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Abstract— As biometric technology is rolled out on a larger
scale, it will be a common scenario (known as cross-device
matching) to have a template acquired by one biometric device
used by another during testing. This requires a biometric system
to work with different acquisition devices, an issue known as
device interoperability. We further distinguish two sub-problems,
depending on whether the device identity is known or unknown.
In the latter case, we show that the device information can
be probabilistically inferred given quality measures (e.g., image
resolution) derived from the raw biometric data. By keeping
the template unchanged, cross-device matching can result in
significant degradation in performance. We propose to minimise
this degradation by using device-specific quality-dependent score
normalisation. In the context of fusion, after having normalised
each device output independently, these outputs can be combined
using the Naive Bayes principal. We have compared, and cate-
gorised several state-of-the-art quality-based score normalisation
procedures, depending on how the relationship between quality
measures and score is modelled, as follows: i) direct modelling,
ii) modelling via the cluster index of quality measures, and iii)
extending (ii) to further include the device information (device-
specific cluster index). Experimental results carried out on the
Biosecure DS2 data set show that the last approach can reduce
both false acceptance and false rejection rates simultaneously.
Furthermore, the compounded effect of normalising each system
individually in multimodal fusion is a significant improvement in
performance over the baseline fusion (without using any quality
information) when the device information is given.

I. INTRODUCTION

A. Interoperability of Biometric Devices

Person verification using biometrics such as face and fin-

gerprint is becoming an important solution to border control

and identity fraud [1]. As the biometric technology is being

rolled out on a nation-wide scale, e.g., in the form of passport

control, biometric devices may be replaced with newer designs

(possibly from a different vendor), or old ones may be

replaced with newer ones from the same vendor but having

a different parameter configuration. For instance, in the US-

VISIT (United States Visitor and Immigration Status Indicator

Technology) program, an optical fingerprint sensor is being

used during enrolment, but it is not guaranteed that the same

type of sensor will be used elsewhere and indefinitely. In fact,

the cost of re-enrolling individuals with the actual sensor to

be deployed can be very high, making sensor interoperability

an important practical requirement [2].

The National Biometric Security Project (NBSP) 1 proposed

to improve device interoperability by standardisation efforts,

which attempts to ensure that any two biometric devices are
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capable of producing raw images that can be processed by a

matching subsystem. Two types of failure can occur: failure-

to-extract features or failure-to-match two feature samples.

Even though two devices may be interoperable (not producing

any of the two types of failure just mentioned), matching the

biometric raw data they produce (known as “cross-device”

matching) can still result in significantly sub-optimal perfor-

mance as compared with matching two biometric samples

acquired from the same device (“same-device” matching). This

has been demonstrated for at least three different biometric

modalities by: Ross and Jain [2] using an optical and a solid-

state fingerprint sensor, Malayath [3] using an electret and

a carbon microphone (for the speech modality), and Alonso-

Fernandez et al [4] using two Tablet PCs (for online signature).

Our study using face images captured by a digital camera and a

web camera (with significantly lower resolution and in adverse

environment) also confirms the degradation in performance.

The solutions to biometric sensor interoperability can be

grouped into at least three categories: data-level, feature-level

and score-level calibration. In the data level calibration, the

goal is to model the physics of the distortion process intro-

duced by a sensor, in order to recover the actual (canonical)

biometric representation. This can be done using a distortion

compensation model, as briefly mentioned in [5]. A second

solution is to model the relative distortion between images

acquired using two different sensors, as proposed in [5]. In

the feature-level calibration, the goal is to compute a common

(feature) subspace given a pair of raw biometric samples

acquired using two different biometric devices. An established

statistical approach in machine learning to solve this problem

is called canonical correlation analysis (CCA) [6]. Finally,

the score-level calibration aims to map the output of different

devices into a canonical score space so that a single decision

threshold can be used rather than having to optimise one for

each device [7]. In the context of fusion, as will be shown in

this paper, score-level calibration has an important role.

There are four sub-problems that can be identified in ad-

dressing device interoperability, depending on the dichotomies

of the following two assumptions: whether the actual acqui-

sition device is known or not; and whether a set of possible

devices is known or not. We shall address the problem where

a set of devices is known, but further distinguish two sub-

problems; namely whether the actual device used to acquire

a biometric sample within the set may or may not be known.

When the actual device is not known, we will show that it is

possible to probabilistically infer this information from a set

of quality measures derived from the raw biometric data.

Quality measures are an array of measurements quantifying

the degree of excellence or conformance of biometric samples

to some predefined criteria known to influence the system
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Fig. 1. Samples of two fingerprints acquired using two fingerprint sensors
and their associated local quality maps [8].

performance. Examples of quality measures for the face (still)

images are focus, contrast and face detection reliability [9]

(see Figure 5). For fingerprint, local image gradients have

been reported [8] (see Figure 1). Quality measures have

been extensively used in multimodal biometric fusion [10],

[11], [12], [13], [14], where the goal is to weigh the output

of each biometric device such that biometric samples with

higher quality contribute more to the final combined score. In

our context, these methods are not used directly in fusion, but

rather used as a quality-based score normalisation procedure,

hence, considering fusion only after the individual biometric

device output has been normalised.

Since the work presented here falls into the category of

score-level calibration, only the related work in this domain

will be covered in the next section.

B. Related Work in Quality-Based Score Normalisation

To the best of our knowledge, the issue of quality-based

score normalisation is rarely discussed. Instead, the focus

has always been dominated by the literature on quality-based

fusion. We shall distinguish two categories in this literature:

those that have the potential to be used as quality-based

score normalisation [10], [14], [9], [15] and those that cannot,

e.g., [11], [12], [13]. The reason that the latter category of

algorithms are not applicable is that they have been designed

specifically to consider the joint score space in such a way

that it is not possible to factorise the approach for each device

independently. We shall, therefore, review only the algorithms

in the first category.

Quality-based score normalisation can be categorised ac-

cording to how the relationship between match scores and

quality measures is modelled, which can be: i) direct mod-

elling; ii) modelling via cluster of quality measures, also

referred to as quality cluster throughout this paper; and, iii)

associating each device with a quality cluster. We will show

that these methods can be considered in a more general

Bayesian framework.

• Direct modelling: Nandakumar et al. [10] proposed a

likelihood ratio-based approach to achieve quality depen-

dent score fusion. This is a generative approach to model

the relationship between scores and quality measures

of the same modality. The likelihood of scores and

quality measures of different biometric modalities are

combined using the product rule, hence, realising a naive

Bayes classifier. The result is that the less informative

modalities will produce likelihood ratio close to one and

will therefore not influence the final combined score.

Kittler et al. [14] proposed a framework to incorporate

the quality information in fusion from the pattern recog-

nition perspective. In this framework, various levels of

system output dependency, i.e., whether scores belong

to the same modality or to different modalities, are

considered. In the study, match scores are augmented by

a vector of quality measures in such a way that the pair-

wise interaction between these two variables (in the sense

of a tensor product) is modelled by a linear discriminative

fusion function. It was first shown that quality-based

fusion is non-linear with respect to the match scores.

• Modelling via quality cluster Poh et al. [9] proposed

a generative approach to estimate the joint density of

scores and quality measures by first clustering the quality

measures into discrete hidden states (the quality clusters).

This approach assumes that the scores and quality mea-

sures are independent given the discrete quality cluster.

This approach is sensible because similar quality mea-

sures in a cluster will share similar statistical property

(i.e., similar combination of factors, e.g., lighting condi-

tion, head pose and image resolution for face images) and

thus they can be combined by the same fusion classifier,

and vice versa for dissimilar quality measures.

Maurer et al. [15] applied a Bayesian belief network to

the problem of quality-based fusion. The novelty lies in

modelling the density of match scores conditioned on

the quantised quality measures, rather than the direct

modelling approach (between match scores and qual-

ity measures). The subtle difference between the two

approaches, as will be shown later, is that the former

approach involves first of all a more simplified model

(in terms of the assumption used) but is also technically

difficult to implement when the quality measures are

multi-dimensional. Maurer et al. ’s approach falls into

this category because by quantizing/binning the quality

measure (which was assumed to be scalar in their case,

rather than a vector), they effectively associate a quality

measure with a quality cluster.

• Modelling with device information Instead of using the

hidden quality cluster, Poh et al. [7] proposed to use

a qualitative device characterisation. This study showed

that it is possible to design a quality-based score normal-

isation procedure in order to mitigate the effect of device

mismatch. The basic idea is to identify the device used

to acquire a sample and then use a quality-normalisation

strategy tailored to the device. The same concept was also

independently demonstrated in [16] but in the context of

multimodal biometric fusion.

C. Our Approach and Contributions

While there is abundant literature on quality-based fusion,

e.g., [11], [12], [13], [10], [17], [18], our approach deviates

from the mainstream in two ways: First, the focus in the



mainstream is on quality-based fusion, whilst our focus is

on quality-based normalisation and treating the fusion as a

second stage process. Such an approach is also pursued in [10],

[15]. Second, while quality measures are often treated as

scalar values, in this paper, we consider them as a vector

of measurements derived from raw biometric samples. This

is very important because for instance, for face images, it is

common (and necessary) to use several quality measures to

characterise the quality of a cropped face image (e.g., head

pose parameters, face detection reliability), and the intrinsic

characteristic of image quality (e.g., focus, contrast).

Our contribution is three-fold. First, we propose a new

quality-based score normalization procedure, capable of incor-

porating the qualitative device information. It is a generaliza-

tion of several quality-based score normalisation procedures,

including [10], [15], [9], [7]. Because of the generalization,

the method can still be used when the device information

is absent in testing (the second sub-problem), but can still

take advantage of such information in training. Second, we

compare several existing quality-based score normalisation

procedures, essentially adapted from the quality-based fusion

literature. Third, we demonstrate that quality-based normalisa-

tion/calibration with device information can be used effectively

in fusion, using the Naive Bayes principal.

For the sub-problem where the device identity is known, the

proposed method significantly outperforms all the submitted

fusion systems in the past evaluation [19]. This method has

the practical advantage of being very generic: it is applicable

to any biometric device, and only the output match scores

are needed. This greatly facilities integration of multimodal

biometrics across different vendors (where the internal func-

tionality of a device is often not disclosed). This is unlike the

feature-level or data-level calibration where the raw data is

required (although undoubtedly further performance improve-

ment can still be tapped by this approach).

Our proposal was validated on the Biosecure DS2

database [20] using the face and fingerprint modalities.

D. Paper Organisation

This paper is organised as follows: Section II presents a

Bayesian framework unifying several quality-based normalisa-

tion procedures derived from the multimodal fusion literature.

Section III describes the database that will be used to assess

the procedures and the results are presented in Section IV.

Section V discusses some possible future research directions.

This is followed by conclusions in Section VI.

II. A BAYESIAN FRAMEWORK

This section presents four different methods of modelling

the relationship between match scores and quality measures

already mentioned in the introduction.

A. Notation

Throughout this paper, graphical models [21], also known as

Bayesian networks [22], are used to compare different existing

quality-based fusion algorithms. It is, therefore, indispensable
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Fig. 2. Various graphical models that model the relationship between match
scores y and quality measures q via quality cluster Q and device qualitative
information d, conditioned on the authenticity of the matching, i.e., the class
label k.

at this stage to present this concept. A graphical model of

evidence combination in statistical decision making is a graph

with directed arrows representing conditional probabilities. A

node in the graph is a variable. An arrow from variable A to

variable B specifies their causal relationship, i.e., the condi-

tional probability of B given A, i.e., p(B|A). The graphical

models that we shall use are shown in Figure 2. These models

will be explained in detail in Section II-B.

In the graphs just shown, the following variables are used:

• k ∈ {C, I} is the true class label, i.e., being either a

genuine user (also known as a client) or an impostor.

• q ∈ R
Nq is the vector of quality measures output by

Nq quality detectors. A quality detector is an algorithm

designed to assess the quality of an image, e.g., the

number of bits per pixel ratio, contrast and brightness as

defined by the MPEG standards. In our case, these quality

measures deal with face images describing, for instance,

the orientation, illumination and spatial resolution of a

face image. Both the general and face-related quality

measures will be used in this paper.

• the quality state Q ∈ {1, . . . , NQ} which signifies one

of the NQ discrete events2 each describing a composite

combination of quality degrading factors. Under well

controlled facial recognition experiments, Q can be as-

sociated with factors that affect the system performance,

for instance, {wearing glasses, back illumination, smile},

{no glasses, left illumination, neutral}, etc. These states

are obvious from a direct examination of face images.

However, from a computational point of view, Q is not

observable when a biometric system operates without

2Note that NQ and Nq are different. We use the small letter “q” to denote
a quality measure and the capital “Q” to denote a quality cluster.



human intervention. Note that, in practice, in uncontrolled

acqusition environment, it is difficult to associate Q

with a semantically meaningful category, a problem akin

to assigning a semantic label to a cluster found by a

clustering algorithm.

• d ∈ {1, . . . , Nd} signifies one of the Nd devices. Although

the set of devices used for data acquisition is known,

which device was actually used to acquire a particular

query biometric sample may or may not be known,

hence, constituting two variants of the problem. The

solution to the latter problem (with unknown device) can

enable “plug-and-play” of biometric devices (hence not

requiring any configuration) since the device identity can

be probabilistically inferred. In this study, for the face

modality, two choices of cameras are possible: web-cam

(of low resolution images) and digital camera (giving

higher resolution images). For the fingerprint modality,

the devices are either optical or thermal sensor. While it is

easy to distinguish manually images taken by a web-cam

versus a digital camera, or by an optical versus a thermal

sensor, from a computational point of view, the device

d is not observable when a biometric system operates

without human intervention.

• y ∈ R
N is the vector of scores output by N base

biometric authentication systems. They are stacked to

form a vector. This form is used often in a fusion frame-

work [23] (and references therein) and is useful to model

the dependency among the system outputs. On the other

hand, when N = 1, i.e., no other systems are involved,

estimating the density of a single system output is still

beneficial because quality can systematically influence

the match score distribution. More rationale and insights

are given in Section II-B.

B. Four Different Models and Their Rationale

The first model attempts to model the joint density of quality

measures and match scores directly. The majority of quality-

based fusion methods are based on this approach, e.g., [24],

[25], [14], [9].

The remaining three models utilise the concept of quality

cluster (i.e., a cluster of quality measures). It is assumed that

quality measures of the same cluster will exhibit statistical

properties that are not only similar among themselves (by

definition) but are also coherent among the match scores

they produce during matching. The concept of quality cluster

was first proposed in [9]. In that study, a fusion strategy

was devised for each cluster of quality measures, in order to

combine the outputs of six face experts. Since only the cluster

index is used when modelling the joint score density, the task

of modelling the relationship between quality measures and

match scores is greatly simplified.

There are at least three possible ways one can derive clusters

of quality measures:

1) The first approach considers finding the natural clus-

tering of quality measures derived from as much bio-

metric data as possible, collected using different de-

vices, possibly in different application scenarios. The

main characteristic of this approach is that the device

qualitative information is not used. For the case of a

single device, this model was reported in [9] where, in

order to combine several face experts (hence intramodal

fusion), a fusion strategy was devised for each cluster of

quality measures. In the experimental context of [9], two

clusters of quality are expected since the face images

are taken with either frontal or side illumination. In

an actual application, it is reasonable to expect several

clusters of quality which could be associated with the

user manner of interaction with a biometric device,

and the acquisition environment. For instance, simply

providing an impression of a fingerprint or sliding it over

a small sensor surface will certainly produce different

effects and is likely to exhibit different image quality.

2) In the second approach, one categorises the quality

measures according to the device which was used to

collect the biometric samples (from which the quality

measures have been derived). If there are Nd devices,

there will be Nd clusters of quality measures. In this

case, one says that the clusters Q are device-dependent.

This approach was found in [7], [16].

3) The third approach can be considered a further re-

finement of the second approach. Since there is no

guarantee that the quality is consistent for each device,

it is reasonable to further find the natural clustering that

exists within each device-dependent cluster of quality

measures. It will be shown that this approach generalises

the above two approaches.

The four graphical models for quality-based biometric fu-

sion are shown in Figure 2. Model (a-i) was proposed in [10]

and a theoretical model discussing its effectiveness can be

found in [25]. Model (a-ii), with q being a discrete scalar

variable as a special case, was found in [15] (the interpretation

of graphs will be further discussed in Section II-C).

Different from model (a), models (b), (c) and (d) all utilise

the concept of cluster of quality measures. Model (b) clusters

the quality measures regardless of the device qualitative in-

formation. It has been used successfully [9] in intramodal

face fusion in which case a single device was involved.

Consequently, the issue of cross-device matching was not of

concern3.

Model (c) [7] explicitly considers the device information.

The structures of model (b) and (c) are very similar; they

converge to the same model if one associates each cluster of

quality measures to an acquisition device. However, this is not

always necessarily the case, because the concept of cluster

extends easily beyond that of a particular device.

Finally, model (d) considers both cluster and device infor-

mation. It addresses the issue that a single device can produce

varying levels of quality. The variation in quality may not be

3The causal relationship shown in Figure 2(b) is p(q|Q) whereas in [9], it
is p(Q|q). As will become clear later (see (8), p(Q|q) is indeed needed during
inference. Although this seems to be inconsistent, it is not because there exists
a deterministic relationship between p(Q|q) and p(q|Q), as shown by (9).
By interpreting Q as some latent factors affecting biometric performance, “Q
causes q” seems to fit better the picture. The same remark also applies to
model (c), as reported in [7].



due to the device itself; it could be the consequence of different

ways the user can interact with the device, and varying

acquisition conditions. By further identifying a number of

quality clusters per device, model (d) is a generalisation of

models (b) and (c).

It is worth highlighting the generative nature of the above

graphical models. For instance, according to model (d) (see

Figure 2(d)), the arrow Q → q implies that the discrete

variables Q and d directly influence the measurement q.

In order to understand the significance of this, let us use

the following hypothetical example. Suppose that we have

a human expert annotating different quality aspects (factors

constituting Q) from a face image. These aspects are a pair

of binary attributes: {presence of glasses, emotion} where

emotion is either neutral or with expression. In this case, Q

will have four states and they are manually annotated. If a

database is controlled and {presence of glasses, emotion} are

the only two possible sources of variation, then, by clustering

q it is possible to recover the resultant four quality states. The

above example shows that Q can capture a higher level of

information. However, in reality, the number of states in Q is

unknown. Furthermore, in practice, it is also difficult to assign

the significance to each cluster; this is an on-going research

issue. We shall be content in this paper that once some clusters

are found, the above models can be used to design multimodal

biometric fusion algorithms.

The device qualitative information d certainly influences

the quality cluster Q. This knowledge is shown by adding an

arrow from d to Q in model (d). Figure 1 illustrates the local

fingerprint gradient produced by two fingerprint sensors. The

global fingerprint quality is defined as the average of all local

fingerprint gradients. It is based on [8] and is used in all our

experiments. Because the devices are different, the resulting

verification performance is also different for these two devices.

This is also well supported by our experiments for the face

modality (see Figure 3). This justifies the causal relationship

p(Q|d) and its use across different biometric modalities.

We conjecture that the varying performance of different

devices (keeping in mind the matching algorithm, for the same

biometric modality, remains identical throughout this paper) is

due to the changing nature of the class-conditional match score

distributions from one device to another, i.e., given devices

d1 and d2, and all other conditions being equal, p(y|k, d1)
can be significantly different from p(y|k, d2) for each of the

class labels k ∈ {C, I}. This phenomenon is, again, well

supported by our experiments (see Figure 4). It is beyond the

scope of this paper to explore the reasons for the existence

of distribution differences. We have, however, two plausible

explanations. First, the input modes, i.e., either sliding or

impressing a finger on a device, are completely different.

Second, the feature extraction module might have been tuned

to perform optimally for a particular device, and hence is sub-

optimal for another one4. The above illustration, again, justifies

why one should model p(y|k, d). Similar justification extends

to the cases p(y|k, Q) for model (b) and p(y|k, Q, d) for model

4The matching algorithm was used out-of-the-box with no tuning whatso-
ever.

(d).

To simplify the discussion, we will treat the case where

both y and q are derived from a single biometric trait. We will

then augment these variables with the subscript m in order to

handle the case of multiple biometric traits. The reason for not

introducing the subscript m at this point is that one does not

need to model the relationship between match score ym′ and

quality measures qm where m′, m are two different biometric

traits. The discussion involving different modalities will be

deferred until Section II-G.

Section II-C will first explain the first approach, i.e., meth-

ods that use quality measures directly. The remaining tech-

niques based on quality clusters are explained in Section II-D.

C. Direct use of quality measures

Model (a), as shown in Figure 2, has two variants: (a-

i) and (a-ii). They can be expressed by the following joint

probabilities5:

p(y, k, q) = p(y|k, q) p(q|k)
︸ ︷︷ ︸

p(k) = p(y, q|k)p(k) (1)

p(y, k, q) = p(y|k, q)p(k)p(q) (2)

respectively. It should be noted that (2) is more restrictive

than (1) because the former does not include the under-

braced term p(q|k). This term is the class-conditional density

of quality measures. If such a causal relationship existed,

than quality measures would have some discriminative power

in distinguishing genuine users from impostors. Since this

is not the case (as will be backed by our experiments;

see Figure 5(a)), this implies that modelling p(q|k) is not

necessary. In comparison, since q has Nd dimensions, by not

modelling p(q|k), model (a-ii) will have much lower number

of parameters. Therefore, in this case, although being more

restrictive, model (a-ii) is an equally effective solution.

One way to realise a classifier from models (a-i) and (a-

ii) are by using the Neyman-Pearson lemma, i.e., taking the

log-ratio of two hypotheses:

ynorm
a1

= log
p(y, q|C)

p(y, q|I)
(3)

ynorm
a2

= log
p(y|C, q)

p(y|I, q)
, (4)

respectively. Based on (1) and (2), both classifiers are related

by:

ynorm
a1

= ynorm
a2

+ log
p(q|C)

p(q|I)

Since q is not discriminative in distinguishing genuine users

from impostors, log p(q|C)
p(q|I) ≈ 0, and as a result, (3) and (4)

converge.

Classifiers (3) and (4) should be compared with the one that

does not use any quality measures at all:

ynorm
0 = log

p(y|C)

p(y|I)
. (5)

5Note that in our notation, we do not distinguish between discrete proba-
bility that is usually written with a capital “p” from the continuous one.



This classifier is the simplest among all the models presented

in this paper, and is reported in [24], [25], for instance.

A crucial issue related to model (a-ii) is that estimating

p(y|k, q) is non trivial compared to p(y, q|k) in model (a-i).

This is because the conditioning variable q in model (a-ii)

is multivariate and continuous. This calls for a multivariate

regression solution. In [15], q was one dimensional. However,

since it is continuous, the authors quantised q into several

states using a histogram. During inference, based on the

histogram, an observed q is assigned to a histogram bin. Since

the binning process is deterministic and the transformed q, say

q′, is discrete (corresponding to the bin index), the density

p(y|k, q′) can be estimated easily.

In the case of multivariate q, a direct generalization of

this approach is to cluster the quality measures into, say NQ

clusters. In this way, an approximate solution is to model

p(y|k, Q) instead of p(y|k, q). This represents a significant

savings in terms of the number of parameters since the variable

Q is one dimensional. As a result, the model p(y|k, Q) remains

in N dimensions. In comparison, p(y, q|k) , which is needed

in model (a-i), has N + Nq dimensions. This implies that for

quality-based fusion with large Nq , e.g., Nq ≫ N , the methods

relying on cluster quality are much more scalable since the

match score density is independent of the dimension of q.

This is treated in the next section.

D. Quality Clusters with Models (b) and (c)

The joint densities represented by models (b) and (c) are

given as follows:

p(y, k, q, Q) = p(y|k, Q)p(q|Q)p(Q)p(k) (6)

p(y, k, q, d) = p(y|k, d)p(q|d)p(d)p(k) (7)

In model (b), one assumes conditional independence between

y and q given Q [21], i.e., if the state Q were known, one could

estimate p(y|Q) without the knowledge of q. The consequence,

in practice, is that one can first cluster the quality measures,

and then estimate the density of match scores y for each

cluster. By so doing, according to model (b), one indirectly

estimates the relationship between y and q, which is the

ultimate goal.

Model (c) can be explained in a similar manner by replacing

Q with d, hence attributing a cluster to a device.

In order to design a classifier from model (b) using the

Neyman-Pearson lemma, one should first estimate p(y|k, q)
from (6):

p(y|k, q) =

∑

Q p(y, k, q, Q)

p(k, q)
=

∑

Q

p(y|k, Q)p(Q|q)(8)

where p(Q|q) is the posterior probability of Q given q, i.e.,

p(Q|q) =
p(q|Q)p(Q)

∑

Q′ p(q|Q′)p(Q′)
. (9)

Similar to (4), the final classifier takes the following form:

ynorm
b = log

∑

Q p(y|C, Q)p(Q|q)
∑

Q p(y|I, Q)p(Q|q)
(10)

An important property of model (b) is the concept of

“conditional independence” [21] between y and q. Given that

the state of Q is known, y and q becomes independent of each

other. This property can be exploited when learning the model

parameters (see Section II-F).

Similar to model (b), the classifier realised using model (c)

is:

ynorm
c1

= log

∑

d p(y|C, d)p(d|q)
∑

d p(y|I, d)p(d|q)
(11)

where p(d|q) is defined similarly to (9) except that the variable

Q is replaced by d.

When the device is known, we have the following variant:

ynorm
c2

= log
p(y|C, d∗)

p(y|I, d∗)
(12)

since p(d∗|q) = 1 and p(d|q) = 0 for all the remaining devices

d 6= d∗.

E. Quality Clusters with Model (d)

The last model, as shown in Figure 2 has the following joint

density:

p(y, k, q, Q, d) = p(y|k, d, Q)p(q|d, Q)p(Q|d)p(d)p(k)(13)

Model (d) can be viewed as a refinement of model (b) by

further considering the device qualitative variable d with the

following three additional arrows:

• d → Q, hence the causal relationship p(Q|d)
• d → q, resulting in p(q|Q, d)
• d → y, implying the need to estimate p(y|k, Q, d)

The justification for the above causal relationships has already

been given in Section II-C.

The conditional density useful for implementing the

Neyman-Pearson lemma, when the device information is

known, is as follows

p(y|k, q, d) =
∑

Q

p(y|k, q, Q, d)

=
∑

Q

p(y|k, Q, d)P (Q|d, q)P (d|q)

=
∑

Q

p(y|k, Q, d)P (Q|d, q) (14)

since P (d|q) = 1 (recall that d is known). Using (14), the

final output of the classifier from model (d) is:

ynorm
d = log

p(y|C, q, d)

p(y|I, q, d)
(15)

On the other hand, if the device information is not given,

we have the following variant of (14):

p(y|k, q) =
∑

d

∑

Q

p(y|k, q, Q, d)

=
∑

d

∑

Q

p(y|k, Q, d)P (Q|d, q)P (d|q)

=
∑

d

∑

Q

p(y|k, Q, d)P (Q, d|q)

=
∑

Q′

p(y|k, Q′)P (Q′|q), (16)



where we introduced a composite variable Q′ ≡ {Q, d}. This

converges to model (b), and the final output is computed

using (10). In this case, the two classifiers are identical during

inference.

A subtle difference between model (b) and model (d) is that

the training strategies are different. When training model (d),

the quality measures q are partitioned into different devices.

For each d, one then clusters the quality measures. On the

other hand, when training model (b), one pools all quality

measures of all devices into a big data set first and then

identifies the quality clusters from the data set. Were there

many more devices available, model (b) would be a viable

solution to address the problem of identifying a biometric

device from an unknown set of devices. Testing this conjecture

is not possible given that only two devices are available in our

database setting (to be presented in Section III).

F. Models Fitting

We shall discuss the issue of learning the model parameters

for model (b) only. The discussion extends to model (d) easily

since the difference between both models is the existence of

the discrete conditioning variable d, e.g., from p(y|k, Q) to

p(y|k, Q, d).
An important property of model (b) is the concept of “con-

ditional independence” [21] between y and q. That is, given

that the state of Q is known, y and q becomes independent of

each other. We will exploit this property in learning the model

parameters. Before doing so, it is instructive to illustrate this

property using the hypothetical example already mentioned in

Section II-B.

Suppose that a human expert has annotated all face images

in a database with the following binary attributes: {presence

of glasses, emotion}. By considering all possible combinations

of these two binary attributes, Q will have four states. Parallel

to this, for each face image, an array of automatically derived

quality measures is also made available. Since in this hypo-

thetical scenario, Q is observed in training, one can first learn

p(y|k, Q) and then learn the relationship between q and Q,

i.e., p(Q|q) based on (8), in two distinctive stages. Note that

the order in which the stages are realised is of no importance.

Therefore, thanks to the conditional independence property,

when Q is observed, the practical implication is that one can

train p(y|k, Q) and p(Q|q) independently.

In reality, however, it is often not possible to annotate all

the quality of the training samples, and furthermore it is not

a viable solution when the system is operational. One has to

resort to discovering the natural clusters by using a clustering

algorithm. Given that Q is unknown, a well known learning

framework with missing observation, called Expectation Max-

imisation (EM) [26], can be used. The learning goal is to

maximise the expectation of (6) (in logarithmic scale), while

marginalising over the unknown variable Q, assuming that

samples are independently and identically distributed:

criterion = Ep(Q|q)

[
∑

n

log p(y(n), k(n), q(n)|Q)

]

where the superscript (n) is the index of a sample in the

training set, and Ep[·] denotes expectation over the distribution

p. This consists of the following two steps: In the expectation

step, one estimates the posterior of Q for each sample via

(8) (with already initialised or calculated parameters). In the

second step, one maximises the likelihood p(y, k, q|Q) =
p(y|k, Q)p(q|Q)p(Q), with respect to the distribution param-

eters, for each Q. A complete roll-out of an EM algorithm

needs to specify the densities: p(y|k, Q), p(q|Q) and p(Q).
Typically, p(y|k, Q) and p(q|Q) are multivariate Gaussian and

p(Q) is a (discrete) probability table.

We shall propose a modular learning solution here that

exploits the conditional independence, and it makes no as-

sumption about the form of p(y|k, Q). The basic idea con-

sists of identifying the natural clusters Q given a set of

q using a clustering algorithm, e.g., a Gaussian Mixture

Model (GMM) [26]. GMM estimates the density p(q) =
∑

Q p(q|Q)p(Q), and in this process, outputs p(q|Q) as the

(Gaussian) component that we need. Once the clusters are

known, in the second step, for each Q = Q∗, p(y|k, Q∗) can

then be learnt using the training samples (y, q) belonging to

component Q∗ = argmaxQ P (Q|q). In our implementation,

p(y|k, Q) is modelled using a GMM for each class label k

separately and for all Q.

In summary, the class conditional match score distributions

p(y|k) (for the baseline comparison), p(y|k, d), p(y|k, Q),
p(y|k, Q, d) and p(q|d) are estimated using GMM. When

using a GMM, the number of Gaussian components is tuned

by cross-validation on the development set.

G. Architectural considerations

This section deals with quality-based fusion involving sev-

eral biometric traits. In the previous sections, y was treated as a

score vector whose elements are individual subsystem outputs

observing the same biometric trait. In multimodal fusion, one

often incorporates the quality measures one modality at a time.

This is done for two reasons: first, the quality measures of one

biometric modality do not give any information about the other

biometric modality – hence implying that there is no need

to model the joint density of y belonging to one biometric

modality and q of another biometric modality. Second, each

of the output ynorm of different modalities, e.g., for any of

(3), (4), (10), (11), (12) and (15), can be combined using

the product rule thanks to the independence of the biometric

modality. Such a Naive Bayes solution is appropriate when the

biometric modalities are independent. It also has the advantage

that fewer parameters need to be estimated than for the joint

modelling of all variables6.

For the above reasons, we shall introduce the modality de-

pendent notation here. Let yi be the output of the i-th biometric

modality; qi be its vector of quality measures extracted from

a biometric sample. Let there be i = {1, . . . , Nm} biometric

modalities. Note that the number of elements in yi corresponds

to the number of classifiers, all observing the same biometric

modality, to combine. This is done in order to capture the

6Note that modelling the joint distribution of variables ynorm across
modalities is still possible provided that the data used to train the normalising
parameters is different from the one that will be used to train the second
stage fusion (taking ynorm across modalities as input). This can be done
using cross validation, for instance.



inherent dependency among the system outputs. This problem

is known as intramodal fusion.

In this context, the final output, realised using the Neyman

Pearson lemma, for model (a-i) is:

ynorm
i = log

p(yi|C, qi)

p(yi|I, qi)
(17)

Thanks to the independence assumption, the final combined

score can be written as:

ycom
gen = log

∏

i p(yi|C, qi)
∏

i p(yi|I, qi)

=
∑

i

log
p(yi|C, qi)

p(yi|I, qi)
=

∑

i

ynorm
i . (18)

Similar formulation can also be written for the remaining

models, i.e., by augmenting subscript i in (4), (10), (11), (12)

and (15).

This means that one can implement any one of the four

graphical models for each biometric modality in parallel and

then combine all Nm biometric modalities using the sum rule

when each pre-processed output is a log-likelihood ratio test.

H. Summary

In summary, we have presented four different approaches for

quality-based score normalization. In the presence matching

involving several devices, models (c) and (d) should be used,

because both of them take into consideration the device

information explicitly. Between the two, model (d) is more

flexible in that it can handle possible variation in terms of

quality of the data, thanks to the hidden variable Q. If there is

only a single state, model (d) converges to model (c). Hence, in

this sense, model (d) is a generalization of model (c). If only a

single device is involved, model (d) converges to model (b). In

this sense, model (d) is a generalization of model (b). Finally,

by integrating the hidden variable Q, a necessary operation

during inference, model (b) converges to model (a). In this

sense, model (b) provides a means to estimate (the density

of) model (a). In each of the above cases, we observe that

model (d) is a complete generalization of all other models.

In the next section, we shall introduce the database that will

be used to compare the performance of these models.

III. DATABASE

A. Face-Fingerprint Experimental Protocol

The Biosecure database used in this study contains as

many as six biometric modalities, i.e., face, speech, signature,

fingerprint, hand and iris. It was collected from 6 participating

European sites each contributing biometric samples of between

20 and 110 persons. The database was captured using different

devices under varying conditions. In this paper, we use a

database subset designed for the purpose of access control,

called “the DS2 (Desktop) evaluation”.

The DS2 subset database was collected over two sessions7,

separated by about one month interval. In each session, two

biometric samples were acquired for each device. This results

7Downloadable at http://face.ee.surrey.ac.uk/qfusion

TABLE I

THE EXPERIMENTAL PROTOCOL OF THE BIOSECURE DS2 DATABASE

Data sets No. of match scores per person
dev. set (51 persons) eva. set (156 persons)

Session 1 Genuine 1 1
Impostor 103 × 4 126 × 4

Session 2 Genuine 2 2
Impostor 103 × 4 126 × 4

·×· are persons × samples. This number should be multiplied by the number
of persons in the above set to obtain the total number of accesses for the
genuine or the impostor classes.

in four samples per device collected over two sessions. The

first sample of the first session is used to build a biometric

template. The second sample of the first session is used to

generate a genuine user match score of session 1 whereas the

two samples of the second session are used in a similar way

to generate two genuine user match scores.

It is important to distinguish the two data sets, i.e., the

development and the evaluation sets. The development set

is used for algorithm development, e.g., finding the optimal

parameters of an algorithm, including setting the global de-

cision threshold. For unbiased performance assessment, the

population of users in these two data sets are disjoint.

There are in total 333 subjects in the database, among

which 206 are considered “clients”, and a template is created

for all of them. The development impostor score set contains

103×4 samples, i.e., 103 subjects, with 4 samples per subject.

The 206 client-set is divided in two equal subsets of 103x4

samples, the genuine and the impostor score set. When a

reference subject is considered a genuine user it is associated

with the genuine subset, all the subjects of which are used as

impostors in Session 2. This ensures that the impostors used

in Sessions 1 and 2 are not the same. Such a characteristic is

important for algorithm development. All the 4 samples of the

remaining half of the 206 subjects are considered impostors

in the development set in Session 1.

The remaining 126 subjects constitute an evaluation im-

postor score set that is considered as an external population

of users who serve as zero-effort impostors. In this way, a

fusion algorithm will not make use of impostors seen during

its training stage; hence, avoiding systematic and optimistic

bias of performance.

B. Dealing with Failures

In this study, the data in Session 1 is not used; instead,

only the data in Session 2 is used. Session 1 data is intended

for evaluating client-specific algorithms, i.e., algorithms the

parameters of which differ from one person to another ac-

cording to the claimed identity. The exact number of accesses

differs from that listed in Table I because of missing data due

to the failure of the segmentation process or other stages of

biometric authentication. The experimental protocol involves

minimal manual intervention. In the event of any failure, a

default score of “-999” is outputted. Similarly, failure to extract

quality measures will result in a vector containing a series of

“-999”. For the purpose of this study, samples with missing



values are removed. This is not critical in the context of this

study because the comparison gauges the merit of using or

not using quality-dependent score normalisation. It should be

noted that inference even with missing values is still possible.

In fact any missing observation will simply not contribute to

the final classifier output, i.e., not part of the indice i in the

sum of equation (18).

For the purpose of this paper, only face and fingerprint

modalities are considered. They are described in the following

sections.

C. Face Systems

Low and high quality still frontal face images are collected

by using two different sensors: a Phillips SPC 900 web camera

(low quality) and a CANON EOS 30D digital camera (high

quality:with/without flash). The images and quality measures

are provided by the Omniperception SDK8. The low quality

images are denoted as “fa” whereas the high quality ones

(without flash) are denoted as “fnf”. The latter ones with flash

were not used here.

The reference system is an LDA-based face verifier [27].

In the context of this study we utilised 14 quality detectors,

i.e., face detection reliability, brightness, contrast, focus, bits

per pixel, spatial resolution between eyes, illumination, degree

of uniform background, degree of background brightness,

reflection, presence of glasses, rotation in plane, rotation in

depth and degree of frontal face images. Although there are

different scenarios in the way we can perform a quality-based

evaluation (high/low quality templates vs. high/low quality

queries),9 the face mismatch problem that we considered

in this paper is high quality templates vs. high/low quality

queries. Although only one of these scenarios is tested here,

this does not constitute a weakness as long as the models are

concerned, because all the models presented in this paper can

be extended naturally to different scenarios by estimating the

appropriate densities.

D. Fingerprint Systems

The fingerprint data was collected by using both an optical

(denoted as “fo”) and a thermal sensor (denoted as “ft”). The

optical sensor captures the entire fingerprint by direct contact

whereas the thermal sensor requires the user to slide his/her

fingers. Although the right/left fingerprints of the thumb,

index and middle finger of the subjects have been acquired,

in the context of this study we have considered only the

right-side fingerprints. The reference system used is the NIST

Fingerprint system10. The fingerprint quality measure is based

on a weighted average of local gradients as proposed in [8].

IV. EXPERIMENTS

The experiments are divided into six parts. The first three

parts perform an analysis of the data, independent of the

8http://www.omniperception.com/products/affinity
9A template is the data sample used to represent the claimed identity

whereas a query is the sample with which the template is compared.
10http://www.itl.nist.gov/iad/894.03/fing/fing.html

classifiers used; whereas the remaining three parts are related

to the use of the four statistical models presented in this paper.

These experiments are:

1) Performance of same-device versus cross-device match-

ing: In the case of the same-device matching, the tem-

plate and query data are acquired using a common de-

vice, whereas in cross-device matching, both acquisition

devices are different. For the latter case, we consider

only the situation where the template data is acquired

using a device giving higher verification rate whereas

the query data is acquired using a device giving lower

verification rate.

2) Analysis of the change of the match score distribution

in cross-device matching: This experiment is designed

to validate our conjecture that the class conditional

distribution of match scores (belonging to either genuine

or impostor classes) may behave differently for differ-

ent devices in cross-device matching. This provides an

explanation for the observed phenomenon in the Part 1

experiment.

3) The discriminative power of quality measures in identi-

fying devices: The goal of this experiment is to test the

effectiveness of various quality measures in distinguish-

ing the devices and conditions under which a biometric

sample is collected. This essentially tests the feasibility

of estimating the posterior probability of devices given

quality measures, p(d|q). In our context, this classifier

was built from the density p(q|d) and probability table

p(d) using the Bayes rules.

4) A Comparison of various quality-based normalisation

schemes: We have presented four different models in

this paper. The effectiveness of these models is assessed

using the Biosecure DS2 subset database presented in

Section III. Each of the four classifiers relies on input

from a single biometric trait. The four biometric traits

tested are face, right thumb, right index and right middle

fingers.

5) Multimodal fusion exploiting quality-based normalisa-

tion: The goal of this experiment is to test the effec-

tiveness of quality-normalised scores in fusion. This

experiment takes the output of each classifier across

all the four available biometric traits in the Part 4

experiment and combines them using the product rule

(or the sum rule in the logarithmic domain), i.e., (18).

This realises the Naive Bayes solution.

6) Analysis of the relationship between quality measures

and match score distributions: Since all the statistical

models presented in this paper are designed to model the

relationship between quality measures and match scores,

it is instructive to visualise them.

A. Observations

1) Experiment 1: The performance of the same-device and

cross-device matching is shown in Figure 3 (in terms of

EER). Comparing the performance of single modalities

in these two scenarios, we observe that the results of

cross-device matching are much worse.
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Fig. 3. The performance measured on the session-two development set
(defined according to Table I) in terms of EER (%) of all the six fingerprint
biometric traits (thumb, index and middle fingers of two hands) and face data
(bottom right figure) obtained from the Biosecure DS2 data set. All labels
in the x-axis prefixed with “x” denote cross-device performance. Fingerprints
collected with the optical sensor are denoted by fo{n} and those collected
with the thermal sensor are ft{n}, where n ∈ {1, 2, 3, 4, 5, 6}. xft{n}
denotes cross-device matching between fo{n} as template and with ft{n}
as query. Face images captured with the web cam are denoted by fa1; with
high resolution camera by fnf1. The cross-device matching between fnf1 (as
template) and fa1 (as query) is denoted by xfa1.

2) Experiment 2: The class-conditional match score dis-

tributions for each biometric trait and each channel of

data are shown in Figure 4. Both this figure and Figure 3

are plotted for the same set of match scores. We note

that the match scores arising from cross-device matching

overlap more heavily, hence explaining the degraded

performance. The actual EERs are quoted in the legend.

It is interesting to observe that the face and fingerprint

systems respond differently to cross-device matching.

For the face biometric, impostor match scores shift

towards genuine match scores. This implies that with

degraded image quality, the image of any impostor looks

more similar to a genuine user, hence, producing lower

dissimilarity match scores. On the other hand, for the fin-

gerprint modality, under cross-device matching, genuine

match scores shift towards impostor match scores, i.e.,

any genuine user fingerprint template becomes indistin-

guishable from an impostor trial. This produces higher

dissimilarity genuine match scores.

3) Experiment 3: Each of the 14 quality measures have a

varying degree of discriminative power in disambiguat-

ing the composite effect of change in acquisition device

and environmental conditions. The uniform background

turns out to be able to distinguish the two face images

very well. Sample images on the right (Figures 5(b)

and (c)) reveal that the background is essentially the

most discriminative feature in this case. Because the

two cameras have different image resolutions, the bit-

per-pixel measure is also able to distinguish them well.

Following this observation, only these two features are

used in the subsequent experiments.

4) Experiment 4: The DET curves of the four classifiers

corresponding to models (a-i), (b), (c) and (d), as well

as that of the original match scores, are shown in
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Fig. 4. The genuine user match score distribution (blue continuous line)
and impostor match score distribution (red dashed line) of four biometric
traits under same- and cross-device matching. The thickest lines denote the
distribution of cross-device matching. fnf1 and fwf1 are face images taken by
a digital camera without and with flash, respectively.

0 10 20 30 40 50

Face Detection Reliability

Brightness

Contrast

Focus

Bit per pixel

Spatial resolution

Illumination

Uniform Background

Background Brightness

Reflection

Glasses

Rotation in Plane

Rotation in Depth

Frontalness

HTER (%)

Q
u

a
lit

y
 m

e
a

s
u

re
s

(a) Discriminative power of quality measures in identi-
fying devices
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Fig. 5. (a) The discriminative power of 14 face quality measures for high/low
quality face images, measured on the development set. These detectors are:
face detection reliability, brightness, contrast, focus, bits per pixel, spatial
resolution between eyes, illumination, degree of uniform background, degree
of background brightness, reflection, presence of glasses, rotation in plane,
rotation in depth and degree of frontal face images. (b) An example of face
image taken with the web camera. Note the cluttered background. (c) An
example of face image of the same person taken with a digital camera

Figure 611. Each sub-figure shows the performance of

the four classifiers, applied to a biometric modality.

Note that no fusion is involved. This experiment thus

shows the effect of quality-based score normalization

using four different approaches. Table II lists the Half

Total Error Rate (HTER) and NIST operating cost of the

normalised as well as the fusion systems.

HTER is defined as the average of false acceptance rate

and false rejection rate. The NIST operating point is

11Note that model (a-ii) was not tested because of the scalability issue
relating to the fact that q cannot be extended to multiple dimensions. In this
respect, model (b) can be seen as a way to implement model (a-ii).



defined as:

CDET (CFR, CFA) = CFR × P (C)
︸ ︷︷ ︸

×FRR(∆)

+ CFA × P (I)
︸ ︷︷ ︸

×FAR(∆),

where CFA and CFR are respectively the costs of FA

and FR, and P (k) is the prior probability of class

k ∈ {C, I}. Following the NIST evaluation, we use the

following constants:

CFR = 10 , CFA = 1 , P (C) = 0.01 and P (I) = 0.99.

The following observations can be made:

• For the face modality, the performance of model (a-

i) is worse than that of the original system (without

normalising the match scores). We have run the

algorithm (based on GMM) with different num-

bers of Gaussian components and each time with

several random seeds (since the algorithm is non-

deterministic), but to no avail. For the fingerprint

modality, the performance of model (a-i) is better

than that of the baseline system. An important dif-

ference between the face and the fingerprint modal-

ities is that Nq = 1 for fingerprint and Nq = 2 for

face. The effectiveness of model (a-i) with Nq = 1
is consistent with the result reported in [24] in the

context of fusion. However, our results here further

show that model (a-i) cannot be easily extended to

multiple dimensions of quality measures.

• Although model (c) was not given the device qual-

itative information, it was able to improve over

the baseline system, albeit only marginally. With

the knowledge of device identity, (in which case

(p(d∗|q) = 1) for the actual device used), model (c)

is slightly better in performance.

• Models (b) and (d) are effectively the same system,

except that model (b) does not have access to the

device information. The consequence is that model

(b) is systematically worse in performance than

model (d). Nevertheless, the absolute performance

of model (b) is very close to that of the baseline

system.

• With the device knowledge, model (d) performs the

best.

5) Experiment 5: The fusion performance of the four sys-

tems (using the Naive Bayes principle), as well as that of

the baseline system, are shown in Figure 7. In essence,

the quality-based fusion classifiers take the sum of the

already normalized scores of the four biometric modal-

ities reported in Experiment 4. However, in order to

fuse the baseline systems (without applying any quality-

based score normalization method), logistic regression

was used. It approximates the posterior probability of

being a client given the observed (input) match scores (a

vector of four elements due to the four biometric traits),

without using any quality information. The HTER and

the NIST operating points of these curves are shown in

Table II. Referring to Figure 7, as well as Table II, the

following observations can be made:
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(d) middle finger

Fig. 6. DET curves of the four classifiers as well as that of the baseline
system assessed on (a) face, (b) thumb, (c) index and (d) middle fingers of
the Biosecure DS2 session two data set. The dot on each DET curve is the
NIST operating point. Note that no fusion is involved here.

• Model (a-i) is the worst. The principal cause of its

poor performance is the suboptimal behaviour of its

underlying face system component (See the black

curve in Figure 6(a)).

• Model (c) outperformed the baseline system by a

small but nevertheless consistent margin, with a

reduction of 7% of HTER but 23% of the NIST

operating cost.

• With the device knowledge, model (d) outperformed

the baseline system by a large margin: a relative re-

duction of 56.8% of HTER and 60.8% of the NIST

operating cost. It also attains the best generalisation

performance among all the classifiers tested.

6) Experiment 6: In an attempt to explain what has been

gauged by the models, the following densities are of

interest:

• p(q) =
∑

d

∑

Q|d p(q|Q, d)p(Q|d)p(d)
• p(y|k, Q, d), taken from model (d). It includes

model (c) as a special case when the device is

known, since:

p(y|k, d) =
∑

Q|d

p(y|k, Q, d)p(Q|d)

or model (b) when the device is not known, as

shown in (16).

• p(y, q|k) taken from model (a-i)

The three densities are shown in Figure 8, one for each

row, respectively. We could only plot the density of

fingerprint quality measure as it is one dimensional, i.e.,

Nq = 1; the face has Nq = 2 (recalling that two out of the

14 measures were used) and so could not be shown. For



TABLE II

NIST OPERATING POINT AND HTER

(a) NIST Operating points

subsystem NIST operating point (%)
model d model b (or d) model a model c original

(known d) (unknown d) (no Q, d) (no Q)

face ∗ 3.159 3.274 11.208 3.402 3.842
thumb ∗ 8.149 9.100 8.530 8.725 10.214
index ∗ 6.482 7.261 6.735 6.859 7.428
middle ∗ 7.919 8.875 8.340 8.271 9.351
fusion ∗ 1.715 2.121 5.459 1.985 † 2.758

(b) HTER

subsystem HTER (%)
model d model b (or d) model a model c original

(known d) (unknown d) (no Q, d) (no Q)

face ∗ 10.211 10.295 16.297 10.301 10.773
thumb ∗ 19.795 20.167 20.543 20.747 20.190
index ∗ 15.150 15.817 15.594 16.029 15.834
middle 18.709 18.674 18.569 ∗ 18.511 18.604
fusion ∗ 4.479 6.068 9.884 5.333 † 6.525

†: Fusion with logistic regression; ∗: smallest value in a row
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Fig. 7. DET curves of the fusion of four classifiers evaluated on the Biosecure
DS2 session two data set. The dot on each DET curve is the NIST operating
point.

each finger, two Gaussian components are found to be

attributed to each device. Since there are two devices

(thermal or optical), this results in four components

of p(q|Q, d), enumerated as follow: {p(q|Q = 1, d =
1), p(q|Q = 2, d = 1), p(q|Q = 1, d = 2), p(q|Q =
2, d = 2)}. The pairs of class-conditional densities

for each of these four components, i.e., p(y|k, Q, d),
are depicted in the second row of Figure 8. Let us

examine figure (d) more closely. Note that for d = 1,

we see that the pair {p(y|k, Q = 1, d = 1)|∀k} has

less overlap whereas {p(y|k, Q = 2, d = 1)|∀k} has

a considerable overlap. This means that for the same

device, there exists two distinctive latent components,

discovered by clustering q. For the same problem, model

(a-i) seems to be able to capture this information (see

Figure 8(g). The background colour, which corresponds
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Fig. 9. Comparison of the performance of the four classifiers with the past
Biosecure multimodal biometric fusion evaluation.

to the log of likelihood ratios, (3), shows that the quality-

based problem is non-linear in (y, q). This observation

is consistent with the finding in [14] (although different

classifiers were used).

In order to compare how well the four models perform

with the the rest of the fusion systems in the past Biosecure

benchmarking effort [19], we replotted the DET curves of the

four models (exactly as shown in Figure 7) with those of the

participanting systems in Figure 9. In this figure, the following

systems are used:

• CWI-SVM is a score-level SVM classifier;

• CWI-IMOFA is a Bayesian classifier with Infinite Mix-

ture of Factor Analysis as a density estimator;

• JHUAPL is the quality-based fusion system reported

in [15];

• JR is a generative fusion classifier based on the Dempster-

Shafer theory of evidence, UniS fixed is a fixed-rule

quality-based fusion [28];

• AMSL-BIO QW is quality-controlled weighted sum fu-

sion [29];

• GET systems (1, 2 and 3) are Bayes classifiers with GMM

as a density estimator, which can be viewed as a different

implementation of model (a); and,

• UPM is device-dependent logistic regression classifier, a

system very similar to the model (c) but implemented

using a discriminative classifier.

Note that model (c) was also one of the submitted candidate

systems in the compeition (previously labelled as “UniS

qfuse”). In the competition, model (c) was the top performing

system in the low FAR region. JHUAPL was the top per-

forming system in the low FRR region. For all the systems

in the competition, they were not given the knowledge of the

device information. When this information is given, as can be

observed, model (d) was able to take advantage of this and
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Fig. 8. Each column in this figure is generated from the same data set. Column one, two and threes are generated from thumb, index and middle fingers,
respectively. Each row presents different estimated densities from the data. Row one shows the density of fingerprint quality measure p(q) (blue continuous
line) fitted using the following mixture of Gaussian components: two Gaussian components (continuous black) for device one (giving high quality values),
i.e., p(q|Q,d = 1); and two Gaussian components (red dashed lines) for device two (giving low quality values). Row two shows the pair of distributions of
class-conditional match scores p(y|k, Q, d) for k = {C, I}. There are four pairs of p(y|k, Q, d) since Q = {1, 2} and d = {1, 2}, each corresponding to
the four p(q|Q,d) densities. Blue dashed vertical lines denote p(y|C, Q, d) whereas red vertical lines denote p(y|I, Q, d). These densities are obtained from
model (d). The last row plots the density p(q, y|k) as a mixture of Gaussian distributions as captured by model (a-i). A black ellipse denotes an impostor
Gaussian component whereas a red ellipse denotes a genuine user Gaussian component (centred on their respective “+” sign as their mean). The colour in
the background corresponds to log{p(q, y|C)/p(q, y|I)}.

attained the best performance, with 4.48% EER.

V. DISCUSSION AND FUTURE DIRECTIONS

We have examined several quality-based fusion mechanisms

from a Bayesian perspective, and demonstrated the benefit

of adding the device information. This study is, however, a

precursor directed to answering some of the issues below:

1) Development of Discriminative strategies: Although

generative strategies have been thoroughly discussed

in this paper, each of the four Bayesian models can

be extended to using a discriminative classifier such

as logistic regression. In essence, for model (b), this

corresponds to a mixture of discriminative classifiers.

For model (c), it is a device-dependent discriminative

classifier, a special case of which was reported in [16].

Finally, for model (d), it is again a straightforward

generalization of models (b) and (c) implemented using

discriminative classifiers. The advantage of using the

discriminative approach instead of the generative one is

that much fewer number of parameters is needed than the

generative approach (which requires explicit modeling



the class-conditional densities).

2) The role of latent variable Q: Our approach has shown

that the latent variable Q plays a vital role. In particular,

even with a single device, there are differences in the

effect on performance of various states of Q. This

suggests that with everything else being equal, there

are factors affecting the system performance; and these

factors can be parametrised by the latent variable Q.

Investigating what exactly the role of latent variables

is requires the knowledge of the baseline comparison

subsystem. Unfortunately, this is beyond the scope of

study. This issue demands further investigation.

3) Identification of latent variable Q in unknown devices:

Our problem formulation was limited to identifying a

device from a set of known devices. However, when the

set of devices is unknown, the problem becomes more

challenging. If a solution can be found, this will address

the fundamental challenge of device interoperability.

One potential solution is to further explore the role of

latent variable Q. Given a sufficiently large number of

devices, and a sufficiently large database, it may be

possible to capture all sources of variation and factors

affecting the performance of a biometric system. Finding

a way to map Q to these factors offers another possible

research avenue.

4) Relevance of quality measures for a given matching

algorithm: Experiment 3 suggests that not all quality

measures are useful to distinguish two devices. However,

it is also required that these measures are able to

distinguish among different states of the latent variable

Q. In the first case, the device is known and hence this

performance influencing factor is known. In the second

case, the latent variable is by definition not observed.

As a result, determining the usefulness or relevance of a

quality measures for a matching algorithm, in the second

case, demands further investigation.

5) Semi-supervised learning from cross-device matching:

Our experimental results suggest that the same-device

matching consistently outperforms cross-device match-

ing. Hence, one can automatically update the template

with a query sample from cross-device matching. Then,

in theory, cross-device matching provides a mechanism

for template adaptation which should ensure a long term

stability of component classifiers.

6) A theoretical model of quality-based fusion: The

Bayesian model we have presented can be potentially

adapted as a theoretical model that helps to better under-

stand the problem of quality-based fusion. The ultimate

goal is to predict the performance given match scores

and quality measures. A potential research direction is

to extend the predictive model proposed in [30].

VI. CONCLUSIONS

If a biometric comparison subsystem has been designed to

operate across different devices, its matching algorithm will

be expected to compare the biometric template with a query

image coming from the same or different biometric devices.

The latter is called cross-device matching. This is an important

issue in biometric device interoperability. This paper addresses

such issue in the context of multimodal fusion.

We introduced two sub-problems of cross-device matching,

depending on whether the device identity is given or not. In the

latter case, we demonstrated the feasibility of probabilistically

inferring the device identity using quality measures. This has

the practical advantage of automatically configuring the system

(“plug-and-play”).

While there exist several quality-based fusion algorithms,

e.g., [10], [11], [12], [13], [14], many are not suitable to

handle the device information, which is not discriminative

in distinguishing genuine users from impostors. We have

proposed a family of generative models, capable of exploiting

quality measures as well as the device identity, that can be

used to address the above two sub-problems. The framework

proposes a two-step strategy. In the first step, the output of

each comparison subsystem is individually normalised (based

on the respective modality-dependent quality measures). In the

second step, the normalised outputs are combined using the

Naive Bayes principal.

This study also compares (and generalises) several relevant

state-of-the-art quality-based algorithms theoretically (from

a Bayesian perspective) and empirically. Our novelty here

lies in introducing the device qualitative information in this

framework. The experimental results obtained on the publicly

available Biosecure DS2 (score and quality measure) database

have shown that the normalised match scores, in general (with

the exception of model (a) due to non scalability to multi-

dimensional quality measures), can give better performance

than the original systems, especially at the extreme values of

the DET curve (high FAR or high FRR), albeit insignificantly.

However, when combining all the normalised outputs, the

overall fusion performance is statistically significantly better

than the baseline fusion (without quality normalisation), espe-

cially for the sub-problem where the device identity is given.

In particular, the newly proposed quality-based normalisation

with device qualitative information (model (d)) outperforms

all existing quality-based algorithms.
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