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Quality control practices in FMRI
analysis: Philosophy, methods
and examples using AFNI
Richard C. Reynolds*, Paul A. Taylor and Daniel R. Glen

Scientific and Statistical Computing Core, NIMH, NIH, Bethesda, MD, United States

Quality control (QC) is a necessary, but often an under-appreciated, part

of FMRI processing. Here we describe procedures for performing QC on

acquired or publicly available FMRI datasets using the widely used AFNI

software package. This work is part of the Research Topic, “Demonstrating

Quality Control (QC) Procedures in fMRI.” We used a sequential, hierarchical

approach that contained the following major stages: (1) GTKYD (getting to

know your data, esp. its basic acquisition properties), (2) APQUANT (examining

quantifiable measures, with thresholds), (3) APQUAL (viewing qualitative

images, graphs, and other information in systematic HTML reports) and (4)

GUI (checking features interactively with a graphical user interface); and for

task data, and (5) STIM (checking stimulus event timing statistics). We describe

how these are complementary and reinforce each other to help researchers

stay close to their data. We processed and evaluated the provided, publicly

available resting state data collections (7 groups, 139 total subjects) and task-

based data collection (1 group, 30 subjects). As specified within the Topic

guidelines, each subject’s dataset was placed into one of three categories:

Include, exclude or uncertain. The main focus of this paper, however, is the

detailed description of QC procedures: How to understand the contents of an

FMRI dataset, to check its contents for appropriateness, to verify processing

steps, and to examine potential quality issues. Scripts for the processing and

analysis are freely available.

KEYWORDS

FMRI, quality control, AFNI, resting state, reproducibility, processing, data
visualization, task-based

Introduction

Quality control (QC) is a vital part of FMRI analyses, although it is often not
detailed in studies or presentations. The presence of poor quality data can reduce the
power and generalizability of results. Undetected non-physiological artifacts can greatly
skew outcomes and alter study results. Importantly, some exclusionary criteria could
also systematically bias results away from an accurate interpretation of the data and
underlying brain behavior.
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In theory, FMRI QC appears to be a straightforward process:
Sort a data collection into “good” datasets to use, and “bad”
datasets to exclude. Some set of metrics or quantities can
be calculated to do this screening automatically, and then
processing can proceed with the good subset. In practice,
however, QC is a notably more challenging procedure because
of the combined complexities and varieties of both FMRI
acquisition and analyses.

We consider QC to be an integral part of the processing
itself, rather than a separate step, because what it means to be
a “usable” dataset depends on the processing steps and design of
the final analysis. Consider a few basic examples:

1. The cerebellum in a subject’s dataset is truncated by the
acquisition field of view (FOV): This subject’s data might
be included in the final analysis of a purely cortical
study but excluded in the case of a cerebellar-specific or
whole brain study.

2. EPI signal strength and distortions can vary across
the brain. Having a low temporal signal-to-noise ratio
(TSNR) within the basal forebrain region might exclude
a subject from a subcortical study, but not from one of
the visual cortex.

3. Subject motion is one of the most difficult effects to
account for within any study, particularly in resting state
FMRI where it can drastically influence results. How many
time points can be censored before a subject is deemed to
have “too much” motion to include, and does this number
change if one is studying a group that is predisposed
to motion (e.g., young adolescents or Parkinson’s disease
patients)? And what is even the “correct” censoring limit
to utilize?

In this paper we describe a number of QC measures for both
task-based and non-task (e.g., resting state or naturalistic) FMRI
processing that are implemented in the AFNI software suite
(Cox, 1996). This paper is part of a community-wide FMRI open
QC project, “Demonstrating Quality Control (QC) Procedures
in fMRI,” where various groups of developers and researchers
detail their own methods for QC of data. Specifically, we note the
following goals and procedures from the Project description:1

This project aims to showcase examples of QC practices
across institutions and to foster discussions within the
field. Here, we welcome researchers and developers across
the globe to describe their QC methods in detail and to
show them “in action” for a varied dataset acquired across
multiple sites and scanners. . . We welcome researchers to

1 See here for the main Project page: https://www.frontiersin.
org/research-topics/33922/demonstrating-quality-control-qc-
procedures-in-fmri and here for further details and download
links for the datasets (https://doi.org/10.17605/OSF.IO/QAESM):
https://osf.io/qaesm/wiki/home/.

present their quality control assessments of the subjects in
the provided data collection, listing which would be included
or excluded from further analyses, and which might be
considered borderline or “uncertain.”

Our own perspective is based on our individual and
collective experiences as researchers, collaborators, educators
and software developers of the AFNI toolbox. The design
principle of the AFNI toolbox is, “To help keep researchers close
to their data,” and this influences our view of QC measures, as
well. Rather than viewing QC as simply filtering datasets into
“good” or “bad” bins, we regard it as the larger procedure of
being as sure as possible about the contents of the data collection,
from acquisition properties to artifact checking to regression
evaluation. We note that some QC steps are quantitative (they
can be derived directly from one or more numbers), some are
qualitative (e.g., they require visualization) or a combination.
Some involve interactively investigating the datasets in a GUI,
which can be facilitated in AFNI by scripting. Some QC items
can be evaluated “per subject” and are essentially independent
of any other member of the data collection, while others involve
the relative comparison of a property.

Here, we detail a set of QC procedures for FMRI subjects
and provide examples of applying these to the Project datasets.
The first stage of QC can occur before any real “processing”
of datasets has taken place, called “getting to know your data”
(GTKYD). It is not necessarily part of inclusion/exclusion
criteria, but it importantly ensures consistency of acquisition
parameters and data properties. Next, systematic quantitative
and qualitative stages are set up directly within afni_proc.py’s
processing pipeline and QC HTML: APQUANT and APQUAL,
respectively. For task-based FMRI, the STIM stage investigates
the stimulus event and timing information. Finally, the GUI
(graphical user interface) stage should always be used for some
set of subjects in a study, to verify dataset properties in depth,
and it can also be useful for investigating unknown features that
may be found in other QC stages. In short, we implement a wide
variety of QC procedures to be detailed, and we partition these
into conceptual groupings in order to aid systematization. We
aim to be as descriptive as possible, to provide a starter guide for
possible QC during FMRI processing.

Methods: Data and processing

The datasets downloaded from the Project website and
analyzed here were originally distributed as part of the following
public repositories, according to the Project instructions:
Functional Connectome Project (FCP; Biswal et al., 2010),
ABIDE (Di Martino et al., 2014), and OpenNeuro (Markiewicz
et al., 2021). They are due to be specifically identified in detail in
a future publication of the Project, but we note that each subject’s
dataset was acquired in a single session at 3T using a single echo
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EPI sequence, and overall they have fairly “typical” acquisition
parameters (in terms of TR, voxel size, etc.—see below).

Here, AFNI v23.3.02 (Cox, 1996) and FreeSurfer v7 (Fischl
and Dale, 2000) software packages were used for processing
each of the resting state and task-based FMRI data collections.
For each collection, AFNI’s afni_proc.py was used to set
up the full FMRI processing pipeline, which runs through
regression modeling and includes an automatically generated
quality control (APQC) HTML report. The full set of scripts in
each case are available online: https://github.com/afni/apaper_
afniqc_frontiers.

As noted in the Introduction, some QC details rely on
processing choices and on the analysis being performed. In
the present Project, there was no stated group analysis, so
we considered investigating these datasets in preparation for a
generic cortical, voxelwise analysis. For this QC, we note issues
regarding issues in cerebellum or midbrain, but do not exclude
subjects based on these (these regions were often excluded or
only partially included in the EPI FOVs).

Resting state FMRI data and processing

The provided resting state data collection consists of
acquisitions from seven different sites, each of approximately
20 subjects, with a total of 139 subjects. Each site is signified by
the hundreds-digit of the subject ID, by which we refer to each
subset. That is, Group 1 contains sub-101, sub-102, etc.; Group
2 contains sub-201, sub-202, etc.

For each subject, there is one T1w anatomical and one EPI
time series, except within Group 6, in which several (but not
all) subjects have two EPI time series. The whole brain, T1w
anatomical volumes typically have voxels with approximately
1.0 mm resolution, though there is some inter- and intra-group
heterogeneity. The EPI time series have the following ranges
of properties: TR = 2.0–2.5 s; minimum voxel edge = 1.56–
4.00 mm, and maximum voxel edge = 3.10–4.00 mm (with
varied anisotropy); in-plane matrix size = 64–128, and through-
plane matrix size = 32–47; number of volumes (per run) = 123–
724. Four out of seven sites had acquired (at least some) EPI
and anatomical volumes obliquely. Further details about the
heterogeneity of basic dataset properties are enumerated within
the first stage of QC results (GTKYD), below.

The first step of processing was to run FreeSurfer’s recon-all
on each T1w anatomical volume, providing an initial brain mask
and parcellations for reference. FreeSurfer parcellations were
entered into afni_proc.py as “follower” datasets, to be mapped
to the final template space and to provide optional reference
locations there. Note that if performing an ROI-based analysis,
blurring would typically not be included in the processing steps.
AFNI’s @SSwarper program was also run on each T1w volume,
to provide both a final skullstripping (SS) mask and a non-linear
warp [via 3dQwarp; Cox and Glen (2013)] from that anatomical

to the MNI-2009c (asymmetric) template space [Fonov et al.
(2011)]. Identical @SSwarper commands were used for Groups
1–6, and for Group 7 a different cost function (nmi, normalized
mutual information, instead of lpa, local pearson correlation
absolute value) was utilized to improve results. These outputs
of @SSwarper were included in the afni_proc.py command,
described below.

AFNI’s afni_proc.py program was used to generate a full,
reproducible FMRI processing pipeline across each Group.
While the afni_proc.py command contains the specified
“control variables” of each processing block, the created
script (which is automatically commented) can also be read
to understand the exact implementation details. Because
each resting state group was acquired with slightly different
parameters, particularly voxel size, individual afni_proc.py
commands were created here for each so that parameters
such as “applied blur” would be appropriate for each. In an
expressly multisite study, which would combine subjects across
all sites/Groups into a single analysis, this approach might
differ—for example, one might apply an option to blur all EPI
datasets to the same full-width at half-max (FWHM) value, for
final uniformity. Here, the only parameters that varied across
each group’s afni_proc.py commands were the values of the
applied blur size (“-blur_size”) and final EPI voxel dimensions
(“-final_dxyz”).

The afni_proc.py processing included initial despiking and
slice timing correction. The EPI volume with the minimum
fraction of outliers in the brain mask was selected to be
a reference for motion correction (rigid-body alignment
across the FMRI time series) and EPI-anatomical alignment
(linear affine transformation with 12 degrees of freedom).
EPI-anatomical alignment was calculated by first creating a
brightness-homogenized version of the reference EPI volume
and then using the “lpc+ZZ” cost function for local Pearson
correlation (Saad et al., 2009). For anatomical-template
alignment, the non-linear warp from the previous @SSwarper
step was included. An EPI volume extents mask was applied
to omit voxels that, due to motion, did not have acquired
data throughout the entire time course. An EPI brain coverage
mask was generated for the purpose of calculating statistics, but
following the default behavior in afni_proc.py, this mask was not
otherwise applied, leaving the time series basically unmasked,
allowing for more complete QC (we recommend masking at
the group level). A Gaussian blur was applied to each time
series, with FWHM of approx. 1.5–2x the mean EPI voxel
dimension (see scripts). Time series were scaled to have a mean
of 100, to put the data in units of percent change. This scaling
has a negligible effect on correlations, though it is helpful if
computing parameters such as fALFF, for example.

The final processing block within the afni_proc.py
command includes regression modeling, which amounts to
projection of signals of non-interest, in the case of resting state
analysis. This included censoring, for volumes with Enorm
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(Euclidean norm of first differences of motion parameters)
>0.2 mm or an outlier fraction >5% within a whole brain
mask. Default polynomial regressors were used to model the
slow baseline drifts. The six time series from rigid-body EPI
alignment and each of their derivatives were included “per-run”
as motion regressors. Bandpassing within the standard low
frequency fluctuation (LFF) range of approx. 0.01–0.1 Hz was
not included in this processing, since it has been shown that
useful physiological data exist in the FMRI time series above
0.1 Hz (e.g., Gohel and Biswal, 2015; Shirer et al., 2015), and
such bandpassing incurs a large statistical cost in terms of
degrees of freedom (Caballero-Gaudes and Reynolds, 2017).
The consequences for FMRI QC of including standard LFF
range bandpassing are discussed below.

Task-based FMRI data and processing

The provided task-based data collection consists of 30
subjects (subject IDs: sub-001, sub-002, etc.) acquired at a single
site. A single task paradigm was used, and timing files were
provided in both original BIDS format and in a simplified,
columnar format. For each subject, there is one T1w anatomical
and one EPI time series. The whole brain, T1w anatomical
volumes have 1.00 mm isotropic voxels. The EPI time series have
the following properties: TR = 2.0 s; voxel dimensions = 3.00
mm × 3.00 mm × 4.00 mm; matrix dimensions = 64 × 64 × 34;
number of volumes = 242; oblique slices.

As for the resting state processing above, FreeSurfer recon-
all and AFNI @SSwarper commands were run on each subject’s
T1w anatomical volumes. In setting up stimulus timing, we
note that there are many ways to interpret and make a model
from the event files. We chose to model the 2 event types,
Task and Control, using reaction time for event duration, and
the full duration if a subject did not respond in time. Control
events had durations between 0 and 2 s, while task events lasted
between 0 and 4 s. AFNI’s timing_tool.py was used to apply
this interpretation.

In the task-based afni_proc.py, the same processing blocks
and options for slice timing correction, intra-EPI registration
(for motion correction), EPI-anatomical alignment, anatomical-
template alignment, mask estimation and scaling. The despiking
block was not used. The blur size was set to 6 mm, the
application of which was restricted to the estimated mask.

The regression model included censoring for volumes
with Enorm ≥0.3 mm (a slightly higher value than for the
resting state processing, since the latter tends to be more
sensitive to motion effects) or an outlier fraction >5% within
a whole brain mask. The six time series from rigid-body EPI
alignment were included per-run as motion regressors. In
the task design, there were two stimulus classes: “Task” and
“Control” events (the latter name should not be confused with
the standard subject specification of “control group”; also, in

this Project, there were no such group classifications). These
were modeled as duration modulated blocks, normalized to a
2 s response time [“-regress_basis_multi ‘dmUBLOCK(-2)”’],
and serial correlation within the time series was accounted
for with 3dREMLfit (“-regress_reml_exec”). Two general linear
tests (GLTs) were specified as potential conditions of interest:
The contrast “Task - Control,” and the average stimulus response
“0.5∗ (Task + Control).”

General, simple and fast FMRI “quick”
processing

The previous two sections describe the detailed processing
options selected for the resting state and task-based processing
commands implemented for these specific data collections. For
each, several processing options and control parameters are
selected by the user, tailored to the study design and research
question. These are useful and appropriate for full dataset
processing, e.g., as part of a group analysis.

However, we note an additional tool called
ap_run_simple_rest.tcsh that is much simpler to set up
for quick, general processing for any FMRI dataset; it is
particularly useful for QC purposes. The AFNI program is
a wrapper for afni_proc.py with a particularly simple front
end: The only required options are the input dataset names

FIGURE 1

An overview of the QC stages presented in the current study.
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(some additional ones can be entered, too). Importantly, this
program can be used to generate the vast majority of the QC
information that is detailed below. In particular, almost every
quantitative QC criterion (described under APQUANT) should
be essentially identical.

This alternative analysis tool was designed with the focus of
providing efficient checks for datasets as individual subjects are
acquired, and can even be implemented to perform QC while
the subject is in the scanner—thus, data could be reacquired
if there were a particular problem such as severe motion or
EPI dropout. Similarly, it could be easily created automatically
as the scanner saves data to storage, to generate a uniform
QC HTML report that would be immediately available to
all researchers acquiring data. This tool uses affine template
registration and processes data as resting state, making it simple,
fast, and suitable to provide detailed QC. While the seed-based
correlation QC maps can be considered slightly noisier than in a
full processing case that implements non-linear alignment, they
should still be reasonable and useful for quick QC purposes.
In this work, we describe the QC items using the specific
afni_proc.py commands, but the same considerations would
apply to the “quick” outputs here.

Procedures for FMRI quality
control

A schematic overview of the QC stages is shown in Figure 1.

1) GTKYD: Getting to know your data

The first stage in the QC procedure here is referred to as
GTKYD, which has two primary features. First, this checks
the consistency of several key data and header properties
within the group, such as dataset orientation, matrix size
and more. Second, this investigates the reasonableness of the
dataset properties, such as voxel size (units and isotropy),
minimum/maximum values within the volumes (for possible
scanner saturation) and more. Problematic values in either of
these “relative” and “absolute” checks, respectively, might be
a sign of acquisition mistake, DICOM-to-NIFTI conversion
trouble, incorrect header information, BIDS construction, or
other errors when creating the collection.

In general, this GTKYD stage is not intended to be used
to include/exclude individual subjects. Instead, its purpose is
to verify that the datasets contain their expected properties
and are appropriate for the analysis at hand. Questions or
potential issues should lead to double-checking the acquisition
sequence and reconstruction steps, whether collected by the
researchers performing the analysis, or, for public or shared
data, by contacting those who did acquire it. In the first case,
we recommend performing the QC steps immediately and

repeatedly as each subject in a study is collected, to protect
against long-running and fundamental issues in the data, which
may lead to wasted acquisition time and expense. In all cases,
GTKYD reduces the possibility of analyzing fundamentally
problematic or inappropriate data.

The GTKYD properties checked here included the following
for both EPI and anatomical volumes:

• header-info: Matrix size, orientation, voxel dimensions,
datum type, NIFTI qform_code, NIFTI sform_code

• data-info: Number of runs, minimum value, maximum
value.

Additionally, the following was checked for EPI:

• header-info: TR, number of time points, slice timing.

2) APQUANT: Quantitative review of
basic processing features

This stage describes the automation of quantitative QC
measures output during afni_proc.py processing. This includes
scriptable subject exclusion criteria, as well as checks for
processing consistency and additional warnings. The output of
this stage, created by AFNI’s gen_ss_review_table.py (GSSRT)
program, is a list of subjects to exclude/include.

During processing with afni_proc.py, a results directory is
created for the full output, including storage of intermediate
datasets, text files, and other information. In particular for this
QC step, a single file of “basic” review quantities related to the
processing is made. This essentially contains a dictionary of
summary information about the processing—such as software
version used, input datasets, censor fractions, and more—for
each subject. For example, the “TRs censored” field records how
many time points were censored during the subject’s processing,
“motion limit” records the threshold value used for Enorm
censoring, and “global correlation GCOR” records the average
correlation across all pairs of brain-masked voxels. These single
subject review dictionaries can be combined across the group
into an information table, using GSSRT, with one subject per
row and one dictionary key (or review field) per column.

Importantly, one can provide a “checklist” of features
to query, and create a sub-table of subjects that have one
or more properties. For example, one could apply a set of
exclusion criteria by generating a subtable of all subjects
who have too many censored time points or too low an
average TSNR. Additionally, one can create descriptive tables
to verify that all subjects had similar EPI voxel sizes and were
analyzed with the same software version. This combination of
afni_proc.py’s basic processing dictionary and GSSRT’s table-
generating functionality is very flexible and useful for staying
informed about a wide range of properties about the data
processing as a whole.
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Here, we created three separate review tables for each group:
One for checking the analysis consistency across subjects; one
for checking for possible concerns in the data at a “warning”
level; and one for applying strict exclusion criteria. The GSSRT
fields and comparison operators for each table’s checklist are
shown in Table 1. As noted in the table, all the same criteria were
applied to both resting state and task-based FMRI collections,
with one additional exclusion criterion for the latter. Additional
criteria could be selected, as well, depending on the study. For
example, while it was not used in this study, a Dice coefficient
for the overlap between the EPI mask and the anatomical mask
would be useful for cases where a specified minimum fraction of
brain coverage is required.

It is important to note that the specific threshold values we
have used for the quantitative keys could differ across studies.
For example, rodent datasets would have much smaller head
size and voxels, and one might expect less motion if they were
anesthetized. One might allow for different motion criteria in
a study of motion-prone children. The appropriateness of a
particular TSNR threshold may vary with scanner. Over time,
more knowledge may be accrued to inform better parameter
selections, from the point of view of sensitivity and specificity.
The present values seemed reasonable for this study and
may form a starting basis for other ones, but should not be
taken as absolute.

3) APQUAL: Qualitative and visual
checks using afni_proc.py’s QC HTML

In complement to the APQUANT stage, this section
describes performing a qualitative, visual-based assessment
of the processing results. In particular, this is done using
afni_proc.py’s QC report (APQC), which is an automatically
generated HTML document. It is an interactive HTML
for investigating various features of the data, including the
original data, alignment, statistical maps and modeling, motion,
warnings, and more. Ratings and comments can be saved for
each QC block.

While some features of processing can be assessed
quantitatively, many others essentially require visualization. For
example, image registration is driven by a quantitative cost
function, but then separate assessment is needed to verify that
tissue boundaries and sulcal and gyral patterns appear to be well-
aligned. Furthermore, there are numerous potentially artifactual
patterns that can appear in datasets; these can be most easily
identified by the human eye, and either recognized directly or
marked for requiring further exploration. In many cases, fully
understanding a subject’s dataset and problems that may exist
with it requires having a multifaceted appreciation for it, and
the APQC HTML provides one form of this.

The APQC HTML is organized in successive “QC blocks,”
whose elements are grouped by processing steps and conceptual

relatedness. Most blocks are common to both task-based and
non-task processing, though some features are distinct (as noted
in the descriptions below). Additionally, some features depend
on the details of processing—e.g., the anatomical-to-template
alignment block only exists if one is registering the subject to
a template space. In the following, we describe the current QC
blocks and features for single-echo FMRI processing. For each
block, we provide a list of elements or keys that describe specific
features in a QC assessment, and these terms are used when
evaluating the present data collection in the Results section.
These keys may provide a generalizable categorization for QC
reporting. They are also likely to grow in number over time.

vorig
Views of the original space EPI (specifically, the volume

registration reference) and anatomical volumes, as well as their
overlap.∗

• EPI: FOV coverage, signal dropout, ghosting overlap, poor
tissue contrast (esp. if alignment fails), spatial distortion
(see better check in ve2a), inhomogeneity.

• anat: FOV coverage, ringing, poor tissue contrast (esp.
if alignment fails), inhomogeneity, skull stripping (if
previously applied).

• overlap: Initial EPI/anat overlap (informational, in case
EPI-anatomical alignment fails).

ve2a
Views of the EPI-to-anatomical alignment results:

Anatomical edges overlayed on the EPI.∗

• global: Overall quality of alignment (e.g., from sulcal, gyral
and ventricle patterns; note CSF can affect the appearance
of the outer edge).

• local: Part of volume matching is poor (particularly around
regions of interest), which can be due to FOV coverage, EPI
signal dropout, distortion, other.

va2t
Views of the anatomical-to-template results: Template edges

overlayed on the anatomical.∗

• global: Overall quality of alignment (e.g., from sulcal, gyral
and ventricle patterns).

• local: Part of volume matching is poor due to, e.g., FOV
coverage, distortion, SS, regional mismatch, other.

∗One of the va2t, ve2a or vorig QC blocks will contain a view
of the final EPI mask overlayed on the final reference volume,
determined by whether the final space is a template, the subject’s
anatomical or the subject’s EPI, respectively.
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TABLE 1 Lists of QC criteria for generating review tables of different properties after completing single subject processing with afni_proc.py.

APQUANT checklists (rest and task FMRI)

Consistency checklist (rest, task)

Key/field Comp. Description

’AFNI version’ VARY Does the package version vary?

’num regs of interest’ VARY Does the number of regressors of interest vary?

’final voxel resolution’ VARY Do the final voxel dimensions vary?

’num TRs per run’ VARY Does the number of EPI time points per run vary?

Warnings checklist (rest, task)

Key/field Comp. Description

’final DF fraction’ LE 0.7 Is the remaining fraction of degrees of

freedom >= 0.7? (NB: Bandpassing would affect this.)

Visualize DF summary in APQC ’regr’ block.

’censor fraction’ GE 0.15 Is the fraction of censored time points >= 0.15?

’average censored motion’ GE 0.1 After censoring, is the remaining average

motion (Enorm) >= 0.1 mm?

’max censored displacement’ GE 6 Are any two volumes >= 6 mm apart?

’global correlation (GCOR)’ GE 0.15 Is GCOR >= 0.15?

Visualize in APQC ’regr’ block as corr_brain.

’TSNR average’ LT 150 Is the within-mask average TSNR <= 150?

Visualize in APQC ’regr’ block as TSNR-final.

Exclusion criteria checklist (rest)

Key/field Comp. Description

’final DF fraction’ LE 0.6 Is the remaining fraction of degrees of

freedom <= 0.6? (NB: Bandpassing would affect this.)

Visualize DF summary in APQC ’regr’ block.

’censor fraction’ GE 0.2 Is the fraction of censored time points >= 0.2?

’average censored motion’ GE 0.15 After censoring, is the remaining average

motion (Enorm) >= 0.15 mm?

’max censored displacement’ GE 8 Are any two volumes >= 8 mm apart?

’global correlation (GCOR)’ GE 0.20 Is GCOR >= 0.20?

Visualize in APQC ’regr’ block as corr_brain.

’flip guess’ EQ DO_FLIP Is there an EPI-anatomical left-right flip?

Visualize in APQC ’warns’ block.

Exclusion criteria checklist (task)

Key/field Comp. Description

’final DF fraction’ LE 0.6 Is the remaining fraction of degrees of

freedom <= 0.6? (NB: Bandpassing would affect this.)

Visualize DF summary in APQC ’regr’ block.

’censor fraction’ GE 0.2 Is the fraction of censored time points >= 0.2?

’average censored motion’ GE 0.15 After censoring, is the remaining average

motion (Enorm) >= 0.15 mm?

’max censored displacement’ GE 8 Are any two volumes >= 8 mm apart?

’global correlation (GCOR)’ GE 0.20 Is GCOR >= 0.20?

Visualize in APQC ’regr’ block as corr_brain.

’flip guess’ EQ DO_FLIP Is there an EPI-anatomical left-right flip?

Visualize in APQC ’warns’ block.

’fraction TRs censored’ GE 0.2 Is the fraction of time censored from any

stimulus response >= 0.2?

These key or field values are automatically placed in a text file within each subject’s results directory by afni_proc.py. Each set of key/fields and comparisons (Comps.) is then used within
a gen_ss_review_table.py command to create a summary table. The following comparison operators are used here: VARY = “differs across subjects”; GE = “greater than or equal to”; LE
= “less than or equal”; and EQ = “equal to.” For each group of subjects, a set of consistency, warning and drop criteria tables were made.
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• mask-overlap: Estimated coverage of usable FMRI signal
(typically intersected with the subject anatomical).

vstat
Views of relevant statistical modeling. For non-task FMRI,

when a recognized template space is used, seed-based correlation
maps of the default mode, visual and auditory networks are
shown. For task-based FMRI, the views include the full F-stat
of modeling, as well as coefficient + stat maps of stimuli and
contrasts of interest.2

• quality: Overall expected/recognizable network correlation
(or task statistical) patterns observed, such as full spatial
coverage (no missing regions); network specificity (no extra
regions); reasonable magnitude; extra-cranial patterns.

• artifact: Ghosting; striping; strong slice-based patterns;
large spatial patterns across/unconstrained by tissue type;
notably non-physiological patterns.

We note that in these images, and in several others within
the APQC HTML, the thresholds are applied transparently.
That is, suprathreshold regions are shown opaque (or with
maximum translucency) and outlined, and subthreshold values
are displayed with increasing transparency as the magnitude
of the value decreases. This reduces the sensitivity to choice
of threshold, and allows focal regions to be highlighted
(with opacity and outlining) while still showing information
throughout the brain (Allen et al., 2012; Taylor et al., 2022).
Moreover, brain masks are typically not applied, to show results
throughout the full FOV, which helps to further identify any
potential artifacts.

mot
Motion-related information: Plots of Enorm, outlier

fraction, and motion parameter time series (with any censoring
information shown), and a grayplot of residuals. Provides a useful
reference (censor- and motion-related quantities are primarily
checked across the group using GSSRT).

• enorm: Odd patterns; regular signals, which are likely
not physiological (e.g., mechanically driven); many time
points with just sub-threshold values, which might
drive spurious correlation (might lead to re-processing);
overall value range.

• outliers: (same items as “enorm,” above); evaluate for
synchrony against enorm.

• volreg-pars: Similar properties to “enorm” above; note that
these parameters are not directly thresholded for censoring.

2 By default, afni_proc.py creates images of the full F-stat and up to
4 additional coefficient + statistics pairs, depending on the number of
stimuli and contrasts in the regression model. The user may specify any
number of stimulus and contrast results to show, however.

• grayplot: Strong vertical patterns may suggest high residual
correlation (primarily checked in “regr-corr_brain”
visualization and quantified in “qsumm” with GCOR).

regr
Regression modeling information: Degree of freedom (DF)

summary; view of correlation map with whole brain average
residual signal (checks brainwide similarity of residuals, such as
for large breathing, and motion effects remaining); and TSNR
maps (good scenario: Relatively consistent TSNR around brain
regions of interest). For task datasets, plots of the individual
regressors of interest, as well as their sum, are shown (with any
censor bands, for reference).

• task-ideal-sum: (NB: Strongly paradigm dependent) any
problem with the sum of regressors; large gaps and/or
spikes might generally be worth noting.

• task-ideal-stim: (NB: Strongly paradigm dependent) any
problem with an individual regressor of interest; duplicated
stim timing (scripting mistake); stimulus-correlated
motion may be worth noting.

• df-count: Too few degrees of freedom in output results
(often due to censor fraction and/or bandpassing); typically
checked automatically with GSSRT.

• corr_brain-artifact: (similar to vstat-artifacts) ghosting,
correlation/anticorrelation striping, strong slice-based
patterns, large spatial patterns across/unconstrained by
tissue type, notably non-physiological patterns.

• corr_brain-quality: Too high (also typically quantified via
GCOR and checked with GSSRT) or too low.

• TSNR_volreg: Mainly informational, since this is calculated
before regression modeling and noise regression (look for
similar features as in TSNR_final-∗ items).

• TSNR_final-loss: Notable dropout/low signal in regions
of interest (e.g., often low in frontal/temporal lobes and
subcortical nuclei).

• TSNR_final-artifact: Non-physiological patterns of
TSNR magnitude, particularly dropout (e.g., vertical
bands/stripes).

radcor
Radial correlation maps: The value of correlating each voxel

with a Gaussian-weighted local average (FWHM = 40 mm in
human datasets). A typically good scenario is relatively high
values approximately constrained to GM; motion effects often
appear as high correlation/anticorrelation patterns around the
edge of the brain, which are often reduced after volreg.

• tcat-artifact: Mainly informational, since this is calculated
for initial data with no motion correction (look for similar
features as in radcor_volreg-∗ items).
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• volreg-artifact: Patches of high radcor values spanning
multiple tissue types (can be sign of coil artifact or
other non-physiological effects); artifacts here often inspire
investigations with InstaCorr, as referred to in Procedure 4.

warns
List of warnings from various checks throughout processing,

including for: Regression matrix correlations; high censor
fractions; pre-steady state outliers; left-right flip between input
EPI and anatomical. Several can be checked with GSSRT (with
useful details here for verification).

• regr_mat: High pairwise correlations in regression
matrix (varied).

• gen-censor: High total/overall censoring fraction (typically
checked with GSSRT).

• task-stim-censor: High censoring fraction for one or more
particular stimuli (optionally checked with GSSRT).

• press: EPI data appear to have pre-steady state volumes at
the start (via outlier check; though sometimes this is simply
due to motion in first time points).

• flip: EPI-anatomical might have relative flip, as checked
with cost function alignment and to-be verified with
provided images (Glen et al., 2020).

qsumm
Basic quantitative information of processing, such as AFNI

software version, voxel sizes; motion limits and counts; TSNR; and
more. Provides a quick reference (many of these quantities should
be checked across the group using GSSRT).

• anomalous: An unexpected value, such as final voxel
resolution, software version number, etc.

• suprathresh: Unexpectedly or problematically large value
(e.g., censor fraction, GCOR).

• subthresh: Unexpectedly or problematically small value
(e.g., average TSNR, maximum F-stat).

• missing: Quantity not present, perhaps due to coding error
(e.g., missing censor fraction, missing censor fraction per
run).

4) GUI: In-depth investigation with the
graphical user interface

This stage describes exploring one or more datasets
interactively. While this may require more time to perform than
some other steps, it provides the best means for understanding
things like the detailed alignment of two volumes, the combined
spatio-temporal aspects of EPI time series (with “InstaCorr,”
described here), etc. To facilitate this process, afni_proc.py
automatically generates multiple scripts to load particular
datasets and visualization functionality in the AFNI GUI.

• align: Check alignment (or registration) features.
• graph: View the time series plots of one or more voxels.
• instacorr: Flag peculiar spatio-temporal patterns in the

time series data.
• other: Any other feature(s) using the afni and/or suma

GUIs, plugins, etc.

align
There are a large number of features in the AFNI toolbox

and GUI to inspect the alignment or registration between
two datasets (e.g., see Appendix A in the Supplementary
material of Glen et al., 2020). The default method is to
show one volume as a grayscale background (underlay)
dataset, while the other is shown in color as the “overlay”
dataset. There are several methods for viewing the datasets
interactive in different ways, depending on the properties of
the datasets (matching or differing tissue contrasts, blurriness,
etc.), which can help to focus on various features. These
include: Toggling the underlay/overlay datasets, adjusting
underlay contrast/brightness, adjusting overlay opacity, viewing
the underlay edges, using a horizontal or vertical “image
comparison” slider bar, and using a slider to fractionally blend
the datasets.

graph
The AFNI GUI includes an interactive and expandable

graph window for displaying the time series of one or
more voxels. Observing properties of the time series, even
when no stimulus has been provided, can provide useful
insight, particularly into possible artifacts or non-neuronal
confounds. For example, subject motion effects can be
observed as peaks and sudden shifts in the amplitudes
across many voxels. Drift or shimming-related changes can
also be noted. One can also load a reference time series
(e.g., one with the ideal task response) and investigate
patterns, similarity or possible features showing stimulus-
correlated motion.

InstaCorr
The InstaCorr functionality (which stands for “Instant

Correlation”) within the AFNI GUI is the prime tool for an in-
depth investigation of a 4D EPI dataset. Briefly, InstaCorr allows
one to freely explore spatio-temporal patterns within a dataset
by clicking and dragging a seed location anywhere throughout
the volume; the resulting seed-based correlation patterns update
continually and instantaneously, so that one can quickly assess
a full FOV (see, e.g., Jo et al., 2010; Song et al., 2017).
This is particularly useful for exploring functional networks,
potential scanner artifacts, and more. Processing features such
as baseline regression, bandpassing, smoothing, masking and
setting a seed radius can all be selected within the InstaCorr
setup menu. The afni_proc.py processing now automatically
creates a “run_instacorr∗.tcsh” script to run InstaCorr on the
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regression model’s output; running the script automatically
opens the AFNI GUI with InstaCorr setup on the residuals
dataset.

Here, we used InstaCorr in conjunction with the APQUAL
step, when one or more QC images showed a questionable
pattern. For example, we could observe whether there were:
Large, non-physiological patches of high correlation; slice-
constrained artifacts; and more. Resting state FMRI analysis
often depends on correlation patterns, making InstaCorr
verification particularly important. In task-based FMRI, it
can provide useful exploration of areas where responses are
unexpectedly low.

5) STIM: Task-specific investigations of
stimulus timing

This stage describes understanding and evaluating the
stimulus event timing for a task-based analysis. This includes
answering whether events are presented at consistent intervals
or randomized, of consistent duration or variable, and based on
the subjects or not, both for duration and possibly amplitude
modulators in the regression model. It includes answering
similar questions for inter-stimulus intervals (ISIs). And it
includes evaluating the stability of the regression matrix,
i.e., whether small noise fluctuations could have a noticeable
effect on the results.

There are several tools within AFNI that can be helpful
for investigating various stimulus related features across
the group, such as summaries of timing, duration and
interstimulus intervals. These can be particularly useful in
understanding variations or potential issues in subject results.
Such investigations are essential during an experiment design
phase, before acquiring subject data, and are similarly important
for understanding event timing in a study from an external
group, or even in review. Detailed investigations can be done for
just a few subjects, while statistical reviews of stimulus durations
and interstimulus interval timing can be performed and then
summarized across all subjects, while looking for peculiarities
or outlier subjects.

Two items that are often computed after the regression
matrices exist are regressor correlations and condition
numbers. Negative pairwise correlations are often expected,
particularly in cases with two or just a few stimulus classes.
As a measure of predictability, this happens when one
stimulus response is “on” and another stimulus response
is generally “off,” or lower. Such a pair of regressors
might have a modestly high, negative correlation that is
considered acceptable. Condition numbers (of the full
model and conceptual sub-models) help identify when
a model is becoming mathematically unstable, often
from a stimulus design mistake, or by having too little
non-stimulus time.

• events: (for just a few subjects) visually review event
timing across all classes together, including onsets
times, durations, and offsets from previous events, along
with any modulators.

• stim-stats: Show min/mean/max/stdev of stimulus
durations, per class and subject.

• isi-stats: Show min/mean/max/stdev of interstimulus
intervals, per subject.

• X-cormat: (done in APQUANT.warns section, above)
look for large pairwise correlations among the regression
matrix regressors.

• X-cond: Look for high condition numbers across subsets of
the regression matrix, including the baseline, motion terms,
regressors of interest, and combinations of these sets up to
the full matrix.

Results for resting state data
collections

GTKYD summary

GTKYD was the first stage of checking each group’s data.
In the present study, no subjects were excluded because of this
stage’s results, but they did inform some processing choices
(and in other cases, they indeed might lead to a group not
being included in a study). Table 2 shows a summary of basic
dataset properties that were inconsistent across a group. For
example, in Group 5 six out of 20 subjects have an anatomical
volume with differing orientation. This may reflect acquisition
or reconstruction inconsistency, but importantly it may hide
an error in correctly assigning directionality within the volume.
While most mistaken “flips” of directionality within a dataset
can be quickly detected visually, this is not so for left-right
flips; for humans, relative EPI-anatomical flips can typically be
reliably detected (Glen et al., 2020), but this is not the case for
animal datasets or when all datasets for a subject are flipped.

Surprisingly, most groups (5 out of 7) contain heterogeneity
of at least one basic dataset property. In Group 5, the
EPI voxel dimensions of five subjects differ notably, which
will affect SNR throughout the brain; additionally, the high
anisotropy of the five outlier subjects can produce artifacts
due to alignment and regridding. In Group 6, the numbers
and lengths of runs vary within the group in complicated
ways. These forms of heterogeneity can affect the statistical
properties of estimated quantities, and lead one to question the
appropriateness of combining these subjects in a group analysis
(when not performing an explicitly large, multisite study, and
these differences have a larger relative variance within the
paradigm). Each of these items should lead to checking with the
source of the data. If acquiring the data locally, performing the
GTKYD check with each new subject can help identify problems
or changes immediately, and minimize data waste.
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TABLE 2 Summary of the first stage of resting state FMRI QC: GTKYD (“getting to know your data”).

GTKYD: “Getting To Know Your Data” results (resting state FMRI)

Property Description

Group 1: EPI

matrix size diff sub-118 has 112×112×47, from group std 96×96×47

num vols diff sub-114 and sub-115 have 128, from group std 256

vox dim diff sub-118 has 2.29×2.29×3.0 mm3, from group std 2.67×2.67×3.0 mm3

Group 1: anatomical

matrix size diff sub-104, sub-109, sub-112 and sub-117 have 256×180×256, from

group std 256×200×256

Group 2: EPI

large max values approx. 2-4×106

oblique

Group 2: anatomical

vox dim diff sub-203 has 1×0.93×0.93 mm**3 from group std 1×1×1 mm**3

matrix size diff sub-118 has 160×288×288, from group std 160×256×256

Group 3:

no warnings

Group 4: EPI

no slice timing

Group 5: EPI

matrix size diff sub-501, sub-502, sub-503, sub-504, sub-509 have 128×128×34,

instead of group norm 80×80×35; others have 80×80×35 and 80×80×39

mm3 instead of group std 3.0×3.0×4.0 mm3

datum diff sub-501, sub-502, sub-503, sub-504 and sub-509 have float,

instead of group std short

(some) oblique

no slice timing

Group 5: anatomical

orient diff sub-501, sub-502, sub-503, sub-504, sub-509 and sub-519 have RPI,

instead of group std LPI

matrix size diff much heterogeneity

oblique

Group 6: EPI

diff num of EPI sub-601, sub-602, sub-603, sub-604, sub-605, sub-606, sub-607 and

sub-620 only have 1, instead of group std 2

diff length of EPI sub-601, sub-602, sub-603, sub-604, sub-605, sub-606, sub-607 and

sub-620 have 240, 360, 480 or 724 time points, instead of group standard 130-133

oblique

no slice timing

Group 6: anatomical

matrix size diff sub-601, sub-602, sub-603, sub-604, sub-605, sub-606, sub-607,

sub-612, sub-619, and sub-620 have 256×256×256, split with others

having 256×256×176

oblique

(Continued)
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TABLE 2 (Continued)

GTKYD: “Getting To Know Your Data” results (resting state FMRI)

Group 7: EPI

oblique

Group 7: anatomical

(some) oblique

For each group, this displays cases of heterogeneity in basic dataset properties, as well as noteworthy values for checking or for informing processing choices. Items shown here might
prompt verification with the source of the data collection, whether it has been downloaded from a shared repository or is being acquired locally.

Table 2 also contains absolute quantities that were notable
either to prompt verification from the source of the data
or to inform processing choices. As an example of the
former, Group 2’s EPI values ranged from zero to over
2 × 106; while FMRI datasets have no inherent units and
this may not be a problem, these values are three orders of
magnitude larger than typical dataset values, and therefore
worth verifying their acquisition and reconstruction parameters
to ensure that no numerical features (truncation, saturation,
loss of contrast) have been introduced. Additionally, the
EPI datasets in Groups 4, 5 and 6 did not contain slice
timing information, which can be used for minor adjustment
across the slicewise acquisitions. The lack of this information
may be a reconstruction or distribution oversight, and hence
obtainable. Finally, different software packages utilize obliquity
information (the coordinate information that describes whether
a dataset is acquired obliquely, away from simple cardinal
orientations) differently during processing, such as: Applying
it and regridding the data; ignoring it and effectively shifting
coordinates; or leaving it in the header to be applied. Therefore,
the choice and order of processing steps, particularly when
it is present in an anatomical volume, may be affected by
its presence. Here, we chose to remove obliquity of any
anatomical volumes (while preserving the coordinate origin)
as an initial processing step, to avoid issues with other
software.

APQUANT evaluation

The quantitative drop criteria listed in Table 1 were applied
to the processed data, followed by APQUAL evaluations for each
subject and, in several cases, GUI checks. A brief summary table
of applying these stages of QC to the afni_proc.py-processed
datasets is shown in Table 3, listing subjects in one of the
three specified categories: Include (“high confidence to use in
the hypothetical study”), Exclude (“high confidence to remove”)
and Uncertain (“there is a question about whether to include”).
The Supplementary Table 1 contains a table with more detailed
descriptions for each subject.

In these tables, the QC comments are named hierarchically,
in the following format: STAGE.type[.subtype](detail), using
the terms listed in the previous section. For example,

APQUANT.excl.(“flip guess”) represents the label for the left-
right flip check within the exclusion criterion check during the
APQUANT stage. Some “detail” elements are not contained
within the brief table, but are included in the more complete
Supplementary Table 1. This notation has been introduced
to provide a clear, brief reference to the source of the
particular QC criterion.

There were 139 total resting state subjects processed. As
discussed further below, Groups 2 (20 subjects) and 4 (23
subjects) were found to have artifacts across all subjects,
following APQUAL and GUI QC checks. Of the remaining 96
subjects, 42 were categorized to include in further analysis, 37 to
exclude, and 17 were listed as uncertain. Of the 37 to exclude, 31
were evaluated as such using APQUANT criteria: 21 by censor
fraction, 8 by GCOR, and 2 by left-right flip checking (though
one additional subject was categorized as “uncertain,” primarily
due to left-right flip checking, as discussed in the APQUAL
section below). The left-right flip evaluations were always
visually verified during the APQUAL stage. The quantitative
GCOR value typically correlates highly with the APQUAL’s
“regr.corr_brain” evaluation, as well.

The warning-level APQUANT criteria were additionally
noted in subject evaluations (see the detailed Supplementary
Table 1). In particular, these were combined with APQUAL
criteria for determining additional “exclusion” or other
categorizations, as described below.

APQUAL evaluation

Figures 2–10 contain example images of the APQUAL
evaluations, which are (by definition) qualitative and visual.
Each figure shows multiple examples of the same APQC block
from the HTML report. Each QC image is labeled with a
colorband along its side, based on whether it would lead to
excluding the subject (red), including the subject (green) or
uncertain evaluation (yellow). Many images also contain arrows
highlighting features of note.

vorig
Figure 2 shows QC examples from looking at one volume

of the original EPI data (here, the “minimum outlier” volume
from the EPI time series, which had the fewest outliers within the
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TABLE 3 A brief summary of resting state FMRI dataset evaluations, based on the APQUANT, APQUAL and GUI QC checks.

QC evaluations (brief): Groups 1-7 (resting state FMRI)

Group 1 (I = 7, E = 8, U = 5) 508 E APQUAL.vstat.artifact

sub eval comment 509 E APQUAL.vorig.EPI

101 E APQUANT.excl(’flip guess’) 510 I

102 U GUI.instacorr(odd patterns) 511 E APQUANT.excl(’censor fraction’)

103 I 512 E APQUANT.excl(’censor fraction’)

104 E APQUANT.excl(’censor fraction’) 513 U APQUAL.vorig.EPI

105 I 514 I

106 E APQUANT.excl(’censor fraction’) 515 I

107 U APQUAL.vorig.EPI(ringing feature) 516 I

108 I 517 U APQUAL.vorig.EPI

109 I 518 E APQUAL.vorig.EPI

110 U APQUAL.vstat.quality 519 E APQUAL.vorig.EPI

111 E APQUANT.excl(’GCOR’) 520 I APQUAL.regr.tsnr_final.quality

112 I

113 I Group 6 (I = 10, E = 7, U = 3)

114 E APQUAL.vstat.artifact sub eval comment

115 E APQUANT.excl(’flip guess’) 601 E APQUANT.excl(’GCOR’)

116 E APQUAL.warn.flip 602 I

117 U APQUAL.regr.TSNR_final-artifact 603 E APQUANT.excl(’GCOR’)

118 E APQUANT.excl(’censor fraction’) 604 I

119 I 605 I

120 U APQUAL.regr.TSNR_final-artifact 606 E APQUAL.regr.corr_brain-quality

607 I

Group 2 (I = 0, E = 20, U = 0) 608 I

sub eval comment 609 E APQUANT.excl(’GCOR’)

2* E GUI.instacorr(’scanner artifact?’) 610 E APQUANT.excl(’GCOR’)

611 I

Group 3 (I = 9, E = 5, U = 2) 612 E APQUANT.excl(’GCOR’)

sub eval comment 613 E APQUANT.excl(’GCOR’)

301 U APQUAL.vstat.quality 614 I

302 I 615 U APQUAL.regr.corr_brain-quality

303 I 616 I

304 I 617 I

305 U APQUAL.vstat.quality 618 U APQUANT.warn(’GCOR’)

306 I 619 U APQUAL.vstat.quality

307 E APQUANT.excl(’censor fraction’) 620 I

308 I

309 E APQUANT.excl(’censor fraction’) Group 7 (I = 9, E = 10, U = 1)

310 I sub eval comment

311 I 701 E APQUANT.excl(’censor fraction’)

312 I 702 I

313 I 703 E APQUANT.excl(’censor fraction’)

314 E APQUANT.excl(’censor fraction’) 704 U APQUAL.vstat.quality

(Continued)
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TABLE 3 (Continued)

315 E APQUANT.excl(’censor fraction’) 705 E APQUANT.excl(’censor fraction’)

316 E APQUANT.excl(’censor fraction’) 706 E APQUANT.excl(’censor fraction’)

707 I

Group 4 (I = 0, E = 23, U = 0) 708 E APQUANT.excl(’censor fraction’)

sub eval comment 709 I

4* E GUI.instacorr(’scanner artifact?’) 710 I

711 I

Group 5 (I = 7, E = 7, U = 6) 712 E APQUANT.excl(’censor fraction’)

sub eval comment 713 E APQUANT.excl(’censor fraction’)

501 U APQUAL.regr.TSNR_final-artifact 714 E APQUANT.excl(’censor fraction’)

502 U APQUAL.regr.TSNR_final-artifact 715 E APQUANT.excl(’censor fraction’)

503 U APQUAL.vstat.quality 716 E APQUANT.excl(’censor fraction’)

504 U APQUAL.regr.TSNR_final-artifact 717 I

505 I 718 I

506 I 719 I

507 E APQUANT.excl(’censor fraction’) 720 I

The following abbreviations for evaluations (“eval”) are used: E, exclude; I, include; U, uncertain. Both Groups 2 and 4 were found to have artifacts in each of their datasets, and hence all
categorized for exclusion. A more detailed summary is provided in the Supplementary Table 1, with further comments about most subjects.

brain mask and was used as a reference for motion correction
and alignment to the anatomical). In panel A, sub-315’s EPI
shows a medium-sized patch of signal dropout. The associated
anatomical volume contained a smaller spot at that location, so it
is likely due to some local object (rather than a scanner artifact).
This places a question of the full signal effects in this region,
but since it is only moderate size and relatively constrained
to the central sulcus, it might be reasonable to include the
subject.

In Figure 2B, there is a strong ghosting signal present, as
further investigated using InstaCorr. It is particularly noticeable
throughout the central region of the brain, and, therefore,
the signal patterns would be highly non-physiological, and
the subject should be excluded. The subject in panel C has
a smaller amount of ghosting and a “ringing” artifact in the
inferior slices. The exact degree of signal effect is uncertain,
hence the QC rating. In panel D, we see that sub-509
has extremely large ventricles, which reduce the quality of
anatomical-to-template alignment, and may also reduce the
quality of EPI signal. The subject also has a large amount of
frontal and subcortical signal dropout, which renders inclusion
uncertain.

Finally, there were multiple subjects in Group 5 who had
upside-down EPI volumes, as shown in Figure 2E. Such large
header errors warrant rejection, because the correct left-right
designation is not possible to reliably ascertain a posteriori,
without a marker. While it would be possible to try to fix the
header and then assess results against the subject’s anatomical
using AFNI’s left-right flip check, given the nature of this header

issue one might not be sure of the correctness of the anatomical
volume’s reconstruction. Therefore, given the high uncertainty
of basic properties, such subjects should likely be excluded
(though, in a different setting, one might contact the source of
the data and query whether the initial reconstruction could be
corrected).

ve2a
Figure 3 shows the alignment of an EPI volume (underlay)

to the same subject’s anatomical (overlay, as edges). While
EPIs typically contain geometric distortions (e.g., EPI distortion
along the phase encode axis), affine registration is typically
adequate to align most major structures to the higher-resolution
and -detailed anatomical, as shown in panel A. However, EPI
images often contain signal dropout, particularly bordering
the sinus cavities, bordering the orbitofrontal cortex and
subcortex. The ve2a block (views of EPI-anatomical alignment)
provide useful images for assessing locations of dropout (as do
TSNR maps, described below). Panel B shows several locations
of poor signal strength and attenuation, which renders the
suitability of sub-210’s data uncertain. Panel C shows a case
where the geometric distortions make global EPI-anatomical
alignment difficult (see the signal pileup in the anterior and
attenuation/extension in the visual cortex).

An important point for judging EPI-anatomical alignment
is exemplified in Figure 3D. The most important features to
verify as matching are the tissue boundaries, sulci and gyri: The
internal structures. At the edge of the brain, cerebrospinal fluid
(CSF) can variously appear brightly, and make alignment details
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FIGURE 2

APQUAL examples for the “vorig” QC block: Visualizations of the original datasets (here, just the EPIs). In this figure and below, the colored
bands to the left of each item denote whether the given QC item would suggest that the subject should be excluded (red), included (green) or
leads to an “uncertain” evaluation (yellow); also, see Table 3 for brief, overall evaluations for each subject, and the Supplementary Table 1 for
detailed QC comments. (A) The EPI contains a moderately sized dropout region (but it is mostly contained within the central sulcus). (B) This EPI
contains severe ghosting artifact. (C) The inferior slices show a ringing artifact, and the frontal region is geometrically distorted. (D) This
subject’s large ventricle may negatively affect alignment to template space, and there is notable dropout in the orbitofrontal region and
subcortex. (E) The EPI is upside down, a significant header or data conversion problem.
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FIGURE 3

APQUAL examples for the “ve2a” QC block: Visualizations of the EPI-to-anatomical alignment (underlay = EPI; overlay = anatomical edges).
(A) Structures appear generally well-registered. (B) There is notable EPI signal loss in the frontal and subcortical regions. (C) The EPI contains
large distortions: Signal pileup in the anterior, and geometric stretching and signal attenuation in the visual cortex. (D) In judging EPI-anatomical
alignment, interior structures matter most and CSF (bright, and highlighted with arrows) should be ignored.
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FIGURE 4

APQUAL examples for the “vstat” QC block: Visualizations of statistical information after regression modeling [here, the seed-based correlation
map showing the default mode network (DMN]). The Pearson correlation values are overlaid, and are also used for thresholding, which is
applied transparently: Suprathreshold voxels are opaque and outlined in black, while sub-threshold values are also shown but with opacity
decreasing with value. This “highlighting” form of thresholding is applied here and below. (A) Expected regions are present, and high correlation
regions show network-related spatial specificity (some noise, blurring, and asymmetry are expected). (B) A large, non-physiological region of
high correlation is shown, and appears to be artifactual. (C) The expected network is discernible, but there is notable noise and distortion.
(D) Almost no intra-network correlation is observed.
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FIGURE 5

APQUAL examples for the “vstat” QC block: Visualizations of the statistical information after regression modeling (here, the seed-based
correlation map showing the visual network). (A) Expected regions are present, and high correlation regions show network-related spatial
specificity (some noise, blurring, and asymmetry are expected). (B) A large, non-physiological region of high correlation is shown, expanding
across multiple tissue boundaries, and appears to be artifactual. (C) Almost no intra-network correlation is observed. (D) The high correlation
pattern extends far beyond the expected network (to nearly all GM).
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FIGURE 6

APQUAL examples for the “regr” QC block: Regression evaluation through the correlation pattern of the brain-averaged residual time series
(“corr_brain” maps). (A) Regions of low-medium correlation are mainly located through the GM. (B) The whole brain volume correlates highly
with the global average, suggestive of strong non-physiological signals remaining in the data. (C) High correlation extends through the
intracranial regions, with large negative filaments, suggestive of strong non-physiological signals remaining in the data. (D) Strong patterns of
high correlation remain in the data, outside of GM.
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FIGURE 7

APQUAL examples for the “regr” QC block: TSNR maps of the final data after regression modeling (for each voxel, TSNR is the mean of the
modeled time series divided by the standard deviation of the residuals). (A) TSNR is relatively constant and high throughout the brain volume
(only very small regions of low signal, in the anterior temporal lobes). (B) Large regions of low-TSNR, particularly in the subcortex and
orbitofrontal regions, which may impact cortical results. (C) Vertical strips of low TSNR are present, which may affect connectivity analyses (and
which, after GUI-based investigation with InstaCorr, appear to be due to a significant artifact, shown in Figure 10, leading to subject exclusion;
hence, the inclusion of red in the colorband to the left of the image).

difficult to assess or create an impression of poor alignment. The
CSF is particularly bright in Panel D (and for many subjects in
Group 7), but the structural alignment still appears to be quite
high (albeit in the presence of some geometrical distortions).

vstat.DMN
Figure 4 shows part of the “vstat” QC block, which provides

views of statistics based on the regression modeling. For resting
state FMRI, this includes seed-based correlation maps when the

final data is in a recognized template space, and the images in
this panel use a seed in the left posterior cingulate cortex [L-
PCC; coordinate (5L, 49P, 40S) in the MNI template space],
which is a standard part of the standard default mode network
(DMN) along with medial prefrontal cortex and left/right
inferior parietal lobules. This (and the other vstat seed-based
vstat maps) provides a useful QC check for noise, artifact and
modeling, since generally consistent spatial network patterns
appear across age groups, species and alertness/sleep levels.

Frontiers in Neuroscience 20 frontiersin.org

https://doi.org/10.3389/fnins.2022.1073800
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1073800 January 24, 2023 Time: 21:45 # 21

Reynolds et al. 10.3389/fnins.2022.1073800

FIGURE 8

APQUAL examples for the “warns” QC block: Warnings created during processing, here for possible left-right flipping between the EPI and
anatomical volumes. The warning field contains the APQUANT evaluation, based on cost function comparison (blue arrows), with its comment
on the original (yellow arrow) and flipped EPI volumes. Importantly, images of each alignment result within the test are shown, for visual
verification of the results. (A) The structures of the original EPI match well with the anatomical volume (and those of the flipped version do not),
suggesting consistency. (B) The structures of the original EPI do not match well with the anatomical volume, while those of the flipped version
do, suggesting inconsistency in the datasets.

Panel A shows what would be a typically reasonable result
for a single subject map for sub-505: The higher correlation
regions approximately follow the expected DMN pattern with
acceptable specificity and approximate symmetry. Given the
generally low SNR of FMRI, as well as length of scanning,
one expects small noise patterns of correlation/anticorrelation.
Note that here “transparent thresholding” is applied to the
overlay, so that results below Pearson |r| = 0.3 are still

observed, and brain masking is not applied: These features
reduce the sensitivity of results to threshold value and allow
for subtle patterns anywhere within the acquired FOV to be
observed, which is vital for artifact detection (Taylor et al.,
2022).

Figure 4B shows an example of an obvious artifact
appearing in the correlation map of sub-203. The slice-wise
nature of strong correlation throughout the brain is highly
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FIGURE 9

Combining APQUAL blocks: ve2a and warns (see Figures 3, 8). The structures of the aligned EPI do not match well with those of the anatomical,
even though neither appears heavily distorted [ve2a, (A)]. The left-right flip check provides a “medium” level warning, because the cost function
comparison is ambiguous [warns, (B); see blue arrows]. Visually, neither the original nor flipped EPI matches well with the anatomical structures,
even though all other subjects in the group had strong alignment. Since the structures appear to differ, this suggests that the EPI and anatomical
volumes for this dataset may actually come from different subjects.

non-physiological, and strongly suggests this subject should
be excluded from further analyses. Motion levels and other
quantitative QC properties for this subject were not even at a
warning level. The other two seed-based maps of the visual and
auditory networks did not show obvious artifactual patterns,
but the “corr_brain” map and “radcor” maps in the QC did
show further extent of odd patterns. As described below, we
also applied the GUI to investigate this subject (and others
within Group 2), further verifying the presence of artifact
(which unfortunately led to the exclusion of all subjects within
Group 2).

Panels C and D of Figure 4 show other issues that
can be arise in seed-based correlation maps: Noisiness
(without an obvious artifact), which includes relatively high
correlation/anticorrelation scattered around the FOV and/or

mildly distorted patterns, as for sub-118; and widespread low
or missing correlation patterns, as for sub-413 (and alignment
quality was verified, so seed location did not appear to be
obviously erroneous). In either case, the lack of strong artifact
pattern makes it difficult to decide to exclude either subject
from these images alone, and further investigations would be
needed to avoid biasing the final group selection. (In these
cases, the APQUANT stage showed suprathreshold censoring
levels of 61% for sub-118, and the GUI-based InstaCorr check
revealed notable artifact patterns in the frontal region for sub-
413; therefore, from those separate criteria, each subject was
excluded).

vstat.vis
Figure 5 shows another vstat visualization, for the visual

network [seed located at coordinate (4R, 91A, 3I) in the MNI
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FIGURE 10

GUI examples of QC, using AFNI’s InstaCorr: This provides deeper understanding of the spatiotemporal patterns of the data through interactive
driving of seed-based correlation. Several subjects in Groups 2 and 4 had difficult to interpret APQUAL QC results, particularly in seed-based
correlation maps (vstat); upon further inspection here, it was apparent that those subjects contained large artifacts within the EPI datasets, as
evinced by large correlation/anticorrelation patterns from seed locations in deep WM (Group 2) and extensive, non-physiological
correlation/anticorrelation patterns from frontal GM/WM seeds (Group 4). In the end, these artifacts appeared to be present in all subjects of
these groups, so that all were categorized for exclusion.

template space]. Panel A shows an expected correlation map for
the same sub-505, which essentially contains high correlation
in the V1/V2, V3, occipital areas and visual-associated areas.
In contrast, panel B shows the presence of large patches of
strong correlation and anticorrelation in other parts of the brain
for sub-209. Furthermore, these patterns are not constrained
by physiological or tissue boundaries. In total, this leads to

excluding this subject (as noted above, GUI follow-up across
Group 2 further verified extended artifacts).

In Figure 5C, a low/missing correlation pattern is observed
for sub-305, again leading to an uncertain evaluation from this
image. For this subject, the same low correlation was observed
across all seed-based maps, but there was no obvious criterion
for exclusion, and therefore the “uncertain” rating remained. In
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panel D, sub-403’s network map shows unexpectedly extensive
regions of high correlation, throughout most of the gray matter
(GM). While this “overfull” region of high correlation differs
notably from the visual network regions, the lack of distinct,
non-physiological patterning makes it difficult to exclude a
subject from this image. (This subject’s APQUANT criteria were
all below threshold, but as noted above, a GUI QC check with
InstaCorr revealed that all subjects in Group 4 had a notable
artifact within their dataset, leading to their exclusion).

regr.corr_brain
Figure 6 displays another volumetric visualization, which is

the “regr” block’s “corr_brain” map: The brainwide average of
the regression model’s residual time series (the “global signal”) is
correlated with each voxel in the FOV. This essentially provides
a visual assessment and corollary to the GCOR parameter (Saad
et al., 2013), which is used as a warning and exclusion criterion
in the APQUANT QC. Panel A shows a correlation map for
sub-505, whose data had generally reasonable correlation maps
(and a very subthreshold GCOR = 0.05). Much of the GM
shows a generally positive and “medium-level” correlation, with
typically low correlation in other tissues. This can be contrasted
with sub-610, whose map has universally quite high correlation
and leads them to being excluded (as did the associated
GCOR = 0.47, in the APQUANT stage).

Figure 6C shows another problematic corr_brain map.
While the GCOR = 0.08 for sub-508 is well below threshold,
the relatively high correlation patterns across all tissues and
anticorrelation boundaries appear to be artifactual. We note
that this subject also displayed artifactual patterns in the vstat
seed-based correlation maps. The high correlation patterns for
sub-118 in panel D do not show the same whole brain coverage,
but they do appear to be strongly non-physiological, and lead to
this subject also being excluded. (Recall this subject’s “uncertain”
noisy correlation map in Figure 3C, as well as the fact that
censoring levels were also at a level for exclusion).

regr.TSNR
In Figure 7, TSNR maps for the final, regressed data are

shown3. As typical TSNR ranges can vary with scanner site, the
colorbar is defined relative to a 5–95% ile interval within the
brain mask (providing the min-max values of the hot colors,
respectively). Panel A shows a relatively good TSNR pattern:
While there is some dropout in the orbitofrontal regions and
temporal lobes for sub-313, such effects are present in nearly
all FMRI and the TSNR strength is relatively constant across
the brain and GM. If the low TSNR is not in a focal region
of the study, then this subject would be fine to include in
the subsequent analyses; for studies that include these regions

3 TSNR can be variously defined in FMRI studies. Here, TSNR is the ratio
of the mean of the voxel’s final time series to the standard deviation of
its residual time series.

of typical signal loss, one would have to adjust acquisition
parameters to avoid problematic distortions. (Note that one
can observe the tight FOV for this subject’s EPI, which would
preferably be larger to avoid TSNR issues in the superior slices,
as well).

The TSNR map for sub-614 in Figure 7B shows a larger
area of dropout in the inferior regions of the brain. As shown
in the images, a larger fraction of the temporal lobe, subcortex
and orbitofrontal regions have notably lower TSNR than the rest
of the brain. As whole brain connectivity studies often include
these regions, it is likely that such differences in FMRI signal
could affect the final results, depending on the hypotheses and
exact paradigm. Therefore, this subject may not be appropriate
to include in the study, and is rated “uncertain” from these
images.

Figure 7C shows a TSNR map for sub-403 with relatively
full whole brain coverage of constant TSNR, even in the
inferior and subcortical regions. However, there are notable
vertical stripes of low-TSNR that appear in each hemisphere
in the anterior regions (see the sagittal slices). Such non-
physiological patterns suggest some kind of artifactual signal
issue, such as significantly strong ghosting, which may affect
large areas of interest. Therefore, these patterns may mean
that this subject would be inappropriate to include in
further analyses. However, we note that in a follow-up QC
analysis using InstaCorr in the AFNI GUI, these striped
locations showed extreme and non-physiological patterns of
correlation/anticorrelation (described further below, and see
Figure 10). These low TSNR stripes were observed across
Group 4, and the GUI follow-up revealed the same artifact
in all subjects, leading to the exclusion of this group. Thus,
in this group the low-TSNR striping was a hallmark of an
artifact that always led to excluding a subject, but it is possible
that in other datasets, that might not be the case. At the
least, such patterns warrant detailed follow-up, likely using the
GUI.

warns.flip
The APQC HTML contains a “warns” section that is

comprised of the results of various automatic checks that
occur during afni_proc.py processing (see list, above). Each
has an associated warning level of “none,” “mild,” “medium,”
“severe,” or “uncertain.” Figure 8 shows the results of a
particular warning that spans the APQUANT and APQUAL
QC: Checking for left-right flips between the EPI and
anatomical volumes. Panel A’s results suggest that sub-606
does not show an inconsistency: The cost function value
of the original data set is much lower than the flipped
version (blue arrows; and note that cost functions are
minimized in the alignment process), and the images below
allow one to visually verify that the cortical patterns of the
original EPI are much more consistent with those of the
anatomical volume. NB: The structures of the superior cortex
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tend to be much less left-right symmetric than the inferior
regions and subcortex, and therefore provide more convincing
evidence.

Figure 8B shows an example of the quantitative flip-
check strongly suggesting that sub-101’s original EPI and
anatomical volumes have a relative left-right flip. This result
is visually verifiable in the associated images. Since the
absolute left-right definition cannot be known (without external
indication such as a vitamin E tablet in the FOV), this subject
would be excluded from further analysis. The data for sub-
115 in this group similarly appeared to have a left-right
flip.

A particularly interesting case of left-right flip check results
is shown in Figure 9. Here, sub-116’s ve2a check initially showed
a relatively poor EPI-to-anatomical alignment. Additionally,
the left-right flip check provides a “medium” level warning,
because the cost function values when using the original
or flipped EPI are extremely close; in such as case, the
recommendation whether to flip or not is difficult to interpret,
as it is effectively “within the error bars” of the alignment’s cost
function estimation. Looking at all of the images, it appears as
if the cortical structures of the EPI and anatomical volumes
do not match well in either case. Given that the EPI distortion
is not very large and that the EPI-anatomical alignment for
all other subjects from the site displayed excellent structural
correspondence, these QC results suggest that the two volumes
in sub-116’s dataste did not actually come from the same subject.
When using a publicly downloaded dataset, this is only a
supposition and cannot be directly verified, and, therefore, we
are uncertain about whether to include this “subject” in further
analyses.

GUI evaluation with InstaCorr

The APQUAL and APQUANT items listed above provide
useful QC information: The quantitative and visual aspects
provide complementary aspects for efficiently and systematically
understanding many aspects of the data. For example, the
EPI and anatomical left-right flip check can be quantitatively
evaluated, but should always be visually verified. As shown for
sub-116 in Figure 9, data visualizations are sometimes even
necessary for interpreting quantitative findings appropriately.
However, in some cases even the APQUAL visualizations did
not contain enough information to confidently make a QC
evaluation. Therefore, the GUI stage of QC was used in
several cases, in particular using the “run” script provided by
afni_proc.py to efficiently start the AFNI GUI with InstaCorr
set up, to explore the spatiotemporal properties of the EPI data.

Figure 10 shows a set of representative GUI snapshots
when applying InstaCorr. As noted above, some of the
correlation patterns for subjects in Groups 2 and 4 were not
as expected: Some contained large patches of correlation and

anticorrelation; some contained faint (subthreshold) patterns
that were difficult to interpret; some contained extremely
low or missing spatial patterns. For all subjects in these
groups, the GUI follow-up revealed strong artifactual patterns
in seed-based correlations, and example of these are shown
for a subset of each group and contrasted with what might
be considered a reasonable pattern at the same location
in subject that did not appear to have artifacts (sub-
108).

The seed location for each of the Group 2 subjects
(sub-216, sub-218 and sub-219) is located in deep white
matter (WM), which should have minimal patterns of
correlation. As in the left column, one might expect a
small, local patch of correlation even in WM, due to
data blurring, remaining motion artifacts, vascular-driven
BOLD response in WM, and more. However, the large
patterns of high correlation/anticorrelation for each Group
2 subject spans tissue boundaries non-physiologically. Since
these patterns overlap variously with GM, they do not
appear possible to separate typical resting state connectivity
analyses, and therefore all of Group 2’s subjects were
categorized for exclusion.

InstaCorr analysis for Group 4 (sub-401, sub-402, and
sub-403) revealed a different location of artifact, as shown
in the lower panels of Figure 10. With a seed located in
either the left or right frontal GM or WM, again strong
patterns of high correlation and anticorrelation appeared,
in this case alternating and even extending outside the
brain. Again, these patterns are in contrast with expected
local and/or localized symmetric patterns of correlation,
depending on the GM/WM content of the seed region.
These artifactual patterns throughout the frontal cortex
GM also imply that resting state connectivity analyses
would be strongly affected by non-physiological features, and
therefore all of Group 4’s subjects were also categorized for
exclusion.

Group summary QC notes

After performing the detailed single subject checks listed
above, it can be useful to summarize features or trends that
appear across the group. These may be helpful for judging the
overall applicability of a data collection for a particular study
question. Additionally, these may aid planning future studies, by
either replicating important features or by avoiding non-ideal
aspects, possibly adjusting acquisition parameters. In general,
the following overall properties of each group are based on the
visualization methods described in the APQUAL stage.

Group 1 had several subjects with relatively low visual
cortex correlation in vstat.vis seed-based correlation maps,
even though the other network correlation maps were more
standardly represented. There were some light vertical striping
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patterns in the frontal brain regions of the TSNR plots,
suggesting some mild ghosting effects. Finally, in the individual
motion parameter plots, the dP (translation along A-P axis)
tended to have a noticeably linear increase across time, which
might be due to frequency drift (e.g., Foerster et al., 2005)
or even from settling into a pillow; while not necessarily a
problem, this is an example of a group-wide feature in the data
that is worth understanding, particularly if acquiring one’s own
data.

Subjects in Group 2 had relatively high corr_brain maps, and
the TSNR dipped noticeably in the center of the brain. The radial
correlation (radcor) patterns were noticeably high centrally, and
this led to discovering the presence of a strong artifact across
all subjects, using InstaCorr. If subject data were still being
acquired, such an artifact might encourage close examination of
all datasets coming from that particular scanner.

Groups 3 and 4 each had relatively tight FOV for the EPI
acquisitions. These might negatively affect signal quality in some
boundary regions.

Group 4’s EPI volumes had quite short time series (123
points). The TSNR plots showed a strong vertical striping
pattern, which led to the discovery of a notable frontal artifact
across all subjects, using InstaCorr. The motion plots revealed a
steady dP translation over time (as well as some notable linear
trends in other parameters).

In Group 5, the basic acquisition features of voxel
dimension and matrix size were quite heterogeneous.
Non-linear alignment of the highly anisotropic EPI voxels
(1.87 mm × 1.87 mm × 4.0 mm) produced slight swirls in
patterns, which is one reason that acquiring anisotropic voxels
is not recommended for standard group analyses; it also creates
a grid-based dependence for the acquired data (e.g., which brain
regions are averaged together depends on the orientation of a
subject’s head in the scanner), a property that should be avoided.
There was also noticeable signal loss in the orbitofrontal and
temporal lobes, as well as the subcortex, which may lead to the
exclusion of most of these subjects in some whole brain studies,
depending on the specific regions of interest.

Group 6 also had a large heterogeneity in basic acquisition
parameters, particularly in terms of number of EPI runs and
run lengths, as well as matrix sizes. There was notable geometric
distortion in the EPIs, particularly along the phase encode axis,
with both signal pileup and attenuation; due to the different
patterns of distortion, the phase encode direction may have been
inconsistent across the group. TSNR was high across much of
the brain, but low in the orbitofrontal and temporal lobes. There
were relatively high values of the corr_brain (the correlation of
the average residual signal across the brain).

Group 7 had notably bright CSF in the frontal portions
of the brain in the EPI, but this did not appear detrimental
to alignment or analyses. This group seemed relatively
prone to motion, with many subjects having unusually high
censor fractions.

TABLE 4 Summary of the first stage of task-based FMRI QC: GTKYD
(“getting to know your data”).

GTKYD: “Getting To Know Your Data” results
(task-based FMRI)

Property Description

Group 0: EPI

orient diff sub-010 has RIA, from group std RPI

oblique

anatomical

(some) oblique

This displays cases of heterogeneity in basic dataset properties, as well as noteworthy
values for checking or for informing processing choices. Items shown here might prompt
verification with the source of the data collection, whether it has been downloaded from
a shared repository or is being acquired locally.

Results for task-based data
collection

GTKYD summary

Similar to the analysis of resting state FMRI, GTKYD was
the first stage of checking each group’s data, and no subject
exclusions were made from this step. The summary of basic
dataset properties for the single group of task-based FMRI
(Group 0, 30 subjects) is shown in Table 4. One subject’s EPI had
a different orientation from the rest of the subjects. While all EPI
volumes were acquired obliquely, only a subset of anatomical
volumes were acquired obliquely.

The table of GTKYD checks for the task-based FMRI group
is shown in Table 4. Here, one subject’s EPI had a different
orientation than the rest. While all EPI volumes were acquired
obliquely, only some of the anatomical volumes had obliquity
information; as with the resting state data, we chose to deoblique
these anatomicals as an initial processing step. Finally, no slice
timing information was present for these EPI volumes.

APQUANT

Table 5 shows a brief summary applying APQUANT
exclusion criteria (itemized in Table 1) and additional APQUAL
and GUI checks to the task-based FMRI group. The same subject
dataset categorizations (described above): Include, Exclude and
Uncertain. The Supplementary Table 1 contains a table with
more detailed descriptions for each subject.

The task-based FMRI data from 30 total subjects were
processed. Following the QC checks, 15 were categorized
to include for further analysis, 7 to exclude and 8 were
listed as uncertain. Each excluded subject had at least one
APQUANT criterion that resulted in that categorization (and
typically multiple ones, as well as APQUAL items; see the
detailed Supplementary Table 1). Most of the “uncertain”
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TABLE 5 A brief summary of task-based FMRI dataset evaluations, based on the APQUANT, APQUAL and GUI QC checks.

QC evaluations (brief): Group 0 (task-based FMRI)

Group 0 (I = 15, E = 7, U = 8)

sub eval comment

001 I 016 U APQUAL.vstat.quality

002 I 017 E APQUANT.excl(’fraction TRs censored’)

003 I 018 I

004 I 019 I

005 U APQUAL.vstat.quality 020 U APQUAL.vstat.quality

006 I 021 U APQUAL.vorig.EPI

007 I 022 E APQUANT.excl(’fraction TRs censored’)

008 I 023 U APQUAL.vstat.quality

009 E APQUANT.excl(’fraction TRs censored’) 024 E APQUANT.excl(’fraction TRs censored’)

010 U APQUAL.vstat.quality 025 U APQUAL.vstat.quality

011 I 026 E APQUANT.excl(’fraction TRs censored’)

012 E APQUANT.excl(’fraction TRs censored’) 027 E APQUANT.excl(’fraction TRs censored’)

013 U APQUAL.vstat.quality 028 I

014 I 029 I

015 I 030 I

The following abbreviations for evaluations (“eval”) are used: E, exclude; I, include; U, uncertain. A more detailed summary is provided in the Supplementary Table 1, with further
comments about most subjects.

categorizations were due APQUAL examination, particularly to
visualization of the statistical results, which are described in the
next section.

APQUAL evaluation

Figures 11–14 contain example images of the APQUAL
evaluations for Group 0. These figures come from the APQC
HTML report, of which most QC blocks are the same as for
resting state FMRI. One exception is the vstat block, which
shows F-stats and modeling coefficients (effect estimates) and
associated statistics. The same colorband labels used for the
resting state examples (see Figure 2) are used, as well as arrows
to highlight features of note. In general, there were fewer QC
issues with this group than for Groups 1–7. Therefore, we focus
on different features in the overlapping blocks, as well as some
of the stimulus-specific QC considerations.

vorig
Figure 11 shows QC examples from the “minimum outlier”

EPI, used as a reference for motion correction and anatomical
alignment. In panel A, sub-030’s volume does not display any
obvious artifact or major distortion. The tissue contrast is also
reasonable (some of the superior slices have slightly higher
brightness, but the maximum value did not show saturation).
In panel B, the FOV is much tighter for sub-020, and there
is a notable ghosting artifact: The brain and skull from the

posterior part of the brain is wrapped around to the anterior,
and here appears to overlap with the brain volume. While
different degrees of ghosting occur in many EPI acquisitions,
there is a question here of whether the visible overlap suggests
problematically strong signal interference in a non-negligible
region of the study. In panel C, the inferior slices show the
presence of ghosting or phase artifact. The distortion is limited
to approximately the bottom ten slices, but this includes large
portions of the frontal and temporal lobes (as well as other parts
of the brain).

vstat
Figure 12 shows images of the full F-stat maps, which are

part of each “vstat” block for task-based FMRI. As a ratio of
explained variance to unexplained variance after regression,
the full F-stat provides information on the relative model fit
(higher values = better fit). These images provide a useful
QC check for noise, stimulus modeling and motion reduction,
though their details and expected patterns will (necessarily) vary
strongly by paradigm. While there might be some expectation
of regions of high F-stat that should be observed (e.g., the visual
cortex when an on/off stimulus is presented visually; the motor
cortex when button responses are used; some particular region
from a previous study or theoretical rationale), it is difficult
to apply an unexpected patterns as a drop criterion, unless
an obvious artifact is observed, for example. Strong deviations
across many subjects may be a sign of study design issues, subject
unresponsiveness, stimulus timing issues or simply unexpected
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FIGURE 11

APQUAL examples for the task-based FMRI group from the “vorig” QC block: Visualizations of the original datasets (here, just the EPIs). See
Table 5 for brief, overall evaluations for each subject, and the Supplementary Table 1 for detailed QC comments. (A) The EPI does not appear to
have any major artifact, ghosting or distortion, and tissue contrast is reasonable. (B) The FOV of this volume is overly tight for this subject, so
that there is ghosting of the posterior brain and skull which overlaps the anterior portion. (C) The inferior slices show a ghosting or phase
distortion artifact—part of the frontal and temporal lobe regions are notably distorted.

findings. While worth noting and commenting on, variations in
statistical patterns will still be expected, and one must be careful
not to bias results in the QC process.

In the present study, panel A of this figure (sub-001) shows
what is likely a reasonable quality F-stat map for the present
paradigm. A similar F-stat range (99% ile within the brain mask
>40) and spatial pattern [high values in visual cortex, and
left and right inferior frontal junction (IFJ); see green arrows
in Z = 27S] were observed across many subjects, particularly
among those with no obvious exclusion criterion. The high
F-stat regions are localized in GM, and no obvious artifact or
non-physiological patterns are observed.

Panels B and C show two subjects (sub-005 and sub-016,
respectively) with generally lower F-stat values across the brain
(99%ile within the brain mask <10). Note that motion and
censoring levels for these subjects were not particularly, and
no quantitative (APQUANT) criteria suggested excluding them.
In the vstat images, the relative noise levels are higher and
observed throughout the intranial region, and there are fewer

obvious patterns of localized clusters of high F-stat. In B,
relatively high F-stat clusters appear in the IFJ, but are barely
observable in the visual cortex; in C, the opposite is the case,
with the ventricles also showing surprisingly high F-stat. Such
variations from the “standard” pattern are difficult to interpret,
but are worrisome for including these subjects in group analysis.
Further exploration was made using InstaCorr in the GUI
(described below).

One of the additional vstat images automatically created
was for the “TASK” stimulus, which is shown in Figure 13.
This shows the coefficient (effect estimate) for the stimulus as
the overlay, which here has units of BOLD% signal change,
scaled to a 2 s stimulus, due to the inclusion of the scaling
block and typical mean stimulus durations. Observing the
coefficient (instead of just overlaying the statistic itself) is
useful for interpreting the model results and judging their
reasonableness. The stimulus (and contrast) plots also contain
useful sign information, which is lacking in the F-stat images.
Here, the locations of large effect and statistical significance
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FIGURE 12

APQUAL examples for the task-based FMRI group from “vstat” QC block: Visualizations of statistical and modeling information after regression
(here, the full F-stat from the regression modeling, highlighting regions of high model fitting). (A) High F-stat values are localized in GM (esp.
visual cortex, and perhaps some in expected regions, if background knowledge is present), and this spatial pattern is fairly typical across the
group (green arrows). (B) Compared to (A) the F-stat values are much lower (poorer fits) and less localized in GM, including the visual cortex,
though the frontal regions in slice Z=27S are observable; scattered noise has relatively high amplitude. (C) Compared to (A) F-stat values are
much lower (poor fits) and less localized in GM, though part of the visual cortex is observed clearly; the ventricles have relatively high F-stat.
(D) This dataset has similarly reasonable properties as dataset A, even though 57% of its time points were censored due to motion (note the
second value in the degree of freedom count, df = 92, is much lower than the other volumes); this subject was still excluded, because of the
automatic quantitative (APQUANT) criteria.
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typically mirror the high F-stat locations for panels A–D. Note
that in panels B, the IFJ regions do not appear to have very
strong “Task” stimulus response (relatively low magnitudes
and statistics values). In panel C, the ventricles (which had
high F-stat values in the same panel of Figure 13) show
negative coefficients for this stimulus. While these images
provide further useful details, again we note that the GUI
was used to provide further information for sub-005 and sub-
016.

vstat, mot, regr
Figure 14 shows several QC block results for sub-024. The

vstat image in panel A shows a noisy statistical pattern and
overall low peak F-stat values. Looking at other QC blocks
or data aspects may provide useful information about why
this dataset looks different, such as: Subject motion, lack of
stimulus response, mismatched timing files, acquisition artifact
or something else. This insight may be particularly important
if checking datasets as they are acquired, to determine if study
design or setup may be leading to a higher chance of having poor
quality datasets.

For this figure’s sub-024, 36% of the time points were
censored during processing (as well as >34% of each stimulus
class’s response time), and the Enorm and outlier fraction plots
(with threshold values and censoring bands) are shown in panel
B. This high censor fraction led to this being categorized to be
excluded in the APQUANT section, both because of the large
information loss during stimulus events and due to the likely
presence of remaining motion effects in the non-censored time
points in practice; however, some subjects with high censor
fractions do have stimulus response maps that appear to have
reasonable quality (see panel D of Figures 12, 13), particularly
if the motion is not strongly linked to stimulus events. Panels C
and D show the ideal BOLD response curves for this subject, for
both the individual stimuli and their sum, respectively, which
also contain the censoring bands for reference. In this case,
one might observe a possible trend of censoring during or
immediately following stimulus events: It is possible that this
subject has stimulus correlated motion, so that regression out
motion regressors would also remove much of the stimulus-
specific features. If several subjects contained such a correlation,
then this would suggest the study design should be adjusted, or
further procedures taken to reduce motion (e.g., giving specific
instructions for the subjects, or having subjects practice the task
and then provide feedback if motion appears high). Further QC
investigations using an interactive GUI are described in the next
section.

GUI evaluation: InstaCorr

Following the APQUANT and APQUAL stages described
above, we further explored several of the datasets using the GUI,

again using the “run” InstaCorr script provided by afni_proc.py.
This can be useful generally to observe artifacts or systemic
spatiotemporal features in the data. In particular, the APQUAL
reports showed most subjects having strong task responses in
visual areas, while others did not, some even when motion was
low. This prompted a review using InstaCorr, which showed
multiple features. Figure 15 shows InstaCorr images from sub-
001 and sub-005 as respective examples of having strong task
responses and not. While sub-005 had a poor task response,
there were high correlations in the visual area (top row) and IJF
(second row), akin to those of sub-001. Were we collecting this
data locally, we would review the stimulus timing file creation, to
be sure there were no mistakes. But sub-005 also shows unusual
correlation and anti-correlation patterns between GM and deep
WM, as well as with the ventricles. This led to the “uncertain”
QC evaluation of sub-005.

STIM evaluation

All subjects had essentially the same event onset timing,
within 0.1 s, except for 2 subjects (sub-002, sub-026) for whom
all events started 2 s later. Onsets (ignoring stimulus duration)
were separated by times from 2.5 up to 18.5 s, with a mean
of 7.5 s and a standard deviation of 3.5. When response time
was applied for the duration, Control events had per-subject
duration means from 0.51 up to 1.57 s, with an overall range
of ≈0.0–2.43 s. Task events had per-subject means from 0.45
up to 2.65 s, with an overall range of≈0.0–4 s (with the latter
being the maximum possible). ISI times (onset separations
minus stimulus durations) ranged from 1.3 to 17.3 s, with
a mean of 6.4 s. With well separated events, there were no
concerning pairwise correlations between regressors. Though
we note that since there were only two conditions, they were
mildly predictive of each other, leading to typical pairwise
correlations around −0.4 for those regressors of interest. The
regression matrix condition numbers (computed as the ratio of
the largest to smallest eigenvalues) very modestly ranged from
41.6 to 325.0, and were that high only due to correlations among
the motion regressors.

Group summary notes

The EPI volumes for Group 0 tended to have a tight
FOV, particularly along the anterior-posterior brain axis. For
several subjects, the strength of ghosting was large enough to
be observed overlapping the frontal brain regions, which can
create artifacts. There was notable EPI distortion in the inferior
slices of several subjects, and the TSNR was generally low in the
subcortex, temporal lobe and orbitofrontal lobe. Additionally,
nearly every subject had the same timing onset; it is more
common in newer studies that subjects would have randomized
stimulus timing, though with similar statistical properties.
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FIGURE 13

APQUAL examples for the task-based FMRI group from “vstat” QC block: Visualizations of statistical and modeling information after regression
(here, the “TASK” stimulus coefficient is shown as the overlay colors, and its t-statistic values are used for thresholding). Each panel corresponds
to that of Figure 12, though a different aspect of the modeling is shown here: Namely, the task stimulus coefficient that, after scaling, now has
physical units of BOLD percent change, as well as the associated statistic (used for thresholding). Similar comments generally apply for each
subject to those of Figure 12, but note that: For sub-005 [panel (B)], the high F-stat regions in frontal regions in Z = 27S were not strongly
associated with this task, unlike in panels (A,D); and for sub-016 [panel (C)], the ventricle pattern noted in the previous figure are negatively
associated with the main task.
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FIGURE 14

Combining APQUAL blocks: vstat (see Figure 12), mot (for combined motion estimates and censoring), and regr block plots of stimulus
responses. The full F-stat map for sub-024 in panel (A) is noisy and shows relatively poor model fitting across the brain (cf Figures 12A, D). In
trying to understand more about this subject’s data, the motion estimate responses are shown in panel (B), where a large fraction of time points
have been censored (>36%; shown in the red bands). Furthermore, in viewing the locations of censoring with respect to the ideal stimulus
response curves for this subject [panels (C,D)], one sees that much of the motion appears to occur during many of the stimulus events. Thus, it
is possible that this subject exhibits stimulus-correlated motion, which is particularly difficult to remove with modeling.

Discussion

We have described a multi-stage process of QC for FMRI
datasets. The stages are layered and complementary to help

researchers understand their neuroimaging datasets, which
themselves are complex and require many levels of processing
that should be verified. We also introduced a standardized
ontology to organize the recording and reporting of the QC
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FIGURE 15

GUI examples of QC for task-based FMRI, using AFNI’s InstaCorr, to explore the spatiotemporal patterns of the EPI residuals with interactive
seed-based correlation. The crosshairs show the seed location for two different subjects: sub-001 (left col) and sub-005 (right col); the same
seed location is used, per row of images. The positive correlation responses are quite similar in both supra-threshold spatial coverage and
magnitude for seeds in the visual cortex and IFJ (top and second rows, respectively). However, large, unexpected anticorrelation patterns in GM
were observed for sub-005, leading to this subject being evaluated as “uncertain.”

procedure. These QC methods have grown and adapted over
time, and will surely continue to do so, particularly through
collaborations, encounters with more data, and neuroimaging
community interactions such as the one at the core of this
Research Topic project. It should be emphasized again that even
beyond “including” and “excluding” subjects from a study,
the larger–and perhaps more important—perspective of this
process is to become confident of the contents of the data being
analyzed. This principle applies to both public data that has
been downloaded (which may or may not have been curated,
or might have been curated with different analyses in mind)
as well as to locally acquired data. Scanner upgrades, manual
entry to scanner consoles, “automatic” console settings (that can
change due to subject weight, for example), and more can affect
the properties of acquired data in subtle but important ways.
The researcher always has the responsibility to be aware of the
dataset contents and their relative applicability for a given study.

Quality control, in the holistic sense emphasized throughout
this paper, should start at the earliest stages of a study.
Researchers should be “close to their data” from the very

beginning, to reduce chances of downstream problems.
Consider the following four steps:

1. Perform GTKYD, APQUANT and APQUAL checks, and
review the results systematically.

2. Compare GTKYD, APQUANT and APQUAL results with
previous studies.

3. (for task data) Review the duration and ISI statistics from
any stimulus timing files.

4. Use the GUI to check steps of the processing (in particular
running the automatically generated InstaCorr scripts) and
look for any peculiarities.

When acquiring the first few subjects in a new project, it
is important to perform a detailed review of the QC results
across all stages, performing Steps 1–4; the same applies when
starting with a shared data collection, examining a few subjects
in detail. Any problems or questions should be dealt with
immediately, to avoid data waste. After this in-depth review
of the first few subjects, Steps 1–3 can be performed for the
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remaining subjects, with GUI investigations performed if any
abnormalities are found.

The QC procedure of filtering subjects from further analysis
is a subtle one: A researcher must balance the goal of basing
results on reliable, non-artifactual data with the need to avoid
introducing a bias. To date, there are no universal set of criteria
for this process, and the heterogeneity of acquisition techniques,
subject populations, research questions and analysis methods
suggest this would be a challenging task. For any QC criterion, a
desired trait is that in practice results are not overly sensitive
to its thresholding value. For example, if a small change in
a quantitative threshold leads to a large change in subjects
excluded, one might try to find an alternate QC measure with
a better delineation. One expects that over time and with
more experience and feedback, QC measures will evolve to
improve FMRI analysis.

Both quantitative and qualitative criteria have unique
benefits; in many cases, they provide complementary checks and
verifications. Quantitative ones are easier to apply uniformly,
but in fact many quantities and their threshold values are
based on much qualitative “training” and experience with
datasets (and the many ways in which artifactual features
can arise). Qualitative criteria require particular attention to
be applied consistently, but, as evinced here, they provide a
necessary perspective on data that is otherwise missed due to
the inherently large data compression of derived quantities. If
possible, qualitative criteria should not be central to the current
analysis (to avoid bias), though that may not always entirely
be possible (in which case, one must rely on the consistency
of assumptions).

The primary QC criteria presented here relied on derived
quantities (in the GTKYD, APQUANT, and STIM stages) and
static images (in APQUAL) of the data. These are useful and
able to be generated in automatic and systematic ways during
processing (in the present work, via afni_proc.py). However,
in some cases such items may only flag potential data quality
issues, and a full understanding requires exploring the data
itself more deeply. EPI datasets are inherently 4-dimensional,
and occasionally too much information has been lost within
the 1-dimensional scalar quantities or 3D image montages
to understand an observed feature. Interactive exploration is
then necessary to avoid “false rejections” of usable data (which
is wasteful and may bias results) and “false inclusions” of
problematic data (which introduce non-physiological features
and again may bias or distort results). Here, we showed how GUI
interactions could be used to more fully explore the underlying
properties of the data, particularly with AFNI’s InstaCorr4.

In applying these QC principles and tools to the examination
of this project’s eight publicly available datasets, we found quite a
number of issues that ranged from incorrect header information

4 We note that the APQC HTML’s “vstat” block of images for resting
state is essentially a quick, systematized version of InstaCorr exploration.

(coordinate orientations, left-right flips) to ingrained data
issues (temporally correlated artifacts, significant distortion,
ghosting and dropout). In general, the exclusion criteria
applied here were relatively light; some features such as
inconsistent voxel size or acquisition parameters could be
cause for rejection in an actual research study. Similarly,
many datasets had distortion, dropout or other artifacts
that particularly affected local brain regions, but the extent
was judged as not severe enough for removal here. For a
particular study’s hypotheses, though, such localized issues may
render a subject’s data unusable. In the end, sizable fractions
of these groups contained datasets that were categorized
for exclusion, and another fraction with uncertain features
for additional examination. Two groups contained systemic
artifacts, likely rendering the data problematic for further
analyses. This points to the necessity of performing full QC,
and we hope that this Research Topic elevates QC’s role in the
neuroimaging field: Understanding the data is an important part
of processing it.

The data collections presented here provided an illustrative
subset of the issues that exist in FMRI data. Many other
problematic features can appear, such as major dropout
from bad coils, zipper-striped artifacts, signal saturation,
mechanical features in time series (e.g., from anesthesia
devices), and more. Furthermore, different acquisition methods
or processing choices will lead to different QC checks.
For surface-based analysis, one would want to visualize the
accuracy of the surface mesh estimation. For multi-echo
FMRI, one might visualize maps of estimated T2∗, as well
as any temporal components projected out of the time
series data. When combining data from several scanners,
sites or even studies, the heterogeneity of datasets might
prompt another layer of QC comparisons. It is important
to note that QC criteria will never be set in stone, but
will need to be adjusted based on the type of analysis,
the subjects, and scanner and acquisition properties, which
change over time.

The exact role of QC in determining final group outcomes
is not well known (at present, at least). Certainly, cross-study
accuracy, reproducibility and reliability should be improved
by reducing artifacts in data collections. “Big data” does not
preclude the need for reasonable QC—having a large fraction
of problematic/artifact-heavy subjects can still be a problem
whether the number of subjects is N = 50 or N = 5000. The
QC process does require time and effort, but it is always a
small fraction of the total effort that must be put into the study:
Grant writing, pilot studies, subject recruitment, scanning,
processing/reprocessing and (hopefully) publication. Choosing
to save a relatively miniscule amount of QC time within a project
can be quite costly, if the final results of a team’s work end up
being based on unreliable data. Furthermore, if detailed QC is
practiced at the early stages of data gathering, one would also
expect it to greatly reduce the overall time of QC, because subtle
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issues could be observed and addressed before the number of
subjects grows large.

There is often a desire to reduce all QC to a simplified,
automated process. However, all quantities and thresholds
used in QC procedures have been based on visualizing a
large number of datasets and understanding their contents
in depth. Even now, our current understanding of FMRI
data quality is incomplete. Moreover, this process will
always evolve: Study designs vary, and the technology
of data acquisition is always changing. Image and time
series visualization is the key to understanding data,
and this layer should not be omitted from processing
and quality evaluation. Ignoring visualization reduces
the strength of QC, and hinders the ability to improve
and develop new QC criteria—even quantitative ones.
The QC results from this current project reinforce the
importance of visualization: Researchers (particularly trainees
just starting in the field) need to understand the data
being processed, in order to avoid basing conclusions on
unreliable datasets.

Conclusion

This work addresses the question, “When should FMRI
quality control be done?” with a resounding answer: “Early
and often.” We present our approach to QC of FMRI data,
organized as a set of stages that are integrated into standard
processing with the AFNI software package. One aspect of
this is evaluating subject datasets to be either included or
excluded for a group level analysis. But the larger goal of the
presented procedure is for researchers to deeply understand
the contents of their data and to be sure of its appropriateness
for their analyses of interest. This procedure applies when
acquiring one’s own datasets, but remains vital when using
publicly available or shared datasets. In all cases, a researcher
has the responsibility to assess the properties of the data
collection, and our approach here has been designed to
facilitate this process with multiple layers of QC investigation.
It includes a mix of scriptable, automated, visual and user-
interactive checks that reinforce each other, many of which
are created as standard outputs of the afni_proc.py pipeline
generating tool. The stages begin with verifying the fundamental
properties of the datasets, and continue through the single
subject modeling. Using the real, public data provided in
this Research Topic project, we have shown how each QC
stage provided vital information about subjects for determining
the suitability to include in further analyses. The range of
issues present in this real data shows the continuing need
for such QC procedures. We hope that researchers, data
repository managers and particularly trainees in the field will
find these methods and provided scripts useful when working
with their own data.
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