaviour is the fact that humans are
better able to remember unpleasant experiences than pleasant
moments, and also experience greater intensity of feelings
from disliked situations compared to favourable situations.
For motion suppression, since motion or temporal change is
dominant features in dynamic visual scene, it increases the
processing cost of visual perception and as a result of limited
processing power in the HVS, greatly reduces visual sensitivity
[36], [37]. Due to motion suppression, perception of distortions
is considerably reduced in peripheral vision. Besides these four
elements, temporal distortion may also guide strong attention
to salient areas, while distortions that occur outside the salient
areas are assumed to have a lower impact on the overall quality
[38].

Visual perception occurs when the eyes focus on the light
onto the retina, with a combination of eye movements and
shifts in visual attention. The eye movements can be cate-
gorised into three major types: saccadic movements, smooth
pursuit movements, and fixations [39]. Saccades are very
rapid, ballistic eye movements, pursuit movements allow the
eyes to closely track a moving object smoothly instead of in
jumps, and fixation is the maintaining of the visual gaze on a
particular area of the visual field. When a human observer
assesses a video sequence, the perception of a temporal
distortion is more likely to happen during a fixation or a
smooth pursuit than saccades. Imagine that the video sequence
can be decomposed into a series of successive spatiotemporal
segments, and each segment is spatially limited by a particular
area of the visual field, and temporally limited to the average
duration of a fixation or a smooth pursuit. These spatiotempo-
ral segments contain temporal variation information of spatial
distortion and each segment can be used as an assessment unit
to evaluate the perceived quality of spatio-temporal distortion.
Further, the visual attention mechanisms indicate that the
HVS integrates most of the visual information at the scale
of the fixations although fixation duration is shorter than the
smooth pursuit duration [39]. Therefore, the spatio-temporal
distortions can be locally observed and measured during each
possible fixation period. As mentioned in [32], the duration
of 400 ms is chosen in accordance with the average duration
of the visual fixation, which is the most simple and effective
solution.

In our proposed spatio-temporal distortion model, each
possible fixation can happen at a certain area of every frame in
a video sequence. Therefore, we divide each frame of a video
sequence into blocks and connect the related blocks along
temporal domain at eye fixation level into a spatiotemporal
segment, or more specifically the tube, which serves as a basic
video quality assessment unit. Based on these spatio-temporal
tubes, theoretical modeling of spatiotemporal distortions for
omnidirectional video can be achieved. We describe it for
greater details in the next subsection.
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Fig. 1: Block diagram of the proposed spatiotemporal distortion model for quality evaluation of omnidirectional video.

B. The Spatio-Temporal Distortion Model

The proposed spatiotemporal distortion model is shown in
Fig. 1, which is composed of four steps. Since the spatiotem-
poral distortions are evaluated locally according to where
visual attention positions and how long it lasts, the video
sequence needs to be decomposed into a series of spatiotem-
poral segments. These spatiotemporal segments evaluated by
a human observer during fixations can be roughly designed
as spatiotemporal tubes. These tube based structures contain
the spatiotemporal distortions for each possible fixation, in
which a fixation can start at any frame. Therefore, the first
step, the module numbered 1 in Fig. 1, is the procedure of
spatiotemporal tube creation, which is conducted in the repre-
sentation space of omnidirectional video. However, in theory,
it is more reasonable to construct spatiotemporal tubes in the
spherical space than the considered planar space because the
observation space is the endpoint where the viewer perception
takes place for omnidirectional video. But block division and
motion estimation on sphere is extremely challenging and still
an open problem. In this paper, considering the fact that almost
all the omnidirectional videos are stored and compressed in the
planar format, we also focus on the ERP format to implement
spatiotemporal tubes for quality evaluation. To compensate for
the effect of the observation space, we will incorporate the
spatial spherical characteristics into the distortion map of each
block in the tube.

For a given frame Ft in the original panoramic video, we
firstly divide it into K · L blocks, where K and L are the
horizontal and the vertical number of blocks, respectively.
For instance, if the block size is 16 × 16, an omnidirec-
tional video with resolution of 4096 × 2048, there will be
a total of 256 × 128 = 32768 blocks in each frame. Since
the motion information is essential to evaluate the temporal
distortion of a moving object and the locality of the temporal-
corresponding block must be motion compensated, we perform
the motion estimation so that the local motion between two
blocks in consecutive frames is estimated. Using the estimated
motion information, the past trajectory of the block can be
reconstituted. More specifically, assume the number of frames
in a temporal horizon is n (e.g., n = 10 if the fixation

FtFt-1Ft-2Ft-3Ft-4Ft-n
...

Spatio–temporal tube

Temporal horizon

Mapping

Fig. 2: Illustration of a spatio-temporal tube used to modeling the temporal
distortion for omnidirectional video.

duration is 400 ms as mentioned above and the frame rate
is 25 fps). For a block Bk,l,t in the frame Ft, we firstly
find the matching block in the previous frame for the current
block using backward motion vector. The motion vectors are
computed from the original sequence using block matching
algorithms. There are a number of block matching algorithms
in the literature, and for simplicity, we choose the New Three-
Step Search Algorithm here [40]. Then, we do the similar
step for the co-located block in the t − 1 frame to find
its corresponding block in the t − 2 frame. We repeat this
step until the corresponding block in the t − n + 1 frame
is found. The block Bk,l,t and all the associated blocks in
the preceding frames are connected to form a spatial-temporal
tube, as shown in Fig. 2, where, meanwhile, each planar image
block corresponds to an irregular area in the spherical domain.
The spatiotemporal tube simulates the trajectory of a possible
moving object at time and spatial domain. So far, we have built
the basic quality assessment unit for omnidirectional video,
i.e., the spatiotemporal tube.

In the second step, the module numbered 2 in Fig. 1, we
do the spatial distortion evaluation for omnidirectional video
to obtain the spatial distortion map for each frame Ft. The
distortion dk,l,t of each block (k, l) obtained from the first
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step in this map is computed between the associated blocks in
the original and the impaired frames of omnidirectional videos.
Considering that the distortion map needs to reflect the spatial
spherical characteristics of the omnidirectional video, this step
can be achieved by extending the existing VQA metrics which
take into account the effect of nonlinear projection on spatial
distortion of omnidirectional video, such as S-PSNR, CPP-
PSNR, and WS-PSNR, the details of which will be discussed
in next subsection. After this step, it is assumed that we have
a set of spatial distortion maps without temporal consideration
for the omnidirectional video sequence.

The evaluation of spatiotemporal distortion for omnidirec-
tional video is based on our spatiotemporal tube structure
combined with the spatial distortion map. As shown in the
third step in Fig. 1, the spatiotemporal tube distortion consists
of two parts, the average distortion and the temporal distortion
of the tube. The average distortion of the corresponding tube
Dk,l,t is not an arithmetic mean of all block distortions dk,l,t
in the tube at the fixation duration but a smoothed average
value of all block distortions considering temporal effects of
HVS. To this end, a temporal filter of spatial distortion needs
to be realized [31], [41]. The temporal filter acts as a low-
pass filter, and uses a temporal summation in a recursive
manner to convert the distortion estimate on a single frame to
continuous quality estimates. Let dt be the spatial distortion at
current time t, and Dt be the smoothed (or weighted averaged)
distortion at time t. It should be noted that, Dt and dt are
the simplified version of Dk,l,t and dk,l,t respectively for
notational conciseness. The relationship between dt and Dt

can be represented as follows:

Dt =

{
(1− α1) · dt + α1 ·Dt−1 if |∇dt| ≥ µ
(1− α2) · dt + α2 ·Dt−1 if |∇dt| < µ

(1)

where α1 and α2 are the smoothing factors, ∇dt and µ are
the distortion gradient value of frame Ft and the threshold
respectively, and the recursive process starts at the first block
of a tube with Dt−n+1 = dt−n+1. If the value of α1(α2) is
close to zero, the less smooth effect on the current distortion
Dt is from the distortion in the previous block. When α1(α2)
is set to 0, Dt and dt are exactly identical. For the selection
of α1(α2) value, we use the distortion gradient value between
adjacent frames as the indicator. If the absolute value of the
distortion gradient value is greater than or equal to a threshold
value µ, a larger value α1 (e.g., 0.8) is selected, otherwise
a smaller value α2 (e.g., 0.5) will be selected. The details
of distortion gradient calculation will be described in the
following.

In the above, the average distortion of the spatiotemporal
tube is the distortion result of temporal filtering of the spatial
distortions for the block in the frame t in the corresponding
tube. However, the characteristics of temporal distortions in
the tube, such as frequency and amplitude of the distortion
variations, also significantly impact the perception. Therefore,
we consolidate the average distortion Dt with the temporal
distortion D′t which is produced by the temporal filtering of
distortion variation gradient.

The distortion gradient ∇dt at frame t is defined as follows

∇dt =
dt − dt−1

∆t
(2)

where dt and dt−1 are the spatial distortions at frame t
and t − 1 in the temporal horizon of tubes, as obtained
in the step 1. ∆t is the time interval between frames as
mentioned above. A larger value of distortion gradient means
higher temporal variations which is more annoying to human
observer. However, there exists a certain gradient threshold µ.
If the absolute value of the distortion gradient is below µ, the
temporal distortion variations hardly can be perceived. In this
case, we set the associated distortion gradient to 0 to reduce
the limited effect of the temporal variations.

The frequencies of the temporal variations can be represent-
ed as the number of sign changes of distortion gradients. HVS
is more sensitive to temporal distortion variations at medium
frequencies than at low or high frequencies [32]. Therefore,
fs(ns) is a Gaussian-like fitting function as follows:

fs(ns) =
gs

σs
√

2π
· e−

(ns−µs)2

2σ2s (3)

where ns is the number of sign changes of distortion gradients,
which is obtained by comparing the signs of neighbouring
distortion gradients in a tube. If two neighbouring distortion
gradients have different signs, we count that there is a sign
change occurred. gs represents the scaling factor, which is
used to scale the probability density of standard Gaussian
distribution. µs and σs represent the mean and standard
deviation of the distribution, respectively. The fs(ns) function
reaches its maximum in the case of only one sign change of
the distortion gradients in the tube duration.

Then, the temporal distortion of a tube D′t can be calculated
as

D′t = Max(∇dt) · fs(ns) ·Dt (4)

The function of Max(∇dt) is to obtain the maximum distor-
tion gradient in the tube duration. The product of Max(∇dt) ·
fs(ns) is the output of temporal filtering of distortion gradi-
ents in the tube. Further, we assume that the temporal distor-
tion is linearly related to the average distortion Dt, and thus
we multiply the filtered distortion gradient Max(∇dt)·fs(ns)
with Dt to obtain the temporal distortion as shown in (4). D′t
is the result after combining the amplitude and frequency of
the distortion gradient to consolidate the average distortion Dt

of the tube.
The results coming from these two branches are then mixed

together in the fixation pooling step, in which the average
distortion Dt and the temporal distortion D′t are merged in
order to generate the final spatiotemporal distortion of tube
Dt,

Dt = Dt + β ·D′t (5)

where β is a weighting factor that gives how important the
temporal variations are. In the case of β = 0, the Dt is reduced
to the spatiotemporal tube distortion without consideration of
temporal variations of distortions. Until now, the perceived
distortion of an omnidirectional video sequence is evaluated
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at the fixation level, resulting in the final distortion for the spa-
tiotemporal tube quality assessment unit Dt, more specifically
Dk,l,t. We will pool the distortions of these units together to
get a global score to evaluate the quality of the whole video
sequence in the next step.

There are two steps in the pooling stage, as numbered 4
in Fig. 1. In the first, a per-frame perceptual distortion score
Df
t from the spatiotemporal distortions of all the tubes Dk,l,t

finishing at frame t is computed. This is performed by using
a Minkowski norm

Df
t = (

1

K · L

K−1∑
k=0

L−1∑
l=0

(Dk,l,t)
βs)

1
βs (6)

where βs is the Minkowski exponent, and βs = 2 works well
here.

PSNR values for video sequence can be calculated in two
ways. One is an average value of the per-frame PSNR, called
method Av-Log. And in the second method Log-Av, PSNR
is based on the average distortion of frames. The study [42]
shows that PSNR of Log-Av is a better value for measuring
PSNR of video sequences. Thus, in the second step of pooling,
the average distortion value is calculated from the all frame
distortions over the whole video sequence, called D.

D =
1

N

N−1∑
t=0

Df
t (7)

Finally, the so-called quality assessment score OV-PSNR is
derived from our spatiotemporal distortion model, which is
calculated as follows

OV -PSNR = 10 · log(
MAX2

I

D
) (8)

where MAXI is the maximum possible pixel value of the
color space. Generally speaking, OV-PSNR can be used to
objectively measure the perceptual quality of omnidirectional
video. However, there is lack of explanation for the details
about how to integrate the existing VQA metrics for omni-
directional video into our spatiotemporal distortion model to
generate spatial distortion maps as shown in the second step.
We discuss this topic in next subsection.

C. Compatibility with the Existing VQA Metrics

A major difference of VQA metrics for omnidirectional
video with 2D video is the modeling of the stretching ef-
fects caused by the projection from spherical space to planar
space. In light of this, several proposed VQA metrics for
omnidirectional video have addressed this aspect in different
ways, and all of them achieve very reasonable spherical quality
estimation performance. In this study, we attempt to integrate
the three most commonly used VQA metrics for omnidirec-
tional video, i.e., S-PSNR, CPP-PSNR, and WS-PSNR, into
our distortion evaluation model as described above. Note that
in the second step of our spatiotemporal distortion model,
we have mentioned that a spatial distortion map needs to
be generated to output each block distortion dk,l,t in the
corresponding tube finishing at each frame. In the following,
we show how the spatial distortion map is obtained by using

these three different VQA methods. The detailed distortion
map generating process is illustrated in Fig. 3.

1) Temporal Extension to WS-PSNR: The method WS-
PSNR measures omnidirectional video quality directly in the
projection domain by assigning different weights to each
image samples on the 2D projection plane. Therefore, we
can naturally generate the spatial distortion map for blocks by
directly using the weight map produced by WS-PSNR method
since our modeling approach performs block division and tube
creation exactly on the 2D projection plane. Let dk,l,t be the
spatial distortion of the block (k, l) in frame t. Thus, the dk,l,t
can be calculated between the original video sequence and
the impaired video sequence in the form of a weighted mean
squared error (WMSE) [9], which considers stretching ratio
of areas from the projection plane to spherical surface for
omnidirectional videos, i.e.,

dk,l,t =

(k+1)×M−1∑
i=k×M

(l+1)×N−1∑
j=l×N

[(y(i, j)− y′(i, j))2 · ω(i, j)]

(k+1)×M−1∑
i=k×M

(l+1)×N−1∑
j=l×N

ω(i, j)

(9)
where y(i, j) and y′(i, j) are the pixels in the block (size M×
N ) of original and impaired video frames, respectively, and
ω(i, j) is the weighting factor value which can be calculated
as the stretching ratio of the area in projection format and the
area in the spherical domain. When the ERP format is adopted
as the projection format, the weight ω(i, j) at position (i, j)
in an W ×H image is calculated as

ω(i, j) = cos
(j + 0.5−H/2)π

H
(10)

However, it should be noted here that, WS-PSNR can be
only used for the case that original video and impaired video
have the same resolution and the same projection format. Thus
our modeling approach combining with the WS-PSNR method
also has this limitation. Since the original video that is used
for building up our spatio temporal model requires to be the
ERP format as mentioned earlier, when extending the WS-
PSNR metric to our temporal model, the projection format of
the test video (i.e., the corresponding impaired video) is also
limited to the ERP format.

2) Temporal Extension to S-PSNR: The computation pro-
cedure of spatial distortion by extending S-PSNR is generally
more complicated than by extending WS-PSNR. Since such
VQA metric can support omnidirectional video quality distor-
tion measurement across projection formats, an intermediate
layer (i.e., spherical domain for S-PSNR) usually exists for
distortion computation from the ground truth signal. Therefore,
we can generate the spatial distortion map for planar blocks by
two steps, i.e., searching the sample in the spherical domain
and reusing the distortion result of the sample in the interme-
diate domain. In a typical S-PSNR process, it is known that a
set of points has been uniformly pre-sampled on a sphere for
the purpose of discretizing the signal on the spherical space.
Therefore, in the first step, we map the pixels of each block
of the ERP plane to the spherical surface and determine the
pre-sampled points contained in the corresponding irregular
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Fig. 3: Generating the spatial distortion map for blocks by using WS-PSNR,
S-PSNR, CPP-PSNR.

area. Then, the average distortion of the matched pre-sampled
points can be regarded as the distortion value dk,l,t of the
relating block on the 2-D plane, as shown in Fig. 3(b).

dk,l,t =

N−1∑
i=0

[(y(i)− y′(i))2]

N
(11)

where y(i) is the signal value of pre-sampled point i on
spherical domain and y′(i) is its reconstructed signal value. N
is the number of pre-sampled points contained in the mapped
area. It should be noted here that, the values of y(i) and y′(i)
can be obtained by further projecting the pre-sampled points
on the sphere to the original and impaired frames. In this
projection, the mapped position on the original and impaired

frame may not be in the integer position. In this case, as
illustrated in S-PSNR, the nearest neighbouring interpolation
may be used. Interested readers are referred to the S-PSNR-
NN [15] for more details.

Having outlined the basic idea of obtaining the spatial
distortion map by re-using the distortion of S-PSNR, we
present the detailed procedure of establishing the relationship
between our planar blocks and S-PSNR pre-sampled points
on sphere. As mentioned before, this paper adopts the ERP
format as reference video format so that the block distortion
is always calculated on a planar map, but the spherical points
in S-PSNR are sampled with longitude and latitude coordinate
system. Commonly, a longitude λ is in the range [−π, π] and
a latitude φ is in the range [−π/2, π/2]. To realize the sample
search step as mentioned above, a planar block needs to be
converted to spherical coordinates for the determination of
which pre-sampled point is the best matching point for this
pixel. The coordinate conversion from a 2D position (i, j) to
(λ, φ) in the ERP can be achieved by using

λ = (
i

W
− 0.5)× 2π (12)

φ = (0.5− j

H
)× π (13)

However, it is impossible to have exact one-to-one match
between points mapped from a block and spherical pre-
sampled points. To this end, we use the nearest pre-sampled
points to the mapped points as the final sample search result.
Further, for the calculation convenience, we introduce XYZ
coordinate system, where the (X,Y, Z) coordinates on the unit
sphere can be transformed from (λ, φ) using [43]

X = cos(φ) cos(λ) (14)
Y = sin(φ) (15)
Z = − cos(φ) sin(λ) (16)

Then, the spherical pre-sampled points required for calcu-
lating block distortion in (11) are determined by comparing
the Euclidean distance between the XYZ coordinates of pre-
sampled points and those of the mapped points. It is worth not-
ing that, directly comparing Euclidean distance for a mapped
point with a pre-sampled point on a sphere (around a total
of 655362 points) would induce intractable complexity. Here,
we use k-dimensional tree (or K-D tree) [44] to improve the
computational efficiency. A K-D tree is a binary search tree for
organizing points in a k-dimensional space which is a useful
data structure involving a multidimensional search key. After
the relationship between the planar blocks and the spherical
pre-sampled points is determined, the distortion of the pre-
sampled points can be derived from the S-PSNR-NN method
process. Finally, we use the S-PSNR-NN calculated distortion
as the spatial distortion for each pixel and do arithmetic mean
to yield the distortion of each corresponding planar block.

3) Temporal Extension to CPP-PSNR: Similar to S-PSNR,
our spatiotemporal model with CPP-PSNR also uses an in-
termediate domain (i.e., CPP domain) to obtain the distortion
map of blocks. CPP plane considers equal point distribution on
a sphere and preserves constant spatial resolution. To generate
the spatial distortion map needed in our model, we do the
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Fig. 4: Our modeling approach with (a) S-PSNR or (b) CPP-PSNR supports
the distortion measurement between different projection formats. Note that
the original input here must be the ERP format, and the impaired input can
be another projection format, e.g., CMP 3× 2 type.

sample searching and distortion result reusing in the CPP
domain, as shown in Fig. 3(c). Firstly, we transform position
(i, j) of points in each block on 2D ERP plane to (λ, φ)
coordinate system by using the equations of (12) and (13),
and then map these coordinates to CPP plane by using the
following

m = Wcpp × {
Rλ

2π
[(2 cos

2φ

3
)− 1] + 0.5} (17)

n = Hcpp × [0.5−R sin
φ

3
] (18)

where (m,n) is the corresponding position on the CPP plane
with respect to the point (i, j) in the block of the tube, and
R represents the radius of the sphere, which is equal to 1
for unit sphere, while Wcpp and Hcpp are the width and
the height of CPP plane respectively. After the relationship
between the planar blocks and the positions in CPP distortion
map is determined, the average distortion of the corresponding
points in CPP plane is calculated by using the CPP-PSNR,
and then used as the result of the block distortion, similar to
(11). In a typical CPP-PSNR distortion calculation, the original
frame and the impaired frame should be converted into the
CPP domain, and then a CPP distortion map is obtained by
applying the MSE calculation.

4) Cross-format Distortion Measurement: Due to the inter-
mediate layer used, the S-PSNR and CPP-PSNR support that
the two inputs to the distortion measurement can have different
projection formats. With the extension of S-PSNR and CPP-

PSNR, our spatiotemporal modeling approach inherits this
merit. As mentioned before, since the original source frame
needs to be divided into blocks forming the tubes in the first
step of our spatiotemporal model, the original video source
must be the ERP format. However, the impaired source can
be a different projection format, such as the CMP format.
Fig. 4 shows the procedure of generating spatial distortion
map between the different projection-format singal sources
(ERP and CMP). Similarly, the distortion map generating
processing includes the sample search and distortion reuse
steps. In the distortion reuse step, the distortion of the sample
on the spherical domain or CPP domain is calculated by using
the S-PSNR or CPP-PSNR, respectively. As observed from
Fig. 4, the areas containing the sample points corresponding
to the block in the distortion map may locate at different
places in the original and impaired frames. In S-PSNR, the
spherical space is used to determine the sample point in the
two different projection formats, while in CPP-PSNR, the
CPP plane can be employed to determine the sample point
in the different projection formats. Analogously, due to the
existence of the intermediate domain of S-PSNR and CPP-
PSNR methods, our spatial distortion map generating process
can work effectively without considering whether original and
impaired frames have different projection formats and interact
with the intermediate domain only. In addition to the CMP
format shown in the Fig. 4, Equal-area projection format
(EAP), Octahedron projection format (OHP), and Icosahedron
projection format (ISP) [43] also have the similar 3D-to-2D
coordinate mapping processing steps to generate our spatial
distortion map.

So far, we have presented the entire procedure of the
proposed spatiotemporal modeling approach for omnidirec-
tional video and the effectiveness of OV-PSNR metric will
be demonstrated in the experimental section.

IV. EXPERIMENTATION AND ANALYSIS
A. Dataset and Testing Procedure

In this section, we validate the performance of our proposed
objective VQA method for omnidirectional video on the video
dataset VR-VQA48 unless otherwise stated [12], which is pub-
licly available online [45]. This dataset consists of 12 original
omnidirectional video sequences (in YUV 4:2:0 format at the
resolution of 4096 × 2048) and 36 corresponding impaired
sequences obtained by encoding each original sequence with
3 different bitrate settings. Figure 5 shows the test sequences
provided in the dataset VR-VQA48. Additionally, there are
48 subjects involved to give raw subjective quality scores for
all the 48 sequences. The range of the subjective score is
from 0 (lowest quality) to 100 (highest quality). Currently,
two metrics are widely used in subjective VQA: one is the
mean opinion score (MOS) [46] calculated by arithmetic mean
over all raw subjective scores for each sequence; and the other
is the difference MOS (DMOS) [47], which is the difference
between a MOS for reference video and a MOS for impaired
video. In this work, we calculate the DMOS as the subjective
ground truth. Specifically, the DMOS is calculated as follows.

Firstly, let Sij and Srefij denote the raw subjective scores
assigned by subject i to video sequence j and its corresponding
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Fig. 5: Test sequences in the VR-VQA48 dataset.

reference sequence, and the difference scores dij are calculated
by

dij = Srefij − Sij (19)

The difference scores for reference sequences are 0 and
removed so that there are 36 remaining difference scores in our
experiment. Afterwards, the difference scores are converted to
Z-scores zij , which then are normalized and rescaled to z′ij .
The z′ij is lied in the range [0,100]. The related equations are
shown below

zij =
dij − µi
σi

(20)

z′ij =
100(zij + 3)

6
(21)

where µi and σi are the mean value and the standard deviation
of the score from the subject i.

Finally, the DMOS of each sequence j is calculated as the
average of the rescaled Z-scores from all the Mj subjects.

DMOSj =
1

Mj

Mj∑
i=1

z′ij (22)

To compare the performance of our VQA method with other
objective VQA methods, we follow the instructions from
the Video Quality Expert Group (VQEG) Phase II FR-TV
Validation Test Final Report [48], measuring the correlation
between objective quality scores and subjective quality scores.
Three performance indicators are used as recommended by
VQEG, Pearson Linear Correlation Coefficient (PLCC), Spear-
man Rank Order Correlation Coefficient (SROCC), Kendall
Rank Order Correlation Coefficient (KROCC), Root-Mean-
Square Error (RMSE), and Mean Absolute Error (MAE). The
PLCC measures the prediction accuracy of an objective VQA
method, while SROCC and KROCC measure the prediction
monotonicity, and RMSE and MAE quantify the difference
between the objective and subjective VQA results. Moreover,
to remove any nonlinearity occurred in the subjective rating
process and facilitate the comparison of the models in a com-
mon analysis environment, the outputs by the objective video
quality methods (the Video Quality Rating, VQR) should be
mapped to the subjective scores (DMOS) space by performing
a nonlinear regression fitting. We apply a 3-parameters logistic
regression function, as also recommended by VQEG [48], to
transform the set of VQR values to a set of predicted MOS
values (DMOSp), which are then compared with the actual

DMOS values. The DMOSp computation is given by

DMOSp =
b1

1 + e−b2·(V QR−b3)
(23)

where b1, b2, b3 are the fitting parameters which are obtained
by the non-linear least squares optimization. Note that the
DMOS value indicates the quality difference between the
impaired video and the reference video, which means, the
larger value, the worse quality. Therefore, we reverse DMOS
values (i.e., subtracted from 100) in regression fitting for ease
of comparison. Once the nonlinear transformation is applied,
the prediction performance of objective VQA models are
evaluated by calculating PLCC, SROCC, KROCC, RMSE, and
MAE on the value sets [DMOS, DMOSp].

B. Performance of Our Objective VQA Method

In this section, we test the performance of our proposed
objective metric, i.e., OV-PSNR. Depending on how the s-
patial distortion map is generated, our proposed OV-PSNR
includes four versions, i.e., OV-PSNR[PSNR], OV-PSNR[S-
PSNR], OV-PSNR[CPP-PSNR], and OV-PSNR[WS-PSNR].
Note that, OV-PSNR[PSNR] denotes the proposed temporal
model combined with the distortion map that is calculated by
directly using the PSNR metric for the ERP format without
considering the mapping distortion. OV-PSNR[S-PSNR], OV-
PSNR[CPP-PSNR], and OV-PSNR[WS-PSNR] are the pro-
posed temporal model with extending to S-PSNR, CPP-PSNR
and WS-PSNR respectively. These variants based on PSNR
for omnidirectional video are recommended by JVET common
test conditions and evaluation procedures for 360 video [15].
In OV-PSNR[S-PSNR] and OV-PSNR[CPP-PSNR], we use
the nearest neighbour interpolation version of S-PSNR and
CPP-PSNR for performance comparison test. Further, five non-
PSNR-based objective VQA methods (SSIM [5], VIF [49],
FSIM [50], GMSD [51], VMAF [52]) are also calculated for
comparison. In our first test, we focus on the performance
validation for the case that same projection format (i.e., ERP)
is employed for both the original and impaired sequences.
Moreover, it is necessary to mention that, the block size of
the tube in our model is set to 16 × 16, and the values
of the parameters α1, α2, µ mentioned in Section III-B are
0.8, 0.5, 2.5, which is deduced empirically from experiments.
The gs, µs, σs of fs(ns) in (3) are 16, 1, 6.2, respectively.
Then we set the value β in (5) to 1.0 without bias.

Performance on VR-VQA48 dataset. Figure 6 demon-
strates the scatter plots between objective and subjective results
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Fig. 6: Scatter plots of various objective VQA scores versus subjective DMOS for 36 impaired video sequences of VR-VQA48 dataset. Vertical and horizontal
axes represent the subjective (reversed DMOS) and objective (transformed DMOSp) measurement, respectively. The second row shows the fitting performance
of the proposed OV-PSNR metric, where four VQA versions of OV-PSNR are tested, i.e., OV-PSNR[PSNR], OV-PSNR[S-PSNR], OV-PSNR[CPP-PSNR],
and OV-PSNR[WS-PSNR].

TABLE I
COMPARISON OF THE PERFORMANCES OF OBJECTIVE VQA

METRICS ON VR-VQA48 DATASET.

Methods PLCC SROCC KROCC RMSE MAE TIME (s)
PSNR 0.499 0.508 0.327 10.732 9.143 0.001

S-PSNR [7] 0.569 0.595 0.384 10.183 8.539 0.347
CPP-PSNR [8] 0.567 0.595 0.381 10.198 8.551 1.986
WS-PSNR [9] 0.548 0.562 0.365 10.358 8.804 0.098

OV-PSNR[PSNR] 0.837 0.790 0.603 6.749 5.158 2.724
OV-PSNR[S-PSNR] 0.818 0.775 0.584 7.123 5.505 2.961

OV-PSNR[CPP-PSNR] 0.837 0.787 0.600 6.776 5.181 4.712
OV-PSNR[WS-PSNR] 0.838 0.790 0.603 6.749 5.157 2.902

SSIM [5] 0.506 0.532 0.378 10.679 9.051 2.256*
VIF [49] 0.722 0.721 0.562 8.565 7.667 4.802*

FSIM [50] 0.573 0.728 0.559 10.151 9.198 3.122*
GMSD [51] 0.672 0.708 0.495 9.170 7.831 0.751*
VMAF [52] 0.783 0.771 0.568 7.712 6.601 0.507

NCP-PSNR [12] 0.725 0.702 N/A 8.539 6.770 0.025*
CP-PSNR [12] 0.764 0.751 N/A 7.991 6.657 2.405*

* methods are implemented in MATLAB, while others are implemented in C++.

for 36 impaired sequences of VR-VQA48 dataset. It can
be noticed that the data points from our method (in the
second row) are less scattered than those of other methods,
and scatter points more close to the straight line y = x
means a higher linear relationship with subjective quality
judgments. As shown in Table I, the quantification results are
reported about the PLCC, SROCC, KROCC, RMSE, and MAE
between the DMOSp (from four existing PSNR-based om-
nidirectional video-specific metrics, five traditional 2D video
quality metrics, and our corresponding OV-PSNR version
metrics) and reversed DMOS. It can be clearly seen that

three versions (OV-PSNR[PSNR], OV-PSNR[S-PSNR], OV-
PSNR[WS-PSNR]) of our processed method perform much
better than the corresponding PSNR methods without consid-
ering temporal distortion. Among them, the OV-PSNR[WS-
PSNR] version achieves the best performance. This may be
because, WS-PSNR measures the quality from the original
signal so that our spatiotemporal quality assessment units
(tubes built on ERP plane) can use all the true samples on
ERP plane. On the contrary, other methods generally involve
intermediate layer and interpolation filter, which may degrade
the estimation accuracy to some extent. Additionally, the
results of OV-PSNR[PSNR] and OV-PSNR[WS-PSNR] are so
close, and we believe, this is due to the fact that the temporal
factor has a greater impact on performance than spatial factors
for omnidirectional video quality assessment.

At the bottom of Table I, we also include the results of
NCP-PSNR and CP-PSNR measured on the same dataset VR-
VQA48 for better performance comparison. It should be noted
that, since the source codes of these two metrics are not
available, the data of NCP-PSNR and CP-PSNR are directly
taken from their original paper, i.e., Xu et al.’s paper [12],
and the experimental environment that produces these data is
slightly different from ours. As can be seen, all versions of
our proposed OV-PSNR metric perform better than these two
latest omnidirectional video quality metrics.

In Table I, we also compare the time complexity of the pro-
posed metric with other methods. The experiment is performed
on a desktop equipped with Intel R© CoreTM I7-6700 and 8G
RAM memory. All the test methods run on an omnidirectional
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video with the resolution of 4096× 2048. The time shown in
the table represents the running time per frame in seconds for
each method. As can be observed, each temporal extension
metric OV-PSNR consumes more time than its corresponding
original spatial distortion modeled metric. The major time
increment mainly comes from the modules of spatio-temporal
tube creation, the spatial distortion map generation, and the
calculation of spatio-temporal tube distortion. As each block
in each frame needs to create a tube and this process involves
into motion estimation, the tube creation part is the most time
consuming one in our modeling approach. In the test, we found
that it takes a portion of 50%∼90% of the overall execution
time. In the time-constrained scenario, to facilitate the use of
our proposed approach, we can choose to create the spatio-
temporal tubes offline. Although our proposed OV-PSNR
metric increases many complexity extending from the spatial
distortion model, it still achieves about the same amount of
complexity as other metrics, e.g., VIF, CP-PSNR, etc. This
demonstrates the superiority of our proposed spatio-temporal
approach, i.e., it yields the best quality evaluation performance
with modest computational complexity increment.

TABLE II
COMPARISON OF THE PERFORMANCES OF OBJECTIVE VQA

METRICS ON VQA-ODV DATASET.

Methods PLCC SROCC KROCC RMSE MAE
PSNR 0.629 0.630 0.469 8.141 6.339

S-PSNR [7] 0.655 0.657 0.457 7.919 6.107
CPP-PSNR [8] 0.658 0.660 0.457 7.885 6.085
WS-PSNR [9] 0.640 0.638 0.437 8.049 6.235

OV-PSNR[PSNR] 0.735 0.730 0.520 7.100 5.577
OV-PSNR[S-PSNR] 0.727 0.720 0.510 7.190 5.599

OV-PSNR[CPP-PSNR] 0.734 0.729 0.517 7.110 5.583
OV-PSNR[WS-PSNR] 0.735 0.731 0.520 7.100 5.578

BP-QAVR [11] 0.659 0.680 0.478 8.911 7.082
VR-IQA-NET [19] 0.371 0.338 0.226 10.998 9.101

V-CNN [20] 0.874 0.896 0.713 5.755 4.489

Performance on VQA-ODV dataset. In order to further
validate the performance of the proposed modeling approach,
we conduct the objective experiment on another 360 degree
video dataset, i.e., the VQA-ODV dataset developed in [53].
This dataset contains 60 reference sequences, 540 distorted
sequences (432 impaired omnidirectional video sequences for
training and 108 impaired sequences for test), and associated
DMOS [54], which is known to be the largest VQA dataset for
360 degree video currently. The scatter plots of the objective
VQA results versus the DMOS values on this dataset are
illustrated in Fig. 7, where we apply the logistic function
used in [20] for objective score fitting. In the experiment,
the parameter settings of our OV-PSNR models are the same
with previous experiment on VR-VQA48 dataset. As can be
observed from the figure, all the proposed OV-PSNR metrics
can generally better fit the ground truth DMOS compared
to other methods, which demonstrates that the proposed OV-
PSNR metrics have a higher correlation with the subjective
DMOS results. The performance validation results of the
proposed model and other metrics on this dataset are tabulated
in Table II, where we also compare the proposed OV-PSNR
model with several deep learning based omnidirectional video
VQA methods, i.e., BP-QAVR [11], VR-IQA-NET [19], and

V-CNN [20]. In this comparison, the result for BP-QAVR is
obtained by re-training the model on the VQA-ODV dataset,
while the results for the other two methods are obtained by
directly evaluating the pre-trained models provided by the
authors on the test sequences. As can be observed from the
table, our proposed modeling approach can generalize well
on this large-scale dataset, in which, for example, the OV-
PSNR variant OV-PSNR[WS-PSNR] achieves the PLCC of
0.735 and SROCC of 0.731. Besides, our proposed approach
significantly outperforms BP-QAVR and VR-IQA-NET. How-
ever, compared to the latest V-CNN, our proposed approach
exhibits worse VQA performance. It should be noted that, the
V-CNN is based on deep learning with two very complicated
convolutional neural networks, one for viewport proposal and
another for VQA score rating, which has also already been
trained on this dataset. If one uses the V-CNN model to
evaluate the quality of other omnidirectional video dataset,
it needs a considerable amount of time for re-training. In
addition, there is a large number of hyper-parameters to be
tuned during training/re-training. The evaluation performance
would be easily changed if one fails to choose one appropriate
hyper-parameter. In contrast, our proposed quality assessment
approach that purely relies on mathematical modeling can be
easily deployed in practice for any dataset. Moreover, our
proposed method can be compatible well with the existing
spatial distortion based quality metrics of 360 degree video,
e.g., WS-PSNR, S-PSNR, and CPP-PSNR.

TABLE III
CROSS DATASET VALIDATION OF OUR METHODS.

VQA-ODV → VR-VQA48
Methods PLCC SROCC KROCC RMSE MAE

OV-PSNR[PSNR] 0.851 0.790 0.603 6.959 5.733
OV-PSNR[S-PSNR] 0.840 0.775 0.584 7.176 5.910

OV-PSNR[CPP-PSNR] 0.850 0.787 0.600 6.977 5.746
OV-PSNR[WS-PSNR] 0.851 0.790 0.603 6.959 5.733

VR-VQA48 → VQA-ODV
Methods PLCC SROCC KROCC RMSE MAE

OV-PSNR[PSNR] 0.724 0.731 0.520 7.514 5.973
OV-PSNR[S-PSNR] 0.712 0.720 0.510 7.627 5.982

OV-PSNR[CPP-PSNR] 0.723 0.729 0.517 7.522 5.974
OV-PSNR[WS-PSNR] 0.724 0.731 0.520 7.514 5.973

Cross dataset validation. To validate the generalization
ability and robustness of our proposed methods and the logistic
fitting procedure, we conduct a cross dataset experiment.
Specifically, we use the DMOSp function regressed from the
VQA-ODV dataset to predict the MOS values of the proposed
approach on VR-VQA48 dataset, or vice versa. For simplicity,
these two test scenarios are represented as VQA-ODV→VR-
VQA48 and VR-VQA48→VQA-ODV, respectively. Table III
lists the performance results of cross dataset validation.

As shown in Table III, all our designed OV-PSNR models
achieve very good performance, regardless of the dataset and
the logistic fitting parameters, verifying the robustness and
generalization ability of the proposed OV-PSNR model.

C. Influence of Different Parameter Settings

To validate the necessity of every part and compare the
performances of different parameters in our spatiotemporal
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Fig. 7: Scatter plots for the objective VQA scores versus the related reversed DMOS over 108 impaired sequences of VQA-ODV dataset. Vertical and horizontal
axes represent reversed DMOS and objective VQR scores, respectively. The logistic fitting curves are also shown in the figure.

model, we design a test by setting different values to the free
variables of our model. As described in Section III-B, our
model has two groups of free variables. One group is α1, α2,
and µ which simulate the sustained temporal mechanisms and
control the smooth effect of tube, and the other is β which
controls the weight of temporal distortion variations. While
ignoring µ as threshold and setting α to 0, the tube structure
in our temporal model vanishes, that is, Dk,l,t = dk,l,t in
(1). While setting β to 0, it is equivalent to that the final
spatiotemporal distortion of a tube discards the temporal
distortion, which is Dt = Dt in (5). In this experiment, we fix
the µ at value 2.5 because we found the value of 2.5 can yield
very good performance under different test conditions, and we
focus on the evaluation of the impact of other three parameters
on the distortion estimation performance. In the next, we give
different combinations of α1, α2, β values to see the changes
of performance. It should be noted that we use the WS-PSNR
version of our method (i.e., OV-PSNR[WS-PSNR]) here since
the WS-PSNR version showed the best performance in the
previous performance comparison.

In the first row of Table IV, we validate the effectiveness
of temporal distortion D′t. The prediction accuracy of PLCC
is greatly improved from 0.683 to 0.830, once we added
the temporal distortion item into the calculation (set β from
0.0 to 1.0). This demonstrates the importance of temporal
variation modeling in evaluating the omnidirectional video
quality. The second row of Table IV shows a series of tests
on different values of α1, α2, we found using the combination
of 0.8 and 0.5 for α1 and α2 gives the best performance with
fixing β to 1.0. In the last part of Table IV, we give more

TABLE IV
COMPARISON OF THE PERFORMANCES FOR DIFFERENT α1, α2,

and β VALUES OF OV-PSNR[WS-PSNR] ON VR-VQA48.

α1, α2 β PLCC SROCC RMSE
0.0/0.0 0.0 0.683 0.663 9.040
0.0/0.0 1.0 0.830 0.778 6.900
0.2/0.1 1.0 0.832 0.780 6.866

0.5/0.25 1.0 0.835 0.782 6.805
0.6/0.5 1.0 0.838 0.788 6.764
0.7/0.5 1.0 0.838 0.789 6.751
0.8/0.5 1.0 0.838 0.790 6.749
0.9/0.5 1.0 0.838 0.787 6.764

0.95/0.5 1.0 0.836 0.788 6.778
0.8/0.5 0.3 0.805 0.758 7.348
0.8/0.5 3.0 0.851 0.814 6.493
0.8/0.5 10.0 0.855 0.817 6.412

weight to temporal distortion (set β greater than 1.0), and
the result reports a more inspiring performance. A possible
explanation for this is that we may still underestimate the
temporal distortion variations and need to build up a more
sophisticated and precise spatiotemporal modeling approach.

D. Validation of Cross-format Quality Evaluation

In this subsection, we test the ability of cross-format quality
evaluation of the proposed VQA method for omnidirectional
video. More specifically, we validate the performance of our
two OV-PSNR variants, i.e., OV-PSNR[S-PSNR] and OV-
PSNR[CPP-PSNR]. Here we use the Lanzcos interpolation
version of S-PSNR and CPP-PSNR for cross-format distortion
measurement. As mentioned before, the original video source
used in these two variants should be or be converted to the
ERP format. Therefore, in this experiment, the original video
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format and impaired video format are chosen to ERP and CMP,
respectively. These two formats are also the most commonly
used in practice. However, the impaired videos in VR-VQA48
dataset are all ERP format, and we use the 360Lib toolset [15]
to convert them to CMP 4×3 format. Fig. 8 shows an example
of different projection formats of an omnidirectional video,
where the test sequence Hangpai2 is used. The performance
results of cross-format quality evaluation for 360 degree video
is presented in Table V.

TABLE V
COMPARISON OF THE PERFORMANCES OF S-PSNR, CPP-PSNR
AND OV-PSNR ACROSS PROJECTION FORMATS ON VR-VQA48.

Methods PLCC SROCC RMSE
S-PSNR 0.551 0.563 10.329

CPP-PSNR 0.550 0.563 10.337
OV-PSNR[S-PSNR] 0.721 0.682 8.580

OV-PSNR[CPP-PSNR] 0.774 0.738 7.832

Equirectangular Projection (ERP) 

Cubemap Projection (CMP 4×3)

Craster Parabolic Projection (CPP)

Fig. 8: An example of different types of projections for omnidirectional video.

As shown in Table V, we can see that on the basis of
S-PSNR and CPP-PSNR, our corresponding methods (OV-
PSNR[S-PSNR] and OV-PSNR[CPP-PSNR]) yield rather high
video quality prediction performance. Here we use the same
parameter settings as shown in the first performance exper-
iment. Although our methods achieve considerable perfor-
mance improvement, the two variants of OV-PSNR still do not
reach the same good performance as the previous test using
the same format VQA for omnidirectional video. The possible
reason for this is that, our spatiotemporal model builds the
tube structure only on ERP plane and reusing distortion from
a different projection format for quality evaluation may cause
a certain precision loss. Further work on the spatiotemporal

modeling approach with constructing the tubes directly in
spherical space may resolve this problem.

To summarize, we conduct experiments to validate the effec-
tiveness of our spatiotemporal model extended to the existing
quality metrics for omnidirectional video. The analysis results
show that the performance of the existing quality metrics for
omnidirectional video can be enhanced by our spatiotemporal
model and the impact of temporal distortion variations is
indeed important for omnidirectional video quality assessment.

V. CONCLUSION

In this paper, we have proposed a spatiotemporal modeling
approach for evaluating the quality of omnidirectional video
with consideration of both spatial and temporal characteristics
of omnidirectional video. Specifically, we firstly construct
a spatial-temporal tube-based structure as a basic quality
assessment unit, to evaluate the average spatial distortion in
temporal dimension at eye fixation level. Next, the smoothed
distortion value of a tube is then consolidated by the temporal
variations of distortion, which are calculated by the frequency
and amplitude of the distortion gradient. Afterwards, the
quality degradation score for the whole video sequence is
obtained through an appropriate pooling method. Meanwhile,
a full-reference objective VQA method has been presented,
which can naturally integrate the three existing VQA met-
rics (S-PSNR, CPP-PSNR, WS-PSNR) for omnidirectional
video into our spatiotemporal modeling approach. Finally, our
experimentation validates the performance of our objective
VQA method. The results show that our OV-PSNR provides
a significant performance improvement compared to those
quality metrics that depend only on spatial distortions.

In our spatiotemporal modeling approach, the block division
and the construction of tube units are performed on planar
space. Although significant quality assessment performance
can be achieved by this proposed model, it may be more ben-
eficial to consider the construction of the spatio-temporal tube
directly in the spherical space. Further work may include this
aspect. In addition, optimization of computational complexity
for the procedure of tube construction may also be an inter-
esting investigation direction. Moreover, our spatiotemporal
model with a more sophisticated temporal pooling mechanism
may achieve better performance.
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