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ABSTRACT

In peer-to-peer (P2P) mesh-based streaming systems, each
video sequence is typically divided into segments, which are
then streamed from multiple senders to a receiver. The
receiver needs to coordinate the senders by specifying a
transmission schedule for each of them. We consider the
scheduling problem in both live and on-demand P2P stream-
ing systems. We formulate the problem of scheduling seg-
ment transmission in order to maximize the perceived video
quality of the receiver. We prove that this problem is NP-
Complete. We present an integer linear programming (ILP)
formulation for this problem, and we optimally solve it using
an ILP solver. This optimal solution, however, is computa-
tionally expensive and is not suitable for real-time stream-
ing systems. Thus, we propose a polynomial-time approxi-
mation algorithm, which yields transmission schedules with
analytical guarantees on the worst-case performance. More
precisely, we show that the approximation factor is at most
3, compared to the absolutely optimal solution as a bench-
mark. We implement the proposed approximation and opti-
mal algorithms in a packet-level simulator for P2P stream-
ing systems. We also implement two other scheduling al-
gorithms proposed in the literature and used in popular
P2P streaming systems. By simulating large P2P systems
and streaming nine real video sequences with diverse visual
and motion characteristics, we demonstrate that our pro-
posed approximation algorithm: (i) produces near-optimal
perceived video quality, (ii) can run in real time, and (iii)
outperforms other algorithms in terms of perceived video
quality, smoothness of the rendered videos, and balancing
the load across sending peers. For example, our simula-
tion results indicate that the proposed algorithm outper-
forms heuristic algorithms used in current systems by up to
8 dB in perceived video quality and up to 20% in continuity
index.
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1. INTRODUCTION
As video streaming over the Internet is getting increas-

ingly popular [1], many multimedia objects are distributed
using peer-to-peer (P2P) streaming systems [16, 23, 26, 30],
which reduce the deployment cost of expensive streaming
servers. P2P streaming systems can be built in two ways
[17]: (i) tree-based systems in which one or more trees are
used to connect peers for transferring content [7, 9, 20], and
(ii) mesh-based systems in which each peer connects to a
few neighboring peers without an explicit network topol-
ogy [16, 21, 33]. We consider mesh-based systems, because
they incur lower maintenance overhead, adapt better to net-
work dynamics, are easier to implement [3], and lead to bet-
ter perceived video quality [19].

In mesh-based systems, a video sequence is partitioned
into small segments, and segments are transmitted from mul-
tiple senders to a receiver. The receiving peer must coordi-
nate the segment transmission from its senders. More pre-
cisely, a receiver runs a scheduling algorithm to compose a
transmission schedule for its senders, which specifies for each
sender the assigned segments and their transmission times.

Composing segment transmission schedules is not an easy
task, as P2P streaming systems impose time constraints on
segment transmission. Segments arriving at the receiver af-
ter their decoding deadlines are essentially useless, because
they cannot be rendered to users for improving video quality.
Hence, segment scheduling algorithms should strive to max-
imize the perceived video quality delivered by the on-time
segments, which refer to those segments that meet their de-
coding deadlines. Optimally constructing segment schedules
may be computationally expensive [33], and thus existing
systems either resort to simple heuristic algorithms [2,21,33],
or assign each segment an ad-hoc utility and solve the sim-
plified problem of maximizing the system-wide utility [8,32].
These algorithms provide no performance guarantees on the
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number of on-time delivered segments, and may result in
playout glitches and degraded perceived video quality. A re-
cent work pointed out that these existing algorithms might
work in live streaming systems as peers in these systems
share a small scheduling window and are less sensitive to
the performance of scheduling algorithms; however, they do
not work well in on-demand streaming systems [3].

In this paper, we study the problem of scheduling segment
transmission in both live and on-demand P2P streaming sys-
tems. Our goal is to maximize the perceived video quality by
scheduling the segment transmission so that segments that
are more critical in terms of video quality are given higher
priority to meet their deadlines. We first prove that this seg-
ment scheduling problem is NP-Complete. We then present
an integer linear programming (ILP) formulation for this
problem, and we optimally solve it using an ILP solver. Op-
timally solving this ILP problem may take long time, which
is not suitable for P2P streaming systems that are fairly
dynamic. Thus, we propose an efficient approximation algo-
rithm, which constructs transmission schedules with perfor-
mance guarantees. We analytically derive the performance
bound and time complexity of the proposed algorithm. We
also implement an event-driven simulator to evaluate it us-
ing a large P2P network and real video sequences with di-
verse characteristics. The simulation results show that the
proposed algorithm leads to almost optimal perceived video
quality, and outperforms heuristic algorithms used in cur-
rent systems.

The rest of this paper is organized as follows. Sec. 2
summarizes the related work in the literature. In Sec. 3,
we describe the considered system model and formulate the
segment scheduling problem. We develop our approxima-
tion algorithm in Sec. 4, and we analytically analyze it in
the same section. We evaluate the proposed algorithm using
extensive simulations in Sec. 5. Sec. 6 concludes this paper.

2. RELATED WORK
Several commercial P2P streaming systems have been de-

ployed, which implement proprietary scheduling algorithms.
A recent measurement study on PPLive [22] reports that
users suffer from long start-up delays and playout lags, and
suggests that better segment scheduling algorithms are re-
quired [12].

Optimally computing segment schedules to maximize the
perceived video quality, however, is computationally com-
plex. Therefore, many P2P streaming systems, such as
[2, 21, 33], resort to simple heuristics for segment schedul-
ing. The authors of [21] propose to randomly schedule seg-
ment transmission. The authors of [33] assume that seg-
ments with fewer potential senders are more likely to miss
their deadlines, and propose to schedule the segments with
fewer potential senders earlier. The authors of [2] describe
a weighted round-robin algorithm based on senders’ band-
width. Unlike our algorithm, these heuristic algorithms do
not provide any performance guarantees on perceived video
quality, and do not perform well in on-demand streaming
systems [3].

One way to cope with the hardness of the segment schedul-
ing problem is to simplify the objective function from the
perceived video quality to the sum of ad-hoc utility func-
tions [8,32]. The authors of [32] define a utility for each seg-
ment as a function of the rarity, which is the number of po-
tential senders of this segment and the urgency, which is the

time difference between the current time and the deadline of
that segment. They then transform the segment scheduling
problem into a min-cost flow problem. We note that al-
though the min-cost flow problem can be optimally solved,
the resulting schedules do not maximize the perceived video
quality, which is the objective of the original problem.

The authors of [8] formulate an optimization problem to
maximize the perceived video quality, and they solve it using
an iterative descent algorithm. This algorithm, however, is
computationally expensive and cannot be used in real-time
systems. Therefore, they simplify the original formulation
by proposing an ad-hoc utility function for each segment,
which defines the multiplication of each segment’s R-D (rate-
distortion) efficiency, rarity, and urgency as its utility. They
then greedily schedule the segments, i.e., they schedule the
segments with higher utility values earlier. This greedy al-
gorithm does not produce optimal schedules, nor does it pro-
vide any guaranteed performance. The works in [8, 32] are
different from our work in the sense that we solve the orig-
inal segment scheduling problem, and we propose efficient
approximation algorithm with guaranteed performance.

Several other works are related to the segment schedul-
ing problem, but they do not directly solve it. The authors
of [6] propose a P2P system that measures the time required
to download the entire video from a number of senders and
uses this information to choose senders from a large group of
potential senders. The authors of [3] propose using network
coding to bypass the scheduling problem among small blocks
belonging to the same relatively large segment. However,
employing network coding may impose higher processing
overhead on peers, which may require special hardware to
speed up the decoding process [24], and is not easy to deploy.
Finally, several segment scheduling algorithms, such as [15],
have been proposed for tree-based systems. They are, how-
ever, not applicable to mesh-based systems, in which peers
have no knowledge on the global network topology.

3. SEGMENT TRANSMISSION SCHEDUL-

ING
In this section, we first provide an overview of the P2P

system model employed in this paper. We then state the
segment transmission problem and show its hardness. Then
we mathematically formulate it as an integer linear program-
ming problem. For quick reference, we list all symbols used
in the paper in Table 1.

3.1 System Model
We consider mesh-based (also known as swarm-based and

data-driven) P2P streaming systems, which are widely de-
ployed and used. Examples of such systems include Cool-
Streaming [33], PPLive [22], UUSee [28], SopCast [25], and
TVAnts [27]. In these systems, peers form swarms for ex-
changing video data. Each swarm contains a subset of the
peers, and a peer may participate in multiple swarms. Data
availability on peers is propagated through exchanging con-
trol messages, such as buffer maps which indicate which
video segments peers currently have in their buffers and
thus can upload. Using these buffer maps, peers pull video
segments from each other. More specifically, a receiving
peer simultaneously requests segments from different send-
ing peers. This is done by forming a segment transmission
schedule by which the receiver specifies for each sender which
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Table 1: List of symbols used in the paper.
Symbol Description

δ scheduling window size
F frame rate
G number of frames in each segment
M number of senders
N number of segments
T number of time slots
mi sender i
ni segment i
ti transmission time for segment i
ui whether segment i arrives on-time
bm bandwidth of sender m
Qm schedule for sender m
sn size of segment n
wn weight or value of segment n
dn deadline of segment n

an,m availability of segment n on sender m
xn,m,t variable for m to transmit n at time t
Im set of intervals to color
P rounding factor
U number of variables in Eq. (1)
V number of constraints in Eq. (1)
L number of bits to encode Eq. (1)
α perceived video quality
β continuity index
γ load balancing factor

segments to transmit and when. In video streaming systems,
the arrival times of segments are critical, as segments arriv-
ing after their playback times cannot be rendered to users
and are essentially useless.

The problem addressed in this paper is to compute trans-
mission schedules for receivers in order to optimize their per-
ceived video quality. Transmission schedules are computed
for recurring time windows, which are usually in the order
of seconds. Before the time window ends, the scheduling al-
gorithm must be invoked again to compute the transmission
schedule for the next window. The algorithm is also invoked
whenever the set of senders or their characteristics change,
e.g., if a sender fails or leaves the P2P network. Since the
scheduling algorithm is invoked frequently within short pe-
riods, it must be computationally efficient and runs in real
time.

Our problem formulation and solution employ a realistic
model for P2P streaming systems. Thus our proposed al-
gorithm can readily be implemented in current mesh-based
P2P streaming systems to improve their performance. Par-
ticularly, we consider that P2P streaming systems are highly
dynamic and peers will join and leave frequently. Thus, we
design our algorithm to be light-weight and can be invoked
whenever such events occur in order to quickly recompute a
new transmission schedule. In addition, the dynamic prop-
agation and replication of the video segments in the P2P
streaming system can easily be handled by our algorithm.
This is because the segment propagation will trigger peers
to update their buffer maps to reflect the availability of the
newly acquired segments. When these buffer maps are ex-
changed among peers in control messages, our scheduling
algorithm will account for the new segments in computing
new transmission schedules.

It is important to emphasize that our work in this pa-
per focuses on a single, but critical, component of the P2P
streaming system, which is the transmission scheduler. We
present rigorous design of this component with mathemat-
ical formulation, complexity analysis, analytical guarantee
on the performance of the computed schedules, and exten-
sive simulations. We are not proposing a new, complete,
P2P streaming system. We, however, do not impose any as-
sumptions on the other components of the system, e.g., the
overlay management, sender-receiver matching, exchanging
control messages, churn handling, and incentive schemes.
We assume that these components will function according
to whatever protocols dictated by the specific P2P stream-
ing system and eventually a set of potential senders will be
presented to a receiver for obtaining the video data. Given
data availability of each sender, our work is to make the best
out of this set of senders for the receiver.

3.2 Problem Statement and Hardness
We study the problem of transmitting a video stream from

multiple, M , senders to a receiver in a P2P streaming sys-
tem. This stream consists of a series of coded video frames
at frame rate F fps (frames per second), where each frame
has a decoding deadline. Coded video frames that arrive at
the receiver after their decoding deadlines are useless. To
efficiently transmit video frames over the network, multi-
ple consecutive coded frames are aggregated into a segment,
which is the smallest transmission unit. Segment sizes are
flexible and can be chosen based on the structure of a sub-
ject video stream. For example, one P2P streaming system
may choose to construct a segment for each video frame for
finer-grained scheduling, while another system may prefer
to create a segment for every GoP (group-of-picture) for
lower overhead. We consider a very general P2P stream-
ing system that aggregates G coded frames in each segment,
where video frames can have different sizes. We let N be the
number of segments in the whole video stream. Since each
segment consists of G coded frames, it has a playout time of
G/F . Furthermore, segments are in different sizes because
coded frames in video streams typically vary in sizes. We let
sn kb be the size of segment n, where 1 ≤ n ≤ N . Segment
n has a decoding deadline dn = (n−1)G/F sec, which is the
decoding deadline of the first video frame in that segment.

To generate feasible schedules, the receiver monitors its
senders in terms of segment availability and upload band-
width. We let an,m be the availability of segment n (1 ≤ n ≤
N) on sender m (1 ≤ m ≤ M). The receiver sets an,m = 1
if sender m has a copy of segment n, and an,m = 0 other-
wise. Each sender employs bandwidth estimation methods
to estimate its upload bandwidth, and divides it among all
connected receivers. That is, a receiver keeps track of the
upload bandwidth of its senders by querying each sender.
We let bm kbps be the upload bandwidth of sender m. With
the segment availability and sender bandwidth, the receiver
composes a segment schedule for a time window of δ sec.
δ is a system parameter. The resulting schedule is sent to
senders, and senders transmit segments following the sched-
ule. Furthermore, decoding different segments results in dif-
ferent video quality improvements. Let wn be the weight
or the value of segment n, which represents the quality im-
provement brought by this segment. We consider a general
problem in which the definition of wn is determined by P2P
systems. P2P systems with enough computational power

171



may pre-compute a perceived video quality value as the wn

value for each segment n (1 ≤ n ≤ N) offline, while P2P
systems with limited computational power may assign wn

values heuristically.
Our goal is to maximize the sum of weights of all on-time

segments. We exclude late segments as they cannot be used
toward video quality enhancement. As mentioned above, the
considered problem is general and can take any definition of
wn. For computationally powerful P2P systems, we may
use perceived video quality metrics, such as PSNR (Peak
Signal-to-Noise), to define wn, while in other P2P systems,
we may heuristically define wn. In the rest of paper, we
use PSNR to define wn as it is widely used in multimedia
systems [29, Sec. 1.5.5]. Nevertheless, the consider problem
and our proposed solution are general, and P2P systems may
compute the wn value using their own definitions. More
precisely, we let wn be the average video quality in PSNR
of segment n. We mention that the wn weights (or values)
are typically pre-computed by video coders, and inserted
into coded streams as meta data. That is, they are not
computed at streaming time, and not by the senders nor
the receiver. The computation of PSNR values can be done
empirically for higher accuracy or by some rate-distortion
(R-D) models for lower overhead. With these notations, we
formally describe the considered problem in the following.

Problem 1 (Scheduling). We consider the segment
transmission scheduling problem of video sequences in P2P
streaming systems. The problem is to construct an optimal
transmission schedule Q = {<mi, ni, ti>, 1 ≤ i ≤ Q} for
a time window of δ sec, where mi indicates the sender, ni

represents the segment, ti is the transmission time, and Q
is the number of segments in the time window. A segment
<mi, ni, ti> is said to be on-time if and only if ti+sni

/rmi
≤

dni
. We let un = 1 if segment n arrives on-time at the

receiver from any of its senders, and un = 0 otherwise. The
objective is to maximize the perceived video quality, which is
the sum of weights of all segments that arrive on-time.

In the next theorem, we prove that solving this segment
scheduling problem is computationally expensive.

Theorem 1 (Hardness). The scheduling problem de-
fined in Problem 1 is NP-Complete.

Proof. We reduce an NP-Complete machine scheduling
problem [5, Sec. 5.3] to the segment scheduling problem.
The machine scheduling problem schedules J jobs onK iden-
tical machines, and each job j (1 ≤ j ≤ J) takes time pj
to complete. Each job can be scheduled on one machine
and can not be preempted, and each machine can process
one job at any time. The goal is to minimize the makespan
Cmax, which is the maximal completion time of all jobs, and
the problem is to determine whether there exists a schedule
with Cmax ≤ c0 for a given constant c0.

For each machine scheduling problem, we construct a seg-
ment scheduling problem as follows. Let the number of
senders M = K, and the number of segments N = J . For
each segment n (1 ≤ n ≤ N), let sn = pj , dn = c0, and
wn = 1. We let bs = 1 for all 1 ≤ s ≤ S. Finally, the prob-
lem is to determine whether there exists a schedule that
achieves the sum of weights

∑N

n=1
unwn ≥ N . Since the

segment scheduling problem is constructed and can be veri-
fied in polynomial time, and Cmax ≤ c0 ⇐⇒ ∑N

n=1
unwn,

it is NP-Complete.

3.3 Problem Formulation
We formulate the segment scheduling problem as a time-

indexed integer linear programming (ILP) problem. Time-
indexed formulations discretize the time axis into T time
slots, where T is large so that the time slots are fine enough
to represent any feasible schedule without reducing the value
of the objective function. We let xn,m,t be a 0-1 variable for
each n = 1, 2, . . . , N , m = 1, 2, . . . ,M and t = 1, 2, . . . , T ,
where xn,m,t = 1 if segment n is scheduled to be transmitted
by sender m at time t, and xn,m,t = 0 otherwise. We note
that, according to the definition, while the transmission of
a segment often spans over several time slots, only the first
time slot has an x value of 1.

We formulate the considered segment scheduling problem
as:

z∗ = max
M
∑

m=1

N
∑

n=1

dn−
sn
bm

∑

t=1

wnxn,m,t (1a)

s.t. xn̂,m̂,t̂ ≤ an̂,m̂ (1b)

N
∑

j=1

t̂
∑

k=t̂−
sj
bm̂

+1

xj,m̂,k ≤ 1 (1c)

M
∑

i=1

dn̂−
sn̂
bi

∑

j=1

xn̂,i,j ≤ 1 (1d)

xn̂,m̂,t̂ ∈ {0, 1}, ∀ m̂ = 1, 2, . . . ,M,

n̂ = 1, 2, . . . , N, t̂ = 1, 2, . . . , T. (1e)

In this formulation, the objective function in Eq. (1a) is to
maximize the sum of weights of on-time segments, where
the three summations iterate through all senders, segments,
and time slots, respectively. Note that the last summation
stops at time dn−sn/bm, because scheduling segment n after
that time results in a late segment, which cannot improve
video quality. The constraint in Eq. (1b) makes sure that we
always schedule a segment to a sender who holds a copy of
it, as it prevents the combination of xn̂,m̂,t̂ = 1 and an̂,m̂ = 0

for all t̂ = 1, 2, . . . , T . In Eq. (1c), observe that any segment
j scheduled for sender m̂ between time t̂− sj/bm̂ + 1 and t̂
would occupy the time slot t̂ as transmitting segment j takes
time sj/bm̂. Therefore, by considering all these segments,
the constraint in Eq. (1c) ensures that at most one segment is
scheduled for each sender at any time t̂. Last, the constraint
in Eq. (1d) prevents segments from being scheduled to more
than one sender.

An Optimal Algorithm. To get optimal segment sched-
ules, we can solve the formulation in Eq. (1) using ILP
solvers that support 0-1 ILP problems. In this paper, we
use the general ILP solver in CPLEX [13] package for this
purpose. We refer to this approach as the OPT algorithm,
and we use it as a benchmark to assess the performance of
the algorithm proposed in the next section.

4. PROPOSED ALGORITHM
Solving ILP problems is computationally expensive and

may not be possible in real time. We develop an efficient
approximation algorithm in this section, and we formally
derive its approximation factor.
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4.1 Overview
We propose an efficient algorithm based on the linear pro-

gramming (LP) relaxation of the ILP formulation in Eq. (1).
The LP relaxed formulation allows any xn̂,m̂,t̂ in Eq. (1e) to
take fractional values, where 0 ≤ xn̂,m̂,t̂ ≤ 1. This LP re-
laxed formulation can be optimally solved using efficient LP
solvers that implement Simplex or Interior Point Methods
(IPMs). We use x̄n̂,m̂,t̂ to denote the fractional schedule pro-
duced by an LP solver. We mention that fractional schedules
of the LP relaxed formulation are not feasible to the origi-
nal scheduling problem. This is because, in the LP relaxed
formulation, the constraints in Eqs. (1c) and (1d) are inter-
preted in a different way: the constraint in Eq. (1c) makes
sure that the fractions of all segments scheduled for each
sender sum to at most one at any time, and the constraint
in Eq. (1d) ensures that fractions of each segment scheduled
to all senders at any time sum to at most one.

To compute a schedule for the original scheduling prob-
lem, we propose a rounding algorithm to convert fractional
schedules of the ILP formulation into integral feasible sched-
ules, albeit with a small approximation factor. We first ex-
plain how the proposed rounding algorithm handles a single
sender m for any m = 1, 2, . . . ,M . We then expand the
description to the general case of M senders. For a spe-
cific sender m, the rounding algorithm consists of two steps:
(i) it transforms the fractional schedule into several feasi-
ble integral schedules, and (ii) it selects the best schedule
out of all integral schedules. More precisely, the rounding
algorithm first rounds the fractional schedule x̄n̂,m,t̂ for all

n̂ = 1, 2, . . . , N and t̂ = 1, 2, . . . , T to multiples of 1/P ,
where P = (TN)2. This is achieved by creating ⌊x̄n̂,m̂,t̂×P ⌋
copies of time intervals [t̂, t̂+sn̂/bm] for each positive x̄n̂,m̂,t̂.
These time intervals are then put in the set Im.

Next, we color the intervals in Im using the minimum
number of colors, so that: (i) two intervals overlapping in
time have different colors, and (ii) two intervals of the same
segment have different colors. This can be done by first
sorting all intervals on their starting times, and then se-
quentially coloring them in that order. Once the coloring is
done, intervals with the same color have two nice properties,
they: (i) never overlap in time, and (ii) are not associated
with the same segment. Therefore, we can construct an in-
tegral schedule using all intervals that have the same color.
This gives us several feasible schedules. We then compute
the objective function value of each feasible schedule, and
we choose the schedule with the largest objective function
value. We let this schedule be Qm = {<m, n̂, t̂>}, which
indicates that sender m should start transmitting segment
n̂ at time t̂.

For the general case of M senders, the rounding algorithm
sequentially schedules segments for all senders. More specif-
ically, for each sender m, the rounding algorithm sets all
x̄n,m,t̂ = 0 for all t̂ = 1, 2, . . . , T , if segment n has been
scheduled for any sender m̄, where m̄ < m. This is to avoid
scheduling a segment to multiple senders, which violates the
constraint in Eq. (1d). Once the feasible schedule for sender
m (1 ≤ m ≤ M − 1) is derived, the rounding algorithm
considers sender m + 1. The rounding algorithm stops af-
ter iterating through all senders, and returns the segment
schedule Qm, for all m = 1, 2, . . . ,M . Since our proposed
algorithm takes user-specified weights, we call it Weighted
Segment Scheduling (WSS) algorithm.

WSS: Weighted Segment Scheduling

1. let Qm = ∅, where m = 1, 2 . . . ,M
2. let P = (TN)2

3. compute optimal x̄m̂,n̂,t̂ for the relaxed Eq. (1)
4. for m = 1 to M // consider senders sequentially
5. let Im = ∅ // time intervals
6. foreach positive x̄m,n̂,t̂

7. insert ⌊x̄m,n̂,t̂ × P ⌋ copies of interval
[

t̂,

7. t̂+ sn̂/bm
]

to Im
8. endfor
9. color intervals in Im using fewest colors, so that
9. two intervals overlapping in time or associated
9. with the same segment have different colors
10. construct a feasible schedule for each color
11. let Qm be feasible schedule that results in
11. highest objective function value z
12. for m̂ = m+ 1 to M // mark as scheduled
13. let x̄m̂,n̂,t̂ = 0
14. endfor
15. endfor
16. return Q1,Q2, . . . ,QM .

Figure 1: The proposed approximation algorithm.

Fig. 1 shows a high-level pseudocode of the WSS algo-
rithm. It solves the LP relaxed formulation in line 3. The
rounding is sequentially done using the for-loop between
lines 4 and 15. The foreach-loop between lines 6 and 8
builds the set Im of time intervals for sender m based on
its fractional schedule. Line 9 colors Im using as few colors
as possible. Line 10 builds a set of feasible integral sched-
ules, and line 11 picks the schedule Qm that leads to the
highest objective function value z. The for-loop between
lines 12 and 14 prevents segments from being scheduled to
multiple senders. The algorithm returns Q1,Q2, . . . ,Qm in
line 16.

4.2 Analysis and Complexity
We analyze the performance of the WSS algorithm in two

steps. We first analyze the problem with a single sender,
and then extend the analysis to multiple senders. In the
next lemma, we derive the approximation factor of the WSS
algorithm with one sender. In the proof, we first show that
the floor function in line 7 incurs negligible drops on the
objective function value. We then show that the number
of colors required in line 9 is bounded. Therefore, we only
have a small number of feasible schedules, and at least one
of them leads to an objective value higher than half of the
optimum.

Lemma 1. The WSS algorithm in Fig. 1 has an approxi-
mation factor of 2, when there is only one sender.

Proof. Let z∗ be the optimal objective function value.
In line 7, each x̄ is rounded to a multiple of 1/P . This
means that each u∗

nwn in the objective function (Eq. (1a))
is reduced by at most 1/P . Let wn′ be the maximal weight
among all segments, i.e., wn′ ≥ wn for all n = 1, 2, . . . , N .
Since we have (TN) x̄ variables, the z∗ drops for at most
(TN)wn′/P = wn′/(TN). Observe that, since scheduling
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only segment n′ results in a feasible schedule with a sum of
weights wn′ , we have q∗ ≥ wn′ . Thus the rounding in line 7
reduces the q∗ value by at most a factor of 1/(TN), which
is negligible as the number of time slots T is large.

From the formulation in Eq. (1), the fractional schedule
produced by LP solvers has the following property: the num-
ber of overlapping intervals is at most P , and the number
of intervals of the same segment is at most P . Following
the coloring strategy in line 9, the intervals can be colored
with at most C = 1 + (P − 1) + (P − 1) = 2P − 1 different

colors. Furthermore, line 7 indicates that q∗ =
∑C

c=1
ŵc/P ,

where ŵc (c = 1, 2, . . . , C) is the objective function value of
the feasible schedule derived from color c. Define αc = 1/P
for each c = 1, 2, . . . , C, we write

q∗ =

C
∑

c=1

ŵcαc. (2)

Moreover, we know

C
∑

c=1

αc ≤
2P−1
∑

c=1

(1/P ) = 2− (1/P ) < 2. (3)

With Eqs. (2) and (3), we claim that there exists a color
c∗ so that ŵc∗ ≥ 1

2
q∗. This claim can be easily proved by

contradiction. Thus the feasible schedule identified by line
11 achieves approximation factor 2, when M = 1.

Next, we extend the above lemma to the general case with
multiple senders.

Theorem 2 (Performance). The WSS algorithm in
Fig. 1 achieves approximation factor of 3, when there are
multiple senders.

Proof. For m = 1, 2, . . . ,M , we let Rm be the fractional
schedule of sender m produced in line 3, and Qm be the inte-
gral schedule of sender m returned in line 16. We also define
R′

m as the fractional schedule of sender m after discarding
all segment scheduled in Q1,Q2, . . . ,Qm−1. We use w(·) to
denote the objective function value of Rm, Qm, and R′

m.
Following Theorem 1, we have w(Qm) ≥ (1/2)w(R′

m),
for all m = 1, 2, . . . ,M . Since Qm are mutually disjoint and
Q′

m are mutually disjoint, we have:

M
∑

m=1

w(Qm) ≥ 1

2

M
∑

m=1

w(R′

m). (4)

Since every scheduled segment is marked by the for-loop
between lines 12 and 14, we write:

M
∑

m=1

w(R′

m) ≥
M
∑

m=1

w(Rm)−
M
∑

m=1

w(Qm). (5)

Combining Eqs. (4) and (5) gives:

M
∑

m=1

w(Qm) ≥ 1

2

M
∑

m=1

w(Rm)− 1

2

M
∑

m=1

w(Qm).

Rearranging this inequality, we get

M
∑

m=1

w(Qm) ≥ (1/3)

M
∑

m=1

w(Rm),

which yields an approximation factor of 3.

We show that the proposed WSS algorithm is a polyno-
mial time algorithm in the next theorem.

Theorem 3 (Complexity). The WSS algorithm pro-
posed in Fig. 1 runs in polynomial time, i.e., it terminates
in O(3UP +M(2P −1)+MU+U1.5V 2L) arithmetic opera-
tions, where P = (TN)2 is the rounding factor, U = MNT
is the number of variables of the formulation in Eq. (1),
V = MNT + MT + T is the number of constraints in this
formulation, and L = 8U + UV + V is the number of total
bits required to encode this formulation.

Proof. Notice that there are U = MNT variables in
the objective function shown in Eq. (1a). Furthermore,
there are MNT constraints in Eq. (1b), MT constraints
in Eq. (1c), and N constraints in Eq. (1d), and thus we have
V = MNT +MT +N total constraints.

The time complexity before line 4 can be bounded by
O(

√
ULUV 2) following the complexity results of IPMs in

the literature [31, Sec. 4.6], where L is the number of to-
tal bits required to write the formulation. L can be derived
as follows. In Eq. (1a), we consider the weights wn for all
n = 1, 2, . . . , N are represented as 8-bit floating point val-
ues, which take 8U bits. In Eqs. (1b)–(1d), we have UV
coefficients on the left of the inequalities and U on the right.
Observe that all these coefficients can be encoded in a sin-
gle bit, which means encoding the the constraints requires
UV + V bits. Combining the objective function with con-
straints, we get L = 8U + UV + V .

Next, we compute the number of operations required by
each iteration of the for-loop between lines 4 and 15. The
foreach-loop in lines 6–8 creates at most O(NTP ) intervals.
The coloring in line 9 can be done in a single-pass scan
on the intervals in Im, which takes O(NTP ) operations.
Constructing feasible solutions in line 10 requires O(NTP ),
and finding the solution with the highest objective func-
tion value consumes O(NTP ) + O(2P − 1). The for-loop
between lines 12 and 14 takes O(MNT ) operations. This
leads to O(3NTP +2P +MNT −1) operations in each iter-
ation between lines 4–15, and O(3UP +M(2P − 1) +MU)
for the whole rounding algorithm. Combining this with
O(

√
ULUV 2) yields the theorem.

Finally, we mention that a similar LP relaxation was used
in designing other scheduling algorithms with different ob-
jectives, such as minimizing the task completion time [10,
14], and maximizing total weight of tasks completed by their
due dates [4].

5. EVALUATION
In this section, we first detail the setup of our simulations

and define several performance metrics considered in the
simulations. We then present the simulation results.

5.1 Setup
We have implemented an event-driven simulator in Java to

evaluate the performance of the proposed segment schedul-
ing algorithm. We have implemented four scheduling algo-
rithms in this simulator: OPT, WSS, RF, and MC. OPT
and WSS are the implementations of our optimal and ap-
proximation algorithm, respectively. The RF algorithm im-
plements the rarest first algorithm used in many P2P sys-
tems [33], and it schedules the segment with the fewest po-
tential senders first. The MC algorithm is based on the ILP
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Table 2: List of video sequences used in the paper.
Sequence Rate (kbps) Description

Bus 1834 running bus in short distance
City 589 pan over a city in long distance
Crew 1344 astronauts walk by in short distance

Football 2340 complex movements and details
Foreman 723 talking person, camera movements
Harbour 1592 both close-by and far-away objects

Ice 744 a rink with several skating persons
Mobile 1731 moving toys and calendar with saturated colors
Soccer 1215 many details around players’ legs

Table 3: Peer Upload Bandwidth Distribution.
Distribution (%) 10.0 14.3 8.6 12.5 2.2 1.4 6.6 28.1 16.3

Total Bandwidth (kbps) 256 320 384 448 512 640 768 1024 > 1500
Contributed Bandwidth (kbps) 150 250 300 350 400 500 600 800 1000

formulation proposed in [32], which is converted into a min-
cost flow problem and solved by combinatorial algorithms.
While we employ the same utility function defined in the
evaluation section of [32], the original algorithm can only
schedule transmission of fixed-size blocks. We, therefore,
extend that algorithm to support variable-size segments by:
(i) dividing each segment into blocks, (ii) solving the block
transmission problem using their algorithm, and (iii) per-
forming a majority vote that schedules each segment to the
sender that is assigned the most blocks. Our implementa-
tions use the CPLEX [13] package to solve the ILP and LP
problems. In particular, the CPLEX package provides a set
of Java class libraries that allow us to specify and solve our
problems using Java syntax through JNI (Java native inter-
face).

We use a diverse set of nine video sequences in our eval-
uation, which are Bus, City, Crew, Football, Foreman, Har-
bour, Ice, Mobile, and Soccer. During the streaming of each
video sequence, the scheduling algorithm is invoked many
times, at least 10 times for the shortest sequence. We com-
press all video sequences using an H.264 coder with GoP
size of 8 and QP (quantization parameter) 25. The videos
have frame rate F = 30 fps and are in CIF (352x288) resolu-
tion. Table 2 summarizes the average bit rate of each video
stream. We use PSNR as the perceived video quality metric
in our simulations. The simulator aggregates every G = 8
video frames into a segment, and assigns each segment n a
decoding deadline of G(n− 1)/F , where n = 1, 2, . . . , N .

We simulate a system with a total of 2,000 peers. We ini-
tially pre-deploy the video sequences at only 1% of the peers
chosen randomly, which form the initial seeding peers. We
run the simulation for 24 hours of simulation time. Individ-
ual peers join and leave a swarm at different times during
the streaming of a video sequence. The joining and leaving
times are randomly chosen from the simulation time period
following a uniform distribution within the whole simula-
tion period, which is 24 hours. Upon joining the swarm, each
peer is instructed to sequentially stream all video sequences.
We also simulate dynamic replication of video segments as
peers can upload segments as soon as they start downloading
them. We consider a peer matching service that randomly
provides each new peer up to 10 potential senders. Each

new peer then connects to these senders, runs the scheduling
algorithm, and requests segments following the computed
schedule. Each receiving peer schedules segment transmis-
sion once every five seconds, and stop scheduling once all
video sequences are finished.

The simulator determines each sender’s upload bandwidth
following the distribution given in Table 3. This bandwidth
distribution is proposed in a recent paper [18] based on
various measurement studies on both corporate and resi-
dential users. We note that peers would not contribute all
their bandwidth to P2P streaming, because doing so would
slow down other Internet applications such as email and
Web. The contributed bandwidth of each class of peers is
also given in this table as recommended in [18]. With the
randomly chosen bandwidth, the simulator fairly distributes
available bandwidth among all connections, and computes
the transmission duration of each packet accordingly. Upon
completely receiving each video sequence, the transmission
statistics are written into a log file for further analysis. Fi-
nally, in the OPT and WSS algorithms, the system param-
eter T is set to be 50, which means the time slots are 100
msec long in our formulation.

We run the simulator independently for each considered
algorithm. We consider three performance metrics: the av-
erage perceived video quality α, the continuity index β, and
the load balancing factor γ. The average perceived video
quality is computed by assuming that all late segments re-
sult in zero PSNR, and computing α =

∑N

n=1
wnun/N ,

where wn is the average perceived video quality of video
frames in segment n. We define the continuity index as
the number of frames that arrive by their decoding dead-
lines over the number of all considered frames. That is,
β =

∑N

n=1
un/N . Last, we define the load of sender m as its

upload bandwidth utilization, which is
(
∑

i∈Qm
si/δ

)/

bm,

where
∑

i∈Qm
si accounts for the size of all on-time seg-

ments and δ is the scheduling window length. The load
balancing factor γ is then computed as the standard devi-
ation of all senders’ loads. Similar performance metrics are
used in other works in the literature, such as [11,33].

5.2 Comparison Against OPT
We first compare the performance of the WSS algorithm
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Figure 2: Comparison of the proposed (WSS) and optimal (OPT) algorithms.
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Figure 3: Overall comparison of the proposed (WSS) and heuristics algorithms used in current systems.
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against the absolute optimal (OPT) algorithm. We consider
two performance metrics: video quality and continuity in-
dex. We calculate the average video quality and continuity
index of each peer, and compute their CDFs (cumulative dis-
tribution functions). We plot the CDF curves of the video
quality in Fig. 2(a). This figure shows that the WSS algo-
rithm achieves almost optimal video quality: the gap is no
larger than 0.5 dB for all peers. We also plot the CDF curves
of the continuity index in Fig. 2(b). This figure illustrates
that the WSS algorithm results in near optimal continuity
index: at most 2% difference is observed. Fig. 2 reveals
that, in practice, the WSS algorithm achieves near optimal
performance: the gap is much smaller than the theoretical
approximation factor of 3.

We measured the average running of the unoptimized Java
implementation of our WSS algorithm across all runs on a
commodity PC, which has a 2.66 GHz Intel CPU and 8 GB
memory. The average running time was 178.47 msec, and
the running time never exceeded 213.76 msec. We notice
that, while we use CIF videos in the simulations the time
complexity of our proposed algorithm is also efficient with
high-definition videos. This is because the weights of indi-
vidual segments are computed offline. Our results indicate
that the proposed algorithm can easily run in real time. In
contrast, computing a schedule using the OPT algorithm
takes as long as several seconds.

5.3 Comparison Against Other Algorithms
We compare the performance achieved the WSS algorithm

and by two heuristic algorithms: RF and MC in the follow-
ing. We first conduct overall comparisons of all considered
algorithms, and present the average performance over all
nine video sequences with diverse characteristics. We then
focus on a few sample video sequences and show detailed
sequence-level comparisons among all the considered algo-
rithms.

Overall Comparison. To derive statistically meaning-
ful results, we calculate the average performance of each peer
across all considered video sequences. We iterate through
all peers and compute the CDF curves of each performance
metric. We repeat the same computation for each scheduling
algorithm, and we compare their CDF curves. We consider
four performance metrics in our comparisons: video quality,
continuity index, load balancing factor, and average load on
senders.

We first plot the video quality in Fig. 3(a). This figure
shows that the WSS algorithm outperforms the other two al-
gorithms. The WSS algorithm achieves up to 5 dB and 8 dB
higher perceived video quality compared to the RF and MC
algorithm, respectively. These are substantial improvements
in the rendered video quality. Our algorithm achieves these
improvements because it carefully considers the quality con-
tribution by each video segment in the scheduling process.
It also results in more segments meeting their deadlines than
the other two algorithms.

We then report the continuity index in Fig. 3(b). This
figure illustrates that the WSS algorithm results in much
higher continuity index than the RF and MC algorithms:
up to 12% and 20% higher than the RF and MC algorithm,
respectively. This means employing the WSS algorithm sig-
nificantly reduces the playout glitches at receivers. These
two figures clearly show that the proposed WSS algorithm
results in much higher video streaming quality, compared

to the heuristic algorithms used in current P2P streaming
systems.

We next plot the load balancing factor in Fig. 3(c). The
load balancing factor is defined as the standard deviation of
the network loads on all senders. Excessive load balancing
factor may slow down some senders’ computers, which could
discourage users from contributing to the P2P network. This
figure illustrates that the WSS algorithm achieves at most
20% deviation, and is fair among loads of senders while it
produces better video quality and higher continuity index as
shown in Figs. 3(a) and 3(b).

Last, we plot the average load on senders in Fig. 3(d). The
average load on senders represents the typical network load
that a subject algorithm incurs, and lower average load re-
sults in higher user satisfaction because more bandwidth can
be used for other applications. This figure shows that the
proposed WSS algorithm results in the lowest average load
among all considered algorithms. Fig. 3 clearly shows that
our WSS algorithm significantly outperforms other heuristic
algorithms, because it produces the highest video quality (il-
lustrated in Figs. 3(a) and 3(b)) while incurring the lowest
load on peers (shown in Fig. 3(d)).

Sequence-level Comparison. Next, we present sam-
ple results on sequence-level comparisons. We consider two
performance metrics in our comparisons: average video qual-
ity and number of late video frames in each GoP. For each
video sequence, we iterate through all its video frames, and
we compute the average perceived video quality in each GoP
for every receiving peer. We then put all 2,000 peers together
and compute the mean video quality as well as the 95% con-
fidence interval. We report 95% confidence intervals in the
figures. We use the same procedure to derive the number
of late frames in each GoP. We repeat the computation for
all considered video sequences, and for all scheduling algo-
rithms.

We present two sample results in Fig. 4; other results are
similar. Fig. 4(a) shows the video quality of the Crew se-
quence produced by individual scheduling algorithms. This
figure clearly shows that theWSS algorithm results in higher
perceived video quality, compared to other heuristic algo-
rithms. In fact, the WSS algorithm achieves video quality
close to 38 dB, except between frames 160 and 176. In con-
trast, the RF and MC algorithms lead to too many quality
drops, which degrade user experience. We next plot the
number of late frames per GoP of the Soccer sequence in
Fig. 4(b). This figure illustrates that the number of late
frames produced by the WSS algorithm is much smaller
than those of the RF and MC algorithms. More precisely,
the WSS algorithm leads to no more than one lost frame per
GoP most of the time. In summary, Fig. 4 zooms-in the per-
formance of individual video sequences, and confirms that
employing the WSS algorithm results in higher perceived
video quality and fewer playout glitches.

6. CONCLUSIONS
We studied the segment transmission problem in P2P

video streaming systems, where a receiver periodically com-
putes a transmission schedule for all its senders to maxi-
mize the perceived video quality. We consider both live and
on-demand P2P streaming systems. We proved that this
problem is NP-Complete. We formulated the considered
problem with an ILP formulation, and we solved it using
the CPLEX [13] package. Optimally solving this ILP prob-
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Figure 4: Sequence-level comparison of the proposed (WSS) and heuristics algorithms used in current systems.

lem, however may take prohibitively long time, and is not
suitable for P2P video streaming systems. We proposed an
efficient approximation algorithm and we formally showed
that it guarantees an approximation factor of 3 in the worst
case. To the best of our knowledge, none of the existing
polynomial time segment scheduling algorithms provide any
performance guarantees.

We implemented an event-driven simulator and conducted
extensive simulations to evaluate the proposed algorithm.
The simulation results showed that the proposed algorithm:
(i) is almost optimal with less than 0.5 dB gap in perceived
video quality and less than 2% gap in continuity index from
the optimum, (ii) is efficient with running time shorter than
213.76 msec, (iii) outperforms heuristic algorithms used in
current systems by up to 8 dB in perceived video quality
and up to 20% in continuity index, and (iv) does not impose
imbalanced loads on senders.

In summary, the proposed algorithm not only provides
analytical guarantees on the worst-case performance, but
it also has superior average-case performance compared to
other scheduling algorithms proposed in the literature and
used in the deployed P2P streaming systems. Furthermore,
our algorithm is computationally efficient (shown theoreti-
cally and empirically) and thus can be implemented in ac-
tual P2P streaming systems for both live and on-demand
services.
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