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Abstract 

3D building models are often now produced from LIDAR and 

photogrammetric data. The quality control of these models is a relevant 

issue both from scientific and practical points of views. This work 

presents a method for the quality control of such models. The input 

model (3D building data) is co-registered to the verification data using 

a 3D surface matching method. The 3D surface matching evaluates the 

Euclidean distances between the verification and input data sets. The 

Euclidean distances give appropriate metrics for the 3D model quality. 

This metric is independent of the method of data capture. The proposed 

method can favourably address the reference system accuracy, 

positional accuracy and completeness. Three practical examples of the 

method are provided for demonstration. 

KEYWORDS: Quality assessment, 3D building model, LIDAR, point 

cloud, surface co-registration, 3D comparison  

INTRODUCTION 

FOR about 20 years 3D city modelling has been an important issue in R&D. 

Many different techniques have been proposed, especially for reality-based 

concepts. Reviews can be found in Mayer (1999), Gruen (2000), Baltsavias et al. 

(2001), Baltsavias and Gruen (2003) and Baltsavias (2004). 3D city models have 

become one of the most significant products of the geospatial industry, required as 

part of many new applications (Gruen, 2001). Reality-based models are now 

produced using a variety of different source data and sensors (maps, GIS data, 
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cameras of different types, LIDAR), operating from various platforms (satellites, 

aerial – surveying aircraft, UAVs, terrestrial – mobile mapping, street images). 

While the methods for generating virgin datasets efficiently and reliably are 

still being developed and optimized, little has been done with respect to the quality 

control of these data and the updating/maintenance of the models.  

As the performance of the data acquisition methods improves, the quality 

evaluation of 3D building data has become an important issue, particularly in 

professional practice. So far, quality has been assessed by calculating metrics 

using either pixels, based on 2D projections (Henricsson and Baltsavias, 1997; 

Ameri, 2000; Suveg and Vosselman, 2002; Boudet et al., 2006), or voxels, 

considering buildings as volumetric data (McKeown et al., 2000; Schuster and 

Weidner, 2003; Meidow and Schuster, 2005). Qualitative and visual evaluation 

based methods have also been used (Rottensteiner and Schulze, 2003; Durupt and 

Taillandier, 2006). In Rottensteiner (2006), the root mean square (RMS) errors of 

the coordinate differences of corresponding vertices in the reconstructed 3D model 

and the reference model were evaluated. Recently, Elberink and Vosselman 

(2007) introduced an end-to-end quality analysis (of 3D reconstructed roads) using 

error propagation applied to the stochastic properties of input data. Detailed 

reviews can be found in McKeown et al. (2000) and Sargent et al. (2007).  

Over the last few years, Ordnance Survey has initiated several projects to 

look into how the quality of 3D data, particularly building models, can be 

assessed. Ordnance Survey has also tested assumptions made in 3D modelling 

research about how best to represent real-world detail from the point of view of 

user requirements (Sargent et al., 2007; Capstick et al., 2007). In 2007, a 

cooperative project was started between the Chair of Photogrammetry and Remote 

Sensing of ETH Zurich and the Research department of Ordnance Survey, called 

‘Quality Assessment of 3D Building Data’. The project aims to derive methods to 

calculate metrics for the quantitative evaluation of 3D buildings, which are 

assumed to be the basic elements of a given 3D city model. The metrics and 

methods should correspond to customers’ requirements (of Ordnance Survey) and 

should be independent of the method of data capture. The outcomes of the project 

are presented in this paper.  

This work designs a quality assessment method that have practical meaning 

to users, so as to ensure that data are captured according to users’ requirements 

and that users understand the quality of the 3D data for their purposes. 3D 

building data are in 3D surface model form. For that, the existing pixel or voxel 

based representations are only indirect approaches and thus sub-optimal. This 

work proposes a method which directly works on 3D surface elements (surfels). 

Thus, 3D building data can be evaluated in its original form avoiding projection or 

re-sampling errors. The advantage of our methodology is treatment of the problem 

in actual 3D surface representation domain.  

The input model is co-registered to the verification data by use of the Least 

Squares 3D surface matching (LS3D) method (Gruen and Akca, 2005; Akca, 

2010). The input data to be assessed are 3D building models. The verification 

(reference) data is either airborne laser scanning (ALS) point cloud data or another 

3D model that is given at a presumably higher quality level. The LS3D method 



NAME. Title of paper 

Photogrammetric Record, 17(9#), 200# 3 

evaluates the Euclidean distances between the verification and input data sets. The 

Euclidean distances give appropriate metrics for the 3D model’s quality.  

The next chapters introduce the 3D surface matcher and the quality 

assessment strategy. When the ALS point clouds are used as the reference, 

irrelevant points (points belong to terrain, vegetation, etc.) should be excluded. 

Details of a filtering process using the SCOP++ LIDAR software are given in the 

fourth chapter. The results of the experiments conducted at three test sites in the 

UK are shown in the fifth chapter.  

QUALITY ASSESSMENT BY 3D SURFACE MATCHING 

Least Squares 3D surface matching  

The quality assessment is done by co-registering the input 3D building model 

data to the verification data. The verification data is fixed, and the input model 

data is transformed to the spatial domain of the verification data by use of the 

Least Squares 3D surface matching method.  

The LS3D method is a rigorous algorithm for the matching of overlapping 

3D surfaces and/or point clouds. The mathematical model is a generalization of 

the Least Squares 2D image matching method (Ackermann, 1984; Pertl, 1984; 

Gruen, 1985). It estimates the transformation parameters of one or more fully 3D 

surfaces with respect to a template surface (which is the verification data here), 

using the Generalized Gauss-Markov model, minimizing the sum of the squares of 

the Euclidean distances between the surfaces. This formulation gives the 

opportunity to match arbitrarily oriented 3D surfaces, without using explicit tie 

points.  

The solution is iterative. In each iteration a correspondence operator searches 

the surface-to-surface correspondences between the verification and input data 

sets. For each element of the verification data, a conjugate surface element of the 

input model is found. These (element-to-element) correspondence vectors 

constitute the essence of the assessment strategy. They numerically show how 

well the input model fits the verification data. 

The geometric relationship between these conjugate surface correspondences 

is defined as a 7-parameter 3D similarity transformation. This parameter space can 

be extended or reduced, as the situation demands it. The theoretical precisions of 

the estimated transformation parameters and the correlations between them, can be 

checked through the a posteriori covariance matrix, which give useful information 

about the statistical quality of the parameters. The LS3D method provides 

mechanisms for internal quality control and the capability of matching multi-

resolution and multi-quality data sets.  

More details are given in Gruen and Akca (2005). The method was originally 

developed for the co-registration of point clouds and surfaces. Recently, it has also 

been used for 3D comparison, change detection, quality inspection and validation 

studies (Akca, 2007; Akca, 2010).  
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Correspondence search  

For every surface element of the verification data, the correspondence 

operator seeks a location a minimum Euclidean distance away on the input model 

surface. The verification data surface elements are represented by the data points. 

Accordingly, the procedure becomes a point-to-plane distance computation 

assuming that the input building model is represented in a TIN (Triangulated 

Irregular Network) form. When a minimum Euclidean distance is found, a 

subsequent step tests the matching point to determine whether it is located inside 

the input model surface element (point-in-triangle test). If not, this element is 

disregarded and the operator moves to the next surface element with the minimum 

distance. Hypothetically, the correspondence criterion searches a minimum 

magnitude vector that is perpendicular to the input model surface triangle and 

passes through the verification data point.  

Correspondence search is the most computationally expensive part of the 

algorithm. There are many alternatives to reduce the search space, and thus the 

computational burden. In the basic implementation a 3D boxing based search 

algorithm is used. Searching the correspondence is guided by the 3D boxing 

structure, which partitions the search space into cuboids. For a given surface 

element, the correspondence is searched for only in the box containing this 

element and in the adjacent boxes. The correspondence is searched for in the 

boxing structure during the first a few iterations and meanwhile its evolution is 

tracked across the iterations. Afterwards, the search process is carried out only in 

an adaptive local neighbourhood according to the previous position and change of 

correspondence. If in any step of the iteration the change of correspondence for a 

surface element exceeds a limit value, or oscillates, the search procedure for this 

element is returned to the boxing structure again. See Akca and Gruen (2005) and 

Akca (2007, 2010) for the details.  

For the 3D building data quality assessment case, the boxing structure is 

established for the input 3D building models. For any point of the verification 

data, the coincident box is calculated. All buildings (entirely or partially) situated 

in the coincident box or in its 28-neighbourhood are listed. The correspondence is 

searched only on the triangles of these buildings.  

Outlier detection 

Detection of false correspondences caused by outliers and occlusions is 

crucial. The following strategy is employed in order to localize and eliminate 

outliers and occluded parts. During the iterations, a simple weighting scheme, 

adapted from robust estimation methods, is used:  
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where vector (v)i is the Euclidean distance of the i-th correspondence and 0̂  is 

the standard deviation of the Euclidean distances of the current iteration. In the 

experiments K is selected as ≥4. For many application cases of the robust 

estimation procedure, this is a fairly small number, which carries the danger of 
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exclusion of some correct inliers. On the other hand, when increasing the robust 

weighting factor, for example to ≥8 or 10, the computation is usually distorted by 

the impairing effect of the non-relevant points, i.e. points belonging to ground or 

trees, etc.  

QUALITY ASSESSMENT STRATEGY  

Without restricting the generality of the approach it is assumed that the 

verification data are given as LIDAR point clouds and the input building model 

data are represented as a TIN. For quality assessment, three procedural steps are 

used as follows: 

Step 1. Firstly, one iteration of the LS3D algorithm is run, without any 3D 

transformation calculation. The 3D spatial distances (Euclidean distances) from 

LIDAR points to the corresponding 3D building triangles are calculated. This step 

is to show the initial (spatial) disagreement of both data sets before applying a 3D 

similarity transformation. At this stage, the errors are composed of at least two 

components:  

a) errors due to the reference system differences, and  

b) the positional errors of individual buildings.  

These errors are factorized in the subsequent second step.  

Step 2. In the second step, a full LS3D surface matching is performed. It 

calculates any translational, rotational and scale difference between the 

verification and input data sets. According to the preliminary tests (conducted with 

the experimental data presented here), there are only translational differences 

(spatial shifts) between both data sets. The rotational and scale differences are not 

significant. Then, the LS3D algorithm is run in the 3 degrees of freedom (DOF) 

mode. This step shows the reference system accuracy of the building models with 

respect to the coordinate system of the LIDAR data. The estimated 3D 

transformation parameters (held as a translation vector) are applied to the input 

data sets. Thus, the reference system errors are isolated from the individual 

building errors.  

Step 3. In the third step, the final LS3D run is carried out, but again without 

any 3D transformation calculation. Only the 3D correspondences are computed. 

The 3D correspondences are vectors showing the 3D spatial deviations between 

the points of the verification data and the surfels (triangles) of the input data. They 

are the actual quality indices, and they examine the input model at every 

verification data point location. This final step shows the positional accuracy of 

individual buildings and the completeness.  

The proposed method can address the following three quality criteria.  

Reference system accuracy  

Due to differences in production techniques, the reference frames of the input 

and verification data sets may differ, leading for example, to positional shifts and 

angular tilts. The LS3D algorithm calculates any translational, rotational and scale 

differences between the two data sets, with their associated theoretical precision 

values.  
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Positional accuracy  

The LS3D surface matcher establishes the 3D correspondences for every 

point, or surfel, element of the verification data with respect to the surfels of the 

input data. In fact, every correspondence is a 3D Euclidean distance vector. 

Assuming that the verification data are available at a higher quality level and in an 

appropriate point density, the Euclidean distances show the positional accuracy of 

the individual surfels of the input model.  

Completeness  

The non-measured or missed points/features/building parts are the real 

problem. Currently, there is no practical way to check fully automatically for this 

deficiency. Only through comparison with the verification data or through visual 

checks can one get quality measures. Assuming that the verification data set is 

complete, accurate and dense enough, the LS3D surface matcher can provide the 

completeness criteria, which are equivalent to the omission type of gross errors.  

For 3D building reconstruction, there are two sorts of gross error (or outlier), 

which are omission (type I or false positive or probability of rejecting a correct 

null hypothesis) and commission (type II or false negative or probability of 

accepting a false alternative hypothesis) errors.  

The omission error, which is the criteria for the completeness, describes the 

rejected or missing buildings (partially or entirely). This means in the presented 

methodology that some elements of the verification data will not have any 

correspondence with the input data. Unfortunately, completeness of the entirely 

missing buildings can not be detected, since the LIDAR point cloud (as 

verification data) is unstructured. Our methodology can only assess the 

completeness of sub-building parts, e.g. walls, chimneys, and dormers.  

In the current implementation, the completeness criterion is assessed semi-

automatically. The method highlights the final Euclidean distances on the 3D 

building model graphically (see Fig. 3(b) and 9(b)), thereby it assists the operator 

to identify the missing 3D model parts.  

The commission error is the acceptance of non-building objects as buildings. 

Assessment of the commission errors is not within the scope of this paper. It will 

be investigated in a future study.  

FILTERING OF GROUND AND VEGETATION POINTS IN THE VERIFICATION DATA 

When using the LIDAR point clouds as verification data, handling of the 

non-relevant points (points which do not belong to buildings) needs an appropriate 

strategy. The robust weighting factor (Equation (1)) alone cannot solve the 

problem.  

In the experiments the SCOP++ LIDAR version 5.4 (Inpho GmbH, Stuttgart, 

Germany) software package was used for the filtering. The SCOP++ LIDAR 

classifies the LIDAR point clouds into 7 classes: ground, below (outlier points 

below the ground), building, high vegetation, medium vegetation, low vegetation, 

and unclassifiable. Among them the classes ground, below and low vegetation 
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were discarded, the rest of the point clouds (building, high vegetation, medium 

vegetation, and unclassifiable) were merged into one file and this merged file was 

used as the verification data.  

In complex scenes, the SCOP++ LIDAR classifies some parts of buildings 

(usually parts close to roofs) into the high vegetation or medium vegetation 

classes. Hence, resulting high vegetation and medium vegetation classes were 

included to the verification point cloud to ensure the completeness of the 

buildings.  

EXPERIMENTAL WORK 

We have three test sites in the United Kingdom for validation of the 

procedure  

a) Avonmouth test area (AV),  

b) Bournemouth test area 1 (BO1), 

c) Bournemouth test area 2 (BO2).  

Each test site has a LIDAR point cloud and a 3D building polygon file. The 

LIDAR point clouds were acquired by Airborne 1 Corporation using a Bravo 50K 

ALTM system carried on a helicopter platform. They had a 25 points/m2 density 

and were delivered in both ENZI and LAS formats. The LIDAR point clouds were 

used as verification data in all experiments.  

The 3D buildings were captured using stereo pairs of DMC (Intergraph) 

images from a nadir block with 60% overlap and sidelap. The low resolution RGB 

imagery was pan-sharpened with the high resolution panchromatic image, 

resulting in imagery with a GSD of approximately 15cm (flying height around 

1500-1600 m, focal length 120 cm, and pixel size 12 microns). The building 

measurements were gathered using CC-Modeler software (CyberCity 3D, Inc., El 

Segundo, CA, USA) in semi-automatic mode by a photogrammetry operator. The 

final polygon files were delivered in standard CC-Modeler V3D file format.  

All experiments were carried out using the LS3D software package, which 

was developed in-house using the C/C++ programming language and 

implemented as a MS Windows application with a graphical user interface (GUI).  

Results of test site AV  

The filtered airborne LIDAR data and associated 3D building data are shown 

in Fig. 1(a) and (b). The LIDAR verification data contains 1 706 256 points and 

the input building model contains 4 721 triangles. Note, there is no coverage of 

LIDAR data for the few houses seen in the bottom right of Fig. 1(a). 

Step 1. The standard deviation of the Euclidean distances (sigma naught a 

posteriori) before the LS3D surface matching is 0.77 m (Table 1). The blue colour 

indicates that the 3D building data is above the verification LIDAR data, while 

yellow-red indicates the opposite case (Fig. 2(a) and (c)). Note that in Step 1 and 

Step 3, for all test sites, a 2.00 m threshold is used for the robust weighting factor. 

This means that all the correspondences whose Euclidean distances are greater 

than 2.00 m are not considered in the calculation. This is mainly done to exclude 

the non-relevant points, e.g. points on the terrain, trees and bushes etc.  
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(a)     (b) 

FIG. 1. Avonmouth test site. (a) Filtered LIDAR point cloud, (b) 3D building model data. Ordnance 

Survey © Crown copyright. All rights reserved.  

TABLE 1. Processing results of test site AV. 

Step No. of 

corres. 

No. of 

iter. 

Time 

(min.) 

0̂  

(m) 

Tx 

(m) 

Ty 

(m) 

Tz 

(m) 

Stdd-Tx 

(m) 

Stdd-Ty 

(m) 

Stdd-Tz 

(m) 

1 457 999 1 2.6 0.77 n/a n/a n/a n/a n/a n/a 

2 448 664 3 7.3 0.29 0.06 0.05 –0.85 0.001 0.002 0.001 

3 449 248 1 2.6 0.30 n/a n/a n/a n/a n/a n/a 

No. of corres. : Number of correspondences.  

No. of iter.  : Number of iterations. 

0̂    : Standard deviation of the Euclidean distances a posteriori. 

Tx   : X component of the estimated translation vector.  

Ty   : Y component of the estimated translation vector.  

Tz   : Z component of the estimated translation vector.  

Stdd-Tx  : Theoretical precision of the X component of the estimated translation vector.  

Stdd-Ty  : Theoretical precision of the Y component of the estimated translation vector.  

Stdd-Tz  : Theoretical precision of the Z component of the estimated translation vector.  
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(a)     (b) 

 

(c) 

FIG. 2. Avonmouth test site. (a) Comparison of the verification and the input data before the LS3D 

surface matching, (b) after the LS3D surface matching, (c) residual bar in meter units. Ordnance 

Survey © Crown copyright. All rights reserved.  

    

(a)     (b) 

FIG. 3. (a) A zoom-in to the lower-left part of Fig. 2(b). The red circle shows a part of a building which 

has large differences between the input model and the verification data. (b) A zoom-in to the upper part 

of Fig. 2(b). The red arrows show the missing chimneys and dormers in the 3D building model data. 

Ordnance Survey © Crown copyright. All rights reserved.  

Step 2. The robust weighting factor is set to 4 times of the sigma naught (of 

the current iteration). The translation parameters between the reference systems of 

the LIDAR point cloud and the building models were estimated as +0.06, +0.05, –

0.85 m for the X, Y and Z axes, respectively. Although the horizontal shift 
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parameters between the LIDAR reference system and 3D building reference 

system are not significant, 3D building data is 85 cm above the verification 

LIDAR data along the vertical direction. The effect is also seen as change of 

coloured residuals from Fig. 2(a) to 2(b). This reference system error is eliminated 

by applying the estimated translation vector to the 3D building data (Table 1).  

Step 3. After correcting the reference system errors, the sigma naught 

dropped down to 0.30 m. The robust threshold value is again 2.00 m. The dark red 

points at the edges of the buildings (Fig. 3(a) and (b)) are due to non-relevant 

(disturbing) terrain points which the LS3D surface matcher considers to be part 

the buildings due to their proximity. Thus, the sigma naught of 0.30 m is not 

solely related to building inaccuracy, it also includes the effect from those (outlier) 

ground points.  

In Fig. 3(a) a small roof structure of a building (shown in the red circle) has a 

large deviation from the verification data, as 1.15 m. This is most probably an 

operator mistake during the 3D feature compilation process. In Fig. 3(b) the red 

arrows show some missing chimneys and dormers of the building data, which 

indicate a lack of completeness. They are again likely omitted by the 

photogrammetry operator.  

As seen in Table 1, changing the robust weighting factor affects the number 

of correspondences found and consequently the sigma naught a posteriori. In Step 

2, the robust weighting factor is 1.16 m (4 times of the sigma naught of the current 

iteration, equivalent to 4 x 0.29 m = 1.16 m in the last iteration). In Step 3, it was 

increased to 2.00 m, resulting in more correspondences than Step 2, and 

accordingly, a slight increase (1 cm) in the sigma naught a posteriori.  

Results of test site BO1  

The filtered airborne LIDAR data and the input 3D building data are shown 

in Fig. 4(a) and (b). The LIDAR data contains 3 229 453 points and the input 

building model contains 8 153 triangles. The scene contains, apart from the others, 

a large building with complex roof structures (Fig. 4(b)).  

Step 1. Standard deviation of the Euclidean distances before the LS3D 

surface matching is 0.49 m (Fig. 5(a) and Table 2). The computation takes 11.2 

minutes for 1 445 568 correspondences.  

Step 2. The robust threshold value is set to 4 times of the sigma naught (of 

the current iteration). The translational reference system difference between the 

model building data and the verification LIDAR data is +0.11, –0.23, +0.03 m for 

the X, Y and Z axes, respectively (Table 2). In contract to test site AV, here the 

two reference systems differ along the horizontal direction only, but not along the 

vertical direction significantly.  

Step 3. The sigma naught a posteriori at this step is 0.48 m. The robust 

threshold value is again 2.00 m. Since the estimated translation parameters 

(especially the Z component) are small, the visual effect of the spatial 

transformation is not significant (Fig. 5(a) and (b)). Subsequently, the gain from 

Step 1 to Step 3 in terms of the standard deviations of the Euclidean distances is 

neglectable as 1 cm.  
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(a) 

 

(b) 

FIG. 4. Test site BO1. (a) Filtered LIDAR point cloud data, (b) 3D building model data. Ordnance 

Survey © Crown copyright. All rights reserved. 

TABLE 2. Processing results of test site BO1. 

Step No. of 

corres. 

No. of 

iter. 

Time 

(min.) 

0̂  

(m) 

Tx 

(m) 

Ty 

(m) 

Tz 

(m) 

Stdd-Tx 

(m) 

Stdd-Ty 

(m) 

Stdd-Tz 

(m) 

1 1 445 568 1 11.2 0.49 n/a n/a n/a n/a n/a n/a 

2 1 443 165 7 76.0 0.47 0.11 –0.23 0.03 0.001 0.001 0.001 

3 1 447 763 1 11.7 0.48 n/a n/a n/a n/a n/a n/a 

 

The test site exhibits two interesting measurement error examples. The dome 

in Fig. 6(a) was reconstructed using planar triangles and straight lines, although 

the original shape is curved. This fact is exposed by large deviations in the 3D 

comparison, gradually increasing up to 1.20 meters modelling error. In Fig. 6(b) 

the roof part of a building model shows large differences with respect to the 

verification data. This is a measurement error which is larger than 1.5 meters.  
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(a) 

 

(b) 

 

(c) 

FIG. 5. Test site BO1. (a) Comparison of the verification and the input data before the LS3D surface 

matching, (b) after the LS3D surface matching, (c) residual bar in meter units. Ordnance Survey © 

Crown copyright. All rights reserved. 

    

(a)     (b) 

FIG. 6. (a) A zoom-in to the lower left part of Fig. 5(b). (b) A zoom-in to the upper part of Fig. 5(b). 

The red arrows in (a) and (b) show a dome and a roof with large deviations from the verification point 

cloud data. Ordnance Survey © Crown copyright. All rights reserved.  
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Results of test site BO2 

In test site BO2, the filtered reference data is complex and mixed with many 

points belonging to vegetation (Fig 7(a)). The LIDAR point cloud contains 

6 797 293 points and the input building model contains 6 279 triangles.  

Step 1. The standard deviation of the Euclidean distances before the LS3D 

surface matching is 0.65 m (Table 3). The algorithm computes 999 938 Euclidean 

distances in 5.3 minutes. Here, the standard deviation value 0.65 m contains both 

the reference system errors and building measurement errors. See Fig. 8(a) for the 

graphical representation.  

Step 2. The robust threshold value is set to 4 times of the sigma naught (of 

the current iteration). The translational reference system difference between the 

building model data and the verification LIDAR data is +0.24, –0.24, –0.49 m for 

the X, Y and Z axes, respectively (Table 3). Both horizontal and vertical 

components of the translation vector show numerically significant differences 

between the two reference systems.  

 

    

(a)     (b) 

FIG. 7. Test site BO2. (a) The filtered LIDAR data, (b) the 3D building data. Ordnance Survey © 

Crown copyright. All rights reserved.  

TABLE 3. Processing results of test site BO2. 

Step No. of 

corres. 

No. of 

iter. 

Time 

(min.) 

0̂  

(m) 

Tx 

(m) 

Ty 

(m) 

Tz 

(m) 

Stdd-Tx 

(m) 

Stdd-Ty 

(m) 

Stdd-Tz 

(m) 

1 999 938 1 5.3 0.65 n/a n/a n/a n/a n/a n/a 

2 989 870 6 28.7 0.59 0.24 –0.24 –0.49 0.002 0.002 0.001 

3 977 718 1 5.1 0.54 n/a n/a n/a n/a n/a n/a 

 



NAME. Title of paper 

14 Photogrammetric Record, 17(9#), 200# 

    

(a)     (b) 

 

(c) 

FIG. 8. (a) Test site BO2 before LS3D surface matching. (b) Test site BO2 after LS3D surface 

matching (the errors due to the reference system differences are now corrected). (c) Residual bar in 

meter units. Ordnance Survey © Crown copyright. All rights reserved.  

    

(a)     (b) 

FIG. 9. (a) A zoom-in to the central part of Fig. 8(b), in oblique view. The red arrow shows a building 

with large differences between the model and the point cloud. (b) A zoom-in to the lower-left part of 

Fig. 8(b), in oblique view. The missing dormers (indicated by the red arrows) can easily be identified 

by the LS3D surface matcher. Ordnance Survey © Crown copyright. All rights reserved.  

The change of the coloured residuals from Fig. 8(a) to 8(b) demonstrates the 

discrepancy graphically. Fig. 8(b) shows the scene after correcting the reference 

system error (by applying the estimated translation vector to the building model 

data). The scene now contains only the building measurement errors. The 
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magnitude of the errors of individual building elements has changed considerably. 

This example shows the importance of the factorization of the reference system 

and measurement errors from each other.  

Step 3. The sigma naught at this step is 0.54 m. The robust threshold value is 

2.00 m again. See Fig. 8(b), 9(a) and 9(b) for the graphical results. From Step 1 to 

Step 3, the gain is 11 cm in terms of sigma naught (Table 3). But, this error budget 

also contains the disturbing effect of the non-building points. Their magnitude is 

clearly visible as red buffers at the building borders in Fig. 8(b) and 9(a).  

In Fig. 9(a) the arrow shows a building roof where the photogrammetric 

measurement differs 1.40 m (on average) than the verification data. Here a gable 

roof was mistakenly interpreted as a flat roof. In Fig. 9(b) fourteen dormers were 

omitted in the 3D building model, shown as red arrows. This deficiency can easily 

be detected by our approach, which is referred to the completeness criteria.  

CONCLUSIONS  

2D city maps are rapidly been replaced by 3D city models. While the general 

emphasis has been to develop methods and tools for automatic, or semi-

automated, generation of city models, the concept of quality evaluation has also 

gained high importance. No standard solutions are available as yet, although city 

models are produced world-wide at a remarkable rate. 

This paper proposes a quality control method based on 3D surface 

comparison, together with the development of GUI-based software. The method 

can process the data within a reasonable time. The most computationally complex 

portion of the method is the search for the correspondent elements between the 

verification data and the input model data. A rapid space partitioning method is 

used to constrict the search domain.  

The method can assess 3D building data in terms of:  

a) systematic errors: errors due to differences between the coordinate 

systems of the input and verification data sets and measurement errors of 

the individual buildings,  

b) gross errors: type I errors (relevant to the completeness), and 

c) random errors: errors due to sensor noise. 

Since the LIDAR point cloud is an unstructured data type, absence (or 

existence) of an entire building can not be detected. In the presented experiments, 

type I errors address the completeness of integral parts of a building, if the 

building exists in the input building model. Our method cannot identify entirely 

missing buildings, it can only assess the completeness of building subparts, e.g. 

chimneys and dormers (see examples in test sites AV and BO2).  

In the current implementation, the method cannot automatically locate the 

missing model parts, rather it highlights the large residuals in a GUI screen (see 

Fig. 3(b) and 9(b)). The operator performs the interpretation. This feature will be 

automatized in a future study.  

Furthermore, the LIDAR data contains points belonging to irrelevant objects 

(ground, vegetation, etc.). These spurious points are detrimental to the procedure. 

This problem can be solved by using structured data (in surface form) as the 

verification dataset, instead of LIDAR point clouds. On the other hand, LIDAR 
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data can be generated rapidly, which is especially useful in scenarios where the 

change detection of buildings due to settlement activities, or due to natural 

hazards, is a concern.  

Experiments have been carried out on three test sites in the UK. The results 

of our work provide measures of how well an entire building model matches 

reality and thus helps to identify where it differs. This method, in combination 

with LIDAR point clouds as verification data, allows frequent and effortless 

quality control of 3D building models. This also allows the identification of areas 

of 3D models requiring update, in order to create high quality and complete 3D 

city models.  

This work focuses on the quality control of 3D building data, however, the 

same procedure can be used for building change detection.  

ACKNOWLEDGEMENTS  

This project has been funded by the Research department of Ordnance 

Survey (GB), which is gratefully acknowledged. The first author Devrim Akca 

was formerly with the Institute of Geodesy and Photogrammetry of ETH Zurich, 

Switzerland.  

REFERENCES 

ACKERMANN, F., 1984. Digital image correlation: performance and potential application in 

photogrammetry. The Photogrammetric Record, 11(64): 429-439.  

AKCA, D., AND GRUEN, A., 2005. Fast correspondence search for 3D surface matching. International 

Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 36(3/W19): 

186-191.  

AKCA, D., 2007. Least Squares 3D surface matching. Ph.D. thesis, Institute of Geodesy and 

Photogrammetry, ETH Zurich, Switzerland, Mitteilungen Nr. 92. 78 pages. 

http://www.photogrammetry.ethz.ch/general/persons/devrim_publ.html [Accessed: 20th June 

2009].  

AKCA, D., 2010. Co-registration of surfaces by 3D Least Squares matching. Photogrammetric 

Engineering and Remote Sensing, 76(3): 307-318.  

AMERI, B., 2000. Feature based model verification (FBMV): a new concept for hypothesis validation 

in building reconstruction. International Archives of Photogrammetry and Remote Sensing, 

33(B3): 24-35.  

BALTSAVIAS, E., GRUEN, A., AND VAN GOOL, L. (Eds.), 2001. Automated Extraction of Man-Made 

Objects from Aerial and Space Images (III). A.A. Balkema Publishers, Lisse, the Netherlands. 415 

pages. 

BALTSAVIAS, E.P., AND GRUEN, A., 2003. Resolution convergence - A comparison of aerial photos, 

LIDAR and IKONOS for monitoring cities. Chapter 3 in Remotely Sensed Cities (Ed. V. Mesev). 

Taylor & Francis, London. 433 pages: 47-82.  

BALTSAVIAS, E.P., 2004. Object extraction and revision by image analysis using existing geodata and 

knowledge: current status and steps towards operational systems. ISPRS Journal of Remote 

Sensing and Remote Sensing, 58(3-4): 129-151.  

BOUDET, L., PAPARODITIS, N., JUNG, F., MARTINOTY, G., PIERROT-DESEILLIGNY, M., 2006. A 

supervised classification approach towards quality self-diagnosis of 3D building models using 

digital aerial imagery. International Archives of Photogrammetry, Remote Sensing and Spatial 

Information Sciences, 36(3): 136-141.  

CAPSTICK, D.; HEATHCOTE, G.; HORGAN, J.; SARGENT, I., 2007. Moving Towards 3D: from a National 

Mapping Agency Perspective. Cartographic Journal, 44(3): 233-238.  



NAME. Title of paper 

Photogrammetric Record, 17(9#), 200# 17 

DURUPT, M., AND TAILLANDIER, F., 2006. Automatic building reconstruction from a digital elevation 

model and cadastral data: an operational approach. International Archives of Photogrammetry, 

Remote Sensing and Spatial Information Sciences, 36(3): 142-147.  

ELBERINK, S.O., AND VOSSELMAN, G., 2007. Quality analysis of 3D road reconstruction. International 

Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 36(3/W52): 305-

310.  

GRUEN, A., 1985. Adaptive least squares correlation: A powerful image matching technique. South 

African Journal of Photogrammetry, Remote Sensing and Cartography, 14(3): 175-187.  

GRUEN, A., 2000. Semi-automated approaches to site recording and modeling. International Archives 

of Photogrammetry and Remote Sensing, 33(5/1): 309-318.  

GRUEN, A., 2001: Cities from the sky - photogrammetric modeling of CyberCity is coming of age. 

GeoInformatics, 4(10): 30-33.  

GRUEN, A., AND AKCA, D., 2005. Least squares 3D surface and curve matching. ISPRS Journal of 

Photogrammetry and Remote Sensing, 59(3): 151-174.  

HENRICSSON, O., AND BALTSAVIAS, E., 1997. 3D building reconstruction with ARUBA: a qualitative 

and quantitative evaluation. In International Workshops on Automatic Extraction of Man-Made 

Objects from Aerial and Space Images (II) (Eds. A. Gruen, E.P. Baltsavias and O. Henricsson). 

Birkhäuser Verlag, Basel. 408 pages: 65-76.  

MAYER, H., 1999. Automatic object extraction from aerial imagery – a survey focusing on buildings. 

Computer Vision and Image Understanding, 74(2): 138-149.  

MCKEOWN, D.M., BULWINKLE, T., COCHRAN, S., HARVEY, W., MCGLONE, C., SHUFELT, J.A., 2000. 

Performance evaluation for automatic feature extraction. International Archives of 

Photogrammetry and Remote Sensing, 33(B2): 379-394.  

MEIDOW, J., AND SCHUSTER, H.-F., 2005. Voxel-based quality evaluation of photogrammetric building 

acquisition. International Archives of Photogrammetry, Remote Sensing and Spatial Information 

Sciences, 36(3/W24): 117-122.  

PERTL, A., 1984. Digital image correlation with the analytical plotter Planicomp C-100. International 

Archives of Photogrammetry and Remote Sensing, 25(3B): 874-882.  

ROTTENSTEINER, F., AND SCHULZE, M., 2003. Peformance evaluation of a system for semi-automatic 

building extraction using adaptable primitives. International Archives of Photogrammetry, Remote 

Sensing and Spatial Information Sciences, 34(3/W8): 47-52.  

ROTTENSTEINER, F., 2006. Consistent estimation of building parameters considering geometric 

regularities by soft constraints. International Archives of Photogrammetry, Remote Sensing and 

Spatial Information Sciences, 34(3): 13-18.  

SARGENT, I., HARDING, J., FREEMAN, M., 2007. Data quality in 3D: gauging quality measures from 

users’ requirements. International Archives of Photogrammetry, Remote Sensing and Spatial 

Information Sciences, 36(2/C43): (on CD-ROM).  

SCHUSTER, H.-F., WEIDNER, U., 2003. A new approach towards quantitative quality evaluation of 3D 

building models. ISPRS Commission IV Joint Workshop on Challenges in Geospatial Analysis, 

Stuttgart, Germany. 8 pages: (on CD-ROM).  

SUVEG, I., AND VOSSELMAN, G., 2002. Mutual information based evaluation of 3D building models. 

International Conference on Pattern Recognition (ICPR), Quebec City, Canada, Volume 3. 1043 

pages: 557-560.  

Résumé 

De nos jours, les modèles de bâtiments en 3D sont très souvent 

produits à partir de données LIDAR et photogrammétriques. Le contrôle 

de qualité de ces modèles est une question pertinente, autant d’un point 

de vue scientifique que pratique. Cette étude présente une méthode de 

contrôle de qualité pour ce type de modèle. Les données en entrée (des 

données de bâtiments en 3D) sont appariées aux données de vérification 

grâce à une méthode d’appariement de surfaces en 3D. La méthode 

d’appariement de surfaces en 3D évalue les distances euclidiennes entre 

les données de vérification et les données en entrée. Les distances 
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euclidiennes sont des mesures adéquates pour décrire la qualité du 

modèle 3D. Elles sont indépendantes de la méthode de relevé des 

données. La méthode proposée renseigne sur la précision du système de 

référence, la précision géometrique et l’exhaustivité. Trois exemples 

pratiques sont présentés pour la démonstration de la méthode. 

Zusammenfassung 

3D Gebäudemodelle werden heutzutage häufig aus LIDAR und 

photogrammetrischen Daten erzeugt. Die Qualitätskontrolle dieser 

Modelle spielt unter wissenschaftlichen und praktischen Aspekten eine 

wichtige Fragestellung. Diese Arbeit präsentiert eine Methode für die 

Qualitätskontrolle solcher Modelle. Das Input Modell (3D 

Gebäudedaten) ist ko-registriert zu den Referenzdaten unter 

Verwendung eines Verfahrens zur  3D Oberflächenzuordnung. Die 3D 

Oberflächenzuordnung evaluiert die Euklidische Distanz  zwischen den 

Referenzdaten und dem Input Datensatz. Die Euklidische Distanz gibt 

eine geeignete Metrik für die 3D Modellqualität. Diese Metrik ist 

unabhängig von der Methode der Datenerfassung. Die vorgestellte 

Methode kann die Genauigkeit des Referenzsystems, die 

Positionsgenauigkeit und Vollständigkeit untersuchen. Drei praktische 

Bespiele werden vorgestellt, die die Methode verdeutlichen.  




