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ABSTRACT DevOps is an emerging paradigm that reduces the barriers between developers and operations

teams to offer continuous fast delivery and enable quick responses to changing requirements within the

software life cycle. A significant volume of activity has been carried out in recent years with the aim

of coupling DevOps stages with tools and methods to improve the quality of the produced software and

the underpinning delivery methodology. While the research community has produced a sustained effort by

conducting numerous studies and innovative development tools to support quality analyses within DevOps,

there is still a limited cohesion between the research themes in this domain and a shortage of surveys that

holistically examine quality engineering work within DevOps. In this paper, we address the gap by com-

prehensively surveying existing efforts in this area, categorizing them according to the stage of the DevOps

lifecycle to which they primarily contribute. The survey holistically spans across all the DevOps stages,

identify research efforts to improve architectural design, modeling and infrastructure-as-code, continuous-

integration/continuous-delivery (CI/CD), testing and verification, and runtime management. Our analysis

also outlines possible directions for future work in quality-aware DevOps, looking in particular at AI for

DevOps and DevOps for AI software.

INDEX TERMS DevOps, CI/CD, infrastructure as code, testing, artificial intelligence, verification.

I. INTRODUCTION

The rapid evolution of cloud and virtualization technologies

over the last 15 years has brought to software vendors the

ability to easily and programmatically control a broad set

of computing resources in the execution environment of a

software system. This development has then paved the way

to increased levels of automation in the way software appli-

cations are delivered to production, for example by enabling

continuous integration of new version of the application

code. The resulting delivery paradigm, which places more

attention towards continuous re-release, unified tooling and

organizational processes, is often referred to as DevOps.

Common DevOps advances include for example continuous-

integration/continuous-delivery (CI/CD) pipelines, and
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highly-automated orchestration and configuration solutions

for the runtime environment [1], [2].

DevOps tools and methods have also reduced the cultural

and methodological divide between developers and opera-

tors [3], leading to the formation of many new organizational

structures within software vendors, such as virtual teams

composed of both developers and operators, and the establish-

ment of new professional figures often referred to as DevOps

engineers, who center their activity on tooling and automation

across the whole application lifecycle.

Amethodology that releases application versions at a faster

pace than traditional methods is effective only if coupled with

testing tools that can reduce the likelihood of failures in pro-

duction. For this reason, quality assurance in DevOps is often

a synonym of continuous functional testing methods to check

the correctness of application prior to deployment. How-

ever, to accelerate the pace of delivery, quite often DevOps
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FIGURE 1. Stages of the DevOps Cycle. The citations indicate works that
mainly perform research in the context of that stage. Relevant sections of
this paper are also indicated.

testing methods lead to restrict the depth of scrutiny of the

software system, leaving rooms for significant defects and

bugs to still emerge in production. Several defects are related

to properties other than correctness, such as performance,

reliability, or cost. This problem has raised the attention

of many research groups, leading to several research works

that attempt to couple DevOps methods with novel forms of

rapid and automated quality assurance, centered on a broader

range of quality characteristics (e.g., performance, reliability,

availability, scalability, . . . ).

While the research community has sustained this effort by

publishing numerous studies and innovative tools and meth-

ods to support quality analyses within DevOps, there is still a

limited cohesion between the research themes in this domain

and a shortage of surveys that holistically examine quality

engineering work within DevOps. In this work, we address

this gap by offering a survey of recent efforts in the area

of quality-aware DevOps. Our work focuses on research

efforts that aim at coupling the rapid delivery of DevOps

with techniques to ensure that software artifacts also meet

quality expectations on non-functional properties. Our anal-

ysis covers several tens of papers, categorizing the different

contributions according to the software engineering area they

mainly contribute to including architectural design, model-

ing, continuous integration and delivery, infrastructure, test-

ing, verification, CI/CD and infrastructure-as-code, runtime

management. We look also at the positioning of these works

within the DevOps lifecycle stages. The paper, in particular,

reveals that a highly-diverse body of work has been published

on the subject, which yet leaves ample margins to carry out

further investigations in areas that are systematically under-

investigated from a quality angle, e.g., CI/CD & IaC and

architectural design. We further look at the state-of-the-art

on two emerging trends: AI for DevOps and DevOps for

AI software, as these are expected to dominate the DevOps

landscape in the years to come, and survey early works in

these areas.

A. THE DevOps CYCLE

The reference stages of the DevOps lifecycle we consider

are illustrated in Figure 1. The figure lists the bibliographic

references that we classify as doing research in the context of

that stage. Note that a paper may touch upon multiple stages,

in which case it is listed on all relevant stages. The stage

definitions we adopt are as follows:

• Plan: This stage aims at defining the objectives and

requirements of the software production, along with the

initial plan for updates and release across iterations.

• Develop: Based on the plan, developers focus on devel-

opment and reviewing of software code and/or IaC. Typ-

ically, in this phase the code undergoes frequent commits

on code repositories as well as integration and unit tests

based on build automation tools.

• Verify: Verification is the process to evaluate the correct-

ness of software artifacts in terms of the requirements.

• Test: In this phase, automation testing will be performed

continuously to ensure the quality of the software arti-

fact. Contrary to traditional tests, this phase can include

the release of trial versions to part of the end user base,

by means of canary testing.

• Deploy: This stage focuses on continuously

re-deployment of the software in the production environ-

ment. This phase entails the problem of configuration

management of the target platforms and resources.

• Operate: Operation in DevOps cycles deals with con-

figuration and management of the software application
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after deployment, e.g., resource provisioning and auto-

scaling. Orchestrators and other runtimemethods can be

used to automatically instantiate and adapt at run-time

the application topology and components.

• Monitor: Monitor the performance of deployed appli-

cations by collecting and analyzing usage data, which

can help to detect and identify exceptions and provide

feedback to iteratively improve the software. Contin-

uous tracing and diagnostics of production problems is

important to guide the evolution of the application across

release cycles.

The above phases are qualitatively similar to those carried out

in traditional software engineering methodologies, with the

main difference being that the process of releasing the soft-

ware artifact is continuous and highly-automated. We point

the reader to books such as [4] for additional details on the

above methodological phases.

B. METHODOLOGY

Our reviewmethodology is as follows.We examine computer

science peer-reviewed journals and conference papers written

in English between 2015 and 2020. Papers are obtained with

systematic searches using Google scholar for search strings

always including ‘‘DevOps’’, one quality term between

‘‘performance’’, ‘‘scalability’’, ‘‘quality’’, ‘‘quality-aware’’,

‘‘reliability’’, ‘‘availability’’, or ‘‘survivability’’; and a third

term matching the title of the sections of this paper (e.g.,

‘‘verification’’, ‘‘CI/CD’’, etc). Books, presentations, thesis,

technical reports, white papers, and patents are excluded from

this study. After collecting the pool of paper, due to space

limitations we have narrowed down the list to around 10 in

each section. This has been done with manual screening of

each paper, trying to identify a subset of papers that was

representative of the whole category, as our goal is to illus-

trate different research challenges and approaches, rather than

exhaustively list every individual contribution.

We have aligned these collected pool of papers with

different stages of the DevOps lifecycle and presented in

Figure 1. We also present a mapping of these papers with

the considered quality attributes in Table 1. The table also

classifies the papers based on their methodology. We con-

sidered the following methodologies:‘‘Model-based’’ - if the

authors emphasize modeling abstractions, ‘‘Empirical’’ - if

the authors designed amodel-free approach and their decision

process is based on the collected static or runtime data, and

‘‘Hybrid/Other’’ - if the authors used a combination ofmodel-

based and empirical approach or other methods.

C. CONTRIBUTIONS AND ORGANIZATION

Summarizing the core contributions of this paper are as

follow:

• We survey recent works in the area of quality-aware

DevOps, outlining the main contributions and compar-

atively position them to other DevOps works within the

same field.

• We organize the surveyed papers into different cat-

egories, both globally across the survey and locally

within each research area, offering a better qualitative

understanding of the areas of main interest and current

research gaps.

• For each category, we identify open research chal-

lenges, offering several ideas for further exploration by

researchers in upcoming years.

• We outline open research directions and ongoing work

in emerging DevOps trends related to the use of AI

technology, which we expect to foster novel solutions

in the quality engineering space in the near future.

The rest of the papers is organized as follows. Sections

2-8 survey recent research work across the considered areas,

namely: architecture design (§2), model-based DevOps (§3),

CI/CD (§4), testing (§5), verification (§6), and runtime

management (§7). Each section outlines context, summariz-

ing research papers, and giving guidance for future work.

Section 8 discusses ongoing work in DevOps for AI and in

AI for DevOps. Section 9 draws conclusions.

II. ARCHITECTURE DESIGN

Context: The architecture design of today’s software systems,

particularly cloud applications, allows for a rapid extension

of features and functions with minor modifications to exist-

ing implementations. This requires increased communication

and collaboration between development and operation teams

to achieve a strong integration of coding, building, testing,

packaging, releasing, configuring and monitoring activities.

Therefore, designing the software architecture has profound

implications not just on the software, but also on the overall

DevOps delivery process. Recent research on architecture

design in the context of DevOps centers around the following

challenges:

AD1 Refactoring monolithic applications into microser-

vices;

AD2 Modeling the architectures of cloud-native applica-

tions;

AD3 Deciding architecture design variants through test-

ing or experimentation;

AD4 Adopting new architectural styles with best prac-

tices and tactics.

Quality-Aware DevOps Research: By migrating a mobile-

app backend to microservices, Balalaie et al. [5] show how

the microservices architecture could be beneficial, especially

in shipping new features and providing built-in scalability.

They also report on architectural patterns observed in migra-

tion projects, which can help practitioners and consultants to

address AD1 with a DevOps methodology.

Two papers are found to target AD2. Di Nitto et al. [48]

introduce SQUID, a framework that provides DevOps-ready

software architecture descriptions through model-based doc-

umentation of software architectures and their quality prop-

erties in DevOps scenarios. Meanwhile, Heinrich et al. [49]

propose iObserve, an approach to enriching and updating
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TABLE 1. Mapping of the reviewed paper with the quality attributes. The corresponding section of the papers are also provided.

the architectural development models of cloud-based soft-

ware applications with operational observations so that the

resulting architectural runtime models are usable during the

operation phase.

In order to tackle AD3, Avritzer et al. [19] introduce

an approach to automatically assessing the scalability of

configuration alternatives for the microservices architecture

through load testing. This approach provides a domain-

based metric that can be used to make informed decisions

about which configuration alternative to select. By contrast,

Jiménez et al. [50] proposes a framework for quality-driven

adaptive continuous experimentation. This framework dedi-

cates three feedback loops to control the satisfaction of high-

level quality goals through experiment design and conduct

experimental trials for infrastructure configuration and archi-

tecture design variants.

Reference [6], [20], [51] and [7] provide solutions to

AD4 for the microservices architectural style by practic-

ing DevOps in industrial use cases. Using OpenStack as

case study, the authors of [20] compares the efficiency of

DevOps in container-based and VM-based deployments and

explores the scalability of stateless and stateful containerized

components. Reference [51] discusses DevOps practices and

architecting tactics for developing large-scale systems, like

a Neo-Metropolis BDaaS platform. The authors of [6] show

how the properties of the microservices architecture facilitate

the scalability, agility and reliability of e-commerce applica-

tions. Differently, [7] advocates the use of microservices for

software development in connected car business and proposes

a suitable team setup for establishing a DevOps culture.

Analysis of Open Challenges: DevOps architectural work

has focused on microservices, but novel research opportuni-

ties arise to extend this research, for example by including

in architecture design also Function as a service (FaaS) ele-

ments. FaaS refers to a novel serverless computing paradigm

that may radically evolve the landscape of software architec-

tures. It enables software engineers to virtualize the business

logic of an application as individual functions registered in

the cloud. Because of advantages brought by the serverless

FaaS paradigm, software vendors tend to migrate their exist-

ing products onto FaaS platforms, e.g., AWS Lambda and

OpenFaaS. There is however a lack of approaches available in

the literature to automatically decomposing monolithic appli-

cations into architectures containing serverless functions.

Moreover, the choice of a suitable architectural granularity

is an open problem, e.g., when to prefer a serverless function

to a microservice.

III. MODEL-BASED DevOps

Context:Modeling provides a flexible and efficient means to

study the qualitative and quantitative properties of a given

system in an abstract language, thus being widely applied

in support of various development and operation activities.

As aforementioned, it can help with the architecture design of

modern software systems [48], [49]. Models can either take

the form ofmathematical models or code in a domain-specific

language to declare properties. Within this trend, models may

refer to the system or its environment. In the former case, they

provide abstractions for the software inter-dependencies or

dynamic behavior. In the latter case, they provide abstractions

to specify and automate the configuration of a target deploy-

ment environment.

This section focuses on model-based DevOps frameworks

and methods that cope with the following challenges:

MD1 Assessing the quality of systems under develop-

ment;

MD2 Optimizing system configurations in a cloud envi-

ronment;

MD3 Specifying the required underlying infrastructure as

code.

Quality-Aware DevOps Research: As a requisite for qual-

ity assurance, MD1 receives continuous attention from the

research community. Gorbenko et al. [33] provide a time-

probabilistic failure model for distributed systems that fol-

lows the service-oriented paradigm to define interaction with

clients over the Internet and clouds. A three-layer queueing

network is proposed by Barna et al. [12] for developing

autonomic management systems. This model is proven to

be robust and accurate in predicting system performance

under a variety of workloads and topologies. Take a tax fraud

detection system as an example, Perez-Palacin et al. [13]
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TABLE 2. Overview of publications on architecture design.

show the use of Petri nets for the performance analysis of

data-intensive applications. Peuster and Karl [14] present an

automatable and platform-agnostic modeling approach that

can profile the performance of an entire service function

chain at once.

MD2 is a common issue that needs to be addressed in

the deployment and operation phases so as to adapt DevOps

for a cloud environment. Guerriero et al. [10] propose

SPACE4Cloud, an integrated framework for the deployment

optimization and resource allocation of cloud applications

represented as PCM models. A proactive application place-

ment algorithm is introduced by Suk et al. [32]. This algo-

rithm uses failure indexes evaluated by modeling application

turnover and infrastructure failure as stochastic processes.

Sun et al. [11] present a stochastic model and an optimization

method to minimize the completion time, availability degra-

dation, and monetary cost of the rolling upgrade procedure

through appropriate parameterization.

The emergence of Infrastructure-as-Code (IaC) is a

response toMD3. IaC often relies on textual resource models

to configure the application environment. It is especially

useful to increase the repeatability of configuration tasks

in distributed architectures, where many dependencies exist

between software components and virtualized resources.

Comparatively to other areas surveyed in this paper, IaC

quality research is in its infancy and relatively few works

exist. Two representative examples are [8] and [9]. In [8], the

authors discuss a qualitative analysis of over 1700 IaC scripts

to identify code smells in IaC code, i.e., code snippets that

are indicative of some deeper violation of design principles

or best practices. The paper considers in particular security

smells related to cryptography, authentication and hard-coded

secrets, among others. The authors of [9] explore the use

of intent modeling as a way to ensure the correctness of

IaC. This is based on the idea of specifying IaC in terms

of the high-level final state/goal that needs to be reached,

operating at a higher level of abstraction than detailed sub-

activities. The paper focuses on the standardized TOSCA

language, which offers an implementation of this approach.

TOSCA models are also compatible with the execution of

IaC scripts in languages such as Ansible, effectively offering

polyglot IaC. Rahman et al. [52] provides a systematic survey

of quality in IaC, noting its current underdevelopment in the

research literature. They carry out an analysis of 32 publica-

tions. Within this paper, IaC work insists primarily on quality

TABLE 3. Summary of publications on model-based DevOps.

dimensions such as the reliability, repair, testing, idempo-

tency of IaC scripts.

Analysis of Open Challenges: Although the serverless

FaaS paradigm simplifies user involvement in resource allo-

cation at runtime and saves operating costs by billing execu-

tions at the function level. It is often difficult to decide the

optimal configuration of serverless functions comprising an

application, which minimizes the operating costs while satis-

fying the performance requirements. This raises the needs for

models that can accurately predict the performance of FaaS-

based applications as well as approaches that can effectively

optimize their deployment. In the literature, no work seems

to have been carried out for either.

Our survey also reveals that IaC research is still at an early

stage, and thus many outlets for research exist in develop-

ing tools to increase the quality of IaC artifacts. Because

IaC scripts can be specified using model-based declarative

languages (e.g., TOSCA) or be written with specialized lan-

guages (e.g., Ansible), a research question is how to develop

holistic and polyglot defect prediction and debugging envi-

ronments for IaC. Another potential aspect to consider in IaC

involves the quantification of costs associated to maintenance

and configuration operations. At present such costs can only

be indirectly estimated from execution logs, but there is prac-

tical business value in estimating these figures from code or

software artifacts. Lastly, the relative merits of different IaC

technical approaches used in industry are currently not well

understood in the literature. More systematic investigations

on these matters may be relevant to researchers.

IV. CONTINUOUS INTEGRATION AND DELIVERY (CI/CD)

Context: CI/CD pipelines provide the technical means to

automate recurring tasks related to deployment, testing, and

orchestration of cloud native applications. Market solutions

such as Jenkins, CircleCI, Trevis, and several others can be

used to coordinate delivery and quality checks on the appli-

cation source code and associated software artifacts, prior to

their production use. Several books and papers overview the

general properties of CI/CD, e.g., [1] discusses the broader

applicability and benefits of CI/CD in industrial context.

More recently, [2] provides a large-scale empirical study on

the impact of continuous integration on software development

practice. Strategies to concretely adopt CI/CD in organiza-

tions are exemplified in [53].
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TABLE 4. Comparing publications on CI/CD.

Quality-Aware DevOps Research: It is well known that

CI/CD finds immediate application to quality assurance via

unit testing of functional properties. For example, the practi-

tioner interviews in [54] reveal that deployability via CI/CD

and architectural design to improve test quality are relevant

dimensions in DevOps. We point the reader to a broader

overview of related testing research in Section V. We instead

here focus on innovative uses of CI/CD in the context of

quality assurance, which offer novel outlets for research.

Research in quality-aware CI/CD has centered on the follow-

ing challenges:

CC1 Performance-aware CI/CD

CC2 Data-aware CI/CD

CC3 Secure CI/CD

An example of work that addresses CC1 is [15], which

uses CI/CI to ease updates while releasing new versions

of microservices. The authors propose an architecture-based

CI/CD approach, rather than using scripts, to update the

microservices while in production. They define templates for

different architectural models based on which an application

can be updated to a target architecture using simple com-

mands. In addition, they incorporate common update strate-

gies, such CleanRedeploy, BlueGreen, Canary, etc., from

which an appropriate strategy can be selected to satisfy spe-

cific SLA requirements. They demonstrate the effectiveness

of the approach updating an application in production.

Another example of work in the context of CC1 is [46],

where the authors propose a roadmap to apply CI/CD to

incrementally maintain and parameterize application perfor-

mance models. The approach entails to react to changes in

the application source code and then apply targeted moni-

toring and statistical estimation methods to update resource

demands, probabilities of selecting particular code branches,

loop execution numbers, and other relevant parameters. Such

updates are essential to continuously evolve the quality-aware

toolchain analysis synchronously with code commits.

An instance of work that tackles CC2 is as follows. Data

stores based on query languages such as RDF can be directly

stored on systems such as Github, allowing to coordinate the

publishing of data with CI/CD pipelines. This triggers the

question on what is the inter-play between CI/CD and data

quality engineering. [40] provides an overview of tools that

can be integrated in CI/CD pipelines to continuously meet

quality requirements on data. The include utilities for RDF

serialization quality checks, ontology validation tools, data

anti-patterns, linked open quality data assessment. An exam-

ple of CI pipeline to holistically coordinate the surveyed data

quality assurance tools is described in the paper.

The recent work in [45] illustrates another approach to

quality-aware DevOps, where the goal of the study is to

continuously integrate and orchestrate a system so to ensure

security and privacy. This aligns to challenge CC3. Model-

driven engineering methods are coupled with secure DevOps

practices to allow continuous changes in the deployment envi-

ronment. This is based on a so-called ‘‘models@runtime’’

approach, where the application model is evolved directly in

the production environment in response to dynamic events

that occur therein.

Analysis of Open Challenges: The above papers exemplify

novel trends in CI/CD towards integrating in the CI/CD

pipeline the specification of data services. It is possible to

envision that similar needs will arise in connection with

AI/ML services, which require a continuous evolution of

data pipelines, learning and training services alongside the

application. CI/CD support specific to such kind of services

offers outlet for novel research.

V. DevOps TESTING

Context: DevOps has been widely adopted in enterprises,

which leads to shortened development cycles and involve-

ment of automation. With speedy iterations, the risk and cost

of quality assurance increase at the same time. Testing is of

great importance to ensure the quality of software in DevOps

practice. In particular, automating the testing process enables

continuous testing of the frequent code changes occurring

throughout the development cycle. The following challenges

are highlighted in the literature:

TS1 Automatic workload selection and specification of

target services.

TS2 Test automation frameworks to enable automatic

execution within DevOps cycles.

TS3 Employing testing strategies to adapt to frequent

changes in DevOps.

Quality-Aware DevOps Research: In the phase of test

specification, a central goal is to maximize the coverage of

new changes and specify unit tests aiming at specific and

identifiable target services or functions, to make test results

quickly actionable for developers. Besides common func-

tional testing, which is not specific of DevOps, automated

load testing allows spotting possible performance issues dur-

ing the integration phase, preventing them from manifesting

in production. In [16], Schulz et al. propose an approach of

load testing selection based on contextual information that

focuses on TS1. Workloads can be automatically selected

according to monitoring data, target services, along with

testing requirements in the proposed load testing process.

The authors in [17] focus on representative workload mod-

els for load testing of individual microservices in session-

based systems. Two algorithms are proposed to enable

extracting specific workload for the microservices under test-

ing and consequent adjustments of workload models. Such

an approach aims at only target microservices and their
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TABLE 5. Comparing publications on DevOps testing.

dependencies so that they can reduce the testing cost, address-

ing the issue of TS1.

In [18], the authors also propose to solve TS1 by introduc-

ing a behavior-driven load testing language (BDLT), which

is designed to describe performance concerns in natural lan-

guage that can be easily adopted by users. Based on BDLT,

testing workloads can be automatically generated with the

method in [16].

To enable the automated execution of tests for the purpose

of faster integration and delivery, several test automation

frameworks and tools have been proposed to address the

problem of TS2. For example, in [34], the authors address

automated testing workflows in the process of continu-

ous integration, focusing on unit tests and integration tests.

Pietrantuono et al. in [35] present a continuous software

reliability testing approach called DevOpRET. This approach

mainly involves usage monitoring and operational profile

estimation and updating. By monitoring the endpoint users,

estimated operational profile is able to be updated with the

actual user profile. At each DevOps cycle, the reliability

testing can be executed based on the continuously updated

operational profile.

In addition, testing techniques such as canary releases

and shadow/dark launches are being increasingly adopted as

strategies to automate testing execution in TS3. In an empir-

ical study on continuous experimentation [21], the authors

provide an overview of continuous experimentation prac-

tices that contain canary releases, dark launches and A/B

testing in both research and practice of DevOps. In [36],

Schermann et al. proposed a live testing model and imple-

mented a middleware, Bifrost, to specify testing strategies

and execute tests through traffic routing. Bifrost is able to

describe release techniques with multiple phases including

canary releasing, dark launching, A/B testing and gradual

rollout in YAML-based language. The authors of [47] address

the issues of dependability and security of CD pipelines,

proposing involving testing strategies, such as canary releases

and A/B testing, into building and integration pipelines

execution.

Analysis of Open Challenges: Rapid changes bring new

challenges to test specification and execution in practice.

Learning and analyzing the internal and external depen-

dencies between components at specification stages could

also inform test specifications, enabling a more effective

identification of tests that need to be re-executed after a

change, trading off test complexity for coverage. In addition,

test automation needs to meet the dynamics of iterations in

DevOps cycles. For example, the objective of each iteration

may change, which will lead to involve different test strate-

gies into the respective iteration tomeet the QA requirements.

VI. VERIFICATION IN DevOps

Context:Verification complements testing in software quality

assurance processes. Compared to testing, it leverages math-

ematical abstractions and code/model semantics to prove

the (partial) correctness of artifacts with respect to a variety

of properties.While still in their infancy, verificationmethods

tailored to DevOps are gaining traction in both industry and

academia for their potential to deliver stronger quality guar-

antees than testing. This section reviews a selection of paper

relevant to verification in DevOps (Table 6). The main open

challenges discussed through this section are summarized in

the following points:

VE1 Develop diff-time verification methods for prompt and

localized feedback to keep developers engaged

VE2 Increase compositionality and incrementality to sup-

port the analysis of large, rapidly changing code bases

VE3 Feed information from design time to runtime and

viceversa to improve runtime tasks and verification

Quality-Aware DevOps Research: Despite not as widely

adopted as testing, verification is applied at several stages of

a DevOps cycle, including, in order: design, build, diff, land,

and production times [55].

Design-time methods analyze pre-implementation soft-

ware artifacts, including goal or architectural models from

the DevOps plan and create phases. User-provided abstrac-

tions, e.g., statecharts or unambiguous dialects of UML, are

automatically translated into formal models to verify arti-

facts’ properties. For example, analytical models of perfor-

mance and reliability obtained from higher-level modeling

languages like the Palladio Component Model [56] or OASIS

TOSCA can be analyzed with numerical routines or proba-

bilistic model checking [57].

Build-time methods are usually embedded within compil-

ers and IDEs, providing quick feedback to the developers

about the module they are implementing. These are usu-

ally light-weight static analyses performed with tools like

Valgrind [41] andASan to detect buffer overflows or dangling

pointers and profile C/C++ artifacts, or FindBugs to localize

several classes of bugs in Java artifacts [42]. While most of

these methods are not specific to it, DevOps needs started

to push for adapting them into staged analyses, where static

code information computed during build time are carried on

to later development stages and runtime to enable subsequent

analyses [58]. For example, in [39], Beigi-Mohammadi et al.

exploit control flow analysis to extract security-related pred-

icates to be checked during operation, enabling automatic

adaptation actions for early countering potential attacks.

Diff-time is the gatekeeping at the end of code creation,

when submitted code waits for review and approval. Verifi-

cation methods in this phase usually completes within a few

44482 VOLUME 9, 2021



A. Alnafessah et al.: Quality-Aware DevOps Research: Where Do We Stand?

TABLE 6. Verification and static analysis through DevOps phases.

tens of minutes [55] to allow their reports to complement

human code reviews. The peculiarity of this phase is its

intrinsic incrementality: only portions of an artifact change

since the last run of the analysis, and they can be identified

by the diff. While few academic tools specialize for diff-time

analysis, notable industrial contributions include Facebook’s

Infer [43], Amazon’s s2n [37], and Microsoft’ Prefast [44].

Land-time occurs after a diff is approved and before release

to production. This phase is allowed longer execution time

(typically from hours to overnight) and can operate from

built and executable modules, which can be analyzed both

statically and dynamically [43]. Microsoft Prefix [44] is an

example of tools used in this stage.

Finally, in production, runtime verification methods can be

used to detect requirements violations as they happen. These

methods require the instrumentation of the application with

monitors and probes to measure specific quantities or detect

the violation of safety/security predicates [39], [57]. Methods

based on partial evaluation compute surrogate model of the

system that enable efficient verification at runtime, after cur-

rent monitoring information are gathered (e.g., [38] verifies

probabilistic properties).

Analysis of Open Challenges: Broadly speaking,

verification requires formal models and analysis algorithms.

Model-driven processes exploit human ingenuity to produce

semantically richer models of an application and its environ-

ment. While these models allow the use of established model

checking algorithms, keeping the models consistent with

the application code may be challenging in all but the few

domains where fully automated code generation is possible.

Nonetheless, where available, even partial design models

should be used in the future to improve the effectiveness of

later-stage methods. This includes, for example, the contex-

tualization of build-time verification within realistic usage

profiles specified by the designers, as well as using design

models to narrow down the relevant scenarios for diff-time

and runtime analysis, reducing the relevant search space to

cut verification time (V3). To improve diff-time verification,

research has to focus on compositional methods which enable

incremental re-analysis of only the changed parts of a code-

base [55]. This overall addresses challenge VE1. Academic

research largely underestimated so far the importance of

prompt and localized developer feedback, preferring detailed

verification reports produced overnight at land-time. How-

ever, empirical evidence from industry suggests that diff-time

verification is more effective for bug fixing and keeps devel-

opers more engaged [42]. Developing compositional verifi-

cation algorithms often requires to reduce the expressiveness

of verifiable properties, which may nonetheless allow to

intercept problems before they reach production, which falls

under challenge VE2. Adequate design-time models can also

help to narrow down the state space to be verified at later

process stages, bringing a global view hard to infer from

lower level artifacts like code or binaries. Finally, runtime

verification methods, whether measurement/probing based or

model-based, have the potential of observing the application

within its actual execution environment, which may differ

from design-time assumptions or land-time simulations. This

addresses challengeVE3. The ability to promptly detect issue

while the application is running can reduce the exposition

time to a bug, but also enable automatic adaptation actions to

self-protect an application or its infrastructure.

VII. RUNTIME SERVICE MANAGEMENT

Context: Runtime service management particularly concerns

dynamic resource scheduling of microservices. Microser-

vices is one of the core DevOps practices. It is a design

principle to build applications with fine-grained services. One

of the benefits arising from this is the ability to manage

each service individually. However, regardless of this ben-

efit, managing microservices at runtime is not trivial. This

involves multiple research challenges, regarding monitoring,

configuration options, decision making, etc. In a nutshell, the

following challenges were highlighted by the researchers:

RM1 Monitoring microservices

RM2 Container placement strategy

RM3 Autoscaling microservices

Quality-Aware DevOps Research: RM1 can be considered

as an ensemble of complex sub-problems. Researchers often

focus on these sub-problems rather than the overall issue. For

example, Noor et al. [25] focused on the issue of collecting

data from heterogeneous virtualization architecture. They

have developed a framework M3 using the SIGAR library

and RESTful API that collects both the system and process

level metrics through separate agents. On the other hand,

Miglierina and Tamburri [26] have focused on reducing the

complexity of monitoring configuration management. They

proposed Omnia that addresses this issue throughMonitoring

Configuration as Code. This is realized by defining a set

of vocabulary and protocols, which are used to setup and

update the monitoring configurations for popular tools like

InfluxDB, Prometheus, Grafana, etc.

RM2 is often addressed based on the scale of the comput-

ing environment. For example, in [22], Boza et al. proposed

kube-scheduler to address RM2 in a typical multi-server

setup. kube-scheduler is a performance-aware orchestrator,

based on Kubernetes, that take container placement decisions

by considering the number of available CPUs in the host
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machine and how they effect the runtime and initialization

time performance. However, considering a geo-distributed

environment like edge or fog, the placement approach needs

to be adapted to incorporate information on heterogeneous

computing environment. Rossi et al. [27] focused on this

issue and proposed ge-kube. Along with the placement issue,

ge-kube focuses on the elasticity problem as well, thus

addressing RM3. They resolved the placement issue by for-

mulating it as an optimization problem and the elasticity issue

is resolved using model-based Reinforcement Learning (RL).

Recently, compared to RM1 and RM2, RM3 has gained

more attention from the researchers. Multiple autoscalers

have been proposed to address this issue, each differing on

how the problem is perceived. In [23], Kwan et al. propose an

autoscaler, HyScale, that focuses on the performance trade-

offs between horizontal and vertical scaling. HyScale’s prin-

ciple is to scale vertically if the resources are available. If not,

it performs horizontal scaling. Rossi et al. [28] also empha-

size the use of both horizontal and vertical scaling. However,

in contrast to [23], they adopted a model-based approach.

It is based on a novel Reinforcement Learning model that

relies on approximations (state transition probabilities and

the associated costs) from monitoring data. They realized the

so-called Elastic Docker Swarm (EDS) by integrating their

method with Docker Swarm.

Another context in RM3 is coordinated scaling to solve

the bottleneck shift problem. Bauer et al. [29] present Cha-

multeon that focuses on that issue. It is based on queue-

ing models which are used to forecast system performance

and taking a coordinated scaling actions. Chamulteon also

includes a workload forecasting component, which makes

it proactive. Barna et al. [12] propose an Autonomic Man-

agement System (AMS) based on Layered Queueing Net-

work (LQN) that inherently offers coordinated autoscaling.

However, Chamulteon and AMS both do not consider vertical

scaling. In [30], Gias et al. present an autoscaler, ATOM,

that supports both horizontal and vertical scaling along with

coordinated autoscaling. Similar to AMS, ATOM is based on

LQN models but it considers both a microservice CPU share

(vertical scaling) and the number of its replicas (horizontal

scaling) during performance forecasting.

In [24], Qiu et. al present FIRM that focuses on

fine grain resource management of microservices con-

sidering resources like cache, network bandwidth, CPU,

memory, etc. However, unlike most of the approaches,

it opted for a model-free method. Their approach relies

on a combination of support vector machine and Rein-

forcement Learning to identify and allocate resources to

bottleneck microservices. Rossi et al. highlight another

important issue - decentralizing the autoscaler components

and propose a hierarchical autoscaler me-Kube [31]. Such

decentralization makes the autoscaler more scalable when

deployed in a large cluster. Although me-Kube uses queue-

ing models, it does not support coordinated scaling as they

model each microservice separately rather than the overall

application.

TABLE 7. Comparing different autoscalers for microservices.

A comparison of these autoscalers, based on different

attributes (model-based, supporting vertical scaling, proac-

tive, coordinated scaling), are presented in Table 7.

Analysis of Open Challenges: Regardless of the progress

made, there are still multiple research challenges concerning

runtime service management. A major challenge concerning

RM1 is providing support for the model-based approaches.

Thus, amonitoring framework formicroservices should focus

on providing metrics related to queueing or machine learning

models, like queue length, arrival rates, transition proba-

bilities, etc., to improve the estimates of different model-

based runtime controllers. In addition, they can also lever-

age machine learning techniques to provide insight of a

system architecture such that a model can be automatically

generated.

For a runtime controller, focusing on RM2, a major chal-

lenge is to forecast the performance of container groups

rather than a single container. A container group can repre-

sent a chain of microservices. Considering a single container

alone will only provide a partial view of performance in that

particular cluster node. On the other hand, the controllers

focusing on RM3, particularly the model-based ones, should

emphasize faster decision making. This issue can be solved

by being proactive but that requires a huge volume of data for

accurate forecasting. Thus, researchers should investigate the

effectiveness of hybrid autoscalers that combines proactive,

simple reactive and model-based reactive approaches.

VIII. EMERGING TRENDS: BRIDGING AI/ML, BIG DATA,

AND DevOps

Artificial Intelligence (AI) and machine learning (ML) algo-

rithms are being increasingly used by industry for monitoring

and development to boost performance. These techniques

offer the ability to quickly learn the pattern of baseline perfor-

mance from a large space of performance metrics to diagnose

system issues. AI/ML can play a crucial role in accelerating

DevOps efficiency for today’s dynamic and distributed data-

intensive environment. The future of DevOps will be AI,

ML, data-intensive driven, which offer potential benefits to

enhance functionality and transform how system develop-

ers and administrators can design, test, deploy, and main-

tain systems. Monitoring the modern DevOps environment

involves a high level of complexity that AI/ML techniques

can alleviate. Dealing with Exabytes of data to investigate

the root causes analysis using conventional DevOps solutions
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may lead to unexpectedly long time to identify the reason of

failures within complex distributed systems.

AI/ML solutions for DevOps are utilized to play a signif-

icant role in automating and enhancing DevOps processes.

Sun et al. [59] propose a non-intrusive automated fault diag-

nosis for public cloud (such as Amazon Web Service) and

rolling upgrade DevOps operation using system logs and

machine learning algorithm. They use performance metrics

that are collected duringmonitoring time to train theML clas-

sifier for detecting issues and to expect behavior over every

time interval within the system. Their proposed approach

achieves on average 90% for recall and precision. The study

in [59] demonstrates that using ML for fault diagnoses within

DevOps operations (such as rolling upgrade) is promising.

Real challenges for building AIOps solutions are presented

by Dang et al. [60] based on practices within Microsoft.

The term AIOps comes from Gartner to address the chal-

lenges of DevOps using AI. Dang et al. [60] mention that

AIOps is about enabling software and system engineers to

operate services efficiently using ML and AI solutions. The

added values of AIOps includes: ensuring high service qual-

ity, offering high service intelligence, increasing engineering

productivity, and decreasing operational cost. Around 60% of

firms will adopt AI and ML analytics for DevOps by 2024 to

accelerate service delivery, improve performance, and secure

systems [60].

Nogueira et al. [61] review existent research that applies

ML to optimize the quality of process within DevOps

pipeline. ML techniques have the ability to provide insight

into specific IT processes to effectively assist stakehold-

ers in recognizing improvements that are needed within

the software development life cycle. Kumar et al. [62]

present Sankie, which is an AI Platform for Azure DevOps

which is a scalable and general service that is developed to

assist and impact all stages of the modern software devel-

opment life cycle. The proposed AI platform can provide

smart and actionable recommendations to system developers

and administrators, which include training, recommending,

explaining, and evaluating. The proposed platform is used at

Microsoft and is enabled for over 50 repositories internally.

There are some DevOps solutions for AI/ML. While

AL/ML offers valuable benefits to DevOps, there are some

existing DevOps solutions for AL/ML stakeholders that

help in developing continuous efficient AL/ML services.

Ciucu et al. [63] develop a software architecture solution

that can ensure the continuous development of computer

vision applications. They examine high-performance com-

puting and GPU resource management for model implemen-

tation within data centers to enhance the integration process

and performance optimization. The integration covers soft-

ware services and microservices to orchestrate the containers

within systems to high availability services.

Palacin et al. [13] present a DevOps industrial application

that focuses on software quality evaluation tools for tax fraud

detection in the context of improving the quality and relia-

bility of Big Data. During development iterations, the impact

TABLE 8. Taxonomy for AI/ML, Big Data, and DevOps.

of quality assessment is reported with a particular focus on

the accomplishment of performance requirements during the

continuous adding of new functionalities to systems. The

authors in [13] target applications that manage billions of

invoice records. The evaluation is conducted using simulation

(SimTool), which is developed by DICE European project

developers for quality analysis. The goal is to reduce the

number of DevOps iterations.

Regarding software architecture, Di Nitto et al. [48] inves-

tigate concerns and obstacles, which are needed to be tackled

in DevOps scenarios. The authors in [48] present Specifica-

tion Quality In DevOps (SQUID), which is a framework for

software architecture. The proposed framework is evaluated

in the Big Data domain. SQUID is evaluated on a real indus-

trial DevOps scenario, to find SQUID’s pros and limitations.

Chen et al. [64] contribute to the field of Big Data

and DevOps by presenting a methodology revolve around

architecture-centric Agile Big data Analytics (AABA), which

is evaluated on many Big Data analytics projects in secu-

rity, cloud-based mobile, healthcare, etc. The authors [64]

conclude that architecture agility has a significant impact

on the rapid continuous delivery within Big data intensive

applications. Finally, it is obvious that AI/ML will play a

crucial role in improving DevOps productivity for future

dynamic and distributed data-intensive systems. The future

of DevOps will be AI, ML, data-intensive driven that offer

potential advantages to improve functionality and transform

how system developers and administrators can design, test,

deploy, and maintain systems.

Analysis of Open Challenges: While AI/ML clearly pro-

vides valuable benefits to DevOps, there are some potential

challenges that may arise in the future. This is because they

are fundamentally different from conventional applications,

and it is crucial to take into account that they have a differ-

ent development lifecycle. Another well-known challenge of

AI/ML is the availability of sufficient real-world datasets to

build, train, and test the model before deploying it into the

real production environment. In addition, the characteristic of

the systemmay continuously change, which make the AI/ML

model fail to be generalized from datasets that are used

for training purposes. Therefore, AI/ML requires continuous

model evaluating, tuning, retraining, and retesting.

A team from Microsoft illustrates that the data used in

AI systems are large, specific for each context, and compli-

cated for explaining and becoming a burden. These factors
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TABLE 9. Summary of challenges and current contributions.

make it challenging to integrate AI model on a large scale

and distributed system. Therefore, system engineers need to

carefully collect and preprocess datasets before training and

tuning AI algorithms to gain high accuracy performance.

In addition, the collected data has to be efficiently stored

and updated continuously with a predefined schema. Another

challenge is that datasets’ schema may frequently change

in a real-time, which need to be resilient with continuous
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developments when new data is ingested from large scale

systems with changeable performance characteristics [66].

When developing a large scale DevOps project, it is chal-

lenging tomaintainmodularity. This is because the AImodels

are developed in a separated and isolated environment to

ensure the prevention of interference among systems com-

ponents. These separated AI subsystems are developed by

different engineering teams, where AI services communicate

with other systems in non-obvious ways using a controlled

API that has to be precisely controlled [67], [68]. This kind

of challenge may cause error to be propagated among system

and impact the overall performance of services. There is a

need for a more advanced researches and effective solutions

to continuous update of AI models and discover the unseen

misconceptions among system components while taring data

characteristics are changing.

IX. CONCLUSION

DevOps methods have reduced the cultural and methodolog-

ical gap between developers and operators, which lead to

the formation of many new organizational structures, such

as virtual teams working on both development and oper-

ation tasks. This motivates the establishment of new pro-

fessional figures, often referred to as DevOps engineers,

who center their activity on tooling and automation across

the whole application lifecycle. DevOps paradigm allocates

more attention towards continuous re-release, unified tooling

and organizational processes. Common DevOps advances

include, for example, continuous-integration/continuous-

delivery (CI/CD) pipelines and highly-automated orchestra-

tion solutions for the run-time environment.

This survey reviews recent research to support DevOps

with quality-aware software engineering tools. The paper

reviews the context in which research was carried out

and reveals some gaps in areas such as continuous-

integration/continuous-delivery (CI/CD), incremental verifi-

cation, and infrastructure-as-code (IaC). Table 9 provides

a summary of challenges and current contributions with

the domain of quality-aware DevOps. Initial activity on the

upcoming AI for DevOps and DevOps for AI software as also

been surveyed, outlining possible directions for further work.
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