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Abstract

The decreasing cost of performing genome-wide association studies has made genomics widely accessible. However, there
is a paucity of guidance for best practice in conducting such analyses. For the results of a study to be valid and replicable,
multiple biases must be addressed in the course of data preparation and analysis. In addition, standardizing methods
across small, independent studies would increase comparability and the potential for effective meta-analysis. This article
provides a discussion of important aspects of quality control, imputation and analysis of genome-wide data from a low-
coverage microarray, as well as a straight-forward guide to performing a genome-wide association study. A detailed proto-
col is provided online, with example scripts available at https://github.com/JoniColeman/gwas_scripts.
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Introduction

Genome-wide association studies (GWAS) are widely used to
assess the impact of common genetic variation on a variety of
phenotypes [1, 2]. Low-cost microarrays designed to assay thou-
sands of variants and to be imputable to millions, such as the
Illumina HumanCoreExome microarray (Illumina, San Diego, CA,
USA), have increased the accessibility of this technology.
Although the rapid development and falling cost of whole-
genome sequencing is likely to reduce the use of GWAS in the

long term, the costs of running a GWAS are currently an order of
magnitude smaller than those for sequencing, suggesting GWAS
will remain an important technique into the near future [3].

However, there is a paucity of information on best practice for
using the data resulting from microarray-based genotyping.
Excellent theoretical and practical protocols for the quality control
of genome-wide genotype data exist [4, 5], and most commonly
used software have well-constructed user manuals, but structured
advice to guide analysis is missing from the literature. To date, a
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considerable proportion of the analysis of such data has been con-
centrated within large consortia (such as the Psychiatric Genomics
Consortium), with experienced analysts and in-house protocols [6,
7]. However, such guidance is not easily available to groups outside
these consortia. As the accessibility of genome-wide data increases,
so must the accessibility of advice on its analysis. Furthermore, a
standardized approach would increase comparability between
studies, facilitating further investigations such as meta-analysis
and augmenting the value of each individual study [8].

The choices made in conducting the analysis of genotype data
affect the final result. At worst, poor quality control can lead to
systematic biases in outcome and increased false-positive (and
false-negative) associations [4]. However, the effects can be more
nuanced; for example, association testing using a mixed linear
model may use a genetic relatedness matrix (GRM) to control for
gross genetic similarity between individuals [9, 10]. The precise
pairwise relationships will differ subtly depending on whether
the GRM is made using the genotype data before or after imput-
ation (as well as on the programme used), and so the results of
the association study will also differ slightly. Neither choice in
this context is wrong, but the choice made has consequences,
and as such needs to be considered and reported [11].

Recently, we performed the first genome-wide association
study of response to cognitive behavioural therapy, using the
HumanCoreExome microarray (Coleman et al, Under Review). In
this protocol, we have used that experience to provide suggestions
for the quality control, imputation and analysis of data from this
microarray, assuming careful recalling of the raw intensity data
has been performed. The steps are likely to be applicable to data
from other arrays, with the caveat that differences in array content
may require alteration of the various thresholds discussed. The
analysis of genome-wide data remains a data-driven activity, and,
where appropriate, we have provided advice on making informed
choices from the data. Furthermore, we recommend consulting
graphical representations of the data when defining thresholds.

Pre-analytical procedures: genotyping, calling
and recalling

This protocol describes the basic analytical steps required to
conduct a genome-wide association study; it is expected that
DNA genotyping and genotype recalling have already been per-
formed. In this context, genotyping refers to the hybridization
of genomic DNA to oligonucleotide probes targeted at a poly-
morphic region, and the extension of these probes to encom-
pass this region. This extension uses chemically labelled
nucleotides that are specific to the different alleles of the poly-
morphism and that bind either red or green fluorescent agents,
which can be read using a fluorescence-sensitive scanner. The
end product of genotyping is the raw intensity data of these
fluorescent agents at each polymorphic site [12]. To determine
the identity of the alleles at these sites, the raw intensity data
must be called—clusters of samples with similar intensities are
identified, and the clusters are labelled according to the design
of the microarray. This initial calling is performed by automated
software—however, the algorithms to perform this calling
sometimes fail to identify valid clusters, especially when pat-
terns of clustering are unusual. As such, some clusters must be
identified by manual recalling by a bioinformatician. Recalling
is an extremely important step—badly called genotypes create
biases that severely impair the quality control and analysis of
data. The complexities of genotyping and recalling are beyond
the scope of this protocol, but guidance is available from array
manufacturers and as referenced in the online protocol [13].

Considerations in conducting a study

The value of any finding in molecular genetics is reliant on the
ability to replicate it in an independent cohort, and the first step
to successful replication is to minimize the likelihood that
reported findings are false positives. Given that thousands of
variants are assessed in a GWAS, and the potential for random
error in genotyping and recalling (as discussed above), it is
necessary to impose stringent thresholds on the quality of data
to be taken forward to analysis [4]. Pre-analytical steps partly
inform these thresholds. When a more variable method of col-
lection has been used, it is advisable to consider more stringent
quality control parameters; for example, collection using buccal
swabs produces poorer quality DNA than extractions from
whole blood or saliva [14].

Quality control: selecting variants by allele
frequency

Following genotyping and the recalling of genotypes, most
GWAS studies begin by filtering the variants by the frequency of
the less-common allele (minor allele frequency or MAF). Variant
MAF has many effects on later analysis, as allele frequency is
associated with time since mutation, the structure of local link-
age disequilibrium (LD) and the relative size of the association
statistic [15, 16]. The chances of an error in genotype calling
increase with decreasing MAF, as the certainty of manual and
automatic clustering falls with fewer variants in each cluster
[17]. At the most extreme level, if all but one variant cluster
together, it is difficult to assess whether the lone variant is truly
a different genotype, or whether it is a missed call. For this rea-
son, the rarest variants should be discarded from the analysis.
What constitutes ‘rare’ depends on the size of the studied
cohort—assuming perfect Hardy–Weinberg equilibrium, the
minor allele of a variant with MAF¼ 0.1% would be expected to
be present in 19 heterozygotes and 1 homozygote in a cohort of
10 000 individuals, but only one or two heterozygotes would be
expected in a cohort of 1000 individuals. In smaller cohorts, a
more stringent MAF cut-off is recommended, as the minor allele
count will be lower, which limits the value of conclusions from
the analysis of these variants. For the smallest studies, where
fewer than 1000 individuals are investigated, a cut-off of 5%
should be considered—this is in line with the analysis program
GenAbel, for example, which uses a minor allele count of 5 as
its cut-off [18]. Typically, many studies define rare single nu-
cleotide polymorphisms (SNPs) as having a MAF<1%, which
has historical roots in the HapMap project [19]. It is worth noting
that the exonic content of the HumanCoreExome chip was spe-
cifically designed to target coding variants, with much of this
content having a population MAF<1% [17]. Therefore, using this
microarray in smaller cohorts and imposing a MAF cut-off of 1%
or higher will result in discarding most of the exonic content.

Quality control: removing variants and
samples with missing data

It is necessary to remove rare variants from GWAS because the
certainty of the genotype call is reduced by their low minor
allele count. Even in common variants, however, genotyping
and genotype recalling are subject to technical error, with the
result that a proportion of variants and samples are of low qual-
ity, and should be removed from the analysis. Removal of such
missing variants and samples is best conducted in an iterative
manner, removing variants genotyped in<90% of the samples,

QC, imputation and analysis of GWAS data | 299

s
s
-
 In order
t
 &ndash; 
 &ndash; 
 - 
http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bfgp/elv037/-/DC1
,
",0,0,2
",0,0,2
 - 
-
nineteen
one
 &ndash; 


then samples with<90% of variants and continuing with
increasing stringency to a user-defined final threshold (typically
in the range of 95–99% completeness, depending on the
required stringency of quality control). This has benefits over
removing all variants and samples beneath the final threshold,
as fewer samples are lost using the iterative procedure (at the
expense of a slight increase in variant exclusions).

Quality control: assessing deviation from
Hardy-Weinberg equilibrium

Thresholds that identify missing variants do not necessarily
exclude miscalled variants. For example, clustering algorithms
can incorrectly define a group of samples as heterozygous. One
method to detect this is to evaluate the deviation from Hardy–
Weinberg equilibrium at each variant. Although such deviations
can be caused by processes that may be of interest within the
study, such as selection pressure, the expected size of such
deviations is small. Setting the threshold for the P-value of the
Hardy–Weinberg test to be low (P< 1� 10�5) decreases the prob-
ability of excluding deviations that result from processes of
interest. In case-control studies, it is recommended to remove
SNPs deviant in controls only (this is the default behaviour in
PLINK2). Deviations from Hardy–Weinberg equilibrium as a

result of genotyping artefacts are not expected to differ between
cases and controls, but biologically relevant deviations are more
likely to occur in cases [5]. The threshold for the P-value cut-off
can be determined empirically, by examining the spread of
P-values from the Hardy–Weinberg test in the data, and select-
ing a threshold under which there are a greater number of vari-
ants than expected by chance (in our experience, with small
data sets, this is typically around P¼ 1� 10�5).

Quality control: pruning for LD and removing
related samples

The initial quality control steps described above correct for the
random errors introduced by genotyping and recalling. Further
steps are required to address cryptic structure, the presence of
similarities between individuals independent of the phenotype
under study, which present a source of potential bias in the out-
come of association tests. Such structure is commonly envisaged
as two interconnected concepts, high relatedness between indi-
viduals (determined by the proportion of their genomes identical-
by-descent—IBD) and population stratification. The presence of
structure is inferred from examining genome-wide genotype
data. However, the phenomenon of LD can exaggerate or obscure
similarities, as a shared region of high LD results in more shared

Figure 1. Frequency polygon showing the number of variants at each info value post-imputation, including poor-quality variants to be excluded (info <0.15) and

higher-quality variants that should be kept (info >0.85).

Figure 2. Cumulative frequency curve showing the same data as Figure 1.
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variants than one of low LD, even if the two regions are the same
size. Accordingly, it is necessary to prune the data for LD before
assessing IBD and population stratification. This can be achieved
using a pairwise comparison method, comparing each possible
pair of variants in a given window of variants and removing one
of the pair if the LD between them is above a given cut-off. This
protocol uses a window of 1500 variants, shifted by 10% for each
new round of comparisons, and a threshold of R2> 0.2. The win-
dow size of 1500 variants corresponds to the large, high LD
chromosome 8 inversion, while the shift of 10% represents a
trade-off between efficiency and thoroughness [5].

Once an LD-pruned data set is obtained, individuals can be
compared pairwise to establish the proportion of variants they
share identical-by-state (IBS). Closely related individuals share
more of their genome than a randomly chosen pair of individ-
uals from the population, and are likely to be more phenotypic-
ally similar. As a result, including closely related individuals
can skew analysis; genetic variants shared because of close
relatedness can become falsely associated with phenotypic
similarity that also results from close relatedness.

With a sufficiently homogeneous cohort assayed at thou-
sands of variants, IBS information can be used to infer vari-
ants that are shared identical-by-descent (IBD) [20].
Individuals with an IBD metric (pi-hat)> 0.1875 (halfway be-
tween a second and third degree relative [4]) should be
removed, as well as individuals with unusually high average
IBD with all other individuals, which may indicate sample
contamination or genotype recalling error leading to too
many heterozygote calls [20]. The IBD threshold suggested
here is designed to remove the most closely related individ-
uals, while avoiding removing large numbers of samples
through being overly stringent. It is worth noting that some
downstream analysis programs impose much more severe
IBD cut-offs (GREML estimation in GCTA, which produces an
estimate of heritability from all assayed variants, uses
0.025), while other analyses account for between-sample re-
latedness as part of the analysis [9, 21]. What quality control
is appropriate depends on the nature of the cohort, the ques-
tion being asked and the analysis methods intended to be
used.

Figure 3. Histograms of the info metric of imputed variants on chromosome 9, split by MAF at 0.01.
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Quality control: confirming sample gender and
assessing the inbreeding coefficient

Samples whose reported gender differs from that suggested by
their genes are likely to have been assigned the wrong identity.
This leads to reduced power, as the sample’s genotype becomes
effectively randomized in respect to the phenotype. The average
homozygosity of variants on the X chromosome (the X-
chromosome F statistic) can be used to indicate sample gender.
Much as it confounds estimates of IBD, patterns of LD will also
impair chromosome-specific (and genome-wide) tests of homo-
zygosity, and so it is necessary to perform this test following
pruning for LD. The F statistic is a function of the deviation of
the observed number of heterozygote variants from that ex-
pected under Hardy–Weinberg equilibrium. In males, F� 1, be-
cause all X chromosome variants are hemizygous, and so no
heterozygotes are observed. Females are expected to have lower
values of F, distributed normally around 0 [22]. However, this is
an imprecise measure—female subjects with high F have been
reported in the 1000 Genomes reference population (https://
www.cog-genomics.org/plink2/basic_stats). As such, it is recom-
mended that the<0.2 F threshold for females (as used by PLINK)
is treated as guidance, and that further checks (such as counting
the number of Y chromosome SNPs with data) are made, and
that the phenotypic gender of discordant samples is confirmed
with the collecting site where possible [20, 23].

In addition to using a chromosome-specific homozygosity
check to confirm gender, a whole-genome F should also be
calculated. This statistic is also referred to as an ‘inbreeding
coefficient’, as inbreeding results in reduced numbers of hetero-
zygotes. Individuals with particularly high or low inbreeding
coefficients should be removed from analyses, as this is likely
to be an artefact caused by genotyping error. However, caution
is advised when studying cohorts in which consanguineous
relationships are common, as high inbreeding coefficients are
expected in these samples.

Quality control: controlling for population
stratification

Similarities exist between the false genotype–phenotype correl-
ations created by close between-sample relatedness and those

created by population stratification, where phenotypic and
genotypic similarity are correlated because of geographical loca-
tion, rather than a true association. A variety of methods exist
to control for population stratification, of which the most com-
mon is to perform principal component analysis on the
genome-wide data, and then use the resulting components as
covariates in association analysis. However, there is little guid-
ance as to which components to choose, and this is often deter-
mined empirically in individual studies through piecemeal
inclusion of principal components into the analysis until meas-
ures of genomic inflation fall below a chosen threshold (usually
until the genomic inflation statistic lambda� 1 [24]). We suggest
an alternative, regressing principal components on outcome
directly, and keeping only those that explain variance in the
outcome at a rate above chance for use as covariates in the
GWAS. This then leaves the question of what should be done if
no component is associated with outcome. Recent computa-
tional developments have enabled an alternative means of con-
trol through the construction of genomic relatedness matrices
[11]. This method compares the deviation of each individual
from the population mean at each variant in the data set, and
then compares individuals pairwise to establish a value for
overall genetic similarity. This can then be entered into the ana-
lysis as a random variable in a mixed linear regression, and has
the benefit of capturing population variance at a finer-scale
level than principal component analysis [11] (for an in-depth
discussion of the comparison between principal component
analysis and genetic relatedness matrices, see [25]).

Imputation to the 1000 Genomes reference
population

The main benefits of the HumanCoreExome as a low-cost micro-
array are twofold. First, the exonic content allows rare coding
variation to be assayed in large numbers of samples without the
high costs of sequencing these variants [26]. However, this relies
on large sample sizes to allow for reliable calling of the geno-
types. The value of the array in smaller cohorts is in providing an
inexpensive means to assay thousands of variants that are in
high LD with a considerably greater number. To make effective
use of the array in this manner requires imputation of the data to

Figure 4. Cumulative frequency plot of call rate of hard-called imputed SNPs (genome wide).
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a reference population, most commonly the 1000 Genomes
Reference [27]. However, the advent of large-scale sequencing
studies such as UK10K (http://www.uk10k.org/) and Genomics
England (http://www.genomicsengland.co.uk/), and the increas-
ing availability of sequence data on specific populations, is likely
to result in alterations to imputation practice in the near future.

The online protocol uses IMPUTE2 [28, 29] to impute to the
full 1000 Genomes Reference population. This is performed
without pre-phasing, as there is evidence that this is the most
accurate method (albeit somewhat slower than pre-phasing;
http://blog.goldenhelix.com/?p¼1911). It also assumes access to
a multi-node computing cluster, although jobs could be run se-
quentially (with considerable increases in computational time).
The imputed data that result from these methods are provided
in a probabilistic ‘dosage’ format, which is an attractive format
from a statistical perspective, as it allows for the variable cer-
tainty of each imputed call to be considered within the associ-
ation model. Programs exist that allow for the direct use of
dosage data in association analyses, such as SNPTEST and
ProbABEL (https://mathgen.stats.ox.ac.uk/genetics_software/
snptest/old/snptest.html; [30]). However, this format remains
computationally burdensome at present—for example, it is not
yet possible to store dosage data as a file input type in PLINK,
akin to the PLINK binary format. As such, the protocol converts
these probabilistic calls to binary ‘hard’ calls, marking less-
certain calls as missing. This increases downstream flexibility
at the expense of losing the more informative probabilistic calls.
With increasing computational sophistication, it is likely that
the use of dosage data as an input file type will become possible
and commonplace; to this end, readers are advised to consult
the PLINK2 website (https://www.cog-genomics.org/plink2/).

Post-imputation quality control:
monomorphic, rare and missing variants

Following imputation, data are provided for a large number of
variants (83 million in the latest release of the 1000 Genomes
Project). As such, there is a necessity to perform post-imputation
quality control. Monomorphic variants should be removed
(MAF¼ 0), as well as variants that are extremely rare in the cohort
(see the earlier discussion of MAF removals). IMPUTE2 provides
an ‘info’ score related to the quality of the imputation for each
variant. Different sources recommend different thresholds to ex-
clude poorly imputed data. The selection of this threshold should
be made taking into account the overall quality of the data (poor-
quality data require greater quality control, and so a higher info
threshold should be used). The best method is to plot a frequency
curve (Figure 1) or cumulative distribution (Figure 2) of the info
score and assign the threshold at the inflexion point. For ex-
ample, the graphs below show most of the worst-performing
variants have info<0.15, and there is an enrichment of high-
quality variants with info>0.85. The threshold chosen should fall
between these two. There is a relationship between MAF and
info, and it is valuable to examine these metrics together—rarer
variants usually show lower info scores, and often the appropri-
ate cut-off is obvious from plotting info in MAF bins (Figure 3). In
this example, a MAF cut-off of 0.01 appears to remove most of the
SNPs with low info scores. Finally, it is necessary to exclude vari-
ants missing in multiple samples when using hard-called data,
as variants imputed with a certainty below threshold are marked
as missing rather than being excluded. Defining the threshold for
completeness again benefits from plotting the data: in the ex-
ample shown in Figure 4, a cut-off of 98% completeness appears
to be an acceptable trade-off between retaining variants in the

analysis and reducing the variation in sample size between ana-
lyses of each variant. Again, the threshold chosen should be in-
formed by the necessary stringency of the quality control and the
proposed downstream analysis.

Association analyses

The final step presented in this protocol is to perform the asso-
ciation analysis itself. The exact analysis performed depends on
the research question being investigated and the covariates
included. The flexibility of PLINK2 for running multiple statis-
tical models and including covariates in a variety of different
ways, coupled with a user-friendly implementation, arguably
means it remains the first choice for performing analyses.
However, many other programs exist, and it is worthwhile
investigating whether a piece of software particularly suited to
the planned analysis is available. The introduction of mixed lin-
ear model association analysis is an example of this, allowing
for an approach to control for population structure that is as yet
not available in PLINK2, although the implementation of GCTA
code into PLINK2 is expected in the near future [9, 11, 23]. The
development of association analysis software is an active area
of research, with programs such as FasT-LMM and BOLT-LMM
providing alternative implementations to GCTA [31, 32].

Conclusion

GWAS remains a valuable technique for understanding the role
of genetic variants in explaining phenotypic variation, and is
likely to persist as an affordable alternative as the field moves
into the sequencing era. The analysis of thousands of variants
allows novel findings to be made, and targets for replication to
be established. Minimizing false-positive findings from GWAS
will allow for more efficient use of research effort through
reducing the likelihood of failed replication.

This protocol is intended as an introduction to the concepts
and processes of analysing novel data from microarrays—qual-
ity control, imputation and analysis are areas of constant statis-
tical and computational innovation, and advanced techniques
that may be more appropriate for a given data set are regularly
posited in the literature. We hope that the provision of this sim-
ple protocol will ensure the general standard of GWAS remains
high, and will simplify the combination of independent studies
into the collaborative meta-analyses that have become a hall-
mark of success in genomics.

Key Points

• Replication, including combining individual studies in
meta-analyses is central to genomics.

• Well-executed recalling and quality control of geno-
type data reduces biases within GWAS studies and in-
creases the probability of successful replication.

• Quality control, imputation and analysis of genotype
data are data-driven activities.

• The protocol provided with this article provides a
straightforward introduction to the basics of GWAS
that will increase standardization of GWAS studies
between different groups.

• Example scripts are provided at https://github.com/
JoniColeman/gwas_scripts.
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