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Quality control, modeling, and visualization
of CRISPR screens with MAGeCK-VISPR
Wei Li1,2†, Johannes Köster1,2,3†, Han Xu4, Chen-Hao Chen1,2, Tengfei Xiao2,3, Jun S. Liu5, Myles Brown2,3,6*

and X. Shirley Liu1,2,7*

Abstract

High-throughput CRISPR screens have shown great promise in functional genomics. We present MAGeCK-VISPR, a

comprehensive quality control (QC), analysis, and visualization workflow for CRISPR screens. MAGeCK-VISPR defines a

set of QC measures to assess the quality of an experiment, and includes a maximum-likelihood algorithm to call

essential genes simultaneously under multiple conditions. The algorithm uses a generalized linear model to

deconvolute different effects, and employs expectation-maximization to iteratively estimate sgRNA knockout

efficiency and gene essentiality. MAGeCK-VISPR also includes VISPR, a framework for the interactive visualization and

exploration of QC and analysis results. MAGeCK-VISPR is freely available at http://bitbucket.org/liulab/mageck-vispr.

Keywords: CRISPR/Cas9, Screening, Maximum likelihood, Expectation-Maximization, Negative binomial, Data-driven

documents, D3, Visualization, Quality control

Background

The clustered regularly interspaced short palindromic

repeats (CRISPR)/Cas9 system is a powerful genetic

engineering technique, allowing direct modifications of

genomic loci in most model organisms in a cost-effective

way. Based on this system, the recent development of

high-throughput CRISPR screening technology has

shown great promise in functional genomics, allowing

researchers to systematically identify genes associated

with various phenotypes [1–4]. CRISPR screens can be

performed by either direct knockout of genes using

CRISPR/Cas9 [1, 2], or perturbing gene expressions

using CRISPR and a dead-Cas9 (dCas9) fused with acti-

vation or repression effectors [5, 6].

While CRISPR screening is a powerful technique, it

creates computational challenges that include: (1) how

to evaluate the data quality; (2) how to identify gene or

pathway hits from the screens and assess their statistical

significance; and (3) how to visualize and explore the

screening results efficiently. Until now, a comprehensive

quality control (QC), data analysis, and visualization

method for CRISPR screen was not available. Several algo-

rithms are developed for screening analysis on microarray

or high-throughput sequencing data, such as RIGER [7],

RSA [8], HitSelect [9], as well as the MAGeCK algorithm

we previously developed [10]. These algorithms are de-

signed based on a comparison of two conditions, although

many screens are conducted simultaneously across several

time points, under many treatment conditions or over

many cell lines. In addition, these algorithms do not con-

sider the knockout efficiency of single guide RNAs

(sgRNA) on target genes. The knockout efficiency is the

ability of a sgRNA to induce cutting events that lead to

the knockout of the targeted gene. It is influenced by

sgRNA sequence content [11], chromatin accessibility and

exon position of the targeting gene [12], and so on.

In this study, we present MAGeCK-VISPR to over-

come the computational challenges of CRISPR screens.

MAGeCK-VISPR (1) defines a set of QC measurements

and (2) extends the MAGeCK algorithm by a maximum

likelihood estimation method (MAGeCK-MLE) to call

essential genes under multiple conditions while consider-

ing sgRNA knockout efficiency. Further, MAGeCK-VISPR

(3) provides a web-based visualization framework (VISPR)

for interactive exploration of CRISPR screen quality

control and analysis results. MAGeCK-VISPR employs a
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Snakemake [13] workflow to combine MAGeCK and

VISPR in a scalable and reproducible way (Fig. 1).

Results and discussion
Quality control measurements for CRISPR screening

experiments

Apart from the determination of essential genes with

MAGeCK, a central purpose of MAGeCK-VISPR is to

collect quality control (QC) measurements at various

levels (http://www.bioinformatics.babraham.ac.uk/projects/

fastqc). The proposed measurements (Table 1) can be di-

vided into four categories: sequence level, read count level,

sample level, and gene level (Fig. 2).

Sequence level QC measurements aim to detect prob-

lems with the sequencing, similar as in other next-

generation sequencing (NGS) experiments. Two mea-

surements are reported: sample GC content distribution

(Fig. 2a) and the base quality distribution of sequencing

reads (Fig. 2b, c). Ideally, sequencing reads should have

reasonable base qualities (median value >25), and sam-

ples from the same experiment should have similar GC

content distributions.

The second level of QC measurements is based on the

sgRNA read counts collected from MAGeCK. Raw se-

quencing reads are first mapped to sgRNA sequences in

the library with no mismatches tolerated. After that, the

number of sequencing reads, mapped reads (and thereof

the percentage of mapped reads), sgRNAs with zero read

count, and the Gini index of read count distribution are

reported for each sample (Fig. 2d-f ). The percentage of

mapped reads is a good indicator of sample quality, and

low mappability could be due to sequencing error, oligo-

nucleotide synthesis error, or sample contamination.

Good statistical power of downstream analysis relies on

sufficient reads (preferably over 300 reads) for each

sgRNA, with low number of zero-count sgRNAs in the

plasmid library or early time points. Gini index, a com-

mon measure of income inequality in economics, can

measure the evenness of sgRNA read counts [14]. It is

perfectly normal for later time points in positive selection

experiments to have higher Gini index since a few surviv-

ing clones (a few sgRNA with extreme high counts) could

dominate the final pool while most of the other cells die

(more sgRNAs with zero-count). In contrast, high Gini

index in plasmid library, in early time points, or in nega-

tive selection experiments may indicate CRISPR oligo-

nucleotide synthesis unevenness, low viral transfection

efficiency, and over selection, respectively.

Sample level QC (Fig. 2g-j) checks the consistency be-

tween samples. MAGeCK-VISPR reports the distributions

of normalized read counts by box plots and cumulative

distribution functions. It also calculates pairwise Pearson

correlations of sample log read counts, and draws the

samples on the first three components of a Principle

Component Analysis (PCA). Biological replicates or sam-

ples with similar conditions should have similar read

Preprocessing

fastq

MAGeCK-MLE
(or MAGeCK-RRA)

VISPR QC 
visualization

QC 
measurements

VISPR results
visualization

Read count 
table

Comparison 
results

sgRNA
annotations

MAGeCK-VISPR 
components

Input/output 

Fig. 1 An overview of the MAGeCK-VISPR workflow. Given FASTQ files and an sgRNA design, the workflow employs several preprocessing

steps, including using FastQC and MAGeCK to collect quality control metrics and calculate per-sgRNA read counts. Then, either MAGeCK-RRA

or MAGeCK-MLE is used to determine essential genes under user-defined conditions. Finally, results are composed for visualization and

interactive exploration in VISPR
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count distributions and higher correlations, and appear

closer to each other in the PCA plot. PCA plots can also

identify potential batch effects if the screens are con-

ducted under different batches.

Finally, gene level QC determines the extent of negative

selection in the screens. Since knocking out ribosomal

genes lead to a strong negative selection phenotype [1, 2],

the significance of negative selection on ribosomal genes

can be evaluated in MAGeCK-VISPR by Gene Ontology

(GO) enrichment analysis using GOrilla [15]. A working

negative selection experiment should have a significant P

value (<0.001), although many good experiments could

have much smaller P values (<1e-10, see Section A of

Additional file 1).

Calling essential genes under multiple conditions with

MAGeCK-MLE

MAGeCK-VISPR includes a new algorithm, ‘MAGeCK-

MLE’, to estimate the essentiality of genes in various

screening conditions using a maximum likelihood esti-

mation (MLE) approach. Compared with the original

MAGeCK algorithm using Robust Rank Aggregation

(‘MAGeCK-RRA’) that can only compare samples be-

tween two conditions, MAGeCK-MLE is able to model

complex experimental designs. Furthermore, MAGeCK-

MLE explicitly models the sgRNA knockout efficiency,

which may vary depending on different sequence contents

and chromatin structures [11, 12]. In MAGeCK-MLE, the

read count of a sgRNA i targeting gene g in sample j is

modeled as a Negative Binomial (NB) random variable.

The mean of the NB distribution (μij) is dependent on

three factors: the sequencing depth of sample j (sj), the

knockout efficiency of sgRNA i, and a linear combination

of the effects in different conditions (that is, different drug

treatments) on gene g. If sgRNA i knocks out target gene g

efficiently, then μij is modeled as:

μij ¼ sj exp βi0 þ
X

r

djrβgr

 !

The effects of r different conditions are represented as

the score ‘βgr’, a measurement of gene selections similar

to the term of ‘log fold change’ in differential expression

analysis. The presence or absence of each condition on

each sample is encoded into binary elements of the

design matrix djr, and can be obtained from experiment

designs. ‘β’ scores reflect the extent of selection in each

condition: βgr >0 (or <0) means g is positively (or nega-

tively) selected in condition r. μij is also dependent on

βi0, the initial sgRNA abundance which is usually mea-

sured in plasmid or the day 0 of the experiment.

The values of β, together with the information whether

an sgRNA is efficient, can be estimated by maximizing

the joint log-likelihood of observing all sgRNA read

counts of g on all different samples, and are optimized

using an Expectation-Maximization (EM) algorithm. In

the EM algorithm, MAGeCK-MLE iteratively determines

the knockout efficiency of each sgRNA based on the

current estimation of ‘β’ scores (the E step), and uses the

updated knockout efficiency information to re-calculate

‘β’ scores (the M step). By examining the patterns of read

counts of each sgRNA across all samples, the EM algo-

rithm minimizes the effect of inefficient sgRNAs. A de-

tailed description of the method is presented in the

Methods section.

We tested MAGeCK algorithms on four public data-

sets. The first two datasets (the ‘ESC’ and ‘leukemia’

dataset) correspond to negative selection experiments

on mouse embryonic stem cells (ESCs) and two human

Table 1 Quality control (QC) measures from MAGeCK-VISPR

QC term Description Expected

GC content GC content distribution of the sequencing reads Similar distribution for all samples from same library

Base quality Base quality distribution of the sequencing reads Single-peak distribution with median base quality at least 25

Sequencing reads Total number of sequencing reads Varies depending on sequencing platform

Mapped reads Total number of reads mapped to the sgRNA
library

300 * (number of sgRNAs)

% Mapped reads Percentage of mapped reads to the total number
of sequencing reads

At least 65 %

Zero sgRNAs Number of sgRNAs with zero read counts At most 1 % of total sgRNAs

Gini index Gini index of log-scaled read count distributions At most 0.1 for plasmid or initial state samples, and at most 0.2 for
negative selection samples

Sample correlation Pearson correlation coefficient between samples At least 0.8 for replicates

Correlation clustering or
PCA clustering

Hierarchical clustering of samples or first three
PCA components

Samples with similar conditions should cluster together

Ribosomal gene selection Negative selection enrichment statistics of
ribosomal genes

Significant P values (<0.001) for ribosomal subunit (GO:0044391) in
negative selection experiments
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leukemia cell lines (KBM7 and HL-60), respectively

(Fig. 3a and b) [1, 4]. In both datasets, cells were grown

with their natural growing condition and negative selec-

tions occurred in cells after CRISPR/Cas9 is activated.

The other two datasets (‘melanoma’ knockout and activa-

tion dataset) are different CRISPR screens on the human

melanoma cell line A375 that harbors a BRAF V600E mu-

tation (Figs. 4 and 5). The cells were treated with BRAF
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inhibitor vemurafenib (PLX) or dimethyl sulfoxide (DMSO)

control, and screened either with GeCKO [2] or with

CRISPR/dCas9 Synergistic Activation Mediator (SAM) li-

braries [5]. These two datasets include multiple experimen-

tal conditions that are difficult to compare directly using

the original MAGeCK-RRA algorithm. In the melanoma

knockout dataset, cells were under 7-day or 14-day selec-

tion [2]. In the melanoma activation dataset, two different

drugs (puromycin and zeocin) were used to select cells with

lentiviral infection, and both DMSO and PLX treatments

were profiled under 3-day or 21-day selection [5].

In two-condition comparisons, MAGeCK-MLE gives

similar results with existing methods such as MAGeCK-

RRA, RSA, and RIGER. All the algorithms identified genes

that are commonly essential to different cell types [16], as

well as known positively selected genes in PLX treated

conditions in two melanoma datasets (Fig. 3; also see Sec-

tion A and B of Additional file 1). In the leukemia dataset,

two-condition comparison algorithms (like MAGeCK-

RRA) identified genes that are differentially selected in

two cell lines by a direct comparison of HL60 and KBM7

(Fig. 3a) [10]. However, not all of these genes are equally

biologically interesting, as MAGeCK-MLE further distin-

guished them into two groups: genes having little effect in

one (β scores close to zero) but strong selection effect in

the other cell line (large absolute β scores), and genes hav-

ing weak and opposite effects in two cell lines (Fig. 3c).

The first group of genes are often more biologically

interesting as they are cell type-specific genes. This in-

cludes some well-known driver genes (like BCR in

KBM7) as well as genes that may be functional in only

one cell type: CDK6 and TRIB1 in HL60 [17, 18], and

RUNX1 in KBM7 [19].

One of the advantages of MAGeCK-MLE over other

methods is that it enables accurate comparisons of gene

essentialities across multiple conditions and experiments

in one run (Fig. 4 and Section C of Additional file 1). In

the melanoma knockout dataset, a k-means clustering of

the β scores of top selected genes demonstrated that these

genes have various essentialities across conditions (Fig. 4a).

Some of the genes are universally positively or negatively

selected in all conditions (cluster 3), while others have dif-

ferent essentiality across different conditions (clusters 1, 2,

and 4). Genes in cluster 4 are particularly interesting as

they show strong positive selection in 14-day PLX treated

condition. Indeed, genes whose knockout leads to strong

positive selection in PLX-treated cells are in cluster 4, in-

cluding NF1, NF2, MED12, CUL3 [2]. In contrast, the k-

means clusters of measurements from other algorithms

did not reveal the strong effect of genes in cluster 4

(Section C of Additional file 1). This is because their

score distributions are similar across different condi-

tions (Fig. 4b), and do not reflect the fact that the one

condition (PLX 14-day treatment) induces much stron-

ger positive selection than other conditions [2]. This is

partly because MAGeCK-RRA, RIGER, and RSA all use

a rank-based method to compare sgRNA between two

conditions, which may lose quantitative information.

Another example of using MAGeCK-MLE on multiple

conditions is demonstrated in the melanoma activation
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dataset, where cells underwent different selection methods

(using puromycin or zeocin), drug treatments (DMSO or

PLX), and durations (3-day or 21-day treatment) (Fig. 5).

Similar to the melanoma knockout dataset, we performed

k-means clustering of the top-selected gene β scores.

Many positively selected genes are dependent on the se-

lection method, which might not be biologically interest-

ing. For example, genes in clusters 2 and 4 correspond to

positively selected genes that are specific to puromycin or

zeocin selection, respectively. A small set of genes (cluster

5) are consistently selected in both zeocin and puromycin,

including genes that are validated in the original study, for

example, EGFR, GPR35, LPAR1/5 [5]. We further exam-

ined the genes in cluster 5 (Fig. 5b), and focused on genes

positively selected in the CRISPR activation experiment

but strongly negatively selected in the knockout experi-

ment. These genes include EGFR and BRAF, two known

kinases that drive melanoma progression and PLX re-

sistance [20, 21], and CRKL, a protein kinase that acti-

vates RAS and JUN pathway. CRKL amplification is

reported to lead to drug resistance against EGFR inhibi-

tors by activating EGFR downstream pathways [22], im-

plying its potential role in PLX drug resistance.

Visualization of QC measurements and gene essentiality

with VISPR

VISPR (VISualization of crisPR screens) is a web-based

frontend for interactive visualization of CRISPR screen QC

and comparison results. Interactive access is provided by an

HTML5 based browser interface, while visualizations are

realized with Vega [23], a declarative visualization grammar

on top of Data-Driven Documents (D3) [24]. VISPR pro-

vides three types of views for interactive exploration of

CRISPR screening: a quality control view, a result view, and

an experiment comparison view. The quality control view

shows the QC measurements described before (Fig. 2).

In the result view, screening results can be inter-

actively explored. It contains a table showing the com-

parison results of each gene (Fig. 6a). The table can be

sorted by different columns and filtered (from ‘Search’)

via gene names or regular expressions. Further, the dis-

tribution of P values is displayed as cumulative distribu-

tion function (CDF) (Fig. 6b) and as a histogram

(Fig. 6c). For each gene, the normalized sgRNA counts

in all samples can be displayed in a parallel coordinate

visualization (Fig. 6d). If available, knockout efficiency

predictions [11] and gene coordinates of each sgRNA

are displayed as separate axes. Axes can be reordered or

toggled on or off, and sgRNAs can be highlighted by

selecting ranges on each axis. Genes selected in the table

are highlighted in the CDF, allowing to assess their oc-

currence within the P value distribution of all genes.

VISPR provides various ways to further explore the ana-

lysis results. Individual genes can be viewed in Ensembl

[25] and IGV [26]. Selected genes can be visualized in

terms of their interaction network and function via Gene-

MANIA [27]. Functional analysis can be performed with

GOrilla [15], an online Gene Ontology (GO) enrichment

analysis tool. GOrilla takes a ranked list of genes (here

based on the P values reported by MAGeCK) to perform

a threshold-free enrichment analysis. The resulting GO

term enrichments can be further used for gene-level qual-

ity control.

The comparison view of VISPR can compare different

experiments by visualizing the common and exclusive sig-

nificant genes via Euler diagrams (Fig. 6e). Clicking on

segments of the Euler diagram opens the result views of

the corresponding experiments. For example, clicking on

the intersection between two experiments will open ‘re-

stricted’ result views for each experiment, where only the

common significant genes are displayed. These views pro-

vide the same features as the unconstrained result views

described above. However, in this case, GO enrichment

analysis with GOrilla is performed with the shown genes

(that is, the genes from the intersection) as foreground

and the other genes of the experiment as background.

The visualizations displayed in VISPR can be down-

loaded as publication-ready SVG files. In addition, a com-

mand line interface is provided to store visualizations as

Vega specifications. This format allows users to modify

and style the output of VISPR programmatically.

Implementation of the MAGeCK-VISPR workflow with

Snakemake

We implemented the MAGeCK-VISPR workflow with the

workflow management system Snakemake [13], allowing

an automatic execution of some or all of the MAGeCK-

VISPR functions: quality control, essential gene analysis,

and visualization. Choosing a workflow management sys-

tem like Snakemake has several advantages. First, the

workflow steps can be automatically parallelized and exe-

cuted on workstations, servers, and compute clusters

without the modification of the workflow. Second, Snake-

make tracks metadata (like creation date, input, and log

files) for all generated result and intermediate files. This

way, used data, methods, and parameters are documented

comprehensively for each analysis (also called data prov-

enance), an important requirement of reproducible sci-

ence. MAGeCK-VISPR provides a command line

interface to initialize the workflow in a given work dir-

ectory. This installs the workflow definition as a so-

called Snakefile, along with a configuration file and docu-

mentation. The configuration file is used to define loca-

tions of raw data and additional parameters for

MAGeCK-VISPR. Once configured, the Snakefile can

be executed with Snakemake. Since the Snakefile is in-

stalled into the given work directory, it can be easily

modified or extended by the user.
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We provide all components of the workflow as Conda

packages [28], such that MAGeCK-VISPR can be installed

with a single command. Optionally, the Conda package

manager can create isolated environments for the work-

flow to, for example, freeze or compare different software

versions or publish snapshots of a MAGeCK-VISPR work-

flow instance along with all data and used software. This

further increases the reproducibility of the generated

results.

Conclusion

The recently developed CRISPR screening is a powerful

technology in functional studies with different foci, includ-

ing tumor progression and metastasis [29], drug resistance

[3], immune response [30], and stem cell differentiation

[4]. To our knowledge, MAGeCK-VISPR is the first com-

prehensive pipeline developed for quality control, analysis,

and visualization of CRISPR screens, and highlights new

features compared with existing screening analysis algo-

rithms. For example, a typical CRISPR screening experi-

ment usually includes complex designs that are difficult to

analyze using existing algorithms, as they are all de-

signed for two-condition comparisons. To address this

challenge, MAGeCK-VISPR uses a maximum likelihood

approach to estimate the effect of different conditions

using a generalized linear model (GLM). It also incor-

porates sgRNA knockout efficiency information by

using a probabilistic mixture model. We demonstrated

that MAGeCK-MLE provides additional insights into

cell type-specific essential genes and is able to compare
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gene essentiality scores across conditions or even experi-

ments. Also, MAGeCK-VISPR is able to handle screens of

different types including CRISPR knockout and CRISPR

activation screens, and can be potentially applied to high-

throughput sequencing datasets of traditional RNA inter-

ference (RNAi) screens.

The MAGeCK-MLE approach is able to estimate

sgRNA knockout efficiencies from CRISPR screens be-

sides gene essentiality. We previously reported that

sequence-specific features learned from CRISPR screening

data helped the design of efficient sgRNAs [11]. With

more CRISPR screen data becoming available, the algo-

rithm will help us identify sgRNAs with the best behavior

and learn patterns of ‘good’ sgRNAs. The information will

further guide the design of optimized sgRNAs for CRISPR

screens and individual gene knockouts.

One potential limitation of MAGeCK-MLE is that its

EM algorithm uses an iterative process involving matrix

operations, making it slower than our previous MAGeCK

RRA method and other competing algorithms. Future ap-

proaches to speed up MAGeCK-MLE include improving

parametric tests for P value estimation (instead of using

permutation) and implementing the algorithm in Cython

instead of Python. Another potential limitation of

MAGeCK-VISPR on the quality control assessment is that

the current QC thresholds for ‘successful’ experiments are

determined heuristically due to limited number of publicly

available CRISPR screening datasets. We and other re-

searchers have previously reported that bigger collections

of ChIP-seq datasets provide better criteria on ChIP-seq

quality control [31, 32]. As more public CRISPR screening

datasets become available, the QC metrics (and other parts

of MAGeCK-VISPR) can be further refined.

As CRISPR screens become more popular, complica-

tions in the data such as batch effects will be unavoid-

able which need proper correction for meaningful

downstream analysis. Existing batch removal algo-

rithms, including ComBat [33] and RUVseq [34], have

been widely used to remove batch effects in gene ex-

pression analysis. In the future, these algorithms can

be integrated into MAGeCK-VISPR pipeline. After

that, MAGeCK-VISPR will be able to identify cancer-

and disease-specific essential genes by a direct com-

parison between different datasets or experiments,

providing potentially new therapeutic insights into the

mechanisms of diseases and cancers.

Methods

MAGeCK-MLE: a maximum likelihood approach for

essential gene detection

The Negative Binomial model for high-throughput CRISPR

screening read counts

After read mapping, the sequencing results of CRISPR

screening are presented as a read count table, where

rows correspond to sgRNAs and columns correspond to

samples. Read counts generated from high-throughput

sequencing data have higher variances when a high

number of read counts are observed (also called ‘over-

dispersion’). This is usually modeled using Negative Bi-

nomial (NB) distribution, such as in the statistical

models used in many RNA-seq differential expression

analysis algorithms: edgeR, DESeq/DESeq2, and so on

[35–37]. MAGeCK-MLE uses a similar model; briefly,

the read count of sgRNA i in sample j, or xij, is mod-

eled as:

xij ∼NB μij; αi

� �

Where μij and αi are the mean and over-dispersion fac-

tor of the NB distribution, respectively. The mean value

μij is further modeled as:

μij ¼ sjqij ð1Þ

Where sj is the size factor of sample j for adjusting

sequencing depths of the samples, and qij is a vari-

able modeling the behavior of sgRNA i in sample j

that will be discussed in later sections. sj is calcu-

lated by the ‘median ratio method’ in MAGeCK and

DESeq2 [10, 37]:

sj ¼ mediani
xij

x̂ i⋅

� �

Here, x̂ i is the geometric mean of the read counts of

sgRNA i across all J samples: x̂ i ¼
Y

k ¼ 1

J

xik

� �1=J

: sj

can also be calculated based on a set of predefined ‘con-

trol’ sgRNAs instead of all sgRNAs. This is particularly

useful when a majority of the genes in the library are

supposed to be essential; in such cases it is not suitable

to calculate sj based on all sgRNAs. Both methods are

implemented in MAGeCK-VISPR and users can specify

which method to use.

The over-dispersion factor αi is calculated based on

the regression residual and will be discussed in more de-

tails in the last Methods section.

Modeling sgRNA knockout efficiency and complex

experimental settings

Different studies demonstrated that sgRNAs have vari-

ous DNA cutting efficiencies [11, 38], but such informa-

tion is not considered in most essential gene calling

algorithms (including MAGeCK). In MAGeCK-MLE, we

use a binary variable πi to model whether sgRNA i is ef-

ficient or not: πi = 1 corresponds to an efficient sgRNA i

and vice versa. Since πi is unknown, the probability of
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observing a read count x from xij is a mixture of two

distributions:

P xij ¼ x
� 	

¼ p xij ¼ xjπi ¼ 1
� 	

p πi ¼ 1ð Þ
þ p xij ¼ xjπi ¼ 0
� 	

p πi ¼ 0ð Þ

In CRISPR screening experiments, it is common to

have cells treated with different conditions. For example

in melanoma activation dataset [5], cell lines underwent

different sgRNA expression selection methods (cells are

first selected using puromycin or zeocin), duration of

treatment (3-day or 21-day treatment) and drug treat-

ments (DMSO or PLX). For an efficient sgRNA i (πi = 1),

MAGeCK-MLE uses a generalized linear model (GLM) to

model the effect of qij as a linear combination of effects

from different sources:

P xij ¼ xjπi ¼ 1
� 	

∼NB x; sjqij; αi

� �

log qij

� �

¼ βi0 þ
X

r

djrβgr

ð2Þ

Here, βi0 is the baseline abundance of sgRNA i, corre-

sponding to its abundance in an initial state (in plasmid

or day 0). djr is an element of a design matrix given by

the user (explained later), and βgr is the (unknown) coef-

ficient that we would like to estimate.

If sgRNA i is inefficient (πi = 0), then its read counts in

all samples are not determined by any experimental con-

ditions except the baseline abundance:

P xij ¼ xjπi ¼ 0
� 	

∼NB x; sjqij; αi

� �

logqij ¼ βi0
ð3Þ

The design matrix

Design matrices have been used in many gene expression

analysis algorithms for modeling complex experimental de-

signs, including LIMMA [39], VOOM [40], DESeq2 [37],

and so on. The design matrix D models the combination of

effects of different conditions. For J samples that are af-

fected by R conditions, D is a J * R binary matrix with elem-

ent djr = 1 if sample j is affected by condition R, and 0

otherwise. An example of the design matrix is presented in

Additional file 1.

Based on the design matrix, the equations in (2) and

(3) can be written in a matrix form. For a gene g with N

sgRNAs in J samples, let q
→

g be the vector of q values of

all sgRNAs in all samples in gene g:

q
→

g
¼ q11; q21; …; qN1;…; q1J ; q2J ;…; qNJ

� 	T

It can be written as:

log q
→

g

� �

¼ D0�β
→

g

Where β
→

g is a N + r vector of β values in Equations (2)

and (3). The first N elements of β
→

g are the baseline

abundances of N sgRNAs, and the following R elements

of β
→

g are the coefficients corresponding to R columns in

the design matrix:

β
→

g ¼ β00; β10;…; βN0; β1;…; βr
� 	T

:

The binary extended design matrix D’ is used to set up

the linear relationship between β
→

g and q
→

g, and can be de-

rived directly from the design matrix. See Additional file

1 for the definition and an example of D’.

The EM approach

MAGeCK-MLE uses a maximum likelihood estimation

(MLE) approach to find the values of β�
→

g The objective

function of MAGeCK-MLE is:

β
→

g

�
;πi

�
� �

¼ arg max
βg; πi

X

i∈g;
j ¼ 1;…J

log p xij
� 	

0

B

B

B

B

@

1

C

C

C

C

A

Similar to DESeq2 [37], MAGeCK-MLE also adds a

prior p β
→

g

� �

that follows a normal distribution centered

on zero in the objective function. Adding this prior

makes sure β�
→

g does not become arbitrarily large, when

the sgRNA knockout efficiency is low and the differ-

ences of read counts between samples are high.

The objective function can be maximized using ex-

pectation maximization (EM). At the beginning, we have

an initial guess of p(πi = 1). Subsequently, we iteratively

update the values of p(πi = 1) and β
→

in the E step and

the M step, respectively.

The initial guess of sgRNA knockout efficiency

We demonstrated that the SSC (Spacer Scoring of

CRISPR) algorithm accurately predicts sgRNA knockout

efficiency from genomic sequence content [11]. For each

sgRNA, SSC generates an efficiency score in the range

(−2,2). We scale the score linearly to the range (0,1) as an

initial guess of p(πi = 1). If no initial estimates are given,

MAGeCK-MLE starts with p(πi = 1) = 1 for all sgRNAs.
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The expectation step

In the E step, we re-estimate the posterior probability

p(πi = 1) and the current estimation of β
→

g :

p πi ¼ 1jxij; β
→

g

� �

¼

Y

j
p xij πi ¼ 1; β

→

g







	

p πi ¼ 1ð jβ
→

g

� �

Y

j
p xijjπi ¼ 1; β

→

g

� 	

p πi ¼ 1jβ
→

g

� �

þ
Y

j
p xij πi ¼ 0; β

→

g







	

p πi ¼ 0ð jβ
→

g

� �

The maximization step

In the M step, we maximize the values of β
→

g based on

the values of p(πi = 1). To derive the formula for updat-

ing β
→

g , we write the probability of observing a read

count x of xij as:

P xij ¼ x
� 	

¼ P xij ¼ xjπi ¼ 1
� 	I πi¼1ð Þ

� P xij ¼ xjπi ¼ 0
� 	I πi¼0ð Þ

where I(.) is an indicator function. Taking the logarithm

on both sides of the equation, we get

logP xij ¼ x
� 	

¼ I πi ¼ 1ð Þ logP xij ¼ xjπi ¼ 1
� 	

þ I πi ¼ 0ð Þ logP xij ¼ xjπi ¼ 0
� 	

In the EM algorithm, it can be approximated by re-

placing the indicator function I(πi = 1) and I(πi = 0) with

the posterior probability of P(πi = 1) and P(πi = 0), re-

spectively [41], using the results from the E step. There-

fore, the log likelihood function from the mixture model

can be written as:

X

i;j

logP xij ¼ x
� 	

¼
X

i;j
P πi ¼ 1jxij; β

→

g

� �

logP xij ¼ xj πi ¼ 1
� 	

þ P πi ¼ 0jxij; β
→

g

� �

logP xij ¼ xjπi ¼ 0
� 	

Since NB distribution belongs to exponential family

distributions, a fast algorithm exists for the maximum

likelihood estimation of generalized linear models

[42]. Taking the prior of β
→

g into consideration, the ob-

jective function can be maximized using iteratively

reweighted ridge regression, or weighted updates, the

same the algorithm used in DESeq2 [37]. The update

rule for calculating βt
→

g at step t of the iteration can be

written as:

βtg

→

¼ ðD
0TWD0 þ λIÞ−1D

0TW zt
→

Here, W is the diagonal matrix with its values given

by wii = ei
t/(1/μi + αi), where ei

t is the current estimate

of the efficiency of sgRNA i : eti ¼ Pðπi ¼ 1
















xij; β
t−1
g

→

Þ ,

λ is the regularization parameter in the ridge regres-

sion, and μi is the current estimate of the mean of

the NB variable:

μt
→ ¼ sjexpð h

t→Þ

ht−1
→

¼ D0 βt−1g

→
ð4Þ

z
→t

is the residue vector of the current estimate, with

its ith element:

zti ¼ ht−1i þ eti xi−μ
t
i

� 	

=μti

Here, xi is the read count of sgRNA i.

Convergence

The EM approach iterates the E step and the M step

until it converges or reaches a predefined maximum

number of iteration.

Statistical significance

The statistical significance of β
→

g is calculated in both

permutation and Wald test. In permutation test,

MAGeCK-MLE shuffles all sgRNAs in a gene to gener-

ate empirical null distribution of β
→

g . The number of

shufflings is a parameter specified by the user, and the

default value is set to be 2*(total number of genes). In

the Wald test, MAGeCK-MLE compares the value of

β
→

g=SE β
→

g

� �

to the standard Normal distribution, where

SE β
→

g

� �

is the standard error of β
→

g :

SE β
→

g

� �

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

diag Cov β
→

g

� �� ��

r

Cov β
→

g

� �� �

¼ D
0TWD

0

þ λI
� �

−1

D
0TWD

0
� �

D
0TWD

0

þ λI
� �

−1

Here, diag Cov β
→

g

� �� �

are the diagonal elements of

the covariance matrix of β
→

g.
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Calculating the over-dispersion factor

The over-dispersion factor, αi, is calculated based on the

mean and variance estimation algorithm used in

MAGeCK [10] and VOOM [40]. We first calculate the

fitted values of β
→

g , or β̂ g , using the EM algorithm pro-

posed before, with the over-dispersion factor set to a

fixed value (for example, 0.01). Then the fitted means μ̂ i

are calculated using Equation (4), and the residual vari-

ances are calculated using the following equation:

σ̂ i
2 ¼ xi−μ̂ ið Þ2

MAGeCK-MLE then models the sample residual vari-

ance σ̂ 2 and fitted mean μ̂ using the same model as in

MAGeCK [10]:

σ̂ 2 ¼ μ̂ þ kμ̂b

Where k and b are learned from the fitted means and

residual variances of all sgRNA read counts. The values

of αi are then calculated based on the fitted values of

sample residual variance σ̂ f
2 from this model:

αi ¼
σ̂ 2
f −μ̂ i

μ̂ i
2

Availability

The MAGeCK-VISPR workflow is available open source

at http://bitbucket.org/liulab/mageck-vispr under the MIT

license.

Additional file

Additional file 1: Supplementary materials. (PDF 2045 kb)

Abbreviations

AML: acute myeloid leukemia; CDF: cumulative distribution function;

CML: chronic myeloid leukemia; CRISPR: clustered regularly interspaced short

palindromic repeats; D3: Data-Driven Documents; dCas9: dead Cas9;

DMSO: dimethyl sulfoxide; EM: expectation-maximization; GeCKO: genome-scale

CRISPR/Cas9 knockout; GLM: generalized linear model; GO: gene ontology;

MAGeCK: Model-based Analysis of Genome-wide CRISPR/Cas9 Knockout;

MLE: maximum-likelihood estimation; NB: negative binomial; NGS: next-

generation sequencing; PCA: principle component analysis; QC: quality

control; RNAi: RNA interference; RRA: robust rank aggregation;

SAM: Synergistic Activation Mediator; sgRNA: single-guide RNA;

VISPR: VISualization of crisPR screens.

Competing interests

The authors declare no competing financial interests.

Authors’ contributions

WL, JSL, and XSL designed the statistical model. WL and JK developed the

algorithm, designed and performed the analysis. XH and CHC performed

sgRNA efficiency prediction analysis. WL, JK, and XSL wrote the manuscript

with help from all other authors. XSL and MB supervised the whole project.

All authors read and approved the final manuscript.

Acknowledgements

The authors would like to thank Michael I. Love, Clifford Meyer, Peng Jiang,

Bo Li, and Graham McVicker for helpful discussions.

Funding

The project was supported by the NIH grant U01 CA180980 (to XSL),

R01 HG008728 (to MB and XSL), Department of Defense Synergistic Idea

Development Award PC140817 (to MB and XSL), R01 GM113242-01 (to

JSL), NSF grant DMS-1120368 (to JSL), and the Claudia Adams Barr

Award in Innovative Basic Cancer Research from the Dana-Farber Cancer

Institute.

Author details
1Department of Biostatistics and Computational Biology, Dana-Farber Cancer

Institute, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA.
2Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute,

Boston, MA 02215, USA. 3Division of Molecular and Cellular Oncology,

Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA

02215, USA. 4Broad Institute of MIT and Harvard, 7 Cambridge Center,

Cambridge, MA 02142, USA. 5Department of Statistics, Harvard University,

Science Center 715, 1 Oxford Street, Cambridge, MA 02138, USA.
6Department of Medicine, Brigham and Women’s Hospital and Harvard

Medical School, Boston, MA 02215, USA. 7School of Life Science and

Technology, Tongji University, Shanghai 200092, China.

Received: 31 July 2015 Accepted: 23 November 2015

References

1. Wang T, Wei JJ, Sabatini DM, Lander ES. Genetic screens in human cells

using the CRISPR-Cas9 system. Science. 2014;343:80–4.

2. Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelsen TS, et al.

Genome-scale CRISPR-Cas9 knockout screening in human cells. Science.

2014;343:84–7.

3. Zhou Y, Zhu S, Cai C, Yuan P, Li C, Huang Y, et al. High-throughput

screening of a CRISPR/Cas9 library for functional genomics in human cells.

Nature. 2014;509:487–91.

4. Koike-Yusa H, Li Y, Tan E-P, Velasco-Herrera MDC, Yusa K. Genome-wide

recessive genetic screening in mammalian cells with a lentiviral CRISPR-

guide RNA library. Nat Biotechnol. 2014;32:267–73.

5. Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, Barcena C,

et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9

complex. Nature. 2015;517:583–8.

6. Gilbert LA, Horlbeck MA, Adamson B, Villalta JE, Chen Y, Whitehead EH, et

al. Genome-scale CRISPR-mediated control of gene repression and

activation. Cell. 2014;159:647–61.

7. Luo B, Cheung HW, Subramanian A, Sharifnia T, Okamoto M, Yang X, et al.

Highly parallel identification of essential genes in cancer cells. Proc Natl

Acad Sci U S A. 2008;105:20380–5.

8. König R, Chiang C-Y, Tu BP, Yan SF, DeJesus PD, Romero A, et al. A

probability-based approach for the analysis of large-scale RNAi screens. Nat

Methods. 2007;4:847–9.

9. Diaz AA, Qin H, Ramalho-Santos M, Song JS. HiTSelect: a comprehensive

tool for high-complexity-pooled screen analysis. Nucleic Acids Res.

2015;43:e16–6.

10. Li W, Xu H, Xiao T, Cong L, Love MI, Zhang F, et al. MAGeCK enables robust

identification of essential genes from genome-scale CRISPR/Cas9 knockout

screens. Genome Biol. 2014;15:554.

11. Xu H, Xiao T, Chen C-H, Li W, Meyer C, Wu Q, et al. Sequence determinants

of improved CRISPR sgRNA design. Genome Res. 2015;25:1147–57.

12. Wu X, Scott DA, Kriz AJ, Chiu AC, Hsu PD, Dadon DB, et al. Genome-wide

binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat

Biotechnol. 2014;32:670–6.

13. Köster J, Rahmann S. Snakemake - a scalable bioinformatics workflow

engine. Bioinformatics. 2012;28:2520–2.

14. Wittebolle L, Marzorati M, Clement L, Balloi A, Daffonchio D, Heylen K, et al.

Initial community evenness favours functionality under selective stress.

Nature. 2009;458:623–6.

15. Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z. GOrilla: a tool for discovery

and visualization of enriched GO terms in ranked gene lists. BMC

Bioinformatics. 2009;10:48.

Li et al. Genome Biology  (2015) 16:281 Page 12 of 13

http://bitbucket.org/liulab/mageck-vispr
dx.doi.org/10.1186/s13059-015-0843-6


16. Hart T, Brown KR, Sircoulomb F, Rottapel R, Moffat J. Measuring error rates

in genomic perturbation screens: gold standards for human functional

genomics. Mol Syst Biol. 2014;10:733–3.

17. Placke T, Faber K, Nonami A, Putwain SL, Salih HR, Heidel FH, et al.

Requirement for CDK6 in MLL-rearranged acute myeloid leukemia. Blood.

2014;124:13–23.

18. Röthlisberger B, Heizmann M, Bargetzi MJ, Huber AR. TRIB1 overexpression

in acute myeloid leukemia. Cancer Genet Cytogenet. 2007;176:58–60.

19. Zhao L-J, Wang Y-Y, Li G, Ma L-Y, Xiong S-M, Weng X-Q, et al. Functional

features of RUNX1 mutants in acute transformation of chronic myeloid

leukemia and their contribution to inducing murine full-blown leukemia.

Blood. 2012;119:2873–82.

20. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al. Mutations

of the BRAF gene in human cancer. Nature. 2002;417:949–54.

21. Prahallad A, Sun C, Huang S, Di Nicolantonio F, Salazar R, Zecchin D, et al.

Unresponsiveness of colon cancer to BRAF(V600E) inhibition through

feedback activation of EGFR. Nature. 2012;483:100–3.

22. Cheung HW, Du J, Boehm JS, He F, Weir BA, Wang X, et al. Amplification of

CRKL induces transformation and epidermal growth factor receptor

inhibitor resistance in human non-small cell lung cancers. Cancer Discov.

2011;1:608–25.

23. VEGA. A Visualization Grammar. [https://vega.github.io].

24. Bostock M, Ogievetsky V, Heer J. D3: Data-Driven Documents. IEEE Trans Vis

Comput Graph. 2011;17:2301–9.

25. Cunningham F, Amode MR, Barrell D, Beal K, Billis K, Brent S, et al. Ensembl

2015. Nucleic Acids Res. 2015;43(Database issue):D662–9.

26. Thorvaldsdóttir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer

(IGV): high-performance genomics data visualization and exploration. Brief

Bioinformatics. 2013;14:178–92.

27. Warde-Farley D, Donaldson SL, Comes O, Zuberi K, Badrawi R, Chao P, et al.

The GeneMANIA prediction server: biological network integration for

gene prioritization and predicting gene function. Nucleic Acids Res.

2010;38(Web Server issue):W214–20.

28. The Conda project [https://anaconda.org].

29. Chen S, Sanjana NE, Zheng K, Shalem O, Lee K, Shi X, et al. Genome-wide

CRISPR screen in a mouse model of tumor growth and metastasis. Cell.

2015;160:1246–60.

30. Parnas O, Jovanovic M, Eisenhaure TM, Herbst RH, Dixit A, Ye CJ, et al. A

Genome-wide CRISPR Screen in Primary Immune Cells to Dissect Regulatory

Networks. Cell. 2015;162:675–86.

31. Wang Q, Huang J, Sun H, Liu J, Wang J, Wang Q, et al. CR Cistrome: a

ChIP-Seq database for chromatin regulators and histone modification linkages

in human and mouse. Nucleic Acids Res. 2014;42(Database issue):D450–8.

32. Diaz A, Nellore A, Song JS. CHANCE: comprehensive software for quality

control and validation of ChIP-seq data. Genome Biol. 2012;13:R98.

33. Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray

expression data using empirical Bayes methods. Biostatistics. 2007;8:118–27.

34. Risso D, Ngai J, Speed TP, Dudoit S. Normalization of RNA-seq data

using factor analysis of control genes or samples. Nat Biotechnol.

2014;32:896–902.

35. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for

differential expression analysis of digital gene expression data.

Bioinformatics. 2009;26:139–40.

36. Anders S, Huber W. Differential expression analysis for sequence count data.

Genome Biol. 2010;11:R106.

37. Love MI, Huber W, Anders S. Moderated estimation of fold change and

dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

38. Doench JG, Hartenian E, Graham DB, Tothova Z, Hegde M, Smith I, et al.

Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene

inactivation. Nat Biotechnol. 2014;32:1262–7.

39. Smyth GK. Linear models and empirical bayes methods for assessing

differential expression in microarray experiments. Stat Appl Genet Mol Biol.

2004;3:Article3–25.

40. Law CW, Chen Y, Shi W, Smyth GK. voom: precision weights unlock linear

model analysis tools for RNA-seq read counts. Genome Biol. 2014;15:R29.

41. Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete

data via the EM algorithm. J R Stat Soc Ser B. 1977;39:1–38.

42. Fox J. Applied Regression Analysis and Generalized Linear Models. London:

SAGE Publications; 2015.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Li et al. Genome Biology  (2015) 16:281 Page 13 of 13

https://vega.github.io
https://anaconda.org

	Abstract
	Background
	Results and discussion
	Quality control measurements for CRISPR screening experiments
	Calling essential genes under multiple conditions with MAGeCK-MLE
	Visualization of QC measurements and gene essentiality with VISPR
	Implementation of the MAGeCK-VISPR workflow with Snakemake

	Conclusion
	Methods
	MAGeCK-MLE: a maximum likelihood approach for essential gene detection
	The Negative Binomial model for high-throughput CRISPR screening read counts
	Modeling sgRNA knockout efficiency and complex experimental settings
	The design matrix
	The EM approach
	The initial guess of sgRNA knockout efficiency
	The expectation step
	The maximization step
	Convergence

	Statistical significance
	Calculating the over-dispersion factor
	Availability

	Additional file
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	Funding
	Author details
	References

