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Abstract Land use (LU) maps are an important source of information in academia

and for policy-makers describing the usage of land parcels. A large amount of effort

and monetary resources are spent on mapping LU features over time and at local,

regional, and global scales. Remote sensing images and signal processing tech-

niques, as well as land surveying are the prime sources to map LU features.

However, both data gathering approaches are financially expensive and time con-

suming. But recently, Web 2.0 technologies and the wide dissemination of GPS-

enabled devices boosted public participation in collaborative mapping projects

(CMPs). In this regard, the OpenStreetMap (OSM) project has been one of the most

successful representatives, providing LU features. The main objective of this paper

is to comparatively assess the accuracy of the contributed OSM-LU features in four

German metropolitan areas versus the pan-European GMESUA dataset as a ref-

erence. Kappa index analysis along with per-class user’s and producers’ accuracies

are used for accuracy assessment. The empirical findings suggest OSM as an

alternative complementary source for extracting LU information whereas exceeding

50 % of the selected cities are mapped by mappers. Moreover, the results identify

which land types preserve high/moderate/low accuracy across cities for urban LU

mapping. The findings strength the potential of collaboratively collected LU
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features for providing temporal LU maps as well as updating/enriching existing

inventories. Furthermore, such a collaborative approach can be used for collecting a

global coverage of LU information specifically in countries in which temporal and

monetary efforts could be minimized.

Keywords Land use features � Comparative assessment � Global monitoring for

environment and security urban atlas (GMESUA) � OpenStreetMap � Confusion

matrix

1 Introduction

The process of mapping land is known as LU mapping (Thenkabail et al. 2005) and

land cover (LC) mapping (Kasetkasem et al. 2005), and is reflected in LU/LC maps.

LU and LC maps are of great importance for many purposes concerning urban and

regional planning, LU policy making, etc. In fact, these two concepts are distinct in

essence, as LU maps illustrate human activities, such as artificial surface con-

struction, farming, and forestry that represent the usage of land (Ellis 2007; Wästfelt

and Arnberg 2013), whilst LC maps display the physical and biological cover over

the land surface regardless of the purpose for which they are used (De Sherbinin

2002; Ellis 2007; Vaz et al. 2012, 2013). In other words, LC maps identify which

land types cover the land and LU maps classify the land based on the usage of the

land (Paneque-Gálvez et al. 2013; Sexton et al. 2013). For instance, if a particular

land parcel is covered by grass, its LC type is labeled as grassland, whilst this parcel

might be a part of a meadow LU class.

Employing signal processing algorithms on remote sensing data coupled with in-

field measurements and ancillary data have been the main source of collecting LU

and LC features (Kandrika and Roy 2008; Pacifici et al. 2009; Saadat et al. 2011; Qi

et al. 2012). Remote sensing images and techniques often require in-field surveying

for the results’ validation process, i.e., in situ measurements as ground-truth data

play a great role in delivering final products. Within the field-surveying data col-

lection, experts and native residents’ knowledge of the environment are needed to

minimize uncertainty of measurements (Cihlar and Jansen 2001; De Leeuw et al.

2011). Contrary to LC mapping, LU mapping requires in-field information col-

lection on the status and current usage of each land parcel, which are scarcely

achievable from remote sensing images. Therefore, investigators must collect

ancillary data as well to label LU patterns appropriately. Thus, LU mapping is even

more complicated than LC mapping, and the information collected by experts from

local residents, land managers, and evidence sources plays a vital role for accurate

LU mapping (Fritz et al. 2012).

So far, a noticeable amount of efforts have been spent on generating LU maps at

global, regional, and local scales. Examples of global scale and coarse resolution

datasets comprise Global Land Cover (GLC2000) (Fritz et al. 2003), Moderate-

resolution Imaging Spectroradiometer [MODIS; (McIver and Friedl 2002)], and
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GlobCover (Arino et al. 2012), among others. At a regional (e.g., European) scale, the

CORINE 2000 (Büttner et al. 2002) and Global Monitoring for Environment and

Security Urban Atlas (GMESUA; Seifert 2009) deliver LC and LU maps at conti-

nental and municipal levels, respectively. High-resolution images including SPOT,

Rapideye, and ALOS images have been utilized to attain fine-scale maps of urban

areas deliveringGMESUA (Kong et al. 2012),while a European coverage of LCmaps

at a coarse spatial resolution of 100 and 250 m has been provided in the CORINE

dataset. But, their accuracies have been a major concern as outlined by Mayaux et al.

(2006), Strahler et al. (2006), Herold et al. (2008), Fritz et al. (2012). In terms of

accuracy, the lack of sufficient accuracy is even more critical in the case of global LU

mapping, because the collection of globally-covered in-field information of LU fea-

tures is such a huge task (Foody 2002; Foody et al. 2013). Thus, the necessity of

finding an alternative and complementary approach formappingLU features becomes

evident. This could presumably be responded by the Web 2.0 innovations.

Lately, the development of Web 2.0 technologies has resulted in the emergence

of a large number of CMP projects, which collect information about geographical

objects from citizens. The majority of these CMPs offer very high-resolution

satellite and aerial images (even less than one meter spatial resolution) through

image libraries (e.g., Google Maps, Bing Maps) in their interfaces, which enable

people to visualize the whole globe by fine-resolution remote sensing images so that

they can map any features and additionally attach respective attributes to them

(Rouse et al. 2007). This simple and straightforward way of visual interpretation of

remote sensing images can be considered as alternative approach for LU mapping

and even achieving fine-resolution LU maps at a global scale. The CMPs as listed in

Sester et al. (2014) also provide people with some basic mapping tools in order to

mark and digitize the visible objects. Some examples of CMPs are: OSM (Ramm

et al. 2011), Geo-wiki (Fritz et al. 2012; Comber et al. 2013; See et al. 2013), Eye

into Earth (Birringer 2008), and Wikiloc (Castelein et al. 2010). The individuals are

also capable of enriching the attributes of the objects with some personal knowl-

edge about these objects. The capability of importing the recordings of GPS-

enabled devices i.e., smart phones and GPS devices, is granted to enable anyone to

contribute even if s/he has minimal mapping expertise.

In brief, people interpret and integrate remote sensing images along with their per-

sonal information and their GPS-enabled device records. This sort of information has

been calledVolunteeredGeographic Information (VGI): (Goodchild 2007).Among the

CMPs, OSM is a unique platform in collecting LU features, because OSM has been so

far a pioneer CMP due to attracting a huge amount of public attention and contributions

(Ramm et al. 2011) by having almost 1.9 million users until December, 2014 and

continue to grow as outlined by Jokar Arsanjani et al. (2015a, 2015c). More interest-

ingly, OSM is highly democratic in receiving contributions by enabling anyone to edit/

modify the existing features and sharing the whole data history freely and openly with

the public in a structured way (Flanagin andMetzger 2008; Koukoletsos et al. 2012). It

should be noted that OSM collects spatial information in GIS vector formats such as

points, polylines, and polygons depending on the type of objects and presents them

through a number of organized tags as listed in Ramm (2014).
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A literature review reveals that in contrast to extensive analysis of road networks

in OSM (Ludwig et al. 2011; Mooney and Corcoran 2012), first attempts at ana-

lyzing LU features from the whole OSM datasets have been carried out by Ha-

genauer and Helbich (2012), Jokar Arsanjani et al. (2013) in which they tried to

extract LU features from the shared objects. However, except (Jokar Arsanjani and

Vaz 2015b) virtually no studies on comparative assessment of the OSM-LU fea-

tures with other authoritative datasets have been ever published. Therefore, the idea

of using the contributed LU features to OSM arises in order to see how suitably we

can collect temporal LU features at a local scale from OSM or even exploit the

contributed features for updating the current LU datasets. To do so, a comparative

quality assessment analysis must be carried out to gain some insights about it. To

conclude, statements about the suitability of voluntarily collected LU data still

remain highly speculative and even less is known whether these data might identify

mismatches or even complement authoritative LU datasets.

In addition to that, spatial heterogeneity in the data quality increases the com-

plexity of comparative studies as proven by Haklay (2010), Helbich et al. (2012),

Koukoletsos et al. (2012). Hence, this research intends to evaluate the quality of

OSM-LU features compared to a recent pan-European LU dataset, namely GME-

SUA, as a reference, in order to find out how accurate LU features are attributed

across four different German metropolitan areas. Besides preparing a LU dataset

from OSM contributions, this study aims to cross-compare the degree of com-

pleteness and the attribute accuracy of the OSM-based LU features with the

GMESUA data by means of a statistical assessment. To be more precise, this

research seeks to find out: (a) how complete LU features are contributed to OSM,

(b) how well OSM-LU features are attributed, (c) whether or not OSM-LU features

are already usable for LU mapping, and (d) how effective the use of OSM data for

questions in LU science would be.

The remainder of the paper is structured as follows: an overview of the utilized

datasets and the chosen study sites are given in Sect. 2. Section 3 introduces the

applied method while key results are presented in Sect. 4. Finally, Sect. 5 draws

discussions and conclusions and Sect. 6 provides some recommendations.

2 Materials and Data Processing

2.1 OSM Dataset

The first datasets utilized in the present study is the OSM snapshot for November 5,

2013. The features tagged with “Natural” describe a wide variety of physical fea-

tures, which are categorized into different categories such as water bodies, forest,

etc. as described in Ramm (2014). “Land use” is the human use of land, which

represents the purpose a land parcel is being used for (Ramm 2014). To extract

relevant LU features, objects labeled with the tags “Land use” and “Natural” are

exported from the OSM planet file into a uniform dataset.
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2.2 GMESUA Dataset as a Reference Dataset

The second dataset, serving as reference data, is the pan-European GMESUA

dataset, which comprises LU data for selected metropolitan areas exceeding 100,000

inhabitants. It is adapted to European needs, and contains information that can be

derived chiefly from Earth Observation (EO) data supported by other reference data

such as commercial-off-the-shelf (COTS) navigation data and topographic maps. Its

minimum mapping unit (MMU) is between 0.25 and 1 ha, and a minimum width of

linear elements of 100 m with ±5 m positional accuracy is applied (European Union

2011). Additionally, some complementary data are integrated to improve the

accuracy of classification processes namely (a) COTS navigation data such as POIs,

LU, LC, water bodies; (b) Google Earth for interpretation; (c) local city maps for

certain classes; (d) local zoning data such as cadastral data; (e) field checks (on-site

visits); and (f) high-resolution satellite images (finer than 1 m ground resolution)

(European Union 2011). At the time of writing this paper, this dataset covers 305

urban regions within Europe. The thematic accuracy for all classes is above 80 %.

For more details see the Urban Atlas mapping guide (European Union 2011).

Table 1 represents the defined classes in GMESUA and in this article these classes

will be recalled by their codes as well e.g., Isolated structures [113].

2.3 Study Areas

Four large metropolitan areas of Germany, from different regions, are selected:

Berlin, Frankfurt am Main, Munich, and Hamburg. There are multiple reasons for

choosing these areas in Germany. First, the OSM community in Germany is very

active and dynamic, and therefore it is rational to begin from potentially well-

mapped areas. Secondly, no bulk import of authoritative datasets for Germany into

the OSM database has yet been reported. Thirdly, according to osmatrix.uni-hd.de

(Roick et al. 2011) and (Jokar Arsanjani et al. 2014) these cities have received high

rates of contributions. Fourthly, the reference dataset i.e., GMESUA for these cities

are available. The selected areas cover approximately 35,000 km2 and contain 15

major LU classes, so a wide variety of LU features from heterogeneous areas are

identified. Both the selected areas and the input data are shown in Fig. 1.

3 Methods

In geodata quality analysis, the quality of geodata should be internally and exter-

nally considered (van Oort 2006; Gervais et al. 2009). Internal quality reflects the

data production specifications, which recognizes errors in the data. The major

standard organizations (e.g., ISO 19157, ICA, FGDC, and CEN) have introduced
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their diverse quality criteria and the followings five are common amongst them: (1)

thematic accuracy, (2) positional accuracy, (3) temporal accuracy, (4) logical

consistency, and (5) completeness (Guptill and Morrison 1995). These data prop-

erties are introduced to the users through metadata files attached to datasets by

producers (Devillers et al. 2007). On the other hand, external quality reflects the

suitability of a dataset for a particular purpose and addresses the concept of “Fitness

of Use” (FoU): (Guptill and Morrison 1995; Devillers et al. 2007). In this study, the

internal aspects of data quality are considered.

The workflow of evaluating the OSM-LU dataset is summarized in Fig. 2 and

described as follows. First, OSM features tagged with “Land use” and “Natural” are

retrieved and merged together to result in a unique dataset. Second, overlaps and

topological errors between the features are then resolved, which is described in details

Table 1 Classification scheme applied in the preparation of GMESUA datasets

Classification

level

Level 1 Level 2 Level 3

Land Artificial surfaces [100] Urban fabrics [110] Continuous urban

fabrics [111]

Discontinuous urban

fabrics [112]

Isolated structures

[113]

Industrial, commercial,

public, military, private

and transport units [120]

Industrial,

commercial, public,

military and public

units [121]

Road and rail

network and

associated lands

[122]

Port areas [123]

Airports [124]

Mine, dump and

construction sites [130]

Mineral extraction

and dump sites [131]

Construction sites

[132]

Land without current

use [133]

Artificial nonagricultural

vegetated areas [140]

Green urban areas

[141]

Sports and leisure

facilities [142]

Agricultural + seminatural

areas + wetlands [200]

– –

Forests [300] – –

Water Water [500] – –
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Berlin 

GMESUA: MMU=0.25 ha 

Overall Accuracy=87% 

Coverage = 1,745,574ha 

Base imagery= SPOT 2.5m, ALOS 

2.5m, 10m 

OSM dataset 

Frankfurt

GMESUA: MMU=0.25 ha 

Overall Accuracy=90.6% 

Coverage= 429,702ha 

Base imagery= SPOT 2.5m

OSM dataset 

Fig. 1 The physical extent of the selected cities—Berlin, Frankfurt, Hamburg, and Munich,

represented by the GMESUA datasets accompanied with their metadata (left panels) and

contributed OSM features (right panels)
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in Sect. 3.1. Third, the OSM features are re-labeled and matched according to the

GMESUA nomenclature as will be explained in Sect. 3.2. Fourth, the degree of

completeness for each city is determined to measure howmuch of the area is mapped.

Finally, an error matrix between the OSM and GMESUA datasets is computed to

measure the overall thematic accuracy of the OSM features along with a detailed per-

class analysis accompanied with a map of agreement/disagreement values.

GMESUA: MMU=0.25 ha 

Overall Accuracy=88.9% 

Coverage= 720,695 ha 

Base imagery= SPOT 2.5m, 

Rapideye 5m 

OSM dataset 

Munich

GMESUA: MMU=0.25 ha 

Overall Accuracy=86.2% 

Coverage= 519,520 ha 

Base imagery= SPOT 2.5m

OSM dataset 

Legend

Discontinuous urban fabric [112]

Agricultural areas, semi-natural areas and wetlands [200]

Industrial, commercial, public, military and private units [121]

Road and rail networks and associated land [122]

Mineral extraction and dump sites [131]

Construction sites [133]

Continuous urban fabric [111]

Land without current use [134]

Green urban areas [141]

Sport and leisure facilities [142]

Isolated structures [113]

Port areas [123]

Airports [124]

Forests [300]

Water [500]

Hamburg

Fig. 1 (continued)
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3.1 Logical Consistency and Topology

Logical consistency addresses how well logical relationships between the elements

of the dataset are defined. If the objects are not topologically defined to each other,

the dataset will fail in having proper internal relation between the objects (van Oort

2006). This issue is even more problematic when the features are polygons. There is

no indicator to measure it quantitatively and in the metadata attached to the data is

indicated with a Boolean value whether the data set has been cleaned from topo-

logical errors or not (Devillers et al. 2007). This concern is a challenge for the

collected OSM polygon features, because the OSM contributions are mapped at

different zoom levels, which result in dissimilar data scales and some features might

overlap each other and consequently some areas possess more than one label (Sester

et al. 2014).

However, depending on the type of data, the degree of goodness varies; for

instance, this problem is not encountered for point datasets e.g., POIs. In the case of

polyline datasets, such topological inconsistency can be observed at the road

junctions as well as at the beginning and ending of the road segments. This issue is

schematically illustrated in Fig. 3. Therefore, using this layer for any external

application generally demands applying topological cleaning of features in order to

clean them from overlaps and dangle errors. These issues are resolved automatically

by applying topology for removing errors of our dataset including unclosed gaps,

gaps between polygons, and overlapping polygons.

Fig. 2 The flowchart of evaluating OSM land use features
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3.2 Harmonization of the Datasets Nomenclatures

The OSM has its own classification nomenclature, which is designed for fine-scale

LU classification, therefore, the OSM-LU features must be translated to globally

known nomenclatures and in this case, the GMESUA nomenclature. This was

carried out through adding an additional label compatible with the first and third

level of classification of the GMESUA legend for artificial surfaces and non-arti-

ficial surfaces, respectively (see Estima and Painho 2013; Jokar Arsanjani et al.

2013). This helps to make a common LU nomenclature and also creates a dictionary

for translating the contributions of individuals to the GMESUA adjusted LU types.

For instance, water-related features are assigned as water [500]. Table 2 represents

an exemplary dictionary of translating OSM features to GMESUA nomenclature.

Several difficulties were encountered such as (i) semantic understanding of terms

in domestic language i.e., German terms with typos which had to be translated into

English, (ii) the use of unidentified types of features by contributors and the

incomplete attributes of features, which were between 10 and 15 % of area and

removed from the analysis. This implies that the handling of the heterogeneous and

unstructured contributions cannot be automatically handled.

Fig. 3 A sample representation of duplicate polygons (right-down) and subtracted areas from land

use dataset into building dataset (left-down)
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3.3 Completeness

According to the published literature (Koukoletsos et al. 2012; Hecht et al. 2013),

completeness is the major criterion for using OSM datasets as it is an indicator of

how much of the whole has been mapped. Although measuring the degree of

completeness for polyline and point features in OSM datasets requires a reference

dataset, the completeness for LU features within a certain area can be measured

Table 2 Translation of OSM tags (origin) to GMESUA nomenclature (target)

Origin: OSM tags Target: GMESUA classes [CODE]

Wohngebiet, residential, apartments, residential,

dorfgemeinschaft_breitenfurt

Continuous urban fabric [111]

House, hut, villa Discontinuous urban fabric [112]

Isolated Isolated structures [113]

Warehouse, university, social, school, sauna, retail,

religious, public, power_station, power,

place_of_worship, palace, office, museum, mosque,

manufacture, kindergarten, Industrial, hotel, hospital,

historic, greenhouse, glasshouse, factory, embassy,

commercial, clubhouse, club, cinema, café, allotments,

cemetery, fortress, greenhouse_horticulture, industrial,

military, nursery, wayside_shrine, ruins, monument,

monastery, memorial, industrial, grave, city_gate,

castle, archaeological_site, tank, water_tower,

warehouse, temple, storage_tank, library, church,

chapel, cathedral, castle

Industrial, commercial, public,

military and private units [121]

Bridge, railway, traffic_island, bicycle_parking,

bus_station, fuel, motorcycle parking, parking

entrance, parking space, taxi

Road and rail networks and

associated land [122]

Ship Port areas [123]

Airfield, airport Airports [124]

Wastewater_plant, coal_heap, landfill Mineral extraction and dump sites

[131]

Construction Construction sites [133]

Collapsed, greenfield, brownfield Land without current use [134]

Park, grass, nature_reserve, recreation_ground,

recreation_ground, zoo

Green urban areas [141]

Swimming_pool, leisure, alpine_hut, artwork,

camp_site, caravan_site, information, picnic_site,

theme_park, trail_riding_station, viewpoint,

swimming_pool

Sport and leisure facilities [142]

Village_green, vineyard, scrub, orchard, meadow,

green, grassland, grass, farmyard, farmland, farm,

agriculture, agricultural, hühnerfarm

Agricultural areas, semi-natural

areas and wetlands [200]

Forest, wood Forests [300]

Water_basin, water_protected area, pond Water [500]
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even without having any reference dataset. Because every piece of the land should

have an attribute, so the total coverage area is the maximum area to be mapped. The

degree of completeness was measured by calculating a completeness index, which

calculates the overall area (ha) mapped by contributors out of the whole area (ha)

for each individual city.

3.4 Thematic Accuracy

The most important criterion to judge the quality of the contributed LU features is

to find out how correctly the land parcels are attributed. This criterion i.e., thematic

accuracy, is generally called “accuracy assessment” in the LU/LC classification

literature (Congalton 1991; Foody 2002; Foody et al. 2013). The accuracy

assessment reflects the difference between the target dataset and the reference

dataset. The accuracy assessment process usually summarizes all data in a confu-

sion matrix and reports several indicators such as “overall/per class accuracies”,

“Kappa index of agreement”, “user’s accuracy” and “producer’s accuracy”. In this

study, a confusion matrix analysis is applied to achieve these measures. These

measures have been the most straightforward and practical statistical tools for

checking the degree of match between two thematic datasets as outlined in (Foody

2002; Herold et al. 2008). A measure for the overall accuracy is calculated by

dividing the number of identical pixels by the total number of pixels. However, it

does not identify how well individual classes between the two datasets match.

Hence, the user’s accuracy and producer’s accuracy should be calculated to mea-

sure the accuracy of each class. The user’s accuracy indicates the probability that a

pixel from the OSM-LU map actually matches the GMESUA dataset, while the

producer’s accuracy refers to the probability that a specific LU type from the

reference dataset is classified as such. These two measurements, typically for any

given LU type, are not equal. For instance, if for a specific land type of ‘A’, with

accuracies achieved of 89 and 78 % for user’s accuracy and producer’s accuracy

respectively, it implies that as a user of the data, roughly 89 % of all the pixels

classified as A are the same in the reference dataset and, as a producer, only 78 % of

all A pixels are classified as such.

4 Results

4.1 Sensitivity to Pixel Size

The Kappa index proposed by Cohen (1960) intends to evaluate the degree of

agreement between two or more datasets/observations and consequently provides

an overall guide to quality of the map (see Landis and Koch 1977; Foody 2002).
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The datasets were converted from vector to raster format at different pixel sizes

smaller than 50 m i.e., 5, 10, 15, 20, 30, and 50 m in order to find the most optimal

pixel size. This analysis is done and represented in Table 3.

Table 3 demonstrates the computed Kappa indices of agreement between the two

datasets at different pixel sizes. The pixel sizes between 10 and 15 m result in a

slightly higher degree of match. Consequently, the confusion matrices for the

selected cities were designed for the most optimal pixel size applicable for every

city at 15 m.

4.2 Degree of Data Completeness

This measure for each city is shown in Fig. 4, which indicates that Berlin has

reached the highest degree of completeness, and Frankfurt has the lowest degree of

completeness. This value is much higher than the reported value for the Portugal

continent at 3 % by Estima and Painho (2013) and confirms how greatly com-

pleteness index varies and how heterogeneous the quantity of contributions is. It

should be noted that the selected areas consist of urban and rural areas, and the

measured completeness index measures the degree of completeness for both regions

in which the contributions in urban areas are relatively more than rural areas as

illustrated in Fig. 4.

Table 3 Kappa index

analysis of the contributed

land use features in

comparison with GMESUA

dataset at different pixel sizes

for each city

City Kappa index (pixel size in meter)

5 10 15 20 50

Frankfurt 0.36 0.362 0.361 0.361 0.36

Hamburg 0.402 0.402 0.408 0.403 0.402

Berlin 0.518 0.518 0.525 0.521 0.518

Munich 0.453 0.452 0.455 0.452 0.451

Fig. 4 Calculation of

completeness index for each

city
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4.3 Overall and Per-class Analysis of Thematic Accuracy

As mentioned earlier, the GMESUA dataset is considered as the reference dataset and

it will be cross compared with the OSM-LU dataset. In addition to calculating the

Kappa index, the overall accuracy of the OSM-LU features, as well as user’s and

producer’s accuracies, are calculated in order to discuss how LU types in each city are

contributed as shown in Table 4. Due to heterogeneous accuracies across cities,

interpretation of the confusion matrices is discussed for each city separately as follows.

4.3.1 Frankfurt

According to Table 4, among the selected cities the highest Kappa index of 56 % and

overall accuracy of 76.5 %. This means that the OSM-LU map and GMESUA map

match at a “moderately” rank according to Landis and Koch (1977). Per-class

analysis of user’s and producer’s accuracies reveals that although roughly 98 % of

Continuous urban fabric [111] andWater [500] classes have been correctly identified

as such, only 20 % of the areas labelled as Continuous urban fabric [111] are actually

Continuous urban fabric [111], while 88 % of the areas labelled as Water [500] are

actually water [500]. Furthermore, while 71, 62, and 60 % of Forests [300], Indus-

trial, commercial, public, military and private units [121], Agricultural areas + semi-

natural areas + wetlands [200] classes have been correctly recognized as such, these

classes have been mapped correctly at 94, 77, and 73 % rates. To sum up, the

achieved user’s accuracies confirm that the Forests [300] and Water [500] classes

have a “very high” degree of accuracy with the reference data, while classes like

Industrial, commercial, public, military and private units [121], Road and rail net-

works and associated land [122], and Agricultural areas + semi-natural areas + wet-

lands [200] are classified as “high” degree. Therefore, it could be concluded that

these five classes could be of used for LUmapping purposes at a relatively good level

of reliability. Despite the high value of producer’s accuracy of Continuous urban

fabrics [111] class, its low user’s accuracy value (20.3 %) confirms that this class

retains as those which are not reliable. On contrary, the contributions to the

remaining classes confirm disagreements between the two data sources.

4.3.2 Munich

A Kappa index of 46 % ranked as “moderately” and overall accuracy of 67.1 % for

contributed features in Munich are achieved according to Table 4. This means that

67.1 % of contributions are correctly classified. Analysis of the achieved per-class

user’s accuracies reveals that roughly 100 and 96 % of the Isolated structures [113]

and Forests [300] classes have been correctly labelled by contributors, which are

ranked as “very high” by Landis and Koch (1977). Moreover, classes such as

Industrial, commercial, public, military and private units [121], Agricultural

50 J. Jokar Arsanjani et al.



T
a
b
le

4
T
h
e
v
al
u
es

o
f
co
n
fu
si
o
n
m
at
ri
ce
s
b
et
w
ee
n
O
S
M

an
d
G
M
E
S
U
A

la
n
d
u
se

fe
at
u
re
s
p
er

ci
ty

L
an
d
cl
as
s

C
it
y

B
er
li
n

M
u
n
ic
h

F
ra
n
k
fu
rt

H
am

b
u
rg

P
ro
d
u
ce
r’
s

ac
cu
ra
cy

(%
)

A
cc
u
ra
cy

(%
)

P
ro
d
u
ce
r’
s

ac
cu
ra
cy

(%
)

A
cc
u
ra
cy

(%
)

P
ro
d
u
ce
r’
s

ac
cu
ra
cy

(%
)

A
cc
u
ra
cy

(%
)

P
ro
d
u
ce
r’
s

ac
cu
ra
cy

(%
)

A
cc
u
ra
cy

(%
)

C
o
n
ti
n
u
o
u
s
u
rb
an

fa
b
ri
c
[1
1
1
]

9
3
.7

5
.9

9
3
.2

7
.9

9
8

2
0

6
6

1
1

D
is
co
n
ti
n
u
o
u
s
u
rb
an

fa
b
ri
c

[1
1
2
]

0
0

0
0

0
0

0
0

Is
o
la
te
d
st
ru
ct
u
re
s
[1
1
3
]

0
.1

5
2
.4

0
1
0
0

0
0

0
0

In
d
u
st
ri
al
,
co
m
m
er
ci
al
,
p
u
b
li
c,

m
il
it
ar
y
an
d
p
ri
v
at
e
u
n
it
s
[1
2
1
]

4
0
.8

5
0
.8

5
6
.6

6
9

6
2

7
8

5
1

6
6

R
o
ad

an
d
ra
il
n
et
w
o
rk
s
an
d

as
so
ci
at
ed

la
n
d
[1
2
2
]

4
.2

6
6
.3

6
.5

6
6

1
1

7
2

7
.4

7
9

P
o
rt
ar
ea
s
[1
2
3
]

0
.0

7
7

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

M
in
er
al

ex
tr
ac
ti
o
n
an
d
d
u
m
p

si
te
s
[1
3
1
]

1
9
.1

0
6
8
.3

0
5
7

0
6
1

6
6

C
o
n
st
ru
ct
io
n
si
te
s
[1
3
3
]

4
.4

5
.9

0
.0

0
.0

0
.0

0
.0

1
2

2
2

L
an
d
w
it
h
o
u
t
cu
rr
en
t
u
se

[1
3
4
]

1
.7

0
.1

2
.2

5
.3

0
.7

1
.2

2
.3

4
.2

G
re
en

u
rb
an

ar
ea
s
[1
4
1
]

6
.3

4
1
.3

0
.8

2
3

4
.2

5
2

7
.1

S
p
o
rt
an
d
le
is
u
re

fa
ci
li
ti
es

[1
4
2
]

5
4
.3

6
8
.9

8
.5

4
9

1
1

4
0

3
6

8
3

A
g
ri
cu
lt
u
ra
l
ar
ea
s,
se
m
i-
n
at
u
ra
l

ar
ea
s
an
d
w
et
la
n
d
s
[2
0
0
]

7
6
.3

9
4
.6

4
5

6
8

6
1

7
4

7
0

9
5

F
o
re
st
s
[3
0
0
]

9
4
.2

8
1
.1

6
9
.1

9
6

7
1

9
4

9
0

7
1

W
at
er

[5
0
0
]

8
4
.5

8
6
.1

9
7
.7

6
0

9
8

8
9

8
7

7
1

O
v
er
al
l
ac
cu
ra
cy

(%
)

7
5
.9

6
7
.1

7
6
.5

6
3
.9

In
d
ex

(%
)

5
2
.3

4
6

5
6
.2

4
1

Quality Assessment of the Contributed Land … 51



areas + semi-natural areas + wetlands [200], Road and rail networks and associated

land [122], and Water [500] are positioned at the second rank i.e., “high” in this city

with values of roughly 69, 67, 66, and 60 %, respectively. The remaining classes

possess a low level of reliability to be used for LU mapping, so that they are not

recommended for usage.

4.3.3 Berlin

Based on the presented values in Table 4 for Berlin, a Kappa index of 52 % ranked as

“moderate” and an overall accuracy of 75.9 % is measured. Per-class analysis of the

user’s accuracies shows that roughly 94, 86, and 81% of the Agricultural areas + semi-

natural areas + wetlands [200], Water [500], and Forests [300] classes have been

correctly labelled by contributors, while classes such as Port areas [123], Sport and

leisure facilities [142], and Road and rail networks and associated land [122] have been

mapped at 77, 69, and 66 % rates of accuracy, respectively. Therefore, the remaining

classes retain at moderate to low level of agreement with the reference dataset.

4.3.4 Hamburg

According to Table 4, among the selected cities the lowest Kappa index of 41 %

and overall accuracy of 63.9 % are achieved, which means the mapped LU features

to OSM for Hamburg match at a “moderately” rank with the GMESUA dataset.

Analysis of the achieved per-class user’s accuracies reveals that Agricultural

areas + semi-natural areas + wetlands [200], Sport and leisure facilities [142]

classes have been mapped at approximately 94 and 83 % rate of match i.e., “very

high” with the reference dataset, which are followed by Road and rail networks and

associated land [122], Water [500], Forests [300], Industrial, commercial, public,

military and private units [121], and Mineral extraction and dump sites [131]

classes ranked as “high”. The remaining classes lack of sufficient accuracy.

4.4 Spatial Distribution of Agreements and Disagreements

Spatial distribution of agreement and disagreement between the OSM and reference

datasets is visualized in Fig. 5. Pink pixels identify areas where the two datasets

agree on having the same land type whilst blue pixels indicate areas where the two

datasets represent dissimilar LU types. In each city map, a black bounding box

marks the clustered urban areas of each city. Generally speaking, depending on the

city the Isolated structures [113], Industrial, commercial, public, military and pri-

vate units [121], Road and rail networks and associated land [122], Sport and

leisure facilities [142], Agricultural + semi-natural + wetlands [200], Forests [300],

and Water [500] contain the highest level of agreement between the two datasets for
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all cities. In contrast, the remaining classes have a large lack of agreement,

assuming that they are correctly reflected in the reference dataset. However, it is an

invalid statement to relate these mismatches with the certainty of OSM features as

they might represent the correct information. Visual analysis of Fig. 5 reveals that in

urban areas of Hamburg and Munich the amount of disagreement increases, while

in Berlin and Frankfurt a mixture of both are existent. Furthermore, it is concluded

that the contributed OSM-LU features are heterogeneously distributed over inside/

outside urban areas, however, the density in urban areas is higher.

5 Discussions and Conclusions

The recent rapid emergence of online CMPs, such as OSM, has attracted large

numbers of individuals to share their personal knowledge, as well as records from

their GPS-enabled devices, with the public. This bottom-up process of collecting

Fig. 5 Spatial distribution of agreement and disagreement between OSM land use features and

GMESUA dataset for Frankfurt (top-left), Munich (top-right), Hamburg (down-left), and Berlin

(down-right). White areas indicate unmapped areas
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individuals’ contributions has resulted in the generation of a tremendous amount of

geolocated information. This new type of user generated geoinformation has been

leveraged new applications such as indoor mapping (Goetz and Zipf 2010), routing

applications (Bakillah et al. 2014a) and tourism recommendations. Environmental

monitoring through extracting LU features from the VGI are still few. While

(Hagenauer and Helbich 2012; Jokar Arsanjani et al. 2013) extracted LU infor-

mation from VGI at acceptable level of accuracy, the capacities to integrate VGI

into LU science have not yet been fully discovered. The findings from the Geo-wiki

project in terms of users engagement and reliability of crowdsourced information

reveal that although the crowdsourced information from users are reliable enough,

the number of involved users is not significant. Although the question on how to

attract users and how to keep them active in the crowdsourcing process is still

unanswered, OSM has so far attracted around 1.7 million users. More importantly,

quality analysis of the contributed streets network (Hochmair et al. 2014), buildings

footprints (Fan et al. 2014), and POIs (Bakillah et al. 2014b) in OSM proves the

promising avenues of using OSM features for multiple applications. Therefore, a

huge potential in OSM exists to be explored. Thus, in this study, we comparatively

evaluated the completeness and thematic accuracy aspects of the contributed OSM-

LU features in four large German metropolitan areas (Berlin, Frankfurt, Hamburg,

and Munich) and see how reliable we could start using them.

Some of the lessons learned from this investigation are as follows. The analysis of

completeness index reveals that, between 40 and 60 % of the selected areas are

mapped. From a logical consistency perspective, in some cases overlapping polygons

and topological issues are found that cause additional data processing. Furthermore,

the existing differences in LU legends highlight an obvious inconsistency that makes

harmonizing LU datasets difficult. From a thematic accuracy viewpoint, the con-

tributed features have, in general, a “moderate” rank of Kappa indices and their

overall accuracies are between 63 and 77%. It must be noted that the overall accuracy

of GMESUA datasets barely exceeds 90 % and, therefore, the computed accuracies

are noticeable at the current stage of OSM. Per-class analysis of the LU types show

that, depending on the city, Isolated structures [113], Industrial, commercial, public,

military and private units [121], Road and rail networks and associated land [122],

Sport and leisure facilities [142], Agricultural + semi-natural + wetlands [200],

Forests [300], and Water [500] reach substantial level of accuracies, which implies

that these classes are highly exploitable. It is worth mentioning that integrating

ground-truth information with other reference data for accuracy assessment could be

highly beneficial for producing hybrid LU products.

According to European Union (2011), archived images from 2005 until 2010

have been used for LU mapping and this could have caused a major source of

disagreement, whereas the OSM-LU contributions have mainly been uploaded after

2009, and therefore, some information from OSM might be even more accurate

than the reference data. Moreover, the MMU of the GMESUA datasets is 0.25–1 ha

and, therefore, land parcels smaller than this MMU are neglected from mapping,

while in OSM even smaller parcels are mapped, i.e., a smaller MMU in OSM is

achieved. This means that in some parts while a polygon in GMESUA dataset is
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representing a specific LU type, the same area in OSM-LU dataset is covered by

multiple small polygons representing different polygons. From the mappers’

viewpoint, the citizens’ perception of LU types should be further investigated to see

how people visually interpret LU types.

As a final conclusion, the OSM-LU features suggest a promising input source of

updating LU inventories and also LU mapping. Certainly, the longer OSM is in

existence, more contributions will be collected and the higher accuracy LU maps

can be retrieved.

6 Recommendations

This study attempts to draw some recommendations that will lead future research

possibly in the interesting directions. The following recommendations are proposed

to the environmentalists and LU researchers based on the findings in this paper.

According to the indicated completeness indices of the four cities, as well as the

accuracy statistics, the contributed LU features to OSM in the selected areas

account for a potential alternative data source for mapping LU features. However,

further studies on other areas must be conducted to see the heterogeneity of

completeness and thematic accuracy across space. Furthermore, applying data

mining techniques as well as data fusion with other available datasets GMESUA for

extracting the LU features of incomplete areas are of high importance. Additionally,

the land types with the highest accuracies can be separately incorporated for

respective applications.

This investigation of the OSM-LU features will be posted on the OSM blogs, and

mailing and discussion lists, to inform the OSM community about current academic

progress in the area of LU features. This enables experts to: (a) possibly find ways to

draw the attention of mappers to LU features, (b) determine the possible existing

problems with the OSM ontology of the LU dataset, or (c) it is the case that users are

not able to add further features in the urban areas, because the volume of mapped

objects (e.g., POIs, roads, building, etc.) do not let users to add new features

including LU polygons, or (d) ultimately the LU attributes are not easily under-

standable for people and they have insufficient interest in mapping them.
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