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Abstract—As biometric technology is increasingly deployed, it
will be common to replace parts of operational systems with newer
designs. The cost and inconvenience of reacquiring enrolled users
when a new vendor solution is incorporated makes this approach
difficult and many applications will require to deal with infor-
mation from different sources regularly. These interoperability
problems can dramatically affect the performance of biometric
systems and thus, they need to be overcome. Here, we describe
and evaluate the ATVS-UAM fusion approach submitted to the
quality-based evaluation of the 2007 BioSecure Multimodal Eval-
uation Campaign, whose aim was to compare fusion algorithms
when biometric signals were generated using several biometric
devices in mismatched conditions. Quality measures from the
raw biometric data are available to allow system adjustment to
changing quality conditions due to device changes. This system
adjustment is referred to as quality-based conditional processing.
The proposed fusion approach is based on linear logistic regres-
sion, in which fused scores tend to be log-likelihood-ratios. This
allows the easy and efficient combination of matching scores from
different devices assuming low dependence among modalities. In
our system, quality information is used to switch between different
system modules depending on the data source (the sensor in our
case) and to reject channels with low quality data during the fu-
sion. We compare our fusion approach to a set of rule-based fusion
schemes over normalized scores. Results show that the proposed
approach outperforms all the rule-based fusion schemes. We also
show that with the quality-based channel rejection scheme, an
overall improvement of 25% in the equal error rate is obtained.

Index Terms—Biometrics, biosecure, calibration, fusion, inter-
operability, linear logistic regression, quality, scalability.

I. INTRODUCTION

A. Biometric Systems Interoperability

THE increasing interest in biometrics is related to the num-

ber of applications where a correct assessment of identity

is crucial [1]. Biometrics is used in many governmental and
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civilian applications, offering greater convenience and advan-

tages over traditional security methods based on something that

you know (password, PIN) or something that you have (card,

key, etc.). But using a single trait for recognition is affected

by problems like noisy data, non-universality, lack of distinc-

tiveness, spoof attacks, etc. [2]. Additional problems may arise

when a biometric device is replaced (maybe from a different

vendor) without reacquiring the corresponding template [3] or

when templates generated with different proprietary algorithms

are matched [4]. These interoperability problems, typically

not overcome by biometric systems, affects the recognition

performance, sometimes dramatically [5], [6]. Unfortunately,

as biometrics is extensively deployed, it will be common to re-

place parts of operational systems as they are damaged or newer

designs appear, or to exchange information among applications

developed by different vendors or biometric data acquired in

heterogeneous environments [3].

Multibiometric systems consolidate identity evidence from

multiple sources, which helps alleviate many of these limita-

tions because the different sources usually compensate for the

inherent limitations of the others [2]. Integration at the match-

ing score level is the most common approach (e.g., [7]) because

it has the advantage of needing only the output matching scores

of the different systems, which greatly facilitates the integration

of multimodal biometric across different vendors (where the

internal functionality of the system is often not disclosed). In

this context, a measure of trust or quality of the data that defines

the reliability of the recognition process can provide additional

improvement, which helps optimize a structure lacking homo-

geneity while ensuring system interoperability by integrating

data of different nature [8].

With this motivation, the quality-based evaluation of the

BioSecure Multimodal Evaluation Campaign-BMEC [9] was

organized with the aim of comparing fusion algorithms when

biometric signals come from several devices in mismatched

conditions. This paper describes the ATVS-UAM fusion strat-

egy submitted to this evaluation [10], with outstanding results

[second out of 13 system in terms of half total error rate (HTER)

and fourth in terms of equal error rate (EER)] [9]. Face still

samples collected with two cameras of different resolution and

fingerprint samples collected with an optical and a thermal

sensor were used. Quality information was also provided with

the aim of adapting the fusion algorithms to the different

devices. Data was extracted from the Biosecure Multimodal
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Fig. 1. Roles of a sample quality measure in the context of biometric systems.

Database [11], collected by 11 European institutions of the

BioSecure Network of Excellence [12] between November

2006 and June 2007. This new database includes features not

present in existing ones: more than 600 individuals acquired

simultaneously in three different scenarios (over the Internet, in

office environment with a desktop PC, and in indoor/outdoor

environments with mobile devices) over two acquisition ses-

sions, with different sensors for certain modalities.

B. Related Work in Quality-Based Conditional Processing

Biometric quality assessment is an active field of research

[13], with many quality assessment algorithms proposed such

as [14]–[18]. Recent efforts have also been focused on the

standardization of biometric quality information and its incor-

poration to biometric data structures [19].

In biometric systems working in verification mode, several

steps are typically performed once a signal has been acquired

(see Fig. 1 [1]): 1) preprocessing, in which the input signal is

enhanced to simplify subsequent steps; 2) feature extraction, in

which we further process the signal to generate a discriminative

and compact representation; 3) matching, where the feature

representation of the input biometric signal is compared against

the template corresponding to the claimed identity that is stored

in the system database, resulting in a similarity or matching

score; and 4) decision, where the score is compared to a

decision threshold in order to accept or reject the input identity

claim. In multibiometric systems working at the matching score

level, the output score is further combined with scores from

other systems in a fusion stage to generate a new matching

score that is then used for recognition. Prior to the fusion,

the scores can be transformed to a common domain through

a normalization step [20].

There are several roles regarding a quality measure in the

context of biometric systems [19], [21], as shown in Fig. 1:

1) monitoring tool [22] in order to accumulate statistics of the

system (e.g., to identify sources experiencing problems); 2) to

recapture a sample not having enough quality; and 3) to switch

between different processing blocks of the system (quality-

based conditional processing [19]). Since the work presented

here falls in the last category, only related work in this domain

will be covered next.

• Preprocessing and feature extraction: If the quality of

the sample is low, we can invoke special enhancement

algorithms. Also, we can use features robust to the kind

of degradation that the biometric signal is suffering [23].

In some cases, there will be useless parts (e.g., damaged

fingerprint regions) that can be discarded. The extracted

features can be ranked depending on the quality of local

regions. These information can be exploited afterward dur-

ing the matching, as done, for example, in [24] and [25].

• Matching and decision: Depending on the quality of

the acquired templates, we can use different matching

algorithms (which also depend on the kind of features

extracted) or adjust the sensitivity of the matcher to the

quality of the signals under comparison [23]. Other works

(e.g., [24] and [25]) give more weight to high quality

features in the computation of the matching score.

• Fusion: Quality information has been incorporated in

a number of fusion approaches; for instance, weighting

results from the multiple sources depending on the quality

[8] or dynamically switching them [25]. Instead of using a

weighting scheme, the method in [27] estimates the joint

densities of the matching score and the quality of the

genuine and impostor classes. The work in [28] exploits

the dependence between matching scores and quality mea-

sures by introducing the latter as an additional dimension

of the classification problem. Finally, a novel device-

specific quality-dependent score normalization technique

is presented in [29], which is used for matching samples

coming from different devices.

C. Our Proposed Approach and Contributions

Our approach for the BMEC rely on the use of linear

logistic regression fusion [30], [31], a trained classification

fusion method which works in a probabilistic framework. Two

hypotheses are defined for each comparison: target (the com-

pared biometric data comes from the same individual) and

nontarget hypothesis (the compared data comes from different

individuals). Prior to fusion, the score of each single modal-

ity is mapped to a log-likelihood-ratio among the target and

nontarget hypotheses, according to a Bayesian framework [32].

This mapping process is known as calibration, and has been

proposed for speaker recognition [33]. It is achieved by linear

logistic regression, which has been recently used for calibration

purposes in speaker recognition [30], [31]. This allows the effi-

cient combination of scores originating from different biometric

devices, as is the case of the quality-based evaluation. If all

sources are independent and independence assumptions and a
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Fig. 2. Architecture of the proposed fusion strategy, including some quality-based conditional processing steps (highlighted with dashed ellipses).

Bayesian framework are considered, log-likelihood-ratios may

be simply added.

The contribution of this paper is multifold. First, we sum-

marize related works in the field of quality-based conditional

processing. This concept is already around in the biometric

community [19] but has not appeared in scientific journals

yet. Second, we develop an application of this idea in the

framework of the BMEC, with a novel fusion architecture

that allows system interoperability by combining signals from

different devices. Quality information is used to switch between

different system modules depending on the data source (the

sensor in our case) and to reject channels with low-quality

data during the fusion. Third, while incorporation of quality

measures has been done mostly by heuristically adapting the

system [34], our approach easily generalizes to multiple sources

of information (different modalities, matchers, acquisition de-

vices, etc.). Newer developments and additional modalities can

be easily incorporated while efficiently handling the different

sources of information. The only requirement is to provide

log-likelihood-ratios as output scores for the fusion. Fourth,

while quality measures are often treated as scalar values, we

consider them as a vector of measurements in this paper.

Quality is intrinsically multidimensional, affected by factors of

very different natures (e.g., for a face image: pose, frontalness,

focus, illumination, etc). A biometric system must adequately

address this multifactor nature [21]. Other contributions are

related with the experimental framework of the paper. The

proposed architecture, preliminary evaluated in [10], incor-

porates here the quality-based score rejection step. Because

of this, an additional EER improvement of about 25% is

obtained. Also, the proposed system is demonstrated to out-

perform a set of rule-based fusion schemes used for compar-

ison [35], [36], highlighting the effectiveness of the proposed

approach.

The rest of this paper is organized as follows. In Section II,

the proposed probabilistic fusion scheme is introduced and lin-

ear logistic regression fusion is described. Section III describes

the evaluation framework, including the data set and protocol

used in our experiments. Results obtained are presented in

Section IV, and conclusions are gven in Section V.

II. PROBABILISTIC FUSION APPROACH FOR

QUALITY-BASED CONDITIONAL PROCESSING

In this paper, we propose a score fusion approach that

presents advantages over other methods when signals originate

from heterogeneous biometric sources. We adopt a probabilistic

Bayesian framework, presenting two stages. First, the similarity

scores of each modality are mapped to a probabilistic log-

likelihood-ratio via a procedure known as calibration [33].

Second, the calibrated scores, interpretable as log-likelihood-

ratios, are summed. The whole process is represented in Fig. 2,

and both steps are described below. Quality-based conditional

processing is performed in: 1) the normalization stage using

different calibration functions depending on the device used for

query acquisition, which is estimated from quality signals; and

2) the fusion stage, discarding scores which come from low-

quality sources.

A. Proposed Approach

In order to illustrate the motivation and advantages of such

approach, we first consider the verification process as a bi-

nary classification scenario, where two hypotheses (classes) are

present: the target hypothesis (θt: the compared biometric sam-

ples come from the same individual); and the non target hypoth-

esis (θnt: the compared biometric samples come from different

individuals). Now, assume that the information from M dif-

ferent matchers is the vector of scores x = [x1, x2, . . . , xM ]T .
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In a Bayesian probabilistic framework, the optimal decision is

taken using the posterior probability P (θt|x) = 1 − P (θnt|x)
according to the following rule:

For a given x

{

decide θt : P (θt|x) > P (θnt|x)
decide θnt : P (θt|x) < P (θnt|x)

(1)

which can be rewritten in terms of a likelihood ratio as

For a given x

{

decide θt : (p(x|θt)/p(x|θnt)) > τB

decide θnt : (p(x|θt)/p(x|θnt)) < τB .
(2)

Here, τB is known as the Bayes threshold, and its value depends

on the prior probabilities of the hypotheses p(θt) and p(θnt)
and on the decision costs. Both the priors and the costs are

outside of the scope of the biometric system, but it is worth

noting that if the problem is stated in terms of likelihood ratios,

the optimal threshold can be set if p(θt) and p(θnt) and the

decision costs are known [32]. Therefore, the threshold is fixed

and independent of the biometric system.

In order to cope with this framework, a calibration trans-

formation φ(x) is applied to x, after which the score can be

interpreted as a log-likelihood-ratio [31], [33].

φ(x) = log (p(x|θt)/p(x|θnt)) = xcal. (3)

The calibration process gives meaning to xcal in the following

sense. An uncalibrated score xi ∈ x is a measure of similarity

among two biometric samples; however, it is meaningless un-

less the distributions of target and nontarget scores are known.

For instance, if xi = 4, we cannot determine which hypothesis,

target or nontarget, it supports the most. If we additionally

know that the target distribution ranges among 2 and 4, we

can then determine that xi is strongly supporting the target

hypothesis. In this sense, the calibration process allows the

interpretation of a single score, xcal, as a degree of support

to any of the hypotheses: if the score is higher than 0, then

the support to θt is also higher, and vice-versa. Note that a

calibrated score xcal = 0 means no support to any hypothesis,

so no discriminative information is given by such a score.

It is easy to show that if M calibrated scores {xcal
1

,
xcal

2
, . . . , xcal

M } come from statistically independent modalities,

its sum also yields a calibrated fused score [32]

x′cal = xcal
1

+ xcal
2

+ · · · + xcal
M . (4)

This justifies the proposed fusion approach, where we sum

calibrated scores from independent modalities. This approach

presents the following advantages when dealing with signals

that originate from heterogeneous biometric sources.

• The meaning of a log-likelihood-ratio is the same across

different systems. This allows the comparison of biometric

signals that originate from different sources (modalities,

matchers, devices, etc.) in the same probabilistic range.

• The interpretability of the fused score x′cal as a log-

likelihood-ratio allows the use of Bayes thresholds for

optimal decision-making, avoiding the need of computing

a new threshold each time a part of the system is changed.

This is essential in operational conditions because the

threshold setting critically determines the accuracy of the

authentication process in many applications.

• A log-likelihood-ratio will give more support to the target

or nontarget hypothesis depending on the accuracy of

the matcher. When combining (summing) independent

sources, the most reliable modality will have a dominant

role. In other standard normalization methods [20] (as the

one used in this paper as baseline, see Section III-D), all

the modalities are considered to have the same weight in

the fusion since scores of each modality are normalized

to a similar range (e.g., [0, 1]) independently of its accu-

racy. This is a common problem of these normalization

methods, which makes the worst modalities to yield mis-

leading results more frequently [20].

• The sum of calibrated scores [(4)] also yields a calibrated

score regardless of the number M of sources. It provides

an elegant and simple solution for handling a variable

number of sources, allowing an infrastructure lacking ho-

mogeneity. For instance, users can be enrolled in all the

biometric traits and later, depending on the access location

(home, office, etc.), different modalities and/or sensors can

be used. The same applies when a source is rejected due to

low quality, as done in this paper.

B. Score Calibration via Logistic Regression

Logistic regression is a well known pattern recognition tech-

nique widely used for many problems including fusion [30],

[31], and more recently, calibration [33]. Its aim is to obtain

an affine transformation (i.e., shifting and scaling) of an input

data set in order to optimize an objective probabilistic function.

For a given vector of scores x = [x1, x2, . . . , xM ]T , the logistic

regression model can be stated as follows:

flr = log
P (θt|x)

P (θnt|x)
= a0 + a1 · x1 + · · · + aM · xM . (5)

Using Bayes theorem, this expression allows the computation

of the log-likelihood-ratio [32]

log
p(x|θt)

p(x|θnt)
= a0 + a1 · x1 + · · · + aM · xM − λ (6)

where λ is a factor dependent on the ratio p(θt)/p(θnt) [32].

However, this factor has no influence in the transformation to

log-likelihood-ratios, as can be seen in [33]. In fact, it can be

demonstrated [30], [31] that the optimization of the likelihood

ratio in (6) can be achieved by minimizing the following objec-

tive function with respect to {a0, a1, . . . , aM} for an arbitrary

given value of the prior probabilities1:

Clr = P (θt)
1

NTG

NTG
∑

j=1

log
(

1 + e−f
j

lr

)

+P (θnt)
1

NTI

NTI
∑

j=1

log
(

1 + e−f
j

lr

)

(7)

where f j
lr values come from applying (5) to a training set

of target (j = 1, . . . , NTG
) and nontarget (j = 1, . . . , NTI

)

1If the prior probability is not known, as it may happen in some applications,
a value of 0.5 is a recommendable choice [33].
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TABLE I
EXPERIMENTAL PROTOCOL

scores for each modality i (NTG
and NTI

are the number of

target and nontarget scores in the training set).

As it can be seen, the logistic regression model encour-

ages the probabilistic interpretation of the output score in the

form of a log-likelihood-ratio by means of the affine cal-

ibration transformation φ(x) = a0 + a1 · x1 + · · · + aM · xM

[(5)]. This process is performed for each independent modality

in the system, allowing the sum fusion scheme proposed in this

section. In order to perform logistic regression calibration, the

freely available Focal toolkit for Matlab has been used [37].

III. EVALUATION FRAMEWORK

A. Data Set and Experimental Protocol

We use the set of scores of the Access Control Scenario

Evaluation of the BioSecure Multimodal Evaluation Campaign

[9] as provided to the participants. This evaluation was con-

ducted in 2007 by the BioSecure Network of Excellence [12]

as a continuation of the acquisition campaign of the Biosecure

Multimodal Database [10]. The aim of this evaluation was

to compare the performance of multimodal fusion algorithms,

assuming that the environment is relatively well controlled

and the users are supervised. We focus on the quality-based

evaluation, whose objective was to test the capability of a fusion

algorithm to cope with query biometric signals that originate

from heterogeneous biometric devices.

The Biosecure Multimodal Database contains six biometric

modalities [10]: face, speech, signature, fingerprint, hand, and

iris. Several devices under different conditions and levels of

supervision were used for the acquisition. In this paper, we

use a subset of 333 persons designed for the purpose of the

Access Control Evaluation. This subset was collected over

two sessions, separated by about one month interval, with two

biometric samples per device and session. The first sample

of session one was considered as the template, whereas the

remaining three samples were considered as query data.

Among the 333 subjects, 207 were considered “clients” for

whom a template was created: 51 “clients” for training (whose

scores and identity labels were provided to the participants to

tune their algorithms) and 156 for evaluation (whose scores,

mixed genuine and impostor claims, were provided to the

participants to be fused without identity labels, which were

sequestered by the evaluation organizers to evaluate the com-

peting algorithms). The remaining 126 subjects served as “zero-

effort impostors” (i.e., no template is created for them). The

experimental protocol is summarized in Table I. The training

impostor set of scores of Session 1 contains 103 × 4 samples

per subject, which means that when the reference subject is

TABLE II
BIOMETRIC TRAITS AND BIOMETRIC DEVICES CONSIDERED

TABLE III
REFERENCE SYSTEMS AND QUALITY MEASURES USED

considered a template, all the 4 samples of the half of the

remaining 206 subjects are considered impostors. The other

half are used as impostors in Session 2. This ensures that the

impostors used in Sessions 1 and 2 of the training set are not

the same. Note that the evaluation impostor score sets contain

the 126 zero-effort impostors, so a fusion algorithm will not

have already “seen” the impostors during its training stage,

avoiding systematic and optimistic bias of performance. Prior

to the evaluation, the training set of scores was released to

the participants to tune their algorithms. It was recommended

to use only Session 2 as training data since Session 1 may

be optimistically biased due to the use of template and query

data acquired on the same session. In this paper, we follow

this recommendation, using only Session 2 of the training set

for training our algorithms. Session 1 of the evaluation set

is intended for user-adapted fusion [8], whereas Session 2

is for testing purposes. The work reported here is not user-

adaptive and therefore, it will only be run on Session 2 of the

evaluation set. The division of training and testing and query

and enrolment in the data was the same for all the participants,

which is also the same used in the experiments of this paper.

B. Face and Fingerprint Systems

The Access Control Evaluation only considered face and fin-

gerprint modalities [3] (see Table II). Several reference systems

and quality measures were used. These reference systems are

summarized in Table III. Low- and high-quality still frontal face

images were collected with two different cameras (denoted as

fa1 and fnf1, respectively). The system used is an LDA-based

face verifier [38], and the 14 face quality measures indicated in

Table III were computed using the proprietary Omniperception

SDK.2 The fingerprint data was collected with an optical and a

thermal sensor, denoted as fo{n} and ft{n}, respectively, with

n = {1 = thumb, 2 = index, 3 = middle} fingers of the right

hand. The system used is the NIST fingerprint system [39],

whereas the quality measure is based on averaging local gradi-

ents [26]. In Fig. 3, the biometric sensors as well as acquisition

samples of the modalities used in the evaluation are shown.

2http://www.omniperception.com.
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Fig. 3. Hardware devices and samples of the modalities considered in the
Access Control Evaluation. Top row: face modality (left/right: low/high res-
olution camera). Bottom row: fingerprint modality (left: optical sensor with flat
positioning of the finger; right: thermal sensor with finger sweeping).

Fig. 4. Performance of the modalities of Table II in the training and evaluation
sets defined in Table I. Results of cross-device matching are also shown.

C. Cross-Device Evaluation

In the quality-based evaluation, matching can occur between

a biometric template acquired using one device and a query

biometric data acquired using another device. Template data is

always acquired with a high-quality device [i.e., giving better

verification performance (see Fig. 4)] and query data may be

acquired using a high- or a low-quality device. This is a reason-

able operational assumption (i.e., quality control is applied at

least during enrolment), although this may not be true in some

unsupervised environments [21]. The channels of data consid-

ered are face and the three right fingerprints, denoted as fnf1,

fo1, fo2, and fo3 (see Table II). In case of cross device matching,

these channels are denoted as xfa1, xft1, xft2, and xft3. The

development set distributed to the participants consisted of

scores and quality measures of all 8 channels. The (sequestered)

evaluation set, on the other hand, contained only 4 channels of

data as a result of mixing fnf1/xfa1 and fo{n}/ft{n}, with

n = {1 = thumb, 2 = index, 3 = middle}. These four chan-

nels of data can be any of the combinations of Table IV (for

a given access, all fingerprints were acquired with the same

device). The performance of the different modalities on the

training and evaluation sets are shown in Fig. 4.

It should be noted that there was missing data in the sets of

scores because some matchings or quality estimates could not

be computed by the algorithms used in the evaluation. In the

TABLE IV
POSSIBLE MIXTURES FOR EACH ACCESS (QUERY SENSORS ARE

SPECIFIED, ALL TEMPLATES ACQUIRED WITH THE HIGH

RESOLUTION FACE CAMERA AND THE FLAT FINGERPRINT

SENSOR). HR/LR STANDS FOR HIGH/LOW RESOLUTION.
FA/SA STANDS FOR FLAT/SWEEP ACQUISITION

training set, one missing score in the xft1 channel and 51 scores

in the fo3 channel are found (less than 1%). In the test set, about

3% of the scores in the fingerprint channels and 16% in the face

channel are missing. It is not the aim of this paper to deal with

missing data in multibiometrics, so prior to the experiments,

we have corrected the missing values of the training set as

follows. When a genuine (impostor) score of a specific sensor is

missing, its value is set to the mean value of the remaining valid

genuine (impostor) scores. Similarly, when a quality measure is

missing, its value is set to the mean value of the remaining valid

measures. For the evaluation set, it is not known in advance if

we are dealing with a genuine or an impostor access, so we

use a different strategy. When a fingerprint score of an access

is missing, its value is set to the mean value of the remaining

valid scores prior to the fusion (the same applies to the quality

values). If an entire modality is missing, it is not used in the

fusion. If both modalities are missing, the fused score is set to

the threshold value at the EER point on the training set. This

was the procedure followed in our submission to the quality-

based evaluation of Biosecure, where the rejection of an access

was not allowed [9]. To be consistent with the evaluation, this

procedure is also used in the experiments reported in this paper,

unless indicated.

D. Baseline Fusion Scheme

To compare the performance of the proposed probabilistic

fusion approach (Section II), we use a set of baseline rule-

based fusion procedures over normalized scores based on the

arithmetic mean, the minimum and the maximum [36]. These

schemes have been widely used to combine multiple classifiers

in biometric authentication with good results [35], [36]. The use

of these fusion rules is motivated by their simplicity, as complex

fusion approaches need training and their superiority over fixed

fusion approaches cannot even be guaranteed (e.g., see [40]).

Matching scores are first normalized to be similarity scores in

the [0, 1] range using tanh-estimators [20]

s′ = 0.5 {tanh (0.01 ((s − µs)/σs)) + 1} (8)

where s is the raw similarity score, s′ is the normalized simi-

larity score, and µs and σs are the estimated mean and standard

deviation of the genuine score distribution, respectively. The

tanh-estimator is used because it is referred to as a robust

and highly efficient normalization method [20]. Similar to the

architecture proposed in Fig. 2, face and fingerprint scores

are normalized separately and subsequently fused with the

mentioned rules.
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IV. EXPERIMENTS

The experiments are divided into four parts.

1) Estimation of the Acquisition Device From Quality Mea-

sures. There are four subproblems that can be identified

in addressing cross-device matching depending on the

following assumptions [29]: a) whether a set of possible

devices is known or not; and b) whether the actual ac-

quisition device is known or not. Here, we will address

the case where the set of devices is known, but further

distinguish the subproblems where the actual device used

in the acquisition is known or not. When the actual device

is not known, we will show that it can be inferred using

quality measures from the raw biometric data.

2) System Performance With Quality-Based Device Estima-

tion. In this experiment, the proposed fusion approach

is compared to the baseline fusion rules using device

estimation based on quality measures. For comparison

purposes, we also show the performance when the actual

acquisition device is known.

3) Sensor Interoperability Analysis. Here, we test the ca-

pabilities of the proposed fusion approach to cope with

biometric data from heterogeneous devices. We report the

performance of the different combinations of channels

of data described in Section III-C/Table IV, both for the

proposed fusion approach and for the best baseline fusion

rule according to the results of Part 2.

4) System Performance With Quality-Based Score Rejection.

This experiment is aimed to test the effects of rejecting

channels with low quality data during the fusion. Accord-

ing to our experiments, an EER improvement of 25% is

achieved by incorporating a quality-based score rejection

scheme in the proposed fusion approach.

A. Estimation of the Acquisition Device From Quality Measures

According to the protocol of the quality-based evaluation [9],

no information was given regarding the device used for query

acquisition. In this scenario, we were interested in exploring

the potential benefits of conditional processing based on a

prediction of the input device. For this purpose, we used the

quality measures provided assuming the following.

• If the template and the query were from the same device

(i.e., fnf1, fo1, fo2, fo3), both images would have similar

quality values and they would be high.

• If the template and the query were from different devices

(i.e., xfa1, xft1, xft2, xft3), the quality value of the template

would be higher than the quality value of the query, and

the quality value of the query would be low.

To estimate the device, we used a quadratic discriminant

function with multivariate normal densities for each class [32].

For the face modality, we used the 14 quality measures of

the query image (see Table III). For the fingerprint modality,

we derived the following 8 parameters from the quality of

the templates (Qti) and queries (Qqi) of the three scores

corresponding to each access (i = 1, 2, 3): 1) Number of finger-

print scores such as Qti > Qqi; 2) max(Qqi); 3) max(|Qti −
Qqi|); 4) min(Qqi); 5) min(|Qti − Qqi|); 6) mean(Qqi);
7) mean(|Qti − Qqi|); and 8) max(Qti − Qqi).

TABLE V
QUALITY FEATURE COMBINATION FOR THE ESTIMATION OF THE DEVICE

USED FOR THE QUERY ACQUISITION. RESULTS SHOW THE ERROR

RATES IN THE ESTIMATION OF THE DIFFERENT DEVICES

Fig. 5. Verification results of the proposed log-likelihood fusion (Loglik.)
together with baseline fusion rules used for comparison (Loglik. SUM is further
studied in the present paper, Loglik. MAX was the approach submitted by the
authors to the quality-based Biosecure Evaluation). (Left plot) With device
estimation using quality measures. (Right plot) Without device estimation
(knowing the actual device used in each access).

We tested all the combinations of 1, 2, and 3 quality features

in order to determine the device used for the query acquisition.

Results of the best cases are shown in Table V. For the face

modality, a remarkably low error rate is obtained using the

training set, even with only one parameter. This is not true for

the evaluation set, which could be due to the small size of the

data set provided for training (51 × 103 × 4 = 21 012 impostor

scores but only 51 × 2 = 102 genuine scores, see Table I).

On the other hand, we observe high error rates in the estimation

for the fingerprint modality in both data sets. Interestingly

enough, the estimation fails mostly with the optical sensor.

B. System Performance With Quality-Based Device Estimation

Based on the results of the input device estimation on the

training set, we trained a score normalization function for each

face modality (fnf1, xfa1), and a unique fusion function for both

fingerprint modalities (fo, xft), as shown in Fig. 2. This was our

approach submitted to the quality-based evaluation, but using

the MAX rule of the two calibrated scores instead of the SUM

rule of this paper [10]. Results of both approaches are shown

in Fig. 5(left), together with the baseline fusion rules used for

comparison. As observed in Table V, the device estimation did

not perform well on the evaluation set (a fact not known until

the evaluation set was released after the evaluation). Therefore,
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Fig. 6. Results of the quality-based evaluation of the BioSecure Multimodal
Evaluation Campaign on the evaluation set (extracted from [9]). Our approach
is marked as “UPM.” (Left) Fusion system performance versus proportion of
missing data. (Right) Fusion system performance in DET.

with the aim of evaluating the effects of such a bad device es-

timation, we also depict in Fig. 5(right) the results considering

the actual device used in each access, training in this case a

modality-specific score normalization function. Although that

was not the protocol in the evaluation, it is reasonable to assume

that the specific sensor used in an operational environment is

known.

As can be observed in Fig. 5(left), the proposed approach

based on log-likelihood SUM fusion results in the best perfor-

mance, outperforming all the baseline fusion rules (including

the log-likelihood MAX fusion). Only the arithmetic mean and

the maximum rules result in similar performance for low FRR

values, being this difference higher when knowing the actual

device used in each access [Fig. 5(right)]. Finally, comparing

Fig. 5(right) to Fig. 5(left), we can also see the decrease in

performance when using device estimation in comparison to

knowing the actual device used in each access due to the bad

device estimation obtained in the evaluation set (from 5.49% to

7.02% in the EER).

We plot in Fig. 6 the results of the BMEC (extracted from

[9]). Two indicators were used for performance assessment:

equal error rate and half total error rate. EER is defined as the

operating point where FAR = FRR. There is only one unique

threshold satisfying this condition. HTER is the average of FAR

and FRR at a particular threshold supplied by the participants

(in our case, the threshold is equal to zero, meaning no support

to any of the target or nontarget hypotheses). Hence, although

a fusion system may have a low EER, its HTER can still be

relatively high [9] due to a badly estimated threshold. As can

be observed in Fig. 6, the log-likelihood MAX fusion submitted

to the evaluation was ranked second out of 13 participants in

terms of HTER and fourth in terms of EER. We also provide in

Table VI a brief description of the top performing systems. The

algorithms submitted were of very diverse nature [9]: 1) gen-

erative classifiers, in which class-dependent densities are first

estimated and decisions are taken using Bayesian classifiers

(e.g., GET1 and UniS BNq algorithms), Bayesian belief net-

works [41] (e.g., JHUAPL algorithm), or the Dempster–Shafer

theory of evidence [42] (e.g., JR algorithm); 2) discriminative

classifiers, where the decision boundary is directly estimated

using SVMs, logistic regression (e.g., our algorithm, marked as

“UPM”), etc.; and 3) transformation-based, which first trans-

forms the scores of each biometric system into a comparable

range, e.g., [0,1], and then combine the normalized scores using

a fixed rule such as the sum or the product [36]. The latter is the

TABLE VI
BRIEF DESCRIPTION OF TOP PERFORMING SYSTEMS AT THE

QUALITY-BASED EVALUATION OF THE BIOSECURE MULTIMODAL EVALUATION

CAMPAIGN (MORE DETAILS CAN BE FOUND IN [9])

TABLE VII
VERIFICATION RESULTS OF THE FUSION IN TERMS OF EER (%) FOR THE

FOUR DIFFERENT MIXTURES DEFINED IN TABLE IV ON THE EVALUATION

SET. THE RELATIVE EER INCREASE WITH RESPECT TO THE BEST

MODALITY INVOLVED (SEE FIG. 4) IS ALSO GIVEN IN BRACKETS

strategy followed by the baseline fusion scheme used in this

paper (Section III-D).

According to Fig. 6(left), the top two systems are UniS BNq

and our system, “UPM.” These two systems are device-specific:

they first estimate how probable the channel of data is from

the observed quality measures, and then use the corresponding

device-dependent fusion function. The next best system is

GET1, which is a bayesian classifier whose class-conditional

densities are estimated using GMMs [43]. This system does

not use quality measures, so it does not change its fusion

strategy under cross-device matching. Some of the systems that

use quality measures are not among the best systems in terms

of HTER because they did not use the right threshold, e.g.,

JHUAPL. The performance can be assessed in the DET curve

[Fig. 6(right)] independent of the decision threshold. Here, we

can observe the good performance of JHUAPL. It can be also

observed that JHUAPL dominates for low FRRs, whereas UniS

BNq performs very well for low FARs. We also can see that

the top systems have about 6.0%–6.5% EER, with our system

having an EER of 7.72%. Most of the participating systems are

below 10% EER. It is worth noting that one baseline fusion

rule used in the experiments of this paper works better than

some of the participating systems, which are based on more

complex trained approaches [an EER of 7.57% is obtained with

the arithmetic mean rule; see Fig. 5(left)]. A weakness observed

in our system is its degradation at low FRR values with respect

to other systems having worse EER [see Fig. 6(right)]. This

is improved with the log-likelihood SUM fusion used in this

paper [Fig. 5(left)], also observing an improvement at low FAR

values.
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Fig. 7. Verification results of the fusion for the different mixtures defined in Table IV. (Left plots) With device estimation using quality measures. (Right plots)
Without device estimation (knowing the actual device used in each access).

C. Sensor Interoperability Analysis

To evaluate the capability to cope with query biometric

signals from heterogeneous devices, we report in Table VII the

performance of the four possible combinations for an access

using the proposed log-likelihood sum fusion rule sfused and

the best baseline fusion rule (the arithmetic mean). DET curves

are also plotted in Fig. 7. It can be observed that for the mixtures

involving only the optical sensor (1 and 3), there are no big

differences in performance between the two fusion schemes.

On the other hand, for the mixtures involving mismatched

fingerprint devices (2 and 4), the proposed fusion scheme

outperforms the baseline fusion rule. This is specially evident

for mixture 2, which does not involve mismatched face devices

(only the high resolution camera). We can also see that the

proposed scheme performs best in overall terms, i.e., when

pooling all the mixtures.

It is also worth noting that the best mixtures (1 and 3)

do not use mismatched fingerprint devices and they also

result in the highest relative improvement with respect

to the best individual modality involved, as observed in

Table VII. The mixture involving both mismatched fingerprint

and face devices (4) always performs the worst. However,

about a 30% of improvement is obtained in terms of EER

for this mixture when fusing, as compared to the best single

modality.

D. System Performance With Quality-Based Score Rejection

An operational approach to incorporate quality information

in biometric systems is to reject low-quality samples, as pro-

posed in several studies [14], [21]. But this can be inconve-

nient to users who are asked to be recaptured when particular

samples are of low quality, or even to make a biometric sys-

tem unsuitable to individuals whose data is not consistently

of enough quality. This can be overcome by multibiometric

systems [2], allowing the use of alternative sources of biometric

information.

Here, we have tested this quality-based modality rejection by

not considering in the fusion scores having a quality value lower

than a specific threshold. The quality value of a matching score

is defined as min(Qt, Qq), where Qt, Qq are the qualities of

the template and query biometric samples, respectively, corre-

sponding to the matching. Thus, the worse of the two biometric

samples drives the score [21]. For a given access (consisting of a

face sample and three fingerprints; see Fig. 2), fingerprint scores

with quality lower than the threshold are replaced with the

fingerprint score having the maximum quality value. If the three

fingerprint scores have their quality lower than the threshold,

then the fingerprint modality is entirely discarded. In order to

set the “optimum” quality threshold, we used the verification

performance of the fingerprint and face modalities as scores

with the lowest quality value are discarded, as shown in Fig. 8.

Thresholds are set for each modality by choosing the value that

minimizes the EER on the training set (indicated in Fig. 8 as

vertical lines). Except for the xft fingerprint modality (template

and query with flat and sweep acquisition, respectively), an

EER reduction is also observed on the evaluation set for the

selected thresholds.

Once the optimum thresholds are selected, we evaluate the

performance of the proposed log-likelihood sum fusion on

the mixtures defined in Table I by separately discarding face

or fingerprint scores. Results are shown in Table VIII. In all

cases, an EER decrease (or at least, no significant increase)

is observed except when discarding scores of the xft modality.

This is consistent with the results reported on Fig. 8, where no

reduction on the EER was observed on the evaluation set for the

selected quality threshold. Based on these results, no threshold

will be subsequently applied to the xft modality.

Finally, we jointly apply the score quality-based rejection

in all the modalities using the optimum thresholds selected.

To be consistent with the constraints of the BMEC [9], where

no access can be rejected, the resulting fused score is set to

0 if all the quality measures of an access are lower than the

thresholds. In the proposed log-likelihood fusion strategy, this

means that there is the same likelihood if signals are assumed

to be originated or not by the given subject. This is an ad-

vantage of our probabilistic approach, as no value needs to be

tuned as output when no information about modalities is given.

However, we also report results discarding these accesses of

the computation of the error rates to show the benefits of this

policy. In Fig. 9, we show the number of accesses per modality

that do not comply with the quality requirements, showing that

the fusion allows the recovery of a significant number of the

rejected accesses. Verification results of the fusion with the

proposed quality-based rejection scheme are shown in Table IX

and Fig. 10.
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Fig. 8. Verification performance in terms of EER for the fingerprint and face modalities as scores with the lowest quality value are discarded. The quality value
of a matching score is defined as min(Qt, Qq), where Qt and Qq are the qualities of the template and query biometric samples, respectively, corresponding to
the matching. For the fingerprint modality, the quality feature of Table III is used for Qt and Qq . Due to space constraints, results for the face modality are shown
using only the quality feature of Table III that results in the highest improvement of the EER. (a) Fingerprint. (Left) Template and query with flat acquisition
(fo). (Right) Template and query with flat and sweep acquisition, respectively (xft). (b) Face. (Left) Template and query with a high-resolution camera (fnf1).
(Right) Template and query with high- and low-resolution cameras, respectively (xfa1).

TABLE VIII
PERFORMANCE (IN EER) OF THE PROPOSED LOG-LIKELIHOOD SUM

FUSION ON THE MIXTURES OF TABLE IV AS SCORES WITH QUALITY

VALUE LOWER THAN A PREDEFINED THRESHOLD ARE DISCARDED FROM

THE FUSION. RESULTS ARE SHOWN BY EITHER DISCARDING FACE OR

FINGERPRINT SCORES, TOGETHER WITH THE RESULTING RELATIVE EER
INCREASE IN BRACKETS (REFERENCE RESULTS WITHOUT

QUALITY-BASED SCORE REJECTION ARE SHOWN IN TABLE VII, FIFTH

COLUMN). THRESHOLD VALUES ARE SELECTED ON THE BASIS OF FIG. 8

Fig. 9. Incorporation of quality information in the fusion stage. Results
show the number of accesses per modality with quality value lower than the
predefined thresholds. It can be observed that the fusion reduces significantly
the number of rejected accesses.

TABLE IX
VERIFICATION RESULTS OF THE FUSION ON THE MIXTURES DEFINED

IN TABLE II IN TERMS OF EER (%) FOR THE EVALUATION SET

INCORPORATING QUALITY INFORMATION IN THE FUSION STAGE

(WITHOUT DEVICE ESTIMATION). THE RELATIVE EER INCREASE AS A

RESULT OF QUALITY INCORPORATION IS ALSO SHOWN (IN BRACKETS)

It is remarkable that even when keeping invalid accesses in

the fusion, a performance improvement is obtained (see Fig. 10,

curve “quality”). An additional improvement results from dis-

Fig. 10. Verification results of the proposed fusion incorporating quality
information in the fusion stage (without device estimation).

carding these accesses (curve “quality and rejection”). It is

also observed from Table IX that the highest improvement is

obtained for the mixture incorporating quality-based rejection

both on the fingerprint and face modalities (mixture 3). Worth

noting, too, is that the mixture involving both mismatched face

and fingerprint devices (mixture 4) also results in a considerable

improvement. The mixture having the smallest improvement is

the one involving no mismatched devices (mixture 1).

V. CONCLUSION

As biometric technology is increasingly deployed, it will be

a common situation to replace parts of operational systems

with newer designs and/or to operate with information from

different sources [3]. The recent quality-based evaluation of

the BioSecure Multimodal Evaluation Campaign [9] was aimed

to compare the performance of different multimodal biometric

fusion architectures and algorithms when biometric signals

originate from heterogeneous devices in mismatched condi-

tions. This evaluation operated at the matching score level,

providing participants with different sets of scores which were

obtained using several reference systems. Quality information

of the associated biometric signals was also provided with the

aim of adapting the fusion algorithms to the different devices,

a strategy which is referred to as quality-based conditional

processing [19].

Authorized licensed use limited to: Univ Autonoma de Madrid. Downloaded on August 09,2010 at 10:34:16 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ALONSO-FERNANDEZ et al.: QUALITY-BASED CONDITIONAL PROCESSING IN MULTI-BIOMETRICS 11

In this paper, we have described the ATVS-UAM fusion strat-

egy submitted to this evaluation [10], with very good results

(second out of 13 participants in terms of HTER and fourth

in terms of EER [9]). In our approach, output scores of the

individual matchers are first mapped to log-likelihood-ratios by

linear logistic regression prior to the fusion stage. The proposed

strategy allows the efficient combination of scores that originate

from different biometric sources (modalities, matchers, devices,

etc.) since they are in a comparable probabilistic domain, and

they are generalizable to newer developments or additional

modalities. Quality-based conditional processing is carried out

in two stages of the proposed strategy: by estimating the device

used in each access in order to switch between different linear

logistic regression modules and by rejecting scores from low-

quality biometric samples. Worth noting too, is that a con-

siderable performance improvement has been obtained when

applying the quality-based score rejection. Although entirely

rejecting low-quality data may be suboptimal, it constitutes

a starting point on how to use low-quality data in a multi-

biometric system. Although low-quality data may not be able to

drive as strong an inference as high-quality data, its inclusion in

the fusion will be the source of future work. Quality analysis is

also of crucial interest in new challenging scenarios as a result

of noncooperative and/or at a distance environments [44], [45].

The proposed fusion approach is also able to cope easily with

missing values of any modality. In the Biosecure quality-based

evaluation, the robustness of the submitted algorithms against

missing values was also evaluated. The proposed fusion scheme

also obtained remarkable results [9], being the first in terms

of HTER when the proportion of missing data was increased

(i.e., higher than 20%; see Fig. 6). This encourages us to further

study how to handle missing biometric data in multi-biometric

scenarios.
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