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Abstract: Video salient object detection has attracted growing interest in recent years. However,
some existing video saliency models often suffer from the inappropriate utilization of spatial and
temporal cues and the insufficient aggregation of different level features, leading to remarkable
performance degradation. Therefore, we propose a quality-driven dual-branch feature integration
network majoring in the adaptive fusion of multi-modal cues and sufficient aggregation of multi-level
spatiotemporal features. Firstly, we employ the quality-driven multi-modal feature fusion (QMFF)
module to combine the spatial and temporal features. Particularly, the quality scores estimated
from each level’s spatial and temporal cues are not only used to weigh the two modal features but
also to adaptively integrate the coarse spatial and temporal saliency predictions into the guidance
map, which further enhances the two modal features. Secondly, we deploy the dual-branch-based
multi-level feature aggregation (DMFA) module to integrate multi-level spatiotemporal features,
where the two branches including the progressive decoder branch and the direct concatenation branch
sufficiently explore the cooperation of multi-level spatiotemporal features. In particular, in order to
provide an adaptive fusion for the outputs of the two branches, we design the dual-branch fusion
(DF) unit, where the channel weight of each output can be learned jointly from the two outputs. The
experiments conducted on four video datasets clearly demonstrate the effectiveness and superiority
of our model against the state-of-the-art video saliency models.

Keywords: video salient object detection; quality score; feature fusion; dual-branch

1. Introduction

Video salient object detection aims to highlight the most visually attractive objects
in videos, leading to the filtering of the irrelevant video contents. Thus, video salient
object detection has been widely applied to many related areas, such as abnormal event
detection [1], gait recognition [2], video image compression [3,4], car detection [5], to name
a few. Different from the image salient object detection [6–8], video salient object detection
should consider the spatial and temporal cues simultaneously. Particularly, the spatial
information of each frame is often polluted by the cluttered background or low contrast
between salient regions and background, and while the temporal information embedded
in different frames is easily disturbed by the fast motion and large displacement scene.
This makes the difficulty of video salient object detection greater than that of image salient
object detection.

In recent years, with the remarkable development of deep learning techniques, the
performance of video saliency models [9–21] is pushed forward significantly. Generally,
the existing video saliency models try to acquire the temporal dynamic information via
traditional convolutional neural networks [9,10], ConvLSTM [11,12], 3D convolutional
neural networks [13,14], and optical flow [19–21]. Among these efforts, we notice that
the optical flow-based models are usually organized in a two-stream structure, but their
performance may be largely hindered by the low-quality optical flow image. In particular,
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some two-stream models either treat the two modal features equally or rely heavily on
the temporal cues, which ignores the inherent differences between spatial and temporal
information. Interestingly, we find that some efforts [17,22,23] utilize quality scores to
evaluate the reliability of different modal features, which provides a good reference for the
future efforts. Moreover, in the decoding process of the existing video saliency detection
networks [9,21], they either adopt the U-shaped architecture or choose the fully convo-
lutional neural networks, which usually overlook the disparity of the effects of different
level deep features and give insufficient aggregation of multi-level deep features. To remit
this dilemma, some methods attempt to adopt a dual-branch structure [24–27], adjacent
layer integration [8], multi-resolution based fusion [28], and vision-transformer-based
fusion [29–31] to promote the fusion of multi-level deep features.

Motivated by the aforementioned analysis, we present a quality-driven dual-branch
feature integration network shown in Figure 1, where the two key components are the
quality-driven multi-modal feature fusion (QMFF) module and the dual-branch-based
multi-level feature aggregation (DMFA) module. Specifically, we first introduce quality
score estimation [17] into our QMFF module. However, different from [17], the quality
scores in the QMFF module are not only employed to re-calibrate spatial and temporal
features, but also treated as weights to fuse the coarse saliency predictions of the two
modal features into the guidance map. Particularly, the QMFF module further employs
the guidance map to steer the re-calibrated features to give more attention to salient
regions. After that, the QMFF module fuses the enhanced spatial and temporal features
into spatiotemporal features. In this way, the QMFF module effectively explores the
complementarity of the two modal features.

Moreover, we deploy the DMFA module to sufficiently aggregate the multi-level
spatiotemporal features. Similar to [8], the DMFA module first employs the inter-level
feature interaction (IFI) unit to elevate the spatiotemporal features by introducing the
adjacent level features. Then, inspired by [24], the DMFA module introduces the dual-
branch decoders consisting of the progressive decoder branch and the direct concatenation
branch to adequately utilize the multi-level features, which digs main body and local details
of salient objects simultaneously. Different from [24], we further design the dual-branch
fusion (DF) unit to integrate the two branches’ outputs, where channel weights are learned
to adaptively re-calibrate the two outputs. In this way, our model can effectively highlight
salient objects in videos.

Overall, the main contributions of this paper can be summarized as follows:

1. We propose a quality-driven dual-branch feature integration network, consisting of the
quality-driven multi-modal feature fusion (QMFF) module and the dual-branch-based
multi-level feature aggregation (DMFA) module, to appropriately and sufficiently
utilize multi-modal and multi-level features.

2. We design the QMFF module to sufficiently explore the complementarity of the spatial
and temporal features, where the quality scores are treated as weights to re-calibrate
the two modal features and generate the guidance map. Particularly, the guidance
map steers the two modal features to pay more attention to salient regions.

3. We deploy the DMFA module to adequately integrate the multi-level spatiotemporal
features, where the dual-branch fusion (DF) unit is designed to fuse the outputs of
two branches including the main body cues of progressive decoder branch and the
local details of direct concatenation branch.
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Figure 1. The architecture of the proposed video saliency model: the inputs are current frame
image I and its optical flow image M. Firstly, the encoder network is employed to generate the
appearance features {FA

i }
5
i=1 and the motion features {FM

i }
5
i=1. Then, the two modal features are

combined by the quality-driven multi-modal feature fusion (QMFF) module, yielding the multi-level
spatiotemporal deep features {FST

i }
5
i=1. Next, we deploy the inter-level feature interaction (IFI) unit

on each level spatiotemporal feature to obtain the enhanced spatiotemporal features {Fi}5
i=1. After

that, we deploy the dual-branched-based multi-level feature aggregation (DMFA) module to integrate
the spatiotemporal features, yielding deep decoding features {FD

i }
5
i=1 and concatenation features F∗C.

Successively, we use the dual-branch fusion (DF) unit to integrate the two features including F∗C and
FD

1 , generating the final high-quality saliency map S. Here, l3 is the supervision.

2. Related Works
2.1. Handcrafted-Feature Based Video Saliency Models

The traditional video saliency models are usually built based on the handcrafted fea-
tures. For example, in [32], the intra-frame boundary cues and the inter-frame motion cues
based gradient flow field and the graph-based energy optimization are combined to the spa-
tiotemporal saliency maps. After that, Wang et al. [33] employed spatial edge feature and
temporal motion boundary features to compute the geodesic distances which provide the
coarse saliency estimation. In [34], Zhou et al. utilized an ensembling regressor to map the
regions’ color, location, motion, and texture features to saliency scores. Fang et al. [35] fused
the spatial and temporal information by uncertainty weight. In [36], the dual-graph-based
structure is deployed to acquire saliency maps by utilizing the spatiotemporal background
priors, which can be computed by SIFT features. In [37], the spatiotemporal-constrained
optimization model regards saliency detection as graph propagation, which consists of the
color feature-based foreground potential, background potential, smoothness potential, and
the local constraint. In [38], the random walk with restart is used to integrate the spatial
and temporal features which contain motion distinctiveness, temporal consistency, abrupt
change, intensity, color, and compactness. Different from the existing graph-based models,
Li et al. [39] utilized the kernel regression-based hybrid fusion method to combine the spa-
tial and temporal saliency. Chen et al. [40] utilized the spatiotemporal low-rank coherency
to guarantee the temporal saliency consistence among frames. Moreover, in [41], the bi-
level Markov Random Field method is proposed to suitably embed the spatiotemporal
consistency into the semantic labels. In [42], the inter-frame similarity and the inter-frame
similarity matrices are computed to serve the temporal and spatial saliency propagation.
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Especially, in [43], the local estimation model, where a random forest regressor is trained
within a local temporal window, together with the spatiotemporal refinement step they are
used to elevate the saliency prediction. In [44], object-level saliency cues based proposal
ranking and voting strategy is deployed to filter non-salient regions and choose salient
regions. Similarly, in [45], the multi-cue integration framework is deployed to combine
various saliency cues and achieves temporal consistency.

Different from the existing handcrafted-feature-based video saliency models, we build
our video saliency model based on the deep learning technology (i.e., convolutional neural
networks), where the proposed quality-driven dual-branch feature integration network
gives a good representation for salient objects in videos.

2.2. Deep Learning-Based Video Saliency Models

In recent years, deep learning technology has also been applied in video salient
object detection. For example, in [9], Wang et al. deployed the dynamic saliency model
which incorporates the static saliency prediction to perform the spatiotemporal saliency
estimation. In [19], the temporal consistence is enhanced by utilizing optical flow-based
motion information and the appearance cues. In [10], the step-gained fully convolutional
network is proposed to fuse the time axis’ memory cues and the space axis’ motion cues.
In [46], the efficient multi-frame reasoning is performed by the graph cut, where the graph
is built based on the estimated background and instance embedding. In [20], Li et al.
proposed a two-stream video saliency model consisting of appearance branch and motion
branch, where the motion-guided attention module uses the motion saliency cues to elevate
the appearance sub-network. In [47], the symmetrical network is used to acquire and fuse
the multi-level deep appearance and motion features. In the two-stream architecture [21],
the appearance features are elevated by the temporal modulator which transfers each level
motion cue to the appearance branch. In [48], Li et al. deployed a novel fine-tune strategy to
retrain the pretrained image saliency model by using the newly sensed and coded temporal
cues. In [49], a lightweight temporal unit is employed to endow the spatial decoder with
effective temporal cues by using 3D convolutions and shuffle scheme. In [18], the dynamic
context-sensitive filtering network gives more concern on the dynamic evolutions and
the interaction of temporal and spatial cues. In [15], a set of constrained self-attention
operations are organized in a pyramid architecture, which is used to obtain the affinity-
based motion information. In [17], the confidence-guided adaptive gate module is designed
to evaluate the quality of spatial and temporal features. In [50], Xu et al. proposed a graph
convolutional neural network-based multi-stream architecture to conduct video salient
object detection.

Moreover, the weakly supervised learning strategy has also been deployed to video
salient object detection. In [51], the fused saliency map based pseudo-labels together
with the limited manually labeled data which were used to train the weakly supervised
spatiotemporal cascade video saliency model. In [52], the optical flow-based pseudo-labels
together with the parts of manual annotations are used to train the video saliency model for
precise contrast inference and coherence enhancement. Furthermore, the 3D convolutional
neural networks have also been applied to video salient object detection. For example,
in [53], the local and global context information is used to generate spatiotemporal deep
features, which are then mapped to saliency scores by the spatiotemporal conditional
random field. In [54], the spatiotemporal saliency model and the stereoscopic saliency
aware model are used to capture the spatiotemporal features and the depth and semantic
features, respectively. In [14], the 3D convolution-based X-shape structure is used to
acquire the motion information in successive video frames. In addition, there are some
models that attempt to use ConvLSTM to extract dynamic temporal cues. For example,
in [11], the deeper bidirectional ConvLSTM, where the forward and backward ConvLSTM
units are organized in a cascaded way, is proposed to capture the effective spatiotemporal
deep features. In [12], the saliency shift is incorporated into the modeling of the dynamic
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temporal evolution, where the shift attention is deployed to weigh the hidden state of
ConvLSTM.

Furthermore, we notice that there are some methods that attempt to use vision-
transformer-based fusion strategy [29–31] to aggregate different-modal and different-level
features. In [29], a triplet transformer network is designed to aggregate the RGB features
and depth features via the depth purification module. In [30], a transformer-based cross-
modality fusion network is deployed to conduct RGB-D and RGB-T salient object detection.
In [31], a vision-transformer-based cross-modal fusion framework is employed to con-
duct RGB-X semantic segmentation, where X refers to depth, thermal, polarization, and
event information.

Different from the existing deep learning-based video saliency models, our model
pays more attention to the appropriate fusion of two modal cues and to the sufficient
aggregation of different level features simultaneously, where we conduct the fusion of
spatial and temporal features and the aggregation of multi-level spatiotemporal features.
Thereby, we deploy two crucial components including the quality-driven multi-modal
feature fusion (QMFF) module and the dual-branch multi-level feature aggregation (DMFA)
module, which gives an appropriate presentation for salient objects in each frame and
constructs a complementarity structure to completely and precisely locate salient objects,
respectively.

3. The Proposed Method
3.1. Architecture Overview

Generally, the proposed quality-driven dual-branch feature integration network pre-
sented in Figure 1 is constructed as an encoder–decoder structure [55–57]. Specifically,
firstly, the current frame image I ∈ RH×W×3 and its optical flow image M ∈ RH×W×3

(generated by RAFT [58]) are sent to the encoder network containing an appearance sub-
network and a motion sub-network. Here, the two sub-networks built on the ResNet-50 [59]
share the same structure and parameters, where we delete the last average pooling layer,
the fully connected layers, and the softmax function. Therefore, there are five convolutional
blocks Coni (i = 1, . . . , 5). Moreover, in order to keep more spatial details of the deep
features, the stride of the last convolutional block is set to 1. In this way, the spatial size of
the deep features from the last two convolutional blocks are the same.

Furthermore, from the first to the fourth residual block, namely Convi (i = 1, . . . , 4),
we deploy an extra convolutional block containing a 3 × 3 convolutional layer, batch nor-
malization (BN) layer, and an ReLU activation function after each residual block to reduce
the channel number. Here, as shown in Figure 1, for each branch, the four convolutional
blocks are denoted as {Convs-64, Convs-64, Convs-128, Convs-256}, and correspondingly,
the channel number of the four 3 × 3 convolutional layers are set to 64, 64, 128, and 256,
respectively. For the last residual block (i.e., Conv5), we employ the folded atrous spatial
pyramid pooling [24] to provide richer context cues, where we denote the folded atrous
spatial pyramid pooling layer as “FA-512” and set the channel number to 512.

Therefore, we can obtain two modal features including appearance features
FA

i ∈ Rhi×wi×ci (i = 1, . . . , 5) and motion features FM
i ∈ Rhi×wi×ci (i = 1, . . . , 5) from the

appearance sub-network and the motion sub-network, respectively. Then, the two modal
features are combined by using the quality-driven multi-modal feature fusion (QMFF) mod-
ule, yielding the multi-level spatiotemporal features FST

i ∈ Rhi×wi×ci (i = 1, . . . , 5), where
the quality scores are introduced to promote the feature fusion. Next, after each QMFF mod-
ule, we deploy the dual-branched-based multi-level feature aggregation (DMFA) module.
Concretely, in the DMFA module, the inter-level feature interaction (IFI) unit is first utilized
to generate the enhanced spatiotemporal deep features Fi ∈ Rhi×wi×ci (i = 1, . . . , 5), where
the IFI unit incorporates the features from adjacent levels. After that, we pass the deep
features Fi ∈ Rhi×wi×ci (i = 1, . . . , 5) to the dual-branch decoders, where the progressive
decoder branch is used to generate deep features FD

i ∈ Rhi×wi×ci (i = 1, . . . , 5) and the
direct concatenation branch is employed to generate the deep features F∗C. Finally, we
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design the dual-branch fusion (DBF) unit to integrate the two features, including F∗C and
FD

1 , generating the final high-quality video saliency map S. Below, we will provide a
detailed introduction for our video saliency model.

3.2. Quality-Driven Multi-Modal Feature Fusion

The existing optical flow-based two-stream models [20,21,47] either treat the spatial
and temporal features equally where they fuse the two modal features via normal oper-
ations (e.g., summation, concatenation, or multiplication), or rely heavily on temporal
cues where they employ temporal features to elevate the spatial features. They ignore the
inherent differences between spatial and temporal features. Meanwhile, we notice that the
effort [17] introduces the quality scores to evaluate the confidence or reliability of spatial
and temporal features. According to the above analysis, we design the quality-driven multi-
modal feature fusion (QMFF) module shown in Figure 2. Different from [17], the quality
scores of our model are not only used to re-calibrate spatial and temporal features, but also
employed to generate the guidance map which further enhances the two modal features.

seg pred score
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Figure 2. Detail structure of the quality-driven multi-modal feature fusion (QMFF) module. Here,
PA

i and PM
i refer to the coarse saliency predictions, QA

i and QM
i denote the quality scores, and Pi

is the guidance map. Moreover, FA
i and FM

i are the ith level deep features, FAq
i and FMq

i refer to the
weighted features, FAr

i and FMr
i are the refined features, and FST

i is the spatiotemporal deep feature.

Firstly, at each level of our network, our video saliency model directly adopts the
confidence-guided adaptive gate (CAG) module [17] to estimate the quality scores of spatial
features and temporal features. Thus, for the ith level’s deep features, including FA

i and
FM

i , we can obtain the quality scores QA
i and QM

i , respectively. Meanwhile, by deploying
convolutional layers and a sigmoid activation function on FA

i and FM
i , we can obtain coarse

saliency predictions including PA
i and PM

i , respectively.
Then, the quality scores and coarse saliency predictions are used to generate the

guidance map. Concretely, for the ith level encoder network, the coarse saliency predictions
PA

i and PM
i are first weighted by the quality scores QA

i and QM
i , respectively, and then

combined to generate the guidance map Pi, namely

Pi = QA
i · PA

i + QM
i · P

M
i , (1)

where “·” means scalar multiplication.
Meanwhile, we use the quality scores QA

i and QM
i to weight the appearance feature

FA
i and motion features FM

i , respectively. This process can be written as FAq
i = QA

i · FA
i

FMq
i = QM

i · FM
i

, (2)

where FAq
i and FMq

i refer to the weighted features.
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Next, we split the weighted features FAq
i and FMq

i into several groups along the
channel-wise dimension, and periodically interpolate the guidance map Pi among the split
features. Successively, we use convolutional layers to acquire the refined features FAr

i and
FMr

i , namely  FAr
i = Convs(split(FAq

i , Pi))

FMr
i = Convs(split(FMq

i , Pi))
, (3)

where “Convs” means three 3× 3 convolutional layers, and “split” is the split operation [60].
Here, for the five level features, the split groups are set to 4, 4, 8, 16, and 32, respectively.

Finally, a concatenation operation (“Cat”) and a 1 × 1 convolutional layer (“Convs f ”)
are deployed to fuse two features, yielding the spatiotemporal deep feature FST

i . The whole
process can be written as

FST
i = Convs f (Cat(FAr

i , FMr
i )). (4)

By deploying the quality-driven multi-modal feature fusion (QMFF) module at each
level of the encoder network, we can obtain five levels of spatiotemporal deep features
{FST

i }
5
i=1.

3.3. Dual-Branched-Based Multi-Level Feature Aggregation

In this section, in order to provide a sufficient aggregation of multi-level spatiotempo-
ral features, we deploy the dual-branched-based multi-level feature aggregation (DMFA)
module which contains three steps, including inter-level feature interaction (IFI), dual-
branch decoding, and dual-branch fusion (DF). Below, we will provide a detailed descrip-
tion for each part of the DMFA module.

(1) Inter-level Feature Interaction (IFI). The existing encoder–decoder architecture-
based networks [61,62] often highlight the main body of salient objects by transferring
the encoder features to the decoder layer. However, the low-level spatial details would
be disturbed by the continuous accumulation of high-level deep features. Therefore,
as shown in Figure 1, we first follow the effort of [8] to deploy the inter-level feature
interaction (IFI) unit after each QMFF module, where the IFI unit attempts to fuse the
spatiotemporal features from adjacent levels. This promotes the information flow among
adjacent level features.

Concretely, we take the ith level for example. We first upsample the higher-level
spatiotemporal feature FST

i+1 and downsample the lower-level spatiotemporal feature FST
i−1

to the same size as the ith level spatiotemporal feature FST
i . Then, we concatenate the

three-level features along the channel dimension. Lastly, we employ two successive convo-
lutional blocks (Convs) to generate the enhanced spatiotemporal feature Fi, of which each
convolutional block contains a 3 × 3 convolutional layer, a batch normalization layer (BN),
and an ReLU activation function. The whole process can be formulated as

Fi =



Convs(Cat(FST
i , FST

i , u(FST
i+1))) i = 1

Convs(Cat(d(FST
i−1), FST

i , u(FST
i+1))) i = 2, 3

Convs(Cat(d(FST
i−1), FST

i , FST
i+1)) i = 4

Convs(Cat(FST
i−1, FST

i , FST
i )) i = 5

, (5)

where u refers to the upsampling operation, d denotes the downsampling operation, and
Cat means concatenation layer. Here, the convolutional blocks’ channel number is equal to
the channel number of the ith level feature FST

i .
(2) Dual-branch Decoding. In order to further promote the information exchange and

the preserve the spatial details of the salient objects, and inspired by the effort of [24], we
also add a parallel decoder branch (i.e., direct concatenation branch) as the supplement to
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the progressive decoder branch shown in Figure 1, where the direct concatenation branch
tries to combine all features from IFI units.

Here, we take the ith level as an example. To be specific, for the traditional progressive
decoder branch, we first upsample the higher-level deep feature FD

i+1 to the same size as the
enhanced spatiotemporal feature Fi. Then, the two features are combined by element-wise
summarization and convolutional layers. The whole process can be written as follows:

FD
i =


fd(Fi ⊕ u(FD

i+1)) i = 1, 2, 3

fd(Fi ⊕ FD
i+1) i = 4

fd(Fi) i = 5

, (6)

where FD
i denotes the ith level deep decoding feature, and⊕ is the element wise summation

operation. fd(·) refers to two convolutional blocks, where each block contains a 3 × 3
convolutional layer, a BN layer, and a ReLU activation function. In this way, we can obtain
the output of the progressive decoder branch, namely FD

1 .
Meanwhile, for the direct concatenation branch shown in Figure 1, we first upsample

the enhanced spatiotemporal feature Fi(i = 1, 2, 3, 4, 5) to the same spatial size as FD
1 . Then,

we combine them by using a concatenation layer and convolutional layers, namely

F∗C = fc(Cat(FD
1 , u(F1), u(F2), u(F3), u(F4), u(F5))), (7)

where F∗C is the fused feature. fc(·) refers to three convolutional blocks, where each block
contains a 3 × 3 convolutional layer, a BN layer, and a ReLU activation function, and the
channel number of the three convolutional layers is set to 256, 256, and 32, respectively.

(3) Dual-branch Fusion (DF). In order to aggregate the outputs of two branches,
namely F∗C and FD

1 , we design the dual-branch fusion (DF) unit presented in Figure 3. This
is considerably different from [24] which simply integrates the saliency predictions of the
two outputs via a residual connection.

Convs1
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Figure 3. Illustration of the dual-branch fusion (DF) unit. Here, FD
1 is the output of the progressive

decoder branch, F∗C is the fused feature, FC(·) is the fully connected layer, and w is the feature weight,
which can be divided into two sub-feature weights wC and wD. S is the final saliency map, splitw(·)
is the split operation, and li (i = 1, 2, 3) is the supervision.

Specifically, we first deploy the average pooling layer on each channel of the two features,
yielding two vectors which are combined by a concatenation layer and a fully connected layer.
This process can be written as follows:

w = FC(Cat(Avg(F∗C), Avg(FD
1 ))), (8)

where w is the feature weight corresponding to the concatenation of the two features, FC(·)
is the fully connected layer (i.e., 1 × 1 convolutional layer and channel number is 64), and
Avg(.) denotes the average pooling layer (i.e., the G in the circle shown in Figure 3).
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Then, we split the feature weight w into two sub-feature weights wC and wD, which
are used to weigh F∗C and FD

1 , respectively. Next, we conduct saliency prediction on
each weighted feature via a convolutional block including a 1 × 1 convolutional layer
(channel = 1), an upsampling layer, and a sigmoid activation function. Here, as presented
in Figure 3, there are two convolutional blocks, namely Convsc and Convsd. Finally, the
two coarse predictions are further combined to the final saliency map S via a convolutional
block Convs f including a 1 × 1 convolutional layer (channel = 1) and a sigmoid activation
function. This process is formulated as follows:{

[wC, wD] = splitw(w)

S = f f (cat( fc(wC ⊗ F∗C), fd(wD ⊗ FD
1 )))

, (9)

where splitw(·) is the split operation, f f (·) is the Convs f , ⊗ means the dot product, fc(·)
and fd(·) refer to the two convolutional blocks Convsc and Convsd, respectively. Moreover,
in Figure 4, we present the visualizations for dual-branch fusion. We can see that by
deploying the DF unit, the saliency predictions (i.e., l1, l2, and l3) pay more attention to
salient regions, as shown in Figure 4c,e,g.

(a)          (b)           (c)          (d)          (e)           (f)           (g)

Figure 4. Visualization of the dual-branch fusion (DF) unit. (a): Input frame, (b): Ground truth,
(c): Saliency predictions of l3, (d): Feature map of FD

1 , (e): Saliency predictions of l1, (f): Feature map
of F∗C, (g): Saliency predictions of l2.

3.4. Loss Functions

Following the effort [17], we adopt BCE loss [63] and l1 loss to supervise the generation
of predicted saliency maps and quality scores. Thus, the first part of loss function LQ can
be formulated as

LQ =
5

∑
i=1

[la,i
1 + la,i

bce + lm,i
1 + lm,i

bce ], (10)

where la,i
1 and la,i

bce are the l1 loss and BCE loss, respectively, and are used to supervise the
generation of coarse saliency predictions and quality score in the ith level of the appearance
branch. Similarly, lm,i

1 and la,i
bce are adopted by the ith level of the motion branch.

Meanwhile, we introduce the hybrid loss [64] including the SSIM loss [65], BCE
loss [63], and IoU loss [66] to supervise the saliency prediction in the dual-branch fusion
(DF) unit shown in Figure 3, namely

LS = l1 + l2 + l3, (11)

where LS is the second part of loss function, and li(i = 1, 2, 3) employs the hybrid loss.
Thus, the total loss L of our network can be written as

L = LQ + LS. (12)
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4. Experimental Results
4.1. Datasets, Implementation Details, and Evaluation Metrics

Here, we evaluate the performance of video saliency models on four benchmark
datasets including DAVIS [67], DAVSOD [12], ViSal [32], and SegV2 [68].

We implement our network with PyTorch on a PC, which is equipped with an Intel(R)
Xeon(R) E5-2690 2.90 GHz CPU, 32 GB RAM, and an NVIDIA Titan Xp GPU. Our model
uses the Adam algorithm [69] to optimize the network, where the initial learning rate, batch
size, and maximum epoch number are set to 10−5, 4, and 100, respectively. To train our
model, we first use the training set of DUTS [70] to train the encoder network including the
appearance sub-network and motion sub-network. After that, we adopt the same training
set as [17,49,71], namely 30 videos in DAVIS [67] and 90 videos in DAVSOD [12], to train the
entire network, where the training time is about 45.5 h. Moreover, we augment the training
set by random horizontal flipping and random rotation (0∼180°). Meanwhile, we resize
each input image including each frame and its optical flow image to 384× 384. Moreover,
the inference speed (without I/O time), network parameters, and FLOPs of our model are
15 FPS, 145.32 M, and 469.21 G, respectively.

In order to evaluate the model’s performance, we employ the following widely used
metrics including precision–recall (PR) curve, F-measure curve, max F-measure (maxF,
β2 = 0.3) [72], S-measure (S, α = 0.5) [73], and mean absolute error (MAE).

4.2. Comparison with the State-of-the-Art Methods

We compared our model with 16 state-of-the-art video saliency models on DAVIS,
DAVSOD, ViSal, and SegV2 datasets. These video saliency models contain SGSP [42],
STBP [36], SFLR [40], SCNN [51], SCOM [37], FGRNE [19], MBNM [46], PDB [11], SSAV [12],
MGA [20], PCSA [15], MAGCN [50], STFA [49], GTNet [21], DCFNet [18], and CAG-
DDE [17]. Here, the authors do not provide the saliency maps of MAGCN on the DAVSOD
and SegV2 datasets, and also do not provide the saliency maps of SCNN on the SegV2
dataset. Therefore, in the quantitative comparison between our model and the state-of-
the-art models, we do not show the two models’ results on the DAVSOD and SegV2
datasets.

4.2.1. Quantitative Comparison

We first present the quantitative comparison results including PR curves and
F-measure curves in Figure 5. It can be found that our model achieves better perfor-
mance than other models on the DAVIS and DAVSOD datasets in terms of PR curves and
F-measure curves. On the ViSal dataset, our model achieves a comparable performance
when compared with some top-level models such as STFA, MGA, and DCFNet. On the
SegV2 dataset, our model performs slightly lower than STFA, and presents a compara-
ble performance when compared with some top-level models such as MGA, DCFNet,
and CAG-DDE.

Moreover, we provide MAE, maxF, and S values in Table 1. Compared with the
state-of-the-art models, our model still performs best on the DAVIS and DAVSOD datasets.
Particularly, compared with the second-best model CAG-DDE on the most challenging
dataset DAVSOD, our model improves the performance by 5.06% and 1.31% in terms of
maxF and S, respectively, and reduces the MAE by 4.17%. Meanwhile, compared with the
top-level models including STFA and DCFNet, our model wins the second place on the
ViSal dataset, and achieves the third-best performance on the SegV2 dataset, where the
difference is little among the performance of STFA, DCFNet, and our model.

Here, we should note that though our model and DCFNet employ the same image
dataset DUTS [70] to perform the pre-train task, DCFNet is fine-tuned on three video
datasets including DAVIS, DAVSOD, and VOS, which endows DCFNet with better gen-
eralization ability on the ViSal and SegV2 datasets. Moreover, compared with STFA, we
all use DAVIS and DAVSOD datasets to fine-tune the models, but STFA is pre-trained on
richer and more diverse image datasets including DUTOMRON [74], HKU-IS [75], and
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MSRA10K [76], which elevates the generalization ability of the STFA on the ViSal and
SegV2 datasets. Generally speaking, according to Figure 5 and Table 1, we can clearly
observe the superiority and effectiveness of our model.
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Figure 5. (Better viewed in color) Quantitative comparison results of different video saliency models:
presents (a) PR curves and (b) F-measure curves on DAVIS dataset, presents (c) PR curves and
(d) F-measure curves on DAVSOD dataset, presents (e) PR curves and (f) F-measure curves on ViSal
dataset, presents (g) PR curves and (h) F-measure curves on SegV2 dataset.
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Table 1. Quantitative comparison results of S, maxF, and MAE on the DAVIS, DAVSOD, ViSal, and
SegV2 datasets. Here, “↑” (“↓”) means that the larger (smaller) the better. The top three results in
each column are marked in red, green, and blue, respectively.

DAVIS DAVSOD ViSal SegV2

S ↑ maxF ↑ MAE ↓ S ↑ maxF ↑ MAE ↓ S ↑ maxF ↑ MAE ↓ S ↑ maxF ↑ MAE ↓
SGSP [42] 0.693 0.664 0.134 0.577 0.426 0.207 0.616 0.488 0.195 0.682 0.674 0.124
STBP [36] 0.651 0.485 0.105 0.559 0.401 0.166 0.629 0.622 0.163 0.736 0.643 0.061
SFLR [40] 0.771 0.698 0.060 0.624 0.478 0.143 0.814 0.779 0.062 0.804 0.746 0.036
SCNN [51] 0.761 0.679 0.077 0.672 0.529 0.129 0.847 0.831 0.071 - - -
SCOM [37] 0.794 0.712 0.058 0.603 0.473 0.219 0.759 0.829 0.128 0.815 0.764 0.030
FGRNE [19] 0.838 0.783 0.043 0.701 0.589 0.095 0.861 0.848 0.045 0.770 0.694 0.035
MBNM [46] 0.887 0.862 0.031 0.646 0.506 0.109 0.898 0.883 0.020 0.809 0.716 0.026
PDB [11] 0.882 0.855 0.028 0.698 0.572 0.116 0.907 0.888 0.032 0.864 0.808 0.024
SSAV [12] 0.893 0.861 0.028 0.755 0.659 0.084 0.942 0.938 0.021 0.849 0.797 0.023
MGA [20] 0.910 0.889 0.023 0.748 0.650 0.082 0.941 0.940 0.016 0.881 0.829 0.026
PCSA [15] 0.902 0.880 0.022 0.741 0.655 0.086 0.946 0.941 0.017 0.866 0.811 0.024
MAGCN [50] 0.878 0.836 0.034 - - - 0.916 0.920 0.025 - - -
STFA [49] 0.892 0.865 0.023 0.744 0.650 0.086 0.952 0.952 0.013 0.891 0.860 0.017
GTNet [21] 0.916 0.898 0.022 0.757 0.692 0.074 0.948 0.947 0.018 0.756 0.684 0.036
DCFNet [18] 0.914 0.900 0.016 0.741 0.660 0.074 0.952 0.953 0.010 0.883 0.839 0.015
CAG-DDE [17] 0.906 0.898 0.018 0.763 0.671 0.072 0.924 0.925 0.017 0.865 0.827 0.026

OUR 0.918 0.912 0.018 0.773 0.705 0.069 0.946 0.952 0.012 0.883 0.834 0.015

4.2.2. Qualitative Comparison

The qualitative comparison results are presented in Figures 6 and 7, where we se-
lect three videos from two large-scale benchmark datasets including DAVIS [67] and
DAVSOD [12], respectively. Specifically, we make an intuitive comparison between our
model and the state-of-the-art models including CAG-DDE [17], DCFNet [18], STFA [49],
GTNet [21], MAGCN [50], PCSA [15], MGA [20], SSAV [12], PDB [11], MBNM [46],
FGRNE [19], SCOM [37], SCNN [51], SFLR [40], STBP [36], and SGSP [42] in Figure 6.
It can be found that our model shown in Figure 6c can precisely locate and segment salient
objects in the complex scenes such as the cluttered background (the first row), motion
occlusion (the second), and scale variation (the third row). By contrast, the existing video
saliency models shown in Figure 6d–s are easily affected by the complex scenes, and they
often falsely highlight background regions, pop-out incomplete salient objects, and present
coarse spatial details.

(a)      (b)  (c)     (d)    (e)      (f) (g)  (h)   (i)    (j)   (k)    (l)   (m)  (n) (o)  (p)     (q)  (r)        (s)    

Figure 6. Qualitative comparison results of different video saliency models on several challenging
videos of DAVIS dataset. (a): Video frames, (b): GT, (c): OUR, (d): CAG-DDE, (e): DCFNet,
(f): STFA, (g): GTNet, (h): MAGCN, (i): PCSA, (j): MGA, (k): SSAV, (l): PDB, (m): MBNM,
(n): FGRNE, (o): SCOM, (p): SCNN, (q): SFLR, (r): STBP, and (s): SGSP.
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(a)         (b)           (c)     (d)     (e)           (f) (g)     (h)       (i)    (j)    (k)     (l)   (m) (n)      (o)

Figure 7. Qualitative comparison results of different video saliency models on several challenging
videos of DAVSOD dataset. (a): Video frames, (b): GT, (c): OUR, (d): CAG-DDE, (e): DCFNet,
(f): STFA, (g): GTNet, (h): PCSA, (i): MGA, (j): SSAV, (k): MBNM, (l): FGRNE, (m): SCOM,
(n): SCNN, and (o): STBP.

Similarly, in Figure 7, the qualitative comparison is performed between our model and
the state-of-the-art models including CAG-DDE [17], DCFNet [18], STFA [49], GTNet [21],
MAGCN [50], PCSA [15], MGA [20], SSAV [12], MBNM [46], FGRNE [19], SCOM [37],
SCNN [51], and STBP [36]. We can find that our model presented in Figure 7c can accurately
discriminate between the human and the horse (the firsts row) and the woman in the kitchen
(the third row) from the cluttered background, and effectively pop-out the car from the
scene with multiple moving objects (the second row), while other models presented in
Figure 7d–o usually falsely highlight background or provide incomplete detection results.

The reason behind this can be attributed to two points. Firstly, the QMFF module
of our model fully explores the complementarity of spatial and temporal features, which
gives a solid foundation for the multi-modal feature fusion. Secondly, the DMFA module
of our model sufficiently aggregates the multi-level spatiotemporal features, which gives
more concerns on the main part and local details of salient regions in videos simultaneously.
In this way, our model can completely and precisely highlight salient objects in videos.

4.3. Ablation Studies

In order to validate the effectiveness of each component of our model including the
quality-driven multi-modal feature fusion (QMFF) module and the dual-branch-based
multi-level feature aggregation (DMFA) module, we perform the ablation studies on
DAVIS [67] and DAVSOD [12] datasets, where the quantitative comparison results are
presented in Table 2 and the qualitative comparison results are provided in Figures 8–10.

Validation of the QMFF Module. Specifically, firstly, to validate the effectiveness of
the quality-driven multi-modal feature fusion (QMFF) module, we present four variants.
The first one is “w/o QMFF-qf”, which means our model only adopts a concatenation layer
and a 3× 3 convolutional layer to combine each level’s spatial features and motion features.
The second one is “w/o QMFF-f”, which denotes the fact that our model only employs
the quality score to re-calibrate (weight) the spatial and temporal features and combines
the weighted feature by the concatenation layer and 3 × 3 convolutional layer. The third
one is “w/o QMFF-qp”, which denotes that the generation of a guidance map in QMFF
module does not employ the quality score. The last one, “w/o QMFF-q”, means that the
quality-driven multi-modal feature fusion (QMFF) module does not use the quality score.
According to Table 2, we can find that our model performs better than “w/o QMFF-qf”,
“w/o QMFF-f”, “w/o QMFF-qp”, and “w/o QMFF-q”. Here, we should note that when
compared with the two variants, including “w/o QMFF-qp” and “w/o QMFF-q”, our
model achieves a comparable performance in terms of S and MAE on the DAVIS dataset,
while our model outperforms the two variants in terms of maxF with a large margin.
Moreover, from the qualitative results provided in Figure 8, it can be seen that our model
shown in Figure 8g gives an accurate and complete detection for salient objects, while the



Electronics 2023, 12, 680 14 of 20

four variants fail to highlight the people in the ballroom shown in Figure 8c–f. Particularly,
the performance of the variant “w/o QMFF-f” shown in Figure 8d is greatly degraded.
Thus, according to the aforementioned descriptions, we can firmly prove the effectiveness
and rationality of the quality-driven multi-modal feature fusion (QMFF) module.

(a)            (b)       (c)           (d)   (e)                      (f)                      (g)

Figure 8. Qualitative comparisons of four variants of our model. (a): Input frames, (b): GT, (c): w/o
QMFF-qf, (d): w/o QMFF-f, (e): w/o QMFF-qp, (f): QMFF-q, and (g): OUR.

(a)                        (b)              (c)                            (d)

Figure 9. Qualitative comparisons of the variant of our model. (a): Input frames, (b): GT, (c): w/o IFI,
and (d): OUR.

Table 2. Quantitative comparison results of different variants of our model in terms of S, maxF, and
MAE on the DAVIS and DAVSOD datasets.

DAVIS DAVSOD

S ↑ maxF ↑ MAE ↓ S ↑ maxF ↑ MAE ↓
w/o QMFF-qf 0.914 0.897 0.019 0.748 0.661 0.077
w/o QMFF-f 0.917 0.907 0.017 0.763 0.690 0.071
w/o QMFF-qp 0.918 0.907 0.017 0.764 0.689 0.073
w/o QMFF-q 0.917 0.904 0.018 0.736 0.645 0.080

w/o IFI 0.915 0.902 0.018 0.760 0.691 0.071

w/o db1 0.918 0.911 0.017 0.753 0.685 0.072
w/o db2 0.917 0.905 0.020 0.764 0.680 0.071
w/o DF 0.914 0.904 0.017 0.751 0.676 0.074
w BiFPN 0.897 0.882 0.027 0.759 0.680 0.079

w lw 0.902 0.899 0.020 0.755 0.677 0.078

OUR 0.918 0.912 0.018 0.773 0.705 0.069

Validation of the QMFA module. Then, in order to demonstrate the effectiveness of
the inter-level feature interaction (IFI) unit, we devise a variant “w/o IFI”, i.e., our model
without IFI units. From Table 2, we can find that our model outperforms “w/o IFI” on both
datasets. Meanwhile, through the qualitative presentation shown in Figure 9, it can be seen
that “w/o IFI” falsely highlights some background regions, while under the employment
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of IFI units, our model gives accurate detection results. This can prove the rationality of the
utilization of the IFI units in our model.

Next, in order to prove the effectiveness of the dual-branch-based multi-level feature
aggregation (QMFA) module, we design three variants, namely our model without the
progressive decoder branch (“w/o db1”), our model without the parallel decoder branch
(“w/o db2”), and our model without the dual-branch fusion (DF) unit (“w/o DF”). After
removing one branch, the output of each branch is processed by a 1 × 1 convolutional
layer (channel = 1) and a sigmoid activation function, yielding the final saliency map. For
“w/o DF”, this means that our model employs a concatenation layer, a 1 × 1 convolutional
layer, and a sigmoid activation function to replace the DF unit. Moreover, we also employ
the bi-directional feature pyramid structure [77] to replace the QMFA module, namely
“w BiFPN”. According to Table 2, we can find that our model performs better than “w/o
db2”, “w/o DF”, and “w BiFPN” on both datasets. When compared with “w/o db1”, our
model exhibits a superior performance on the DAVSOD dataset, and achieves a comparable
performance on the DAVIS dataset. Meanwhile, in the qualitative comparison results
shown in Figure 10, it can be seen that “w/o db1”, “w BiFPN”, and “w/o DF” highlight the
background regions mistakenly, and that “w/o db2” presents incomplete detection results.
By contrast, the results of our model shown in Figure 10g are the closest one to the ground
truth. Therefore, through the above quantitative and qualitative comparison results, we
can prove the effectiveness and rationality of the dual-branch-based multi-level feature
aggregation (DMFA) module.

Lastly, to evaluate the effect of the loss weights in Equation (12), we design a variant
“w lw”, which means that the loss function in Equation (12) adopt weights (i.e., 1×LQ +
2×LS). The results are presented in Table 2 and Figure 11. From the quantitative results
presented in Table 2, we can see that our model performs better than “w lw”. For the
qualitative results shown in Figure 11, “w lw” falsely highlights background regions.
Therefore, we can prove the effectiveness of the loss function in Equation (12) where the
weights of LQ and LS are all set to 1.

(a)           (b)             (c)           (d)            (e)            (f)           (g)
Figure 10. Qualitative comparisons of four variants of our model. (a): Input frames, (b): GT, (c): w/o
db1, (d): w/o db2, (e): w/o DF, (f): w BiFPN, and (g): OUR.

(a)                 (b)                 (c)                 (d)
Figure 11. Qualitative comparisons of a variant of our model. (a): Input frames, (b): GT, (c): w lw, and
(d): OUR.
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4.4. Failure Cases and Analysis

From the above descriptions, our proposed model can effectively pop-out salient
objects in videos. However, our method is still unable to present promising results when
addressing some complex scenes, as shown in Figure 12. For example, in the first example
(i.e., the first and second columns), a dog with black fur is standing by the river, where
goldfish are in the river and a dog with white fur all over it is also standing by the river. In
Figure 12c, our model falsely highlights the white dog’s head and a goldfish. It can be seen
that the inference results cannot accurately detect salient objects when the scene comprises
complex background. For the second example (i.e., the third and fourth columns), a man is
riding a horse. From Figure 12c, we can see that our model mistakenly highlights the fence
barrier. Similarly, in the third example (i.e., the fifth and sixth columns), a man is surfing.
Our model still falsely highlights the background regions. Moreover, we also find that the
annotation is worthy of discussion. For example, in the first example (i.e., the first column),
both dogs are attractive to human eyes. In the second example, our human eyes will be
also the first to notice the fence barrier. In the third example, the spindrift around the man
(i.e., the fifth column) and the people after the surfer (i.e., the sixth column) are also the
regions of interest for our human eyes. All the attractive regions should be annotated as
salient objects. In order to address the two issues above, on one hand, we should pay more
attention to the design of video saliency models, where the encoder should provide more
effective features for characterization of salient objects. On the other hand, we will attempt
to find and correct the ambiguity-labeling samples.

(a)

(b)

(c)

Figure 12. Some failure examples of our model. (a): Input frames, (b): Ground truth, and (c): Saliency
maps generated by our model.

5. Conclusions

This paper proposes a quality-driven dual-branch feature integration network to detect
salient objects in videos, where the key components are the quality-driven multi-modal
feature fusion (QMFF) module and the dual-branch-based multi-level feature aggregation
(DMFA) module. Firstly, in the QMFF module, we fully explore the complementarity
of spatial and temporal features, and thereby we can provide an appropriate fusion of
multi-modal features. Particularly, the quality scores are introduced to re-calibrate the two
modal features and integrate the coarse saliency predictions into a guidance map which
further promotes the features to pay more attention to salient regions. Secondly, we deploy
an effective aggregation scheme, namely the DMFA module, to sufficiently fuse multi-level
spatiotemporal features. In the DMFA module, we design the dual-branch fusion (DF) unit
to effectively fuse the outputs of dual branch decoders including the progressive decoder
branch and the direction concatenation branch. Comprehensive experiments are performed
on four public video datasets, where the quantitative and qualitative comparison results
firmly prove the effectiveness of the proposed video saliency model.
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