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Abstract: An electronic nose system for quality control of coffee is designed and tested. The 
system uses the Figaro TGS800 series sensors with an integrated heating element. The testing of 
the system is carried out using different types of coffee where it is proved successful in classifying 
the tested coffees and actual discrimination of ingredients into different classes [10]. Database 
based software is designed to interface the built hardware and to process the electronic nose 
signals before being classified. 
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INTRODUCTION 
 
The standard approach to odor analysis is to employ a 
human sensory panel, which is a group of people with 
highly trained senses of smell. The disadvantages of 
human sensory panels include subjectivity, poor 
reproducibility (i.e., results fluctuate depending on 
time of day, health of the panel members, prior odors 
analyzed, fatigue, etc.), time consumption, and large 
labor expense. Also, human sensory panels cannot be 
used to assess hazardous odors, work in continuous 
production, or remote operation [1-7]. 
Analytical chemistry instruments such as gas 
chromatographs (GC) and mass spectrometers (MS) 
have been used to analyze both hazardous and non-
hazardous odors. GC and GC/MS systems can require 
a significant amount of human intervention to 
perform the analysis and then relate the analysis to 
something useable. 
The main motivation for electronic noses is the 
development of qualitative, low-cost, real-time, and 
portable methods to perform reliable, objective, and 
reproducible measures of volatile compounds and 
odors. In order to develop an electronic nose, it is 
useful to examine the physiology behind olfaction 
since biological olfactory systems contain many of 
the desired properties for electronic noses. Also, the 
contrast between an artificial system and physiology 
is necessary to achieve a reliable, subjective, and 
analytically acceptable system [11]. 
In this paper, a fully operational hardware/software 
system which models the function of the biological 
nose is presented and applied to coffee typed 
classification. The device is shown in Fig.1.  
 
 

 
 
 
 
 
 
 
 
 
 
 
Fig. 1: The Designed Electronic Nose System 
 
The Biological Nose: The mammalian olfactory 
system uses a variety of chemical sensors, known as 
olfactory receptors, combined with automated pattern 
recognition incorporated in the olfactory bulb and 
olfactory cortex in the brain [8, 9]. No one-receptor 
type alone identifies a specific odor. It is the 
collective set of receptors combined with pattern 
recognition that results in the detection and 
identification of each odor. Fig.2 illustrates the major 
components and function of the mammalian olfactory 
system and its sensory components. Odor molecules 
arrive at the olfactory receptors stimulating an 
electro-chemical response that is transmitted through 
the crib form plate to the olfactory bulb and 
ultimately the olfactory cortex. 
The major operations olfaction can be broken into 
sniffing, reception, detection, recognition, and 
cleansing of odors. The olfaction process begins with 
sniffing, which brings odorant molecules from the 
outside world into the nose. With the aid of turbinated 
(bony    structures    in    the    nose    which   produce  
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turbulence), sniffing also mixes the odorant molecules 
into a uniform concentration and delivers these 
molecules to the mucus layer lining the olfactory 
epithelium in the upper portion of the nasal cavity. 
Next, the odorant molecules dissolve in this thin 
mucus layer which then transports them to the cilia 
(hair like fibers) of the olfactory receptor neurons. 
The mucus layer also functions as a filter to remove 
larger particles. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2: Major Olfaction Sensing Components in 

Humans 
 
Fig. 2; also illustrates the major components of the 
senses of olfaction and taste in the human. The major 
olfactory components are the olfactory receptors 
(sensors), the olfactory bulb (signal pre-processing), 
and the olfactory cortex (odor identification). The 
VNO is the vomero nasal organ and is associated with 
pheromone detection. 
Reception involves binding the odorant molecules to 
the olfactory receptors. These olfactory receptors 
respond chemically with the odorant molecules. This 
process involves temporarily binding the odorant 
molecules to proteins that transport the molecules 
across the receptor membrane. Once across the 
boundary, the odorant molecules chemically stimulate 
the receptors. Receptors with different binding 
proteins are arranged randomly throughout the 
olfactory epithelium. 
The chemical reaction in the receptors produces an 
electrical stimulus. These electrical signals from the 
receptor neurons are then transported by the olfactory 
axons through the crib form plate (a perforated bone 
that separates the cranial cavity from the nasal cavity 
within the skull) to the olfactory bulb (a structure in 
the brain located just above the nasal cavity). From 
the olfactory bulb, the receptor response information 
is transmitted to the olfactory cortex where odor 
recognition takes place. After this, the information is 
transmitted to the limbic system and cerebral cortex. 
There are no individual olfactory receptors or portions 
of the brain that recognize specific odors. It is the 
brain that associates the collection of olfactory signals 
with the odor. 

Finally, in order for the nose to respond to new odors, 
the olfactory receptors must be cleansed. This 
involves breathing fresh air and the removal of 
odorant molecules from the olfactory receptors. 
 
The Smart Electronic Nose System: The two main 
components of our system are the sensing system and 
the automated pattern recognition system as shown in 
Fig. 3. This combination of broadly tuned sensors 
coupled with sophisticated information processing 
makes the electronic nose a powerful instrument for 
odor analysis applications. The sensing system can be 
an array of chemical sensors where each sensor 
measures a different property of the sensed chemical, 
or it can be a single sensing device (e.g., gas 
chromatograph, spectrometer) that produces an array 
of measurements for each chemical, or it can be a 
hybrid of both. Each odorant or volatile compound 
presented to the sensor array produces a signature or 
characteristic pattern of the odorant [5,9 and 11]. 
By presenting many different odorants to the sensor 
array, a database of signatures is built up. This 
database of odorant signatures is then used to build 
the odor recognition system. The goal of this process 
is to train or configure the recognition system to 
produce unique classifications or clustering’s of each 
odorant so that an automated identification can be 
implemented. Like biological systems, electronic 
noses are qualitative in nature and do not give precise 
concentrations. Unlike biological systems, current 
electronic noses are usually trained to identify only a 
few different odors or volatile compounds. Also, 
current systems lack the temporal dynamics found in 
biological systems and neuromorphic models. During 
operation, a chemical vapor or odor is blown over the 
sensor array, the sensor signals are digitized and fed 
into the computer, and the Artificial Neural Networks 
[3] (implemented in software) then identifies the 
chemical as shown in Fig. 4.  
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
Fig. 3: Schematic of SENS   
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Fig. 4: Neural Networks Recognition Engine 
 

System Hardware Design: The Smart Electronic 
Nose system is a system that converts the sensed odor 
in air to an electrical signal that is conditioned and 
sent to a computer to be interpreted and classified 
using a specifically designed Neural Network 
algorithms.  
The main task of the designed hardware is to analyze 
the voltage response of the sensor after digitizing the 
signal using a level comparator. The digitized signal 
is then compared with the stored signals (odors 
signatures) for odor identification purpose. 
The designed electronic nose comprises three main 
units as shown in Fig. 5. 
 
 
 
 
 
 
 
Fig. 5: System Block Diagram 
 
Sensing Unit: The used sensing element is a Figaro 
gas sensor, which consists of a Tin Oxide (SnO2) 
semiconductor [4], which has low conductivity in 
clean air. In the presence of a detectable gas, the 
sensor's conductivity increases depending on the gas 
concentration in the air. A simple electrical circuit can 
convert the change in conductivity to an output signal, 
which corresponds to the gas concentration. The used 
TGS 822 has high sensitivity to the vapors of organic 
solvents as well as other volatile vapors. It also has 
sensitivity to a variety of combustible gases such as 
carbon monoxide, making it a good general-purpose 
sensor. The sensor is also manufactured with a 
ceramic base which is highly resistant to severe 
environments with very high temperatures as shown 
in Fig. 6. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6: Smell Sensor and its Equivalent Electrical 
Circuit 
 
Processing unit: The main function of this unit is to 
digitize and condition the nose sensor signal as 
follows: 
A clock signal is generated using the MC14060B 14-
Bit Binary counter and oscillators shown in Fig. 7. 
The inverter in the circuit provides 180-degree phase 
shift for oscillation purposes, with the 1.5K Ohm 
resistors to provide the required negative feedback. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7: Clock Generator 
 
The frequency of the square wave, obtained from pin2 
(Q13) of MC14060B device, can be calculated using 
the following expression: 

KHzHZMHZf  984.0375.9842/)032.4( 13 ===  , and a 
time constant can be obtained as .016.11 msf ==τ as 

shown in Fig. 8 P (1). 
The generated clock pulse signal is applied to the 
BC337/338 switching and latch circuit shown in Fig. 
9. The common emitter transistor has capacitor 
connected to it and operates with the following 
characteristics:  
1. Transistor is ON: signal at Q13 (MC14060B) 

is high; hence transistor output will be at 
level low. 

2. Transistor is OFF: signal at Q13 
(MC14060B) is low; hence transistor output 
will be at level high. 
� = RC= 6.8 k ohm* 0.22 uF= 1.496 ms. 
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Now, the transistor circuit output voltage can be 
calculated using the following formula: 
Vc (T) =Vcc (1- e (-t/�)) 
Vc (T) = 5 v (1- e (1.016ms/1.496ms)) = 2.5 volts. 
The signal from the capacitor has a sawtooth shape 
with maximum amplitude of 2.5 volts. This signal is 
used as the reference signal on the Op-Amp which 
acts as a comparator as shown in Fig. 8 P(2).  This 
comparator produces a signal resulting from the 
reference and nose sensor signal as shown in Fig. 11. 
The sensor signal is obtained via a low pass filter and 
controlled by a variable resistor as shown in Fig. 10. 
The obtained digital signal from the comparator (Fig. 
8 P (4)) needs a time interval shift which is necessary 
to compensate for the zero value condition. This is 
achieved by inverting the Q13(MC14060B) signal 
and logically ANDing it with the comparator output 
signal as shown in Fig. 8 P(5). 
The final stage of processing will be logically 
ANDing the time-shifted signal with a high clock 
signal Q14(MC14060B) as shown in Fig. 8 P(8). Now 
the signal is ready for the interface unit.  
The interfacing unit receives the signal out of the 
AND gate and produces a digital count using the 
HEF4040B 12-stage binary counter. The output of the 
counter is multiplexed using the SN54/74LS151 8–
input multiplexer. The output of the multiplexer form 
the input to the comparator as shown in Fig. 12.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8: Timing Diagram 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9: Analog to Digital Converter 
 
 
 
 
 
 

 
 
 
Fig. 10: Low Pass    

 
 
 
 
 
 
 

 
 
Fig. 11: Comparator Circuit 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 12: Interface Unit 
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Software: The interfacing and processing software is 
programmed using visual basic 6.0. The electronic 
nose data is obtained via parallel port. The algorithm 
is shown in the flowchart in Fig.13. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 13: Software Flowchart 
 

RESULTS AND DISCUSSION 
 
The basic factor used for discriminating between 
detected coffees is the average time of signal recovery 
of the Figaro sensor as shown in Table 1 and Fig. 14-
16. 
 
Table 1: Time Response of Coffee Mixtures 
 

Time Min.) Coffee 1 Coffee 2 Coffee 
3 

0 66 56 26 
5 65 55 25 
10 62 54 24 
15 62 53 24 
20 62 51 23 
25 61 49 22 
30 61 47 21 

 
 
 
 
 
 
 
 
 
 
Fig. 14 : Coffee 1 Time Response       
 
 
 
 
 
 
 
 
 
 
Fig. 15: Coffee 2 Time Response  
 
 
 
 
 
 
 
 
 
 
 
Fig. 16 : Coffee 3 Time Response 

 
 
The tested coffee types which appear in Table 1 
correspond to the following mixtures 
1. Coffee 1: 2/3 black and 1/3 brown. 
2. Coffee 2: 1/2 black and 1/2 brown. 
3. Coffee 3: 1/3 black and 2/3 brown. 
It is found that the time response (pulse count) 
corresponds to the percentage of mix of each type of 
coffee as follows: 
A count of a 100% corresponds to a totally black 
coffee (heavily roasted beans). Now considering an 
interval of exposure of 5 minutes we realize the 
following:  
i. A count of 65 corresponds to 2/3 black and 1/3 
brown. Theoretically this type should have a response 
= 2/3 * 100 = 67. The difference between obtained 
value and calculated value is 67 – 65 =2. This 
represents an error in measurement and \ or inaccurate 
weight mix of beans or level of roasting. 
ii. A count of 55 corresponds to ½ black and ½ 
brown. Theoretically this type should have a response 
= 1/2 * 100 = 50. The difference between obtained 
value and calculated value is 55-50=5.  
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iii. A count of 25 corresponds to 1/3 black and 1/3 
brown. Theoretically this type should have a response 
= 1/3 * 100 = 33.3. The difference between obtained 
value and calculated value is 33-25=8.  
 
From the previous we conclude the following: 
1. The error is at minimum when the dominant type 
in the mix is black coffee as it carries the strongest 
smell. 
2. The error is at maximum when the dominant type 
in the mix is brown coffee as it lightly roasted, hints it 
is aroma it not so strong. 
3. The equally mixed has an error that lies in 
between the two values. This can be proved by taking 
the average of errors of 1 and 2. Which gives (2+8) / 
2 = 5. 
A neural network model is used to predict other levels 
of mixtures based on actual testing data[12]. The 
model is shown in Fig. 17.  The network is trained 
using standard back propagation algorithm  
This model is used to predict the mix type based on a 
given count value which can be used in quality 
control of coffee mixtures as shown in Fig. 18. 
 
 
 
 
 
 
 
 
 
 
Fig. 17: Simplified Neural Network Model 
 
 
 
 
 
 
 
 
 
Fig. 18: Classification of Coffee Types 
 
The designed smart engine that is used to analyze and 
classify signals generated by various herbs is based on 
the following principles: 
 
1. Find the highest of all the input parameters 
2. Normalize the obtained values and form an odor 

descriptor 
3. Convert the normalized values to a digital code to 

be stored in the memory 
 
Determination of how close an incoming herb odor 
pattern  to  a  memorized   one  is  carried  out  by  the  
 

Neural  part of the smart engine. Network of artificial  
neural elements are used. They have the ability to 
learn during a training process where they are 
presented with a sequence of stimuli inputs (herb 
odors) and a set of expected responses (signal 
amplitude). Learning is said to occur when the 
artificial neural engine arrives at a generalized 
solution for a class of odors (herbs). The system uses 
standard Back-Propagation algorithm in conjunction 
with a smart classification algorithm specifically 
designed to preprocess odor sensor signals.  
Three coffee types were used to test the capability of 
both the designed electronic nose hardware and 
interpreting and classifying neural network software. 
Fig. 17 shows a simplified representation of the 
standard back propagation neural network model used 
for training, while Fig. 18 shows the system used for 
classification. 
The designed software sampled the smell of each herb 
over a period of time described by the following 
expression 
 
Vresponse (t) =VSensor (1- e (-t/�)) 
 
This is carried out at 5 minutes intervals, which gives 
7 samples per herb. These obtained samples are 
averaged in order to minimize any errors. 
Table 1 shows a clear distinction between the three 
different types of herbs as classified by our system.  
The system is capable of classifying large number of 
herbs with the ability to further increase its 
classification range and subclasses by using 
combination of sensors [12]. 
 

CONCLUSION 
 
The designed and built TGS 800 series Smart 
Electronic Nose System proved to be an excellent 
system for the general purpose applications as it 
allows any of the 800 series sensors to be interfaced 
without the need for any hardware modification or 
adjustment. The initial choice of the TGS type of 
sensors is due to there simple design and the 
advantage of having an integrated heater which helps 
in stabilizing detecting element temperature and 
evaporation of adsorbed odors molecules, hence 
provides acceptable results that is improved through 
the use of hardware filtering and digitizing devices 
and an intelligent software which provides excellent 
classification. Further improvement could be 
introduced to our efficient system by integrating all 
sensors onto one device where by integration and 
miniaturization will improve the electrical 
characteristics of the sensing part of the designed 
system. 
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