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In structural magnetic resonance imaging motion artifacts are common, especially when

not scanning healthy young adults. It has been shown that motion affects the analysis

with automated image-processing techniques (e.g., FreeSurfer). This can bias results.

Several developmental and adult studies have found reduced volume and thickness of

gray matter due to motion artifacts. Thus, quality control is necessary in order to ensure

an acceptable level of quality and to define exclusion criteria of images (i.e., determine

participants with most severe artifacts). However, information about the quality control

workflow and image exclusion procedure is largely lacking in the current literature and the

existing rating systems differ. Here, we propose a stringent workflow of quality control

steps during and after acquisition of T1-weighted images, which enables researchers

dealing with populations that are typically affected by motion artifacts to enhance data

quality and maximize sample sizes. As an underlying aim we established a thorough

quality control rating system for T1-weighted images and applied it to the analysis of

developmental clinical data using the automated processing pipeline FreeSurfer. This

hands-on workflow and quality control rating system will aid researchers in minimizing

motion artifacts in the final data set, and therefore enhance the quality of structural

magnetic resonance imaging studies.

Keywords: structural MRI, quality control, head motion, attention-deficit/hyperactivity disorder (ADHD), rating

system, volumetry

INTRODUCTION

For structural magnetic resonance imaging (sMRI), quality control (QC) of the T1-weighted images
is essential due to artifacts possibly biasing results (Reuter et al., 2015). This includes technical
artifacts like head coverage, radiofrequency noise, signal inhomogeneity, and susceptibility, as
well as motion artifacts like blurring and ringing (Wood and Henkelman, 1985; Reuter et al.,
2015). Motion artifacts are produced by the participant swallowing, blinking, chewing, turning,
fidgeting, or repositioning a limb (Bellon et al., 1986). MRI technologists or physicists should care
about technical artifacts, while motion artifacts require the attention of researchers. Therefore,
researchers should be informed about different types of artifacts and their impact on the data.
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Motion artifacts are especially a problem in developmental
studies (Brown et al., 2010; Van Dijk et al., 2012) with younger
age groups related to increased motion artifacts (Blumenthal
et al., 2002). Moreover, images of children and adolescents
with psychiatric disorders, such as attention-deficit/hyperactivity
disorder (ADHD), tic disorders (Buse et al., 2016), autism
spectrum disorder, schizophrenia (Pardoe et al., 2016), and
conduct disorder (CD, Huebner et al., 2008) might be particularly
prone to motion artifacts. For example, ADHD impulsivity and
hyperactivity symptoms have been shown to relate tomore severe
motion artifacts (Rauch, 2005).

The first important approaches to reduce motion artifacts
are prospective techniques. Preparing participants with a mock
scanner alone (Epstein et al., 2007) or in combination with
motion-reduction training (Slifer et al., 2002) can help to
acclimatize the child to the scanner environment and decrease
children’s anxiety (Törnqvist et al., 2006). Other approaches
include providing clear instructions to the child to remain still
(Kuperman et al., 2011; Van Dijk et al., 2012), using equipment
for head fixation (Overmeyer et al., 2001; Shaw et al., 2007; Reuter
et al., 2015), presenting a movie during the scan (Overmeyer
et al., 2001), or scanning in the evening to promote natural
sleep (Blumenthal et al., 2002; Shaw et al., 2007). For a more
detailed description of prospective motion-reduction techniques
see Woods-Frohlich et al. (2010).

Despite these efforts, however, developmental populations
often struggle with keeping still during scanning. Thus,
in addition to prospective motion-reduction techniques,
retrospective QC remains necessary to rule out distortion due
to motion artifacts (Blumenthal et al., 2002; Gedamu, 2011).
For example, large motion artifacts have been shown to affect
segmentation and parcelation techniques such as the automated
image-processing pipeline FreeSurfer (Reuter et al., 2015; Tisdall
et al., 2016). Volume and thickness estimates of cortical gray
matter (GM) are biased by motion. A small increase in motion
accounted for around 1.4–2.0% GM volume loss in an adult
population, which is comparable to yearly atrophy rates in
neurodegenerative diseases (Reuter et al., 2015). In a child
population, Blumenthal et al. (2002) also found that there was
a dose-dependent effect of motion artifacts and estimated GM
volume loss, with mild motion associated with 4%, moderate
motion associated with 7%, and severe motion associated with
27% reduction of total GM. For these reasons, previous studies
including developmental clinical populations (such as ADHD)
have had to exclude 4–23% of participants due to severe motion
artifacts (Castellanos et al., 2002; Shaw et al., 2007; Huebner
et al., 2008; Lopez-Larson et al., 2012).

Although most developmental and clinical sMRI studies
exclude participants due to excess motion, to our knowledge,
there is no established threshold or criterion for this “critical
level” of motion. This is in contrast to functional MRI (fMRI)
where techniques such as “spikes > 3mm” after automated
realignment preprocessing or thresholds based on “scrubbing”
(for review see Power et al., 2015) are used to exclude participants
due to motion. Without such automated algorithms, qualitative
QC is required for each participant. Surprisingly, only some
developmental sMRI studies report details of their retrospective

QC approach. Based on evaluated literature search up to June
2015 of 57 studies found on sMRI in developmental ADHD and
CD, only 10 reported some kind of retrospective QC. Of those,
the approaches differ and are often reported without any details.
For example, some authors note that T1-weighted images have
been “checked for scanner artifacts and gross neuroanatomical
abnormalities” (Fairchild et al., 2011, 2013), others merely state
images have been “quality controlled for motion” (Dirlikov et al.,
2015), or that they underwent “visual inspection” (Castellanos
et al., 2002; Cao et al., 2010) or “internal quality control” (Fjell
et al., 2015).

A few QC rating systems for motion artifacts in T1-weighted
images do exist. These rating systems include categories ranging
from “good” data, which is proposed to be included in further
processing, to “moderate” data, and finally “bad” data, which
should be excluded from further processing (Blumenthal et al.,
2002; Wilke et al., 2002; Shaw et al., 2007; Pardoe et al., 2016;
Reuter et al., 2015; Tisdall et al., 2016). However, the definition
and range of additional categories in the “moderate” category,
between the good and bad data categories, varies in previous
work (Blumenthal et al., 2002; Shaw et al., 2007; Reuter et al.,
2015; Tisdall et al., 2016). For instance, some authors used a 4-
point scale (from none to severe, Blumenthal et al., 2002; Reuter
et al., 2015) while others used a 5-point scale (from no detectable
motion to lowest quality/severe motion, Pardoe et al., 2016).
Moreover, most authors to date that have reported using QC
ratings have not specified which artifact type(s) they focused
on (e.g., ringing, blurring, gray, and white matter differentiation
etc.) to evaluate motion in their images (Blumenthal et al., 2002;
Wilke et al., 2002; Shaw et al., 2007; Pardoe et al., 2016). Reuter
et al. (2015) are an exception, as they indicated that their rating
system was based on artifacts like head coverage, wrapping,
radiofrequency noise, signal inhomogeneity, susceptibility, and
ringing. Specifically, they rated these artifact types from 1 to 4 and
then merged these ratings into an overall quality category, i.e.,
either “pass,” “warn,” or “fail.” Using this approach, they found
that cortical GM was significantly reduced for adult participants
rated “fail” but also for those rated “warn,” suggesting participants
in the “fail” and probably also in the “warn” category should be
excluded from further analyses. However, the large number and
range of images that fall into the “warn” category suggests that the
QC rating system of Reuter et al. (2015) may need to be adapted
and refined in order to save as much data as possible and obtain
reliable statistical results at the same time.

A standard and robust retrospective QC rating system is
warranted to improve replication and comparability between
studies and to ensure that only participants with an acceptable
level of image quality contribute to the results. Thus, the aim
of the current study was two-fold. First, we aimed to propose
a stringent workflow of QC steps of sMRI T1-weighted images
in detail, which especially enables developmental researchers or
those doing group comparisons, especially with patient groups,
to efficiently process valuable data. At the same time, we aimed
to establish a thorough qualitative QC rating system for T1-
weighted images to train research team members on motion and
other artifacts before the start of a study and to rate images
retrospectively. As our second aim we implemented and tested
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this rating system in a developmental clinical sample. We sought
to replicate previous findings that motion artifacts influence GM
volume estimates. Overall, we tested if our rating system captures
biases due to motion artifacts. For future studies, the application
of the proposed hands-on workflow and qualitative QC rating
system may further help to minimize critical motion artifacts in
the final data set used for statistical analyses, and therefore boost
the quality of future sMRI studies.

MATERIALS AND METHODS

As our first aim, we developed a workflow including a T1 rating
system and applied it to our developmental clinical data. As a
second aim we tested if motion artifacts in our data influence
the estimation of GM volume (see Reuter et al., 2015). Therefore,
we applied our rating system on data of clinical and typically
developing (TD) adolescents.

First Aim: Workflow Including T1 Rating
T1 Rating System
This qualitative rating system was developed to visually rank
the quality of T1-weighted images taking into account the
three artifacts most present in our developmental clinical data,
including motion, ringing, and susceptibility (for a definition of
these artifacts see Supplementary Material). Ringing was seen
in ∼40% of T1-weighted images. These artifacts have been
previously focused on in QC analyses (Blumenthal et al., 2002;
Shaw et al., 2007; Reuter et al., 2015; Pardoe et al., 2016). Four
different rating categories were chosen because some artifacts can
affect different components of an image. For example, ringing
artifacts tend to only affect GM and white matter (WM) borders
but not subcortical structures (Table 1). The benefit of this
approach is the possibility to focus the rating on certain areas
according to the study question. The first two steps concern
artifacts like ghosting, blurring or susceptibility artifacts (step
1: “Image sharpness”) and ringing (step 2: “Ringing”), the other
two apply to how well-crucial information can be drawn from
the image [step 3: “Contrast to noise ratio (CNR) (subcortical
structures),” step 4: “CNR (GM and WM)”]. First of all, ratings
from R1 to R3 are assigned to each step. The mean score of
these four rating steps is then calculated and represents the final
category of C1 (pass), C2 (check) or C3 (fail). Depending on the
study’s focus, the different steps can be weighted when calculating
the average; such as step 3 of subcortical structures could have a
higher impact on the final score/category. These final category
assignments can then be used to decide whether to include or
exclude images from further analyses (see Figure 1). T1-weighted
image examples for each of the categories are presented in
Figure 2.

The complete workflow used in our developmental clinical
sMRI study and the implementation of our QC rating system is
presented in Figure 1.

Workflow

Screening
Immediately after data acquisition T1-weighted images should
be screened by the trained experimenter on the MRI console to

identify obvious artifacts and potentially rescan the participant,
again reminding them of the importance to stay still, to
prevent rating categories C3 (and C2 depending on the
study protocol and time restrictions). For practical reasons,
we used the usual scanner software (Siemens Magnetom) for
this first visual check. The image was checked full screen
(22.0′′) when scrolling through the sagittal plane only to
assess its overall quality (i.e., without focusing on any specific
anatomical landmarks). This allows for a sufficient assessment
of the image and the decision as to whether rescanning is
necessary.

T1 QC
After data collection, the quality of each T1-weighted image is
visually rated from C1 (pass) to C3 (fail), blind to group/patient
information in order to prevent biased ratings. This QC of T1-
weighted image can be done in any NIfTI format viewer like
MRIcron. Contrast settings should be set similar for all images.
While rating each step, it is important to scroll through all slices
to get a good impression about the image quality. Additionally, a
neuroradiologist should be consulted to check for gross/clinically
relevant anatomical alterations. These alterations might lead to
data exclusion depending on the study aim and severity of
alterations. All images rated C3 (fail) have to be excluded from
further analyses. Participants with images rated C3 (fail) can be
invited again later for a rescan to receive good quality data.

Automated processing pipeline
T1-weighted images rated C1 (pass) and C2 (check) are then
processed by using the automated processing pipeline (e.g.,
FreeSurfer).

Automated output QC
Data from images rated C1 (pass) should be quality controlled
shortly after the automated processing pipeline procession
(screening) with focusing on deformation of the 3D brain
anatomy and large truncated brain areas only (Ducharme et al.,
2016). For C2 (check) a detailed automated processing pipeline
QC is mandatory to double-check data falling into this category.
For this C2 (check) data, the results (in case of FreeSurfer for
segmentation: “aseg” and for parcellation “aparc”) are visually
evaluated (in case of FreeSurfer using “Freeview”). They should
be compared to the T1-weighted images with a specific focus
on the previously detected artifacts to validate the automated
processing pipeline results. For the C2 (check) images the
automated processing pipeline QC focuses on the following
issues that all have to pass to further be included in the analyses:
(1) the deformation of the 3D brain anatomy and large truncated
brain areas (Ducharme et al., 2016); (2) the removal of non-
brain tissue, i.e., “skullstrip” (tested by overlapping the original
T1-weighted image after intensity normalization named T1.mgz
and the T1.mgz after skull stripping, named brainmask.mgz); (3)
the plausibility of subcortical/cortical structure borders (tested
by overlapping aseg.mgz, i.e., the color map of segmented
subcortical structures) or aparc.mgz (i.e., the color map of
segmented cortex) and brainmask.mgz); and (4), absence of
any GM misclassification as (very dark) WM, so-called WM

Frontiers in Neuroscience | www.frontiersin.org 3 December 2016 | Volume 10 | Article 558

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Backhausen et al. Quality Control of Structural MRI Images

TABLE 1 | Rating system structure.

Step 1: Image sharpness R1 (good): Clear/rather clear image; ghosts, blurred regions, or other artifacts if at all minor; no susceptibility artifacts

R2 (moderate): Rather coarse/blurred image; moderate motion artifacts; if susceptibility artifacts are present they do not influence

relevant areas

R3 (bad): Obviously coarse/blurred image; major motion and susceptibility artifacts (e.g., due to dental braces)

Step 2: Ringing R1 (good): No/slight ringing artifacts seen; at most in one region

R2 (moderate): Ringing artifacts in more than one region

R3 (bad): Circular ringing artifacts throughout the whole image

Step 3: CNR (subcortical structures) R1 (good): Sharp edges; structures can be well-identified

R2 (moderate): Structures still can be identified but less clear

R3 (bad): Structures can hardly be identified

Step 4: CNR (GM and WM) R1 (good): Sharp edges; GM and WM are well-differentiated

R2 (moderate): GM and WM not well-differentiated

R3 (bad): Borders of GM and WM blend; not differentiated at all

CNR, contrast to noise ratio; GM, gray matter; WM, white matter.

FIGURE 1 | QC workflow. Boxes in light blue represent QC steps using T1-weighted images and boxes in dark blue represent QC steps using processed images via

automated processing pipeline. Exclude/Include: exclusion/inclusion of data set in further preprocessing and analysis.

hypointensities (Tang et al., 2013). Once again, rating should be
done blind to group/patient information to reduce bias.

Second Aim: Implementation and Test of
Our T1 Rating System
To test whether our rating system has an impact on GM
volume (see Reuter et al., 2015) in a developmental population,
we applied the established rating system to analyze data of
participants from three clinical types: (1) ADHD, (2) ADHD

comorbid with CD (ADHD + CD), and (3) TD adolescents.
All T1-weighted images were rated by two independent trained
raters to establish inter-rater reliability as well as the ability to
discuss critical cases. All ratings were done within 1 week.

T1 Data Acquisition
The acquisition of T1-weighted images was part of a study
about emotion processing in ADHD, which included one fMRI
paradigm before, and one after, the T1-weighted scan. Thirty-
eight male adolescent ADHD patients (M = 14.14 ± 1.8 years),
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FIGURE 2 | Examples of the quality of T1-images according to rating categories. The images in category C1 (pass) are clear, no motion artifacts or ringing can

be seen and subcortical structures as well as gray matter/white matter can be well differentiated. In category C2 (check) ringing can be seen but the contrast of the

structures themselves is good and they can be differentiated. In category C3 (fail) ringing as well as motion artifacts (distortion) are present. The contrast is very poor

and structures blend into each other.

23 male comorbid ADHD + CD patients (M = 12.82 ± 1.24
years) and 27 TDmale adolescents (M= 14.47± 1.69 years) were
recruited. Patients were diagnosed with hyperkinetic disorder,
attention deficit disorder without hyperactivity, or hyperkinetic
conduct disorder according to the ICD-10 (World Health
Organization, 1992) by licensed psychologists. If on treatment,
patients withdrew their stimulant medication 3 days before the
fMRI assessment. The study was carried out according to the

latest version of the Declaration of Helsinki and was approved by
the local ethics committee. Both participants and parents or legal
guardians, respectively, gave their written informed consent.

3D T1-weighted magnetization-prepared rapid gradient echo
(MPRAGE) image data sets were acquired (TR = 1900ms, TE =

2.26ms, FOV = 256 × 256mm, 176 slices, 1 × 1 × 1mm voxel
size, flip angle = 9◦) using a 3T whole-body MR (Magnetom
TRIO, Siemens, Dresden, Germany) equipped with a 12-channel
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head coil. The time required for each scan acquisition was 6min.
The prospective motion-reduction techniques used to minimize
movement during MRI included having participants complete a
mock scanner session, if desired, and given time for questions.
We also aimed to motivate participants by telling them it only
takes 6 min with a following pause and reminding them of
rewards. Prior to scanning, foam padding was also placed around
the head and participants were reminded of the importance to
lay still. During the scan, participants could either close their eyes
or look at a message on the screen again reminding them not to
move.

Data Procession (FreeSurfer)
Automated segmentation of subcortical structures (aseg) was
performed with the FreeSurfer image analysis pipeline (Version
5.1), which is documented and freely available for download
online (http://surfer.nmr.mgh.harvard.edu/). The processing
includes removal of non-brain tissue, automated Talairach
transformation and segmentation of the subcortical WM and
deep GM volumetric structures. The last step is completed by
automatically assigning one of 37 neuroanatomical labels to each
voxel in theMRI volume based on probabilistic information from
a manually labeled training set (Fischl et al., 2002). This method
has been shown to be comparable tomuch slower, labor-intensive
manual labeling methods (Fischl et al., 2002).

Statistical Analyses and Reliability
All statistical analyses were performed with SPSS (IBM SPSS
Statistics for Windows, Version 21.0 Armonk, NY, USA). One-
way between subjects analyses of variance (ANOVAs) were
conducted to compare volume differences between QC rating
categories in volume estimates derived from FreeSurfer.

RESULTS

Concerning our first aim, we computed the intra-class correlation
coefficient of categories C1–C3 for two independent raters (two-
way mixed model, type absolute agreeing). The average measures
coefficient yielded excellent results (α = 0.931). The rating
distribution of one trained rater for each group is shown in
Table 2.

Concerning our second aim, GM volume differences between
the QC rating categories were found in the cortex [F(2, 85) =

21.01, p < 0.001], the left caudate [F(2, 85) = 7.26, p= 0.001], the

TABLE 2 | Rating distribution of all available T1-weighted images (n = 88

in total).

Rating ADHD ADHD + CD TD Total

category (n = 38) (n = 23) (n = 27) (n = 88)

C1 (pass) 31 (81.6%) 16 (69.6%) 21 (77.8%) 68 (77.3%)

C2 (check) 3 (7.9%) 4 (17.4%) 4 (14.8%) 11 (12.5%)

C3 (fail) 4 (10.5%) 3 (13.0%) 2 (7.4%) 9 (10.2%)

ADHD, patients with attention-deficit hyperactivity disorder; ADHD + CD, ADHD patients

with comorbid conduct disorder; TD, typically developing.

left amygdala [F(2, 85) = 4.29, p= 0.017], and total GM [F(2, 85) =
17.65, p ≤ 0.001]. Additionally, differences between QC rating
categories were found in WM hypointensities volume [F(2, 85)
= 20.98, p < 0.001]. Results still hold when controlling for
group using analyses of covariance (ANCOVAs). Post-hoc t-tests
revealed significant differences between QC rating categories C1
and C3 in GM volume of the cortex [t(75) = 6.24, p < 0.001],
total GM [t(75) = 5.7, p < 0.001], the left caudate [t(75) = 3.72,
p < 0.001], and the left amygdala [t(75) = 2.86, p = 0.006] as
well as between C2 and C3 in the cortex [t(18) = 3.94, p =

0.001], total GM [t(18) = 3.63, p = 0.002], and the left caudate
[t(18) = 3.72, p = 0.002]. Volumes in categories C1 and C2 were
bigger than those of category C3 in each case (see Figure 3). For
WM hypointensities post-hoc t-tests revealed significant volume
differences between QC categories C1 and C3 [t(75) =−6.38, p <

0.001] as well as C2 and C3 [t(18) = −4.13, p = 0.001] showing
bigger volumes in category C3 than categories C1 and C2 (see
Figure 3). The percentage GM volume loss and accordingly WM
hypointensities volume gain in categories C2 and C3 compared
to C1 were calculated for all structures which yielded significant
results in the ANOVA. In category C2, we found volume losses
of 5.3% for cortex, 4.4% for total GM, 4% for the left amygdala,
0.8% for the left caudate, and volume gain of 13.9% for WM
hypointensities. In category C3, we found volume losses of 17.8%
for cortex, 14.1% for total GM, 13.16% for the left amygdala,
and 19% for the left caudate and volume gain of 87.9% for WM
hypointensities.

Since age has been reported to correlate with motion
(Blumenthal et al., 2002), we also explored a possible correlation
of age with QC category. However, no significant correlation
between age and QC category was found.

A chi-square test of independence was performed to examine
the relation between group (ADHD, ADHD + CD and TD) and
rating category (C1–C3). The relation between these variables
was not significant, X2 (4,N = 88)= 1.861, p= 0.761, suggesting
that the amount of motion artifact was not related to group
membership in the current sample.

DISCUSSION

Overview
This study aimed to develop a hands-on workflow for identifying
and rating sMRI motion artifacts. First, we presented a stringent
workflow of QC steps of T1-weighted images and described our
detailed qualitative rating system. Next, we applied this rating
system in a developmental clinical sample and tested for the
influence ofmotion artifacts on FreeSurfer GMvolume estimates.
As expected, we found GM volume reduction in total GM, cortex,
and some subcortical structures due to motion artifacts. These
results underline the importance to assess movement in sMRI
analyses.

This study is one of the first to establish a hands-on QC
workflow and a qualitative rating system tominimizemotion bias
in sMRI results.

The proposed QC rating system yielded excellent inter-rater
agreement. Furthermore, all images could easily and readily
be assigned to one of the three rating categories. The three
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FIGURE 3 | Structural volume differences across QC rating categories for total gray matter (A), cortex (B), left amygdala (C), and white matter

hypointensities (D). Significance values refer to post-hoc t-tests. **p < 0.01, *p < 0.05. Error bars denote SEM.

categories C1 (pass), C2 (check), and C3 (fail) provide useful
information that is needed to decide whether to in- or exclude
participant data. Images falling into category C3 (fail) were
indeed of bad quality and thus should be excluded from further
analyses. For four of the 13 C3 (fail) rated, FreeSurfer was unable
to complete all data processing steps, which strongly indicates
poor original T1-weighted data. These findings suggest that
the currently presented QC rating system is able to correctly
identify bad quality data. More importantly, the need to identify
and exclude poor images is further highlighted by the results
seen from comparing volume estimates and misclassifications
between the different rating categories. Volume estimates in
cortex, total GM, the left amygdala and the left caudate were
significantly larger in C1 (pass) and C2 (check) categories as
compared with C3 (fail). Similarly, percentage of GM volume
reduction was more striking in category C3 (fail) than in category
C2 (check). Misclassification (WM hypointensities) was also
found to be more prominent in category C3 (fail) than in
category C2 (check). The resulting percentage volume differences
between motion categories for total GM (4.4% for category C2
and 14.1% for category C3) are similar to previous findings

(Blumenthal et al., 2002; Reuter et al., 2015). Likewise, the volume
reductions between motion categories were primarily driven by
cortical volume.We also found significant motion artifact related
differences in the left amygdala and the left caudate. These
findings are similar to Pardoe et al. (2016), who also found artifact
related volume differences to be seen in cortical volumes and the
amygdala. This indicates that cortical volume as well as some
subcortical structures might be especially influenced by motion
artifacts. Taken together, these findings suggest that the proposed
QC rating system is able to identify problematic T1-weighted
images [i.e., C3 (fail)] that may otherwise bias sMRI results.

It has to be noted that some other research groups recommend
to exclude data from the “moderate” data quality category being
C2 (check) in our rating category (Wilke et al., 2002; Shaw et al.,
2007; Fjell et al., 2015; Reuter et al., 2015). Still the exclusion of C2
(check) data might not be pragmatically feasible in studies with
clinical or developmental populations as it may lead to excluding
too many participants. Including images rated C2 (check) and
quality controlling their processed data more closely might be
more practicable to save valuable data. Importantly, in our study
no significant volume differences were found between categories
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C1 (pass) and C2 (check), which suggests negligible differences
between those categories making them both appropriate to
include in further statistical analyses.

We did not find differences in motion artifacts between
the clinical groups and the TD group. This is in contrast to
previous findings (Pardoe et al., 2016) where patient groups
moved more than control groups. These differences may be
due to our protocol and approach to minimize motion artifacts.
First, the research team was more aware of these artifacts,
and second, after a thorough qualitative QC, some participants
could be measured again. Still even excluding data from only
category C3 (fail) holds the risk to fog real group differences.
Participants that have to be excluded due to motion artifacts may
be the ones suffering from more severe psychopathology and
accordingly show more structural alterations. Excluding these
participants may thus introduce a selection bias. Therefore, our
recommendation is to first train the research team including
MR technologists to prepare participants for scanning, to
identify motion artifacts directly after scanning and to rescan
participants with moderate to strong motion, if possible.
Afterwards, data needs to be checked using a detailed rating
system as presented here. Taken together, more stringent method
reporting in sMRI studies is crucial to guarantee consistent data
quality.

Besides retrospective qualitative QC, new approaches to
reduce motion like volumetric navigator systems (Tisdall et al.,
2016) and other prospective motion correction systems (Brown
et al., 2010; Kuperman et al., 2011; Tisdall et al., 2012; Maclaren
et al., 2013) have been introduced (see Zaitsev et al., 2015
for a review). However, these techniques are only useful in
certain settings, mostly require extra equipment, and are time-
consuming or costly. In contrast, our workflow and rating system
are easy to adapt, applicable for samples known to show motion
during scanning, such as developmental or clinical populations,
and require no extra equipment to reduce motion artifacts
in subsequent data analysis. Moreover, other visual qualitative
QC rating systems have been found to yield similar results as
quantitative measures like quantitative motion estimates (Pardoe
et al., 2016) and root mean square displacement per minute
(RMSpm) has been shown to correlate with QC ratings indicating
that manual QC correctly identifies cases with motion (Reuter
et al., 2015).

Limitations
This QC workflow has currently only been applied to a
single automated image processing technique (FreeSurfer).
However, it is expected that any intensity-based segmentation
or classification technique might be affected in a similar way
(Blumenthal et al., 2002) and that the QC workflow may be
adopted to these techniques as well. It also has only been applied
to T1-weighted sMRI images. For further detailed information
on sMRI artifacts and examples for QC in T2-weighted images
and proton density (PD) weighted images, please see Jones
and Marietta (2012). It also has to be noted that the intra-
rater reliability of this rating system was not computed. It
is advised that future studies investigate both inter-rater and
intra-rater reliability. Likewise, all images were rated within

a single week. In the case where images must be rated over
time should also consider investigating and reporting rater
drift. In addition, as our sample was quite small and restricted
age wise, more research is needed to apply this QC workflow
and rating system to larger datasets (e.g., publically available
MR databases) and to more diverse populations (adults, other
clinical groups, and other age groups—e.g., younger children).
Furthermore, we saw irregularities in skull strip throughout
all groups in the detailed automated processing pipeline QC.
Though it is not ideal, this was seen as a rather random
irregularity and thus data was not excluded based on this
factor alone. Finally, even though the proposed QC rating
system is able to determine the most problematic T1-weighted
images, it must be noted that in-scanner motion might lead
to biases in anatomical estimations, even at levels which do
not manifest in visible motion artifacts (Alexander-Bloch et al.,
2016).

CONCLUSION

We provide a standard hands-on workflow and qualitative QC
rating system to help minimizing biases in results produced by
motion artifacts. The application will help researchers improve
the quality of future sMRI studies.
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