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Abstract—Image compression standards rely on predictive cod-
ing, transform coding, quantization and entropy coding, in order
to achieve high compression performance. Very recently, deep
generative models have been used to optimize or replace some
of these operations, with very promising results. However, so far
no systematic and independent study of the coding performance
of these algorithms has been carried out. In this paper, for the
first time, we conduct a subjective evaluation of two recent deep-
learning-based image compression algorithms, comparing them
to JPEG 2000 and to the recent BPG image codec based on
HEVC Intra. We found that compression approaches based on
deep auto-encoders can achieve coding performance higher than
JPEG 2000, and sometimes as good as BPG. We also show
experimentally that the PSNR metric is to be avoided when
evaluating the visual quality of deep-learning-based methods, as
their artifacts have different characteristics from those of DCT
or wavelet-based codecs. In particular, images compressed at low
bitrate appear more natural than JPEG 2000 coded pictures,
according to a no-reference naturalness measure. Our study
indicates that deep generative models are likely to bring huge
innovation into the video coding arena in the coming years.

I. INTRODUCTION

Current image compression methods rely substantially on

transform coding: instead of searching for an optimal vector

quantizer in the pixel domain, which is a hard problem [1],

they transform the input data into an alternative representation,

where dependencies among pixels are greatly reduced and an

ensemble of independent scalar quantizers can be used. A

proper choice of the transformed domain is fundamental to

compact the energy of the signal into a few coefficients, and

to enable perceptual scaling. Traditionally, image compression

standards have been mainly employing linear representations,

such as the discrete cosine transform (DCT) [2], used in

block-based coding algorithms such as JPEG and in video

codecs such as H.264/AVC and HEVC, as well as wavelet

transforms [3], used in JPEG 2000. These representations are

optimal only under strong assumptions about the underlying

distribution of image data, e.g., local stationarity, smoothness

or piece-wise smoothness. Failure to meet these assumptions

is the cause of typical visual artifacts, such as ringing and blur.

More recent techniques, such as dictionary learning and sparse

coding [4], have shown that it is possible to build more flexible

representations by replacing a fixed transform by a non-linear

optimization process with a sparsity constraint. However, these

methods still represent the input data with linear combinations

of the dictionary atoms.

Recently proposed image compression algorithms based on

deep neural networks [5], [6], [7], [8], [9], [10] leverage

much more complex, and highly non-linear, generative models.

The goal of deep generative models is to learn the latent

data-generating distribution, based on a very large sample of

images. Specifically, a typical architecture consists in using

auto-encoders [11], [12], which are networks trained to re-

produce their input. The structure of an auto-encoder includes

an information bottleneck, i.e., one or more layers with fewer

elements than the input/output signals. This forces the auto-

encoder to keep only the most relevant features of the input,

producing a low-dimensional representation of the image.

Alternative approaches use generative adversarial networks

(GAN) to achieve extremely low bitrates [13]; however, their

training process tends to be unstable and their applicability to

practical image coding is still under study at the time of this

writing.

While several deep-learning-based image compression

methods have been proposed recently, little has been done

to assess the performance of these techniques compared to

traditional coding methods. Most of these works report only

objective results in terms of PSNR and MS-SSIM [14], [15],

[6]. Minnen et al. [7] ran a pairwise comparisons test with

10 observers, to assess the preference of their method over

JPEG, getting better results at a rate of 0.25 and 0.5 bpp.

Theis et al. [5] conducted a single-stimulus rating test with

24 viewers, comparing to [15], JPEG and JPEG 2000. Their

proposal outperforms the other methods, including JPEG 2000

at bitrates of 0.375 and 0.5 bpp.

To the authors’ knowledge, this is the first independent

study to assess the performance of deep-learning-based image

compression. Specifically, we propose the three following

contributions: i) we evaluate the rate-distortion performance

of two recent image compression methods based on deep

auto-encoders [15], [14], compared to JPEG 2000 and BPG

(Better Portable Graphics, a variant of HEVC Intra, which

currently yields state-of-the-art image coding performance);

ii) we evaluate the accuracy of 9 fidelity metrics in predicting

mean opinion scores for deep-learning compressed images;

iii) we assess the naturalness of deep-learning compressed

images, using an opinion- and distortion-unaware metric. Our

results show that, at least in some cases, deep-learning-based

compression achieve performance as good as BPG, yielding

more natural compressed images than JPEG 2000. In addi-



tion, our analysis suggests that the different kind of artifacts

produced by some deep-learning-based methods are difficult to

gauge using metrics such as PSNR. The subjectively annotated

dataset and the metrics will be made available online for the

research community.

II. DEEP-LEARNING-BASED IMAGE COMPRESSION

In this paper, we selected two popular deep-learning-based

compression algorithms: the auto-encoder-based method of

Ballé et al. [14], and the approach based on residual auto-

encoders with recurrent neural networks, proposed by Toderici

et al. [15]. This choice is motivated, on one hand, by the fact

that these two methods were amongst the first to produce (at

least in some cases) results with higher visual quality than

JPEG or JPEG2000 compression. On the other hand, more

recent methods are somehow inspired by these approaches,

but differently from [14] and [15], the code to reproduce their

results is not publicly available at the time of this writing,

which makes it difficult to carry out a fair evaluation.

A. Ballé et al. (2017)

Ballé et al. [14] propose an image compression algorithm

consisting of a nonlinear analysis/synthesis transform and a

uniform quantizer. The nonlinear transform is implemented

through a convolutional neural network (CNN) with three

stages. Each stage is composed by a convolution layer, down-

sampling and a non-linearity. Differently from conventional

CNN’s, which employ standard activation functions such as

ReLU or tanh, in [14] the non-linearity is biologically inspired

and implements a sort of local gain control by means of

a generalized divisive normalization (GDN) transform. The

parameters of the GDN are tuned locally, at each scale,

mimicking somehow local adaptation.

The authors of [14] directly optimize the rate-distortion

function D + λR, assuming uniform quantization. However,

the gradient of the quantization function would be zero almost

everywhere, thus hindering learning. Therefore, the authors

approximate quantization noise with i.i.d. uniform noise; this

corresponds to smoothing the discrete probability mass func-

tion of the transformed coefficients with a box filter. The

bitrate is then approximated with the differential entropy of the

smoothed, continuous distribution. The distortion is computed

as the mean squared error (MSE) between the original and

reconstructed samples. The whole coding scheme is optimized

end-to-end, for a given value of λ, resulting in different

operational points over the D(R) curve. Using MSE distortion,

this formulation can be shown to be equivalent to a variational

auto-encoder with a uniform approximate posterior [11], with

the important difference that a generative model tends to

minimize distortion (λ → 0), while in [14] the R/D trade-

off is optimized.

A Matlab code of this codec, together with trained models

for gray-scale and color images for six values of λ, can be

found at http://www.cns.nyu.edu/∼lcv/iclr2017/.

B. Toderici et al. (2017)

One of the limitations of [14] is that it requires a separate

model, and thus a new training, for each value of λ. Instead,

Toderici et al. [15] follow a different approach based on a

single model. This is obtained by making the encoding and

decoding processes progressive: after the first coding/decoding

iteration, the residue with respect to the original is computed;

afterwards, this residue is further encoded/decoded, and the

difference with respect to previous residue is found. This

scheme is applied on 32× 32 pixel patches. The compression

model is also coupled with a binarizer.

The model used by authors is based on Recurrent Neural

Networks (RNN). However, convolutions are used to replace

multiplications in the RNN traditional models. Several archi-

tectures derived from the well known LSTM networks were

tested and the Gated Recurrent Units were found to provide

the best results. The encoder uses 4 convolutional layers with

RNN elements, and a resolution reduction of 2 is achieved

after each layer by using a stride of 2 × 2. As such, for a

32×32×3 input image, the output after a single iteration will

be a 2× 2× 32 binary representation.

A Python implementation of the codec, in tensorflow frame-

work, can be found at https://github.com/tensorflow/models/

tree/master/research/compression/image encoder/. The net-

work architecture and weights are given in a binary format.

C. Coding rate computation

For each of the tested methods we need to compute the

number of bits used to represent the encoded images at various

quality level. This is straightforward for the standard methods

JPEG, JPEG2000 and BPG, which actually produce the com-

pressed file. On the other hand, the available implementations

of both methods by Ballé et al. and by Toderici et al. do

not directly provide an encoded file. In the first case, the

authors implemented a CABAC-like entropy coder to encode

the quantized transform coefficients, and the rate-distortion

results they provide are based on this encoder. However, the

latter is not available in their code. Therefore we performed an

entropy estimation and implemented a simple entropy encoder

(EE) using run-length encoding (RLE) to effectively represent

the long runs of zeros coming from null channels in the tensor

produced by this method. We found that the RLE+EE gave

coding rates close to the estimated entropy, therefore in the

following we use the former as coding rate. As for the Toderici

et al. method, it produces a tensor of values within {±1},

which can be considered as binary symbols of an encoded

stream. Thus, the number of symbols can directly be used as

size (in bits) of each encoded layer.

III. SUBJECTIVE EVALUATION

In this section, we describe the subjective experiment we

conducted in order to assess the quality of images compressed

with the methods in [14] and [15].



(a) Bistro (b) Computer (c) MasonLake (d) Screenshot (e) Showgirl (f)SouthBranchKingsRiver

Fig. 1. Test images used in the study. Bistro and Showgirl are tone-mapped images from the Stuttgard HDR video database [16]. MasonLake and
SouthBranchKingsRiver are tone-mapped images from the Fairchild HDR photographic survey [17].

A. Experiment setup

1) Material: For the study, we selected 6 uncompressed

images of size 736×960 pixels, shown in Figure 1. The Bistro

and Showgirl are cropped frames from high dynamic range

(HDR) video sequences in [16], which have been tone mapped

using the display adaptive tone mapping in [18]. MasonLake

and SouthBranchKingsRiver are also HDR images, cropped

and tone mapped with [18]. Computer was acquired by the

authors, using a Canon EOS 700D camera in raw mode,

and applying the camera native response curve and white

balancing. Finally, Screenshot is a screen capture, cropped

to match the resolution of test stimuli. These images were

selected out of 19 candidate pictures, on the basis of their

spatial information, key and colorfulness [19], as well as

on their semantics (outdoor, people/faces, man-made objects).

Screenshot was selected to include an example of synthetic

image, which might be representative of a screen-content

compression scenario.

2) Stimuli: Starting from these 6 pristine contents, we

generated 113 compressed stimuli, in a such a way to span

uniformly the impairment scale, as described in Section III-A3.

Specifically, we used 4 compression methods: JPEG 2000,

BPG, Ballé et al. [14] and Toderici et al. [15]. For JPEG

2000 and BPG we used the openJPEG library available for

download at http://www.openjpeg.org/ and the BPG implemen-

tation found at https://bellard.org/bpg/, while for the last two

algorithms we used the implementation publicly available from

the authors. We selected 5 bitrates, corresponding to 5 different

quality levels, for JPEG 2000 and BPG. For Ballé and Toderici,

it is not possible to fix an arbitrary bitrate for coding, as only

an ensemble of predefined bitrates was available. In particular,

in some cases we could not find images corresponding to the

highest quality level (“Imperceptible”).

3) Design: In the study we employ the double stimulus

impairment scale (DSIS) methodology [20], Variant I with a

side-by-side presentation. In each trial, a pair of images with

same content, one being original – reference and one com-

pressed – test was displayed, and the participants were asked

to evaluate the level of degradation of the test image relative

to the reference. A continuous impairment scale ([0,100], 100

corresponding to “Imperceptible” and 0 to “Very annoying”)

was utilized. Each participant evaluated 113 images, where

the pairs were selected randomly with a single constraint –

the same content could not appear twice consecutively.

4) Participants and apparatus: There were 23 participants

(15 male, 8 female) with an average age of 32. The experiment

was conducted in a dark and quiet room. The stimuli were

displayed at full HD on a Dell Ultrasharp U2410 24” display.

The ambient illumination in the room, measured between the

screen and participants, was 2.154 lux. The distance from the

screen was fixed to 70 cm (approximately three times the

height of the pictures on the display) with the eyes in the

middle of the display, both horizontally and vertically.

5) Procedure: Prior to the experiment, the participants

were verbally explained the experimental procedure. This was

followed by a training session with a stimulus that was not

used in the main study, showing all the levels of distortion

across different compression methods. Upon completion of the

training, they were left in the room to do the main test. There

were no time constraints for the image observation before

evaluating it. The images were shown side-by-side while the

slider was on the right edge all the time, allowing them to

vote when they made a decision. Once rated, the next image

pair was displayed. The average duration of the test was

approximately 22 minutes.

B. Results

Before looking at the data from the subjective experiment,

screening of the observers for detection of potential outliers

was performed, as proposed in the R-REC-BT.500-13 [20].

The procedure detected no outliers.

Following this, mean opinion score (MOS) values and

confidence intervals (CI) were computed for all 113 test

conditions. Rate distortion curves with computed MOS values

for all images used in the experiment are provided in Figure 2.

The results for the lowest bitrates are cluttered and have lowest

CIs, which is expected and confirms that this distortion level

corresponds unanimously to the “Very annoying” level on the

rating scale. However, there are several notable results visible

in the plots for the other bitrates.

Toderici method seems to result in highest perceived visual

quality in case of MasonLake, and for SouthBranchKingsRiver,

but in this case only at medium-high bitrate. At the same

time, the same method performs the worst for Bistro and

Showgirl scenes. Furthermore, images compressed using Ballé
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Fig. 2. MOS vs. bitrate. Error bars indicate 95% confidence intervals.

method got better subjective scores than JPEG 2000 in all but

SouthBranchKingsRiver case. This suggests a strong content

dependency in the performance of these methods, compared

to the more stable traditional codecs. It seems that for natural

images with a lot of textures the gains are more evident for

deep-learning-based methods. We further analyze the artifacts

of learning-based methods in Section IV-B.

IV. OBJECTIVE EVALUATION

In this section we report objective metrics results for the

stimuli of the study. Specifically, we evaluate the performance

of popular full-reference metrics employed for traditional

compression to predict visual quality of the coding methods

in [15] and [14]. Afterwards, we present a qualitative analysis

of the artifacts produced by deep-learning-based coding.

A. Fidelity metrics

We include in our evaluation nine commonly used full-

reference image quality metrics, see Tables I and II. We

used the publicly available implementation of these metrics

in the MeTriX MuX library for Matlab, available at http:

//foulard.ece.cornell.edu/gaubatz/metrix mux/. We evaluate fi-

delity metrics in terms of prediction accuracy, prediction

monotonicity, and prediction consistency, as recommended

in [21]. For prediction accuracy, Pearson correlation coeffi-

cient (PCC), and root mean square error (RMSE) are com-

puted. Spearman rank-order correlation coefficient (SROCC)

is used for prediction monotonicity, and outlier ratio (OR)

is calculated to determine the prediction consistency. These

performance metrics have been computed after performing a

non-linear regression on objective quality metric scores using

a logistic function.

The results are reported in Table I, per compression method

and over all contents, and in Table II, where: i) conventional

(JPEG 2000 and BPG) and deep-learning-based (Toderici et

al., Ballé et al.) are grouped; and ii) all methods and contents

are considered together. While for standard codecs the trends

are similar as in previous studies [22], an analysis of the results

in Table II reveals that the PCC of all metrics but SSIM, VIF,

UQI and IFC significantly drops when evaluated on Ballé and

Toderici, compared to BPG and JPEG 2000 (p < 0.05). In

particular, the reduction of prediction accuracy is highest for

PSNR. A probable explanation for this drop is the different

kinds of artifacts produced by these two compression methods.

To confirm this behavior, we report in Figure 3(a) the MOS

with respect to PSNR values. We see from the scatter plot

that for Ballé et al. [14] and Toderici et al. [15], stimuli

with similar PSNR values might be significantly different in

terms of perceived visual quality. This phenomenon is much

less present when using different metrics, such as MS-SSIM

and VIF (Figures 3(a) and (b), respectively). We thus rec-

ommend to avoid using PSNR when evaluating compression

performance of future deep-learning-based image or video

compression techniques. Table II suggests instead to employ

VIF and MS-SSIM.

B. Qualitative results

In order to show examples of the artifacts of deep-learning-

based methods, we report in Figure 4 some details of coded

images. Part (a) of the figure demonstrates a case where

Ballé et al. achieve clearly better visual quality than JPEG

2000 at a higher bitrate. Notice that there are no visible,

unnatural ringing or mosquito noise artifacts, nor blocking, and

although high-frequency details are somehow blurred, edges



TABLE I
STATISTICAL ANALYSIS OF OBJECTIVE QUALITY METRICS ON THE PROPOSED DATASET (I). BEST METRICS VALUES PER COLUMN ARE HIGHLIGHTED IN

BOLD.

JPEG2K BPG Balle Toderici

Metric PCC SROCC RMSE OR PCC SROCC RMSE OR PCC SROCC RMSE OR PCC SROCC RMSE OR

PSNR 0.860 0.873 15.1 0.14 0.851 0.854 16.2 0.20 0.621 0.574 19.7 0.20 0.699 0.707 19.9 0.18

SSIM 0.894 0.892 13.5 0.07 0.915 0.901 12.5 0.07 0.860 0.863 12.8 0.08 0.836 0.824 15.3 0.11

MS-SSIM 0.961 0.958 8.3 0.00 0.971 0.956 7.4 0.00 0.936 0.939 8.9 0.00 0.923 0.898 10.7 0.00

VSNR 0.903 0.907 12.9 0.07 0.889 0.882 14.1 0.10 0.750 0.728 16.6 0.16 0.768 0.738 17.8 0.18

VIF 0.958 0.956 8.7 0.03 0.968 0.949 7.8 0.00 0.929 0.924 9.3 0.04 0.940 0.911 9.5 0.07

UQI 0.833 0.833 16.7 0.23 0.792 0.770 18.9 0.33 0.760 0.752 16.3 0.20 0.863 0.863 14.1 0.04

IFC 0.921 0.915 11.7 0.07 0.931 0.915 11.3 0.07 0.880 0.876 11.9 0.04 0.964 0.932 7.4 0.04

NQM 0.881 0.884 14.3 0.10 0.916 0.905 12.4 0.10 0.793 0.804 15.3 0.12 0.848 0.817 14.7 0.11

WSNR 0.946 0.949 9.8 0.00 0.962 0.953 8.5 0.00 0.896 0.889 11.2 0.04 0.890 0.866 12.7 0.11

TABLE II
STATISTICAL ANALYSIS OF OBJECTIVE QUALITY METRICS ON THE PROPOSED DATASET (II). RESULTS ARE GROUPED CONSIDERING: STANDARD IMAGE

CODECS (JPEG 2000 AND BPG); DEEP-LEARNING-BASED COMPRESSION ALGORITHMS; AND ALL THE 113 STIMULI OF THE DATASET. BEST METRICS

VALUES PER COLUMN ARE HIGHLIGHTED IN BOLD.

JPEG2K & BPG Balle & Toderici All methods

Metric PCC SROCC RMSE PCC SROCC RMSE PCC SROCC RMSE

PSNR 0.858 0.870 15.676 0.652 0.638 20.156 0.763 0.766 18.619

SSIM 0.902 0.908 13.154 0.829 0.830 14.864 0.866 0.871 14.392

MS-SSIM 0.964 0.957 8.170 0.917 0.907 10.6 0.941 0.936 9.77604

VSNR 0.888 0.896 14.011 0.740 0.731 17.881 0.815 0.815 16.677

VIF 0.962 0.953 8.348 0.931 0.919 9.740 0.944 0.936 9.516

UQI 0.812 0.802 17.813 0.815 0.821 15.423 0.813 0.807 16.751

IFC 0.925 0.917 11.615 0.922 0.907 10.282 0.922 0.910 11.163

NQM 0.897 0.899 13.499 0.803 0.794 15.842 0.852 0.848 15.078

WSNR 0.953 0.955 9.261 0.866 0.851 13.318 0.910 0.908 11.914
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Fig. 3. Scatter plots for MOS against different objective metrics.

and straight lines are generally well preserved. In part (b) of

Figure 4, these characteristic artifacts are shown in comparison

with a BPG-compressed image at similar bitrate, which has

higher MOS. Notice again the sort of “brush” effect for Ballé,

and the little presence of artifacts on high-contrast edges.

Finally, in Figure 4(c) we show an example for Toderici against

JPEG 2000. The two images have similar bitrates; however,

JPEG 2000 has a better PSNR score while Toderici has a

higher MOS score. This is interesting to note as the image

compressed with Toderici et al. has more details but loses in

PSNR most likely due to blocking artifacts. It should be noted

that these type of artifacts have been partially suppressed in

their follow-up work [23]. However, we did not have access

to the updated implementation.

In order to investigate further the distortion of Ballé and

Toderici’s methods, we computed the natural image quality

evaluator (NIQE) metric [24] for all stimuli but Screenshot

(which is a synthetic image). NIQE measures the distance of

the distribution of mean-contrast normalized coefficients of

the image under study with respect to a reference distribution

of the same coefficients found on a large dataset of pristine

images, and thus is both opinion- and distortion-unaware.

Lower values of the metric indicate higher naturalness. Notice

that stimuli compressed with both Ballé and Toderici tend to

be more natural, i.e., they follow better the statistics of natural

images, than images coded with JPEG 2000.

V. DISCUSSION AND CONCLUSIONS

This is the first, independent study to evaluate subjectively

and objectively the quality of two deep-learning-compressed

images. On our dataset, both methods achieve results similar

to or better than JPEG 2000 in many cases, and in other

cases their rate-distortion performance is equivalent to that of

BPG. These results are somewhat justified by the more natural

appearance of images compressed by the two deep-learning-

based methods, compared, e.g., to JPEG 2000. The reason

for this is most probably related to the much more powerful

generative model expressed by deep auto-encoders, compared

to simple image transforms such as DCT and wavelets (in the

case of BPG, the use of in-loop filters considerably reduces



(a) (left) Ballé, 0.38 bpp; (right) JPEG 2K, 0.43 bpp (b) (left) Ballé, 0.09 bpp; (right) BPG, 0.08 bpp (c)(left)Toderici,0.125 bpp; (right)JPEG 2K, 0.1 bpp

Fig. 4. Examples of images (details) coded with different methods. (a) A case where an image coded with the method of Ballé et al. has better quality than
JPEG 2000 at a similar bitrate. (b) An example where Ballé et al. has worse quality than BPG. (c) An example of Toderici et al. has better quality in MOS
(12.4 vs 8.1) but lower in PSNR (20.85dBs vs 21.35dBs).
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Fig. 5. Natural Image Quality Evaluator (NIQE) metric, compute for different
compression methods. Only bitrates below 1.2 bpp are reported. Black squares
indicate the values of NIQE for the pristine contents.

the visibility of blocking, at the advantage of naturalness). A

direct consequence is that simple pixel-based metrics such as

the PSNR, which are still widely used in image and video

coding, are much less accurate to judge visual quality with

the new methods.

A more detailed analysis would require coding images

at the same (or as close as possible) bitrate and conduct

pairwise comparison tests to evaluate precisely the preferences

of observers. However, this is difficult at this stage as the

available implementations of Ballé et al. [14] and Toderici

et al. [15] do not enable a fine-granularity rate control. Yet,

our results are still surprising, when thinking that BPG and

JPEG 2000 are the product of decades of coding optimization

and engineering, while the methods of Ballé et al. [14] and

Toderici et al. [15] are proofs of concept developed in the last

year. This suggests a great potential in using deep generative

models for next-generation image and video codecs.
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[14] J. Ballé, V. Laparra, and E. P. Simoncelli, “End-to-end optimized image

compression,” in Int. Conf. on Learning Representations (ICLR), Toulon,
France, Apr. 2017.

[15] G. Toderici, D. Vincent, N. Johnston, S. J. Hwang, D. Minnen, J. Shor,
and M. Covell, “Full resolution image compression with recurrent
neural networks,” in IEEE Int. Conf. on Computer Vision and Pattern

Recognition (CVPR), Honolulu, Hawaii, USA, Jul. 2017, pp. 5435–5443.
[16] J. Froehlich, S. Grandinetti, B. Eberhardt, S. Walter, A. Schilling,

and H. Brendel, “Creating cinematic wide gamut HDR-video for the
evaluation of tone mapping operators and HDR-displays,” in Digital

Photography X, vol. 9023. International Society for Optics and
Photonics, 2014, p. 90230X.

[17] M. D. Fairchild, “The HDR photographic survey,” in Color and Imaging

Conference, vol. 2007, no. 1. Society for Imaging Science and
Technology, 2007, pp. 233–238.

[18] R. Mantiuk, S. Daly, and L. Kerofsky, “Display adaptive tone mapping,”
in ACM Transactions on Graphics (TOG), vol. 27, no. 3. ACM, 2008,
p. 68.

[19] V. Hulusic, K. Debattista, G. Valenzise, and F. Dufaux, “A model of
perceived dynamic range for HDR images,” Signal Processing: Image

Communication, vol. 51, pp. 26–39, 2017.
[20] ITU-R, “Methodology for the subjective assessment of the quality of

television pictures,” ITU-R Recommendation BT.500-13, 2012.
[21] ITU-T, “Methods, metrics and procedures for statistical evaluation,

qualification and comparison of objective quality prediction models,”
ITU-T Recommendation P.1401, 2012.

[22] H. R. Sheikh, M. F. Sabir, and A. C. Bovik, “A statistical evaluation
of recent full reference image quality assessment algorithms,” IEEE

Transactions on image processing, vol. 15, no. 11, pp. 3440–3451, 2006.
[23] N. Johnston, D. Vincent, D. Minnen, M. Covell, S. Singh, T. Chinen,

and S. J. Hwang, “Improved lossy image compression with priming and
spatially adaptive bit rates for recurrent networks,” arXiv:1703.10114v1,
2017.

[24] A. Mittal, R. Soundararajan, and A. C. Bovik, “Making a “completely
blind” image quality analyzer,” IEEE Signal Processing Letters, vol. 20,
no. 3, pp. 209–212, 2013.




