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Abstract

The recent spectacular progress in nano-electronic technology has enabled the im-
plementation of very complex multi-processor systems on single chips (MPSoCs).
However in parallel, new highly-demanding complex embedded applications are
emerging, in fields like communication and networking, multimedia, medical in-
strumentation, monitoring and control, military, etc., which impose stringent and
continuously increasing functional and parametric demands. The high demands
of these applications cannot be satisfied by systems implemented on general pur-
pose processors (GPP). For these applications increasingly complex and highly
optimized application-specific MPSoCs are required to perform real-time compu-
tations to extremely tight schedules, when satisfying high demands regarding the
energy, area, cost and development efficiency. High-quality MPSoCs for these
highly-demanding applications can only be constructed through adequate usage
of efficient application-specific system architectures exploiting adequate concepts
of computation, storage and communication, as well as, usage of efficient design
methods and electronic design automation (EDA) tools for synthesizing the actual
high-quality hardware platforms implementing the architectures.

Some of the representative examples of these highly-demanding applications
include the based-band processing in wired/wireless communication (e.g. the
upcoming 4G wireless systems), different kinds of encoding/decoding in com-
munication, image processing and multimedia, 3D graphics, ultra-high-definition
television (UHDTV), and encryption applications, etc. These applications require
to perform complex computations with a very high throughput, while at the same
time demanding low energy and low cost. The decoders of the low density par-
ity check (LDPC) codes, adopted as an advance error-correcting scheme in the
newest wired/wireless communication standards, like IEEE 802.11n, 802.16e/m,
802.15.3c, 802.3an, etc., for applications as digital TV broadcasting, mm-wave
WPAN, etc., can serve as a representative example of such applications. These
standards, for instance the IEEE 802.15.3c, specify as high as 5∼6 Gbps through-
put for the upcoming wireless communication systems. For the realization of the
throughput as high as several Gbps, massively parallel multi-processor accelera-
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tors are indispensable.
These modern highly-demanding applications involve massive parallelism of

various kinds (e.g. task, data and functional, etc) and complex interrelationships
among the data and computing operations. Therefore, an adequate accelerator
design for such highly-demanding applications requires a careful exploration and
exploitation of various kinds of parallelism and the resolution of complex inter-
relationships between the data and computing operations. More precisely, the
accelerator design for such kind of applications has to involve adequately the
combined micro- and macro-architecture design for the processors, and the cor-
responding adequate memory and communication architectures design. Since the
processor’s micro-/macro-architecture and the memory and communication archi-
tectures are strongly interrelated and cannot be designed in separation, complex
mutual tradeoffs have to be resolved among the processor parallelism at the two
levels, and the corresponding memory and communication architectures, as well
as, among the performance, power and area. For the design of hardware acceler-
ators, high-level-synthesis (HLS) methods and tools are often used. However, the
HLS methods and tools only support the micro-architecture synthesis of a single
processing unit, while not taking into account the macro-architecture, memory
and communication synthesis and not accounting for the relationships and trade-
offs among these design aspects, which is necessary in the design of hardware
accelerators for highly-demanding applications.

To address the issues highlighted above and to resolve the mutual tradeoffs
effectively and efficiently, a novel quality-driven model-based hardware multi-
processor design methodology and the related design space exploration (DSE)
approach is proposed in this thesis that jointly consider the processor, memory
and communication architectures, and the possible mutual tradeoffs among them.

For the ultra-high throughput requirements that demand massively parallel
hardware multi-processor architectures, the communication and memory have
usually a dominating influence on all the most important design aspects such
as delay, area and power. The additional performance gains expected from an
increased parallelism will end up in diminished returns, when exploding the inter-
connect or memory complexity. Although some research results on the memory
and communication architectures can be found in the literature, these results are
for programmable on-chip multi-processor systems that utilize the time-shared
communication resources, such as shared buses or Network on Chip (NoC). Such
communication resources are however not adequate to deliver the data transfer
bandwidth required for the massively parallel multi-processor accelerators. There-
fore, in the research reported in this thesis, several promising generic scalable com-
munication and memory architectures are proposed that satisfy the required data
transfer bandwidth of the high-end multi-processor accelerators. The proposed
generic hierarchical partitioned communication and memory architectures ensure
the scalability when applied for massively parallel hardware multi-processor ac-
celerators.

The proposed design methodology makes it possible to perform an effective
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and efficient exploration and exploitation of the various tradeoffs between the
processing parallelism at the micro- and macro-architecture level and the corre-
sponding memory and communication architectures, as well as, among the perfor-
mance, power and area, to arrive at high-quality accelerator architectures. Several
novel scheduling, processing parallelism exploration, and the memory and com-
munication architecture exploration strategies are incorporated into the proposed
architecture design space exploration framework.

To analyze and evaluate the proposed design methodology and its related de-
sign space exploration framework, a series of extensive case studies are performed
through implementing and applying the methodology for industrial-strength ap-
plications of the LDPC decoding for the latest communication system standards.
These case studies involved extensive architecture synthesis experiments with the
LDPC decoder designs for IEEE 802.15.3c LDPC codes. In particular, the results
of the experiments clearly demonstrate that neither the fully-serial nor the fully-
parallel micro-architectures are adequate to satisfy the ultra-high performance
requirements. The extreme fully-serial and fully-parallel micro-architectures are
also not appropriate from the viewpoint of the area and power consumption. To
satisfy the ultra-high performance or ultra-low power requirements, the combined
micro-/macro-architecture exploration is necessary which explores and exploits
various partially-parallel architecture combinations.

The results of the experiments confirmed that without considering the pro-
cessor’s micro- and macro-architecture design, as well as, the communication
and memory architecture design in combination, it is very difficult to arrive at
an adequate high-quality accelerator. They confirmed that the proposed design
methodology adequately supports the design of complex multi-processor hardware
accelerators, while taking into account the numerous complex tradeoffs.

To our knowledge, despite a more than a decade of research on the hardware
accelerators for the highly-demanding applications, no similar holistic quality-
driven design approach has been proposed. In the proposed design method, all
the design components are taken jointly as a single design task and the mutual
tradeoffs among them, as well as, among different design objectives are consid-
ered. Finally, using the method, it is possible to implement various high-quality
complex multi-processor hardware accelerators for the highly-demanding appli-
cations (e.g. LDPC decoders of practical importance for the newest upcoming
wireless communication standards) very quickly.
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CHAPTER 1

Introduction

During the last decade, a big progress and remarkable innovations have been
made in various embedded system fields, like telecommunications, multimedia,
consumer electronics, medical instrumentation, avionics, navigation and trans-
portation, etc. Many new modern ways of information processing, communica-
tion and presentation have emerged. For example, the communications systems
and standards that were originally developed for voice services have evolved to
support extensive video, data and multi-media services with a high availability,
reliability, speed and quality-of-service (QoS), as shown in Figure 1.1. Similarly,
in the entertainment domain, the video processing/broadcasting systems of the
past have been replaced by the current High-Definition (HD) systems and are in
a transition-phase to the ultra-high-definition systems (UHDTV) with a rich set
of new and innovative services such as video-on-demand (VoD) and youtube, etc,
for example. The future wireless video local area network (WVLAN) can also
serve as a very good example of such an advanced application with a mix of sub-
stantial innovation in video and communication, as shown in Figure 1.2. In the
WVLAN all the video sources such as HD disc player, set-top boxes, audio/video
(A/V) receiver, etc, communicate with the coordinator (digital display system).
This communication involves exchange of huge video contents at extremely high
speed among the different video sources and the display system. Also, the differ-
ent video sources such as HD disc player, set-top boxes, etc, require to process
(encoding/decoding) huge amounts of video data at extremely high speeds. All
these innovations were possible due to the tremendous advancements in the nano-
electronic and information technologies during the last decade. However, what
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still needs improvements are the adequate design methods and electronic design
automation (EDA) tools to effectively and efficiently design such kinds of complex
and highly-demanding systems. This thesis addresses this need.

Figure 1.1: Example of innovation in communications systems

Figure 1.2: Example of wireless video LAN (WVLAN) for HD video applications

(image: https://www.wirelesshd.org/)

The rest of this chapter is organized as follows. Section 1.1 discusses the
highly-demanding applications. Section 1.2 briefly discusses the design, automa-
tion and implementation challenges in the design of hardware accelerators for the
highly-demanding modern applications as those briefly considered above. Sec-
tion 1.3 introduces the aim of the research reported in this thesis and lists the key
contributions of this research. Section 1.4 presents the overall thesis organization.
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1.1 Modern Highly-demanding Applications

The recent spectacular progress in nano-electronic technology has enabled the
implementation of very complex multi-processor systems on single chips (MP-
SoCs) for high-performance (embedded) applications. On the other hand, how-
ever, new highly-demanding complex embedded applications are emerging, in
fields like communication and networking, multimedia, medical instrumentation,
monitoring and control, military, etc., which impose stringent and continuously
increasing functional and parametric demands. The high demands of these appli-
cations cannot be satisfied by systems implemented on general purpose processors
(GPP). For these highly-demanding applications increasingly complex and highly
optimized application-specific MPSoCs are required. They have to perform real-
time computations to extremely tight schedules, when satisfying high demands
regarding the energy, area, cost and development efficiency, and often to be highly
flexible to support different product versions, quickly changing standards, adapt-
ability to changing operation conditions, design reuse and computational sharing,
development and fabrication effort re-use, etc. High-quality MPSoCs for these
highly-demanding applications can only be constructed through adequate usage
of efficient application-specific system architectures and circuit implementations
exploiting adequate concepts of computation, storage and communication, as well
as, usage of efficient design methods and electronic design automation (EDA) tools
for synthesizing the actual high-quality hardware platforms implementing the ar-
chitectures, and for efficient mapping of applications onto the hardware platforms
[1].

Some of the representative examples of these highly-demanding applications
include the based-band processing in wired/wireless communication (e.g. the
upcoming 4G wireless systems), different kinds of encoding/decoding in com-
munication, image processing and multimedia, 3D graphics, ultra-high-definition
television (UHDTV), and encryption applications, etc. These applications re-
quire to perform complex computations with a very high throughput, while at
the same time demanding low energy and low cost. Moreover, they often require
design-time and/or run-time (re-)configurability to support the new evolving and
competing standards, and different data transmission rates. The decoders of
the low density parity check (LDPC) codes [2], adopted as an advance error-
correcting scheme in the newest wired/wireless communication standards, like
IEEE 802.11n, 802.16e/m, 802.15.3c, 802.3an, etc., for applications as digital TV
broadcasting, mm-wave WPAN [3], etc., can serve as a representative example of
such applications. These standards specify ultra-high throughput figures in the
range of Gbps [3]. Such ultra-high performance cannot be achieved using gen-
eral purpose processors (GPPs), digital signal processors (DSPs) [4] or general
purpose graphic processing units (GPGPUs) [5]. For example, an implementa-
tion of LDPC decoders on the famous Texas Instruments TMS320C64xx fixed
point DSP processor running at 600 MHz delivers a throughput of only 5 Mbps
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[4]. Similarly, implementations of LDPC decoders on the multi-core architectures,
results in throughputs in the order of 1∼2 Mbps on the general-purpose x86 multi-
cores, and ranging from 40 Mbps on the GPU to nearly 70 Mbps on the CELL
Broadband Engine (CELL/B.E) as reported in [5]. For the realization of the
throughput as high as several Gbps, while also remaining in the energy budget,
massively parallel multi-processor accelerators are indispensable. Even for sub-
stantially lower performance levels the programmable processor based solutions
are usually inadequate from the viewpoint of energy consumption.

Real-time high-end video processing (encoding/decoding) is another interest-
ing and representative example of such demanding applications. To satisfy the
real-time performance demands of many modern multimedia applications, like:
video conferencing, video telephony, camcoders, surveillance, medical imaging,
and especially HDTV and new emerging UHDTV in video broadcasting domain,
ultra-high performance computational platforms are required. The problem is am-
plified by the quickly growing requirements of higher and higher quality, especially
in the video broadcast domain, what results in a huge amount of data processing
for the new standards of digital TV, like UHDTV that requires a resolution of
(7680x4320)∼ 33Megapixel with a data rate of 24 Gbps [6]. Additionally, the lat-
est standards video coding algorithms are much more complex due to the digital
multimedia convergence and specifically access of multimedia through a variety of
networks and different coding formats used by a single device, as well as, the slow
vanishing of the old video coding standards (e.g. MPEG-2) and widespread adap-
tation of the new standards (e.g. H.264/AVC, VC1 etc). Often, the computational
platforms for multimedia are also required to be (re-)configurable, to enable their
adaptation to various domains, accessing networks, standards and work modes.
Application-specific multi-processors are required to constitute the kernels of such
(re-)configurable high-performance platforms. The Context-based Adaptive Bi-
nary Arithmetic Coding (CABAC), entropy encoder/decoder of H.264/AVC en-
coder/decoder can serve here as a one more example. Its purely software-based
implementation on a general purpose computing engine results in an unsatisfac-
tory performance even for a quite low quality and resolution (e.g. 30-40 cycles are
required on average for a single bin decoding on DSP [7]). The situation is much
worse for the High Definition (HD) video as the maximum bin rate requirement of
HD (level 3.1 to 4.2) in H.264/AVC, averaged across a coded picture, ranges from
121 Mbins/s to 1.12 Gbins/s [8]. This makes the software solution inadequate
to achieve the real-time performance for HD video as a multi-giga hertz general
purpose processor would be required for HD encoding in real-time [9]. Moreover,
the serial nature of CABAC paralyzes the other processes in video codec that
could otherwise be performed in parallel, making CABAC a bottleneck in the
overall codec performance. Consequently, to achieve the required performance,
flexibility, low cost and low energy consumption, a sophisticated (re-)configurable
hardware accelerator for CABAC is necessary.

Above, several examples are given of the high-end applications and their high-
performance demands, as well as, the performances achieved for them on the
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state-of-the-art programmable processors. There are many more such applica-
tions in various fields that require hardware acceleration to satisfy their high
real-time performance demands. The orientation scores (OS) based image anal-
ysis in medical imaging field is another example of such demanding applications
[10]. They involve massively parallel complex image orientation (filtering) and en-
hancement kernels for image analysis. The filters are the well-known convolution
filters that extract some image features utilizing the neighboring pixel informa-
tion. The unique feature of the filtering operation is the large filter kernel sizes
involved in the computation of a single pixel. To adequately satisfy their perfor-
mance demands, parallelism have to be exploited on a massive scale. For instance,
the convolution filter (kernel size of 15 × 15) of the orientation scores algorithm
requires to process pixels at a rate of 125 MPixel/s with 8-bits/Pixel results in
the throughput of 1 Gbps. The convolution filter requires 225 multiplications and
224 additions per clock cycles to compute a single pixel of a single orientation for
a kernel of size 15×15. The total number of orientations to investigate is from 12
to 32 and the kernel sizes in the range from 9 to 41. This requires a huge amount
of computational resources to compute all the orientations in real-time. Other
similar kind of operations are the various kinds of transforms such as fast fourier
transform (FFT), discrete cosine transform (DCT), inverse discrete cosine trans-
form (IDCT) and operations on matrix (multiplication, addition), etc, that are
used extensively in various application fields, such as DCT/IDCT in H.264/AVC
video encoder/decoder. Depending on the application, these operations are im-
plemented with adequate parallelism in hardware at different performance points.
Yet another application area where hardware accelerator is often required is the
area of encryption applications.

The highly-demanding applications, as those briefly discussed above, may have
different computation characteristics and requirements. The next section dis-
cusses the features, implementation challenges, and the kind of design approach
needed to effectively and efficiently design high-performance hardware accelera-
tors for such applications.

1.2 Main Challenges of Accelerators Design for Highly-

demanding Applications

In the previous section, several application classes are discussed that require hard-
ware acceleration, because their processing speed requirements are beyond the
capabilities of today’s programmable processors. In this section, the accelera-
tor design and implementation challenges for the highly-demanding applications
are briefly analyzed. As outlined in the previous section, the high physical and
economic demands of many modern applications result in many different design
issues and challenges that have to be adequately addressed during the accelerator
design process.
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Although all these applications require hardware acceleration to perform their
computations with the required speed, they can be quite different regarding the
character of computation and communication involved, and some other features.

For example, consider the transform and filtering based applications. All these
applications have in common that they mainly involve functional parallelism and a
simple local or regular communication. They either do not require (global) mem-
ory accesses, because they directly process the incoming stream of data, or they
require relatively simple and regular, limited in space and time local memory ac-
cesses between which relatively large portions of computations are performed. The
design of hardware accelerators for such kind of applications that do not involve
complex communication or complex irregular memory accesses is usually limited
to the micro-architecture RTL-level exploration and synthesis, and is reasonably
supported by the existing methods of “application analysis and parallelization”
(APP) and “high-level-synthesis” (HLS) [11–19], and the new emerging commer-
cial HLS tools [20–26]. The HLS tools are often able to automatically produce a
reasonable RTL-level representation of the required hardware from a high-level-
language (HLL) design description, such as C/C++, SystemC, MATLAB, etc.
The micro-architecture of such a processing unit is composed of interconnected
register-transfer-level (RTL) data-path resources (such as, adders, multipliers,
registers and multiplexers, etc) and a controller.

The limitation of HLS to only the micro-architecture exploration and synthesis
of a single processing unit, as well as, some other limitations cause that it alone
is inadequate for the design of high-performance complex multi-processor hard-
ware accelerators for many modern applications, specifically applications involving
complex relationships between the data and computing operations, as considered
in this thesis (see Chapter 2 for details). The salient computation, storage and
communication character of these applications in addition to the ultra-high per-
formance, lead to many new challenges that have to be addressed, when designing
hardware accelerators for these applications. The application features and related
design challenges are briefly discussed below.

Many modern applications involve massive parallelism of various kinds, such as
task, data and functional parallelism, as well as, complex interrelationships among
the data and computing operations at the task level and complex inter-task data
dependencies. To satisfy the ultra-high performance of these applications, par-
allelism has to be exploited on a massive scale. Therefore, to adequately serve
these applications, the accelerator design for such applications require a careful
exploration and exploitation of various kinds of parallelism and the resolution of
complex interrelationships between the data and computing operations. In par-
ticular, the accelerator design for such kind of applications has to account for both
the micro- and macro-architecture design for processors, and for the correspond-
ing adequate memory and communication architectures design. Moreover, the
processor’s micro- and macro-architecture and the memory and communication
architectures are strongly interrelated and cannot be designed in separation. Com-
plex mutual tradeoffs have to be resolved among the processor parallelism at the
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two levels, i.e. between the micro- and macro-architecture, and the corresponding
memory and communication architectures, as well as, among the performance,
power consumption and area. However, the existing HLS methods [11–19] and
tools [20–26] as discussed earlier are limited in their scope to the synthesis of a
single processing unit. They do not support the total complex design process
of such high-end multi-processor accelerators that involves the combined explo-
ration and synthesis of the adequate micro-/macro-architectures for processors,
and the corresponding memory and communication architectures, as well as an
adequate resolution of the mutual tradeoffs among these design aspects. New ar-
chitecture design methods and supporting EDA tools are necessary to address the
above challenges and to adequately support the design process of such high-end
multi-processor accelerators.

The second major challenge is related to the bandwidth and scalability of
the communication and memory architectures of the massively parallel hardware
multi-processors that are necessary for the implementation of highly-demanding
applications. For the massively parallel hardware multi-processors, the tradition-
ally used flat communication architectures and multi-port memories do not scale
well, and the memory and communication network influence on both the through-
put and circuit area dominates the processors influence. The additional perfor-
mance gains expected from an increased parallelism will end up in diminished
returns, while exploding the communication or memory complexity. Although
some research works related to the memory and communication architectures can
be found in the literature [27–33] in the context of programmable on-chip multi-
processor systems, the memory and communication architectures were proposed
there for the much larger and much slower programmable processors (see Chapter
6 for details). They are not adequate for the small and ultra-fast hardware pro-
cessors of the massively parallel multi-processor accelerators, due to a much too
low bandwidth and scalability issues. These issues being of crucial importance for
the massively parallel multi-processor accelerators are not adequately addressed
by the state-of-the-art research [27–33] on the memory and communications ar-
chitectures.

Moreover, similar applications can target different market segments imposing
different requirements. For instance, let us consider the video decoding applica-
tion. The same kind of video decoding can be used in a low power and area mobile
device or a laptop, or a high-definition television (HDTV) from low through mod-
erate to extremely high performance levels. Therefore, to quickly arrive at an
adequate design quality, for a particular application with all its particular con-
straints, objectives and tradeoff profiles, an adequate multi-objective architecture
design space exploration (DSE) is indispensable taking into account the various
design objectives, constraints and tradeoffs. This is not supported by the current
accelerator design methods [11–19] and tools [20–26], as they usually accept a few
constraints, like only the clock speed constraint.

When this research was started, no adequate design methodology was in place
for such kind of accelerators for the highly-demanding applications. Lack of an
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adequate design methodology resulted in a large number of ad-hoc proposed so-
lutions in the form of various particular ad-hoc point architectures for various
problem instances with different throughput requirements. For instance, despite
a more than a decade of research on the hardware accelerators for the LDPC de-
coding, only some partial proposals from a fragmented research on the processor,
memory or communication part of the total accelerator design are available or
ad-hoc implementations1 for specific requirements.

The research work reported in this thesis provides solutions to the discussed
above serious issues in the design of hardware multi-processor accelerators for
highly-demanding applications. In the next section, the main aim of the research
reported in this thesis is presented and the summary of its contributions.

1.3 The Aim and Key Contributions of this Thesis

The general aim of the research reported in this thesis was to analyze
the issues and requirements of hardware accelerator design for mod-
ern highly-demanding applications, as well as, to propose, implement,
analyze and evaluate an adequate semi-automatic design method ad-
dressing the issues and satisfying the requirements.

In the previous section, some of the main hardware accelerators design chal-
lenges for highly-demanding applications are briefly discussed. Here, the key
contributions of the research reported in this thesis are listed. Addressing these
design challenges requires contributions in both the design methods and EDA
tools, as well as the architecture design. Additionally, some contributions are
made towards a better understanding of design problems for highly-demanding
applications. In the following, some of the major contributions are discussed in
each sub-category.

1.3.1 Design Methods and EDA Tools

The contributions to this area are in the form of a new architecture design method
and tool to address the design challenges of the accelerator design for highly-
demanding applications that are not addressed by the previous research efforts.
The contributions are as follows:

• analysis of several different highly-demanding modern applications and the
design issues related to these applications; specifically, of the issues that
can not be resolved using the traditional methods for design of hardware
accelerator architectures

• formulation of requirements for an adequate hardware accelerator design
method for the highly-demanding applications based on the results of the
analysis

1100∼150 research articles on LDPC decoder implementation up till now
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• proposal of a novel multi-processor design method that adequately addresses
the issues and satisfies the requirements, and is based on the quality-driven
model-based system design approach proposed by Jóźwiak [1, 34–37]

• proposal of a novel multi-objective and multi-dimensional design space ex-
ploration (DSE) framework that performs the exploration and exploitation
of various tradeoffs between the processing parallelism at the micro- and
macro-architecture level, and the corresponding memory and communica-
tion architectures, as well as, among the performance, power consumption
and area (PPA), to quickly arrive at high-quality accelerator architectures

• two novel operation scheduling techniques, the so-called tight scheduling
(TS) and relaxed scheduling (RS), that are proposed to tradeoff the proces-
sors cost against the memory and communication structure costs based on
whether the processors costs dominates or the memory and communication
costs, respectively

• two novel performance and power optimization approaches based on the
consideration of the micro-/macro-architecture level parallelism in combi-
nation; these approaches are much better than the traditional power and
performance optimization methods for multi-processor systems

• application of the proposed multi-processor accelerator design method and
implementation of the related DSE framework with all its core activities
for the application field of LDPC decoders as a case study to evaluate the
proposed design method

• semi-automatic design of numerous different LDPC decoder architectures
and exploration of the tradeoffs among the various architectures for the
newest communication system standards using the design method, and the
related automatic DSE framework

1.3.2 Architecture Design

The second set of main contributions is the architecture scalability problem anal-
ysis and design of scalable memory and communication architectures for the mas-
sively parallel hardware multi-processor systems. The memory and communica-
tion architectures proposed in the past [27–33] for programmable on-chip multi-
processors systems are not adequate for the massively parallel hardware multi-
processor accelerators due to the data transfer bandwidth and scalability issues.
Therefore, several novel application-specific memory and communication archi-
tectures are proposed in this thesis. The contributions to architecture design are
as follows:

• analysis of the communication and memory architecture design and scala-
bility issues for the massively parallel hardware multi-processors
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• proposal of several novel generic hierarchical partitioned communication and
memory architectures that ensure the scalability when applied to massively
parallel hardware multi-processors, as well as, their application method to
the memory and communication architecture design of massively parallel
LDPC decoders

• design and implementation of novel generic check node processor (CNP) and
variable node processor (VNP) micro-architectures for the LDPC decoders
that span the full range of micro-architectures from the fully-serial, through
the partially-parallel, to the fully-parallel

• a novel classification of the multi-processor architectures based on the pro-
cessing parallelism to evaluate and compare the various architectural solu-
tions

1.3.3 Better Understanding of Architecture Design Problems
for Highly-demanding Applications

Using the proposed multi-processor accelerator design method and its applica-
tion for a real-life application of LDPC decoding, a large series of architecture
synthesis experiments were performed that not only confirmed adequacy of the
design method, but also resulted in several findings of high importance for better
understanding of architecture design problems for highly-demanding applications.
The most important of them are listed below.

• demonstration of the numerous mutual complex tradeoffs between the micro-
and macro-architecture levels and their influence on design parameters like,
performance, power consumption and area, etc, to make adequate decisions
on the number and type of processors

• demonstration that neither the fully-serial nor the fully-parallel micro-archi-
tectures are adequate to satisfy the ultra-high performance or low power
requirements, but the partially-parallel architectures have to be explored
and exploited

• demonstration that the ultra-high performance and low power requirements
can only be satisfied on a reasonable cost through the combined micro-
/macro-architecture, as well as, communication and memory architecture
exploration

• demonstration that pipelining for performance enhancement is not the best
approach in many cases, and may specifically not be suitable for the archi-
tectures exploiting massive parallelism at both architecture levels

To our knowledge, despite more than a decade of research on the hardware acceler-
ator design, no similar holistic quality-driven design approach has been proposed.
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In the design approach proposed in the scope of the research reported in this
thesis, all the design components are considered in combination, their combined
design forms a single design task, and the mutual interrelationships and trade-
offs among them and their various characteristics are analyzed and adequately
resolved. Finally, using this method, it is possible to implement various complex
multi-processor hardware accelerators for the highly-demanding applications (e.g.
LDPC decoders of practical importance for the newest upcoming wireless commu-
nication standards) very effectively and efficiently, and particularly, very quickly.
We hope that the original effort that resulted in this new design methodology
for massively parallel multi-processor accelerators will act as a stepping stone
on the way towards better well-founded design methods and EDA tools for the
multi-processor system design.

1.4 Thesis Organization

The thesis is organized as follows. Chapter 2 provides a detailed analysis of the
issues and challenges in the design of hardware accelerators for highly-demanding
applications. Based on the analysis, the requirements are formulated that have to
be satisfied by an adequate accelerator design methodology. The main concepts
of the proposed design approach are discussed. Moreover, this chapter includes a
comprehensive overview of the existing research work performed in the scope of
hardware accelerators. Chapter 3 presents a novel quality-driven model-based
multi-processor accelerator design methodology. The design flow and core steps
of the proposed methodology are explained. Furthermore, a novel multi-objective
and multi-dimensional design space exploration framework and its algorithms
are discussed in detail. Chapter 4 discusses the implementation of the pro-
posed design methodology for the LDPC decoder applications used for the case
studies. Through the case studies, the design methodology and its design space
exploration framework are analyzed and evaluated. Chapter 5 discusses the
parallelism exploration and exploitation at the micro-/macro-architecture level
and the mutual tradeoffs between the micro- and macro-architecture, when us-
ing as a representative example the design of LDPC decoders. Some interesting
tradeoffs among performance, power consumption and area are highlighted that
are the consequences of the joint consideration of the micro-/macro-architecture
level parallelism. Chapter 6 discusses the memory and communication issues
involved in the design of massively parallel multi-processor accelerators for the
high-end applications. Several novel communication and memory architectures
are proposed that address the bandwidth and scalability issues of the massively
parallel multi-processor accelerators. Finally, Chapter 7 concludes this thesis
and gives some directions for future works.
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CHAPTER 2

Problem Analysis, Research Task Formulation and

Related Research

This chapter focuses on the analysis of modern demanding applications from var-
ious application fields. The applications are analyzed from various perspectives
including: the real-time performance requirements, the character of computa-
tion and communication involved, and some other features. The existing design
methods and EDA tools, which are used to implement hardware accelerators are
discussed. The issues that are involved in the architecture design of hardware
accelerators for modern highly-demanding applications are discussed in detail.
Afterwards, the LDPC decoding application is briefly introduced. It is used as a
representative example to further illustrate the issues of these applications. Based
on the analysis of the issues, the requirements are formulated that have to be
addressed by an adequate accelerator design methodology for highly-demanding
applications. The main concepts of our proposed design method are briefly out-
lined. The precise research task is formulated. The related research discussion
provides an insight into the state-of-the-art methods and EDA tools for the design
of hardware accelerators. The main limitations and capabilities of these design
method and EDA tools are discussed. Finally, the existing hardware accelerator
architectures are overviewed for LDPC decoders with a novel classification to get
an insight into these architectures.

The rest of this chapter is organized as follows. Section 2.1 discusses the issues
of hardware accelerators for highly-demanding applications. Section 2.2 considers
the design issues of LDPC decoders. Section 2.3 discusses the requirements that

13
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have to be addressed by an adequate accelerator design methodology for highly-
demanding applications. The precise research task formulation and the main
assumptions are presented in Section 2.4. Section 2.5 discusses the main concept
of the proposed design approach. The related research work is discussed in Section
2.6. Finally, Section 2.7 concludes this chapter.

2.1 Issues of Hardware Accelerator Design for Highly-

demanding Applications

In Chapter 1, the highly-demanding applications are introduced through several
examples. A common feature of these applications is their ultra-high performance
demands and also a low energy consumption requirement of many of them, espe-
cially, those being mobile. However, various highly-demanding applications may
have different computational characteristics and specific design requirements. In
the following, the features and the issues involved in the design of hardware ac-
celerators for such applications are discussed.

Although hardware accelerator design is not a new problem, it is only partially
solved, and there is much room for further extension and/or improvement of the
existing methods and tools. One can construct a trivial hardware accelerator
through a straightforward compilation of an algorithm described in a hardware
description language, like Verilog or VHDL, or in a high-level language like C,
C++, SystemC or MATLAB into hardware. However, in most cases the result of
such a straightforward compilation will not be satisfactory for critical parts of de-
manding applications. In embedded computing, hardware acceleration has been
intensively researched during the last decade, mainly for signal, video and image
processing applications, for efficiently implementing in hardware transforms, fil-
ters and similar complex operations [11–19]. All these operations have in common
that they mainly involve functional parallelism, and either do not require (global)
memory accesses, because they directly process the incoming stream of data, or
they require relatively simple and regular, limited in space and time local memory
accesses between which relatively large portions of computations are performed.
In consequence, the main problems of hardware accelerator design for this kind of
applications are not related to memory or communication bottlenecks, but to an
effective and efficient processing unit synthesis through an adequate parallelism
exploitation of the basic register-transfer-level (RTL) operations needed for the
implementation of the required computations, and adequate implementation of
these basic operations in hardware. For this kind of applications, the basic con-
cepts of an effective and efficient accelerator design can be summarized as follows
[6, 38]:

• parallelism exploitation for execution of a particular computation instance
due to availability of multiple application-specific operational resources work-
ing in parallel;
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• parallelism exploitation for execution of several different computation in-
stances at the same time due to pipelining;

• application-specific optimal synthesis of processing units, with tailored pro-
cessing and data granularity.

More specifically, these concepts can be oriented towards the data parallelism,
functional parallelism or their mixture. For data parallelism exploitation, mul-
tiple data instances of the same type are processed simultaneously provided the
application allows for this and the corresponding resources are available. In case
of functional parallelism, different operations are performed simultaneously on
(possibly) different data instances. Also, the speculative execution can be used
to exploit more parallelism. To design a high-quality hardware accelerator of this
kind, it is necessary to perform a thorough analysis of the application’s compu-
tation algorithms and exploit specific computational characteristics inherent to
these algorithms. Different characteristics discovered and accounted for result
in different approaches to the design of hardware accelerators of this kind, and
therefore, in the past a number of different basic accelerator micro-architecture
types were considered:

• straightforward datapath/controller architecture;

• parallel hardware architecture;

• pipeline hardware architecture;

• parallel-pipeline hardware architecture.

Summing up, for this kind of applications, the main problems of hardware accel-
erator design are limited to an effective and efficient computation unit design at
the RTL-level (i.e. micro-architecture design) and circuit synthesis for the micro-
architecture modules. Circuit synthesis can be performed automatically using one
of many available EDA-tools. Currently, in many cases the micro-architecture de-
sign for this kind accelerators can also reasonably be supported by the methods of
“application analysis and parallelization” (APP), “High-Level-Synthesis” (HLS)
[11–19] and emerging commercial HLS tools [20–26]. Nevertheless, the RTL-level
computation unit design is often not easy, because some of the modern demand-
ing applications require resolution of complex data or control dependencies (e.g.
CABAC decoding in the latest multi-domain video coding standard H.264/AVC
[6]), what increases difficulty of an adequate pipeline construction. Further details
on APP and HLS methods, and the corresponding state-of-the-art research and
commercial tools can be found in Section 2.6 on the related research.

Many modern applications (e.g. various communication, multimedia, network-
ing or encryption applications, etc) are of different kind, and involve serious design
issues that are beyond the design capabilities of today’s design methods and tools
for hardware accelerators. These issues will be discussed in detail as follows.
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Many modern highly-demanding applications involve sets of heterogeneous
data-parallel tasks with complex inter-task data dependencies and complex in-
terrelationships between the data and computing operations at the task level.
Often the tasks iteratively operate on each other’s data. One task consumes
and produces data in one particular order, while another consumes and produces
data in a different order. This all results in complex memory accesses and com-
plex communication between the memories and processing elements in the related
hardware multi-processor architectures. For applications of this kind, the main
design problems are related to an adequate resolution of memory and communi-
cation bottlenecks and to decreasing the memory and communication hardware
complexity, which has to be achieved through an adequate memory and commu-
nication structure design. Additionally, in the high performance multi-processor
accelerators, parallelism has to be exploited on a massive scale. However, due to
area, energy consumption and cost minimization requirements, partially-parallel
architectures have to be usually used, which are more difficult to design than the
fully-parallel ones.

Moreover, for this kind of applications, the memory and communication struc-
ture design, and micro-architecture design for computing units cannot be per-
formed independently, because they substantially influence each other. For exam-
ple, exploitation of more data parallelism in a computing unit micro-architecture
usually requires getting the data in parallel for processing, i.e. having simulta-
neous access to memories in which the data reside (this results in e.g. vector,
multi-bank or multi-port memories) and simultaneous transmission of the data
(this results e.g. in multiple interconnects), or pre-fetching the data in parallel
to other computations. This substantially increases the memory and commu-
nication hardware. From the above, it should be clear that for applications of
this kind complex interrelationships exist between the computing unit design and
corresponding memory and communication structure design, and complex trade-
offs have to be resolved between the accelerator effectiveness (e.g. computation
speed or throughput) and efficiency (e.g. hardware complexity, power and energy
consumption etc.).

Furthermore, many of the modern demanding applications involve algorithms
with massive data parallelism or task-level functional parallelism (e.g. LDPC
code decoders of the newest communication system standards like IEEE 802.11n,
802.16e/m, 802.15.3c, 802.3an, etc.). To adequately serve these applications,
hardware accelerators with parallel multi-processor macro-architectures have to be
considered, involving several identical or different concurrently working hardware
processors, each operating on a (partly) different data sub-set. Each of these
processors can also be more or less parallel. For this kind of accelerators, the
accelerator’s parallelism can be realized at two levels:

• macro-architecture level, where elements are elementary processors or accel-
erators and complex multi-processor or multi-accelerators are build of them,
and
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• micro-architecture level, where the internal architecture of a single processor
or accelerator at the RTL-level can be parallel.

Moreover, there is a tradeoff between the amount of parallelism and resources
at each of the two levels (e.g. similar performance can be achieved with less proces-
sors each being more parallel and better targeted to particular part of application,
as with more processors each being less parallel and less application-specific). The
two architecture levels are strongly interrelated and interwoven, also through their
relationships with the memory and interconnection structures. In consequence,
optimization of the performance/resources tradeoff required by a particular ap-
plication can only be achieved through a careful construction of an adequate
application-specific macro-/micro-architecture combination. The aim here is to
find an adequate balance between the number of parallel hardware processors
of various kinds, the intra-processor parallelism and complexity, the complexity
and effectiveness of memory structures, and the complexity of the inter-processor
and/or processor/memory communication, rather than to only optimize the pro-
cessing units, or separately optimize the micro- or macro-architecture. To achieve
this aim several promising micro-/macro-architecture combinations representing
complete complex multi-processor accelerator architectures have to be consid-
ered, and finally, the best of them has to be selected for an actual realization (see
Chapter 3 for details).

Many of the modern highly-demanding applications involve complex algo-
rithms with multi-input multi-output (MIMO) operations and require highly opti-
mized implementation through operation and micro-architecture level parallelism
exploitation to satisfy the high-throughput requirements. The micro-architecture
level synthesis should exploit among other the operation and data level par-
allelism, operation chaining, multi-cycle operations, structural and functional
pipelining, etc. The traditional hardware design methodologies that incorporate
the simple single (two or maximum three) input single output (SISO, MISO) RTL
operations are not able to implement the MIMO operations effectively and effi-
ciently. Example of the three input single output operation is the most widely used
multiply-accumulate (MAC) operation, required in various applications. Further,
these atomic operations when used for the realization of complex MIMO opera-
tions result in a large number of computation cycles, what makes it impossible
to realize the ultra-high throughput for the high-end applications. Also, the
MIMO operations can be implemented using various basic functional units (FUs)
having different characteristics (such as fast or slow adders/multipliers, etc.) re-
sulting in various cost/performance tradeoffs. When designing accelerators for
highly-demanding applications, the possible micro-architecture tradeoffs have to
be carefully considered (see Chapter 5 for details).

Additionally, for the high-end applications that require massively parallel
multi-processor accelerators to satisfy the ultra-high throughput, the effective
communication and memory architectures, and the compatibility of the process-
ing, memory and communication subsystems play the decisive role. Although
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some research results related to the memory and communication architectures
can be found in the literature [27–33] in the context of programmable on-chip
multi-processor systems, the memory and communication architectures were pro-
posed there for the much larger and much slower programmable processors of
on-chip multi-processors systems. They are not adequate for the small and ultra-
fast hardware processors of the massively parallel multi-processor accelerators due
to a much too low bandwidth and scalability issues. It will be demonstrated in this
thesis that in the massively parallel multi-processor structures for many highly-
demanding applications, the communication and memory architectures play a
decisive role. The communication architectures can not be designed as a simple
flat homogenous networks and the memory as a multi-port memory. Especially,
the communication network among the processors or processors and memories has
a dominating influence on all the most important design aspects such as delay,
area and power consumption. The additional performance gains expected from
an increased parallelism will end up in diminished returns, while exploding the
interconnect complexity. Therefore, all the architectural, as well as, the data and
computation mapping decisions regarding the memories and processors have to be
made in the context of the communication architecture design to actually boost
the performance. For the massively parallel hardware accelerators, the problem
of how to keep up with the increasing processing parallelism, while ensuring the
scalability of memory and communication is a very challenging design problem.
To our knowledge, it has not been addressed satisfactorily till now (see Chapter
6 for details).

Furthermore, the back-to-back (cyclic) inter-task data dependencies are often
so complex that make it extremely difficult or even impossible to overlap the
processing of one set of tasks with another set of dependent tasks. The tradi-
tional schedulers1 are not adequate for resolving the kinds of complex scheduling
problems involving back-to-back data dependencies among the tasks with one
task responsible for producing partial data not only for a single, but for many
dependent tasks. This partial fulfillment of data paralyzes the data dependent
processors to start their execution earlier until all the data is available, what re-
sults in a lower utilization of the processing resources. Even in the case, when
an overlap schedule is found (what would result in reduction of a number of pro-
cessors for a certain performance level), the influence of the scheduling decisions
on the cost of memory and communication structures has to be taken into ac-
count. It is very probable for this kind of applications that the cost of memory
and communication structures may surpass the cost savings due to the decreased
processing resources. Therefore, the task scheduling freedom need to be carefully
tradeoff against the memory and communication structures complexity, thereby
reducing the overall cost to a larger degree and thus providing the opportunity to
utilize even more processors (see chapters 3 and 5 for details).

Also, for various modern demanding applications the design objectives and

1Described in related work section of this chapter
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constraints are quite different from those supported by the traditional2 hardware
accelerator design methods presented in literature that usually accept just a few
constraints, like only the clock speed constraint. An actual multi-objective opti-
mization and tradeoff exploration are necessary. For instance, let us consider the
video decoding. The same kind of video decoding can be used in a low power
and area mobile device or a laptop, or a high-definition television (HDTV) from
low through moderate to extremely high performance levels. Therefore, to quickly
arrive at an adequate design quality for a particular application with all its partic-
ular constraints, objectives and tradeoff profiles, an adequate architecture design
space exploration is indispensable taking into account the various design objec-
tives, constraints and tradeoffs, which is not supported by the current hardware
design methods and tools even for the simple case of micro-architecture synthesis
(see Chapter 3 for details).

Moreover, different applications adopt different algorithms and have differ-
ent requirements in relation to the throughput, area and other parameters. For
instance, the above-mentioned new communication system standards adopt differ-
ent LDPC codes classes and decoding algorithms, and have different requirements
regarding code rate, code length, throughput etc. As it is not often known in ad-
vance which of the proposed standards will actually be accepted, and due to
profitability it is extremely important for the industry to have their equipment
for a new standard ready before the standard is actually adopted, accelerators
for applications involving new standards have often to be multi-standard, or easy
adaptable for a particular standard after being designed and/or fabricated. Their
adaptability can be achieved through the design-time adaptation and/or post-
production (field-use) adaptation. In particular, the field-use adaptation can
have a form of a run-time reconfiguration. An additional advantage of a run-
time reconfigurable accelerator is its ability to dynamically adapt to changing
operating conditions, e.g. it can adapt its structure and operation to different
quality-of-service, energy usage and transmission speed requirements, noise levels
and other environmental conditions. To implement the field-use (run-time) adap-
tation, the popular re-configurable FPGA technology could potentially be used.
In FPGAs, the re-configuration resources and mechanisms are pre-implemented,
and they guarantee a complete total reconfiguration ability. In consequence, when
developing a re-configurable accelerator for an FPGA implementation, a trivial
approach can be used of separately developing particular accelerators for different
acceleration cases (e.g. for different LDPC codes and corresponding requirements)
and totally (or partially when applicable) re-configuring the FPGA to implement
each of the accelerators. However, due to the extremely high throughput and/or
low energy consumption requirements of many modern demanding applications,
re-configurable accelerators for such applications cannot usually be implemented
using FPGAs. Due to the high overhead of their general reconfiguration resources,
FPGAs are unable to deliver so high throughput and are not energy efficient.

2High-Level-Synthesis
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Therefore, re-configurable accelerators for highly-demanding applications require
a high-performance energy-efficient application-specific integrated circuit (ASIC)
implementation. However, in the case of an ASIC implementation, the com-
plexity and other features of the total computation, memory, communication and
re-configuration resources supporting acceleration for all the required acceleration
cases are of crucial importance, and therefore, the trivial development approach
cannot be used. Therefore, the design goal should be to decide one globally opti-
mal adaptable accelerator architecture that adequately satisfies the requirements
for all the particular accelerator instances required, and not a set of the best
individual accelerators for each particular acceleration case and their combined
re-configurable implementation. Moreover, the re-configuration resources have to
be accounted for. However, not the general total reconfiguration resources as in
FPGAs should be aimed at, but limited efficient design-case-specific reconfigura-
tion resources (see Chapter 3 for details).

Summing up, the massive parallelism to be exploited to achieve the ultra-
high throughput required by the modern demanding applications, the complex
interrelationships between the data and computing operations, and the combined
massive parallelism exploitation at the two architecture levels (micro-/macro-
architecture), make the design of an effective and efficient application-specific
hardware accelerator a very challenging task. To effectively perform this task,
the heterogeneous massive parallelism available in a given application has to be
explored and exploited in an adequate manner to satisfactorily fulfill the design
requirements through constructing an architecture that satisfies the required per-
formance, power consumption and area tradeoffs. Proposing an adequate solution
for this task is the main aim of the research reported in this thesis.

2.2 Accelerator Design for LDPC Decoders

In the previous section, the main issues involved in the accelerator design for
modern highly-demanding applications are discussed. In this section, they will
be illustrated and further explained for the accelerator design of LDPC decoding
application.

Figure 2.1: LDPC encoding and decoding process

A systematic LDPC encoder encodes a message of k bits into a codeword of
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length n with the message bits k followed by m parity checks, as shown in Figure
2.1. Each parity check is computed based on a sub-set of message bits. The
codeword is transmitted through a communication channel to a decoder. The
decoder checks the validity of the received codeword by re-computing the parity
checks, using a parity check matrix (PCM) of size m × n. For a codeword to be
valid, it must satisfy the set of all m parity checks.
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Figure 2.2: PCM for a (7,4) LDPC code and its corresponding Tanner graph, where

{v0........v6} represents variable nodes, {c0........c2} represents check nodes and

{I0........I6} represents the input intrinsic channel information
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Figure 2.3: Decoding flow diagram representing the main steps of MPA algorithm

In Figure 2.2 an example PCM for a (7,4) LDPC code is given. “1” in a
position PCMi,j of this matrix means that a particular bit participates in a parity
check equation. For example, in the first row the bits at positions v0, v2, v3, v4

participate in the computation of the parity check c0, that is, c0 = v0 ⊕ v2 ⊕
v3 ⊕ v4, where ⊕ represents the exclusive-OR operation. Each PCM can be
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represented by its corresponding bipartite graph (Tanner graph). The Tanner
graph corresponding to an (n, k) LDPC code consists of n variable nodes (VN)
and m = n − k check nodes (CN), connected with each other through edges, as
shown in Figure 2.2. Each row in the PCM represents a parity check equation ci,
0 ≤ i ≤ m−1, and each column represents a coded bit vj , 0 ≤ j ≤ n−1. An edge
exists between a CN i and VN j, if the corresponding value PCMi,j is non-zero
in the PCM.

Usually, iterative Message Passing (MP) algorithms [39–42] are used for de-
coding of the LDPC codes. During the decoding, specific messages are exchanged
among the nodes through the edges. The messages represent the log-likelihood
ratios (LLRs) of the codeword bits based on the channel observations [39]. The
algorithm starts with the so-called intrinsic LLRs of the received symbols based
on the channel observations. Starting with the intrinsic LLR values, the algorithm
iteratively updates the extrinsic LLR messages from the check nodes to variable
nodes and from the variable nodes to check nodes and sends them among the VNs
and CNs along the corresponding Tanner graph edges. If after several iterations
the parity check equation is satisfied, the decoding stops, and the decoded code-
word is created and considered to be a valid codeword. Otherwise, the algorithm
further iterates until a given maximum number of iterations is reached. The main
decoding steps of the MP algorithm are graphically represented in Figure 2.3.
Since the Tanner graphs corresponding to practical LDPC codes of the newest
communication system standards involve hundreds of variables and check nodes,
and even more edges, LDPC decoding represents a massive computation and com-
munication task. Moreover, the modern communication system standards require
very high throughput in the range of Gbps and above, for applications like digital
TV broadcasting, mmWave WPAN, etc. For the realization of the throughput as
high as several Gbps, complex massively parallel multi-processor accelerators are
necessary.

In many practical MP algorithms, the variable node computations are imple-
mented as additions of the variable node inputs and the check node computations
as ln or tanh function computation for each check node input and addition of the
results of the ln/tanh computations3. In some simplified practical algorithms, the
check nodes just compare their inputs to find the lowest and second lowest value.
Since each node receives several inputs, the basic operations performed in nodes
are the multi-input additions or multi-input comparisons. In the corresponding
accelerator, the spectrum of possible implementations of each of these multi-input
operations spans between the two extremes of a fully-serial slow processing in a
simple two-input adder/comparator to a fully-parallel fast processing in a com-
plex multi-input parallel adder/comparator. When the variable nodes perform
their computations, the check nodes are waiting on the computation results and
vice versa, but all nodes of a given kind, i.e. all the variable nodes or all the check
nodes, may perform their computations in parallel. If all the nodes of a given

3Described in detail in Chapter 4
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kind would actually perform their computations simultaneously, this would re-
quire a complex parallel access to the memories of all nodes of the opposite kind,
and could only be realized with a very distributed memory structure and very
complex and expensive interconnection structure. In contrary, performing the
computations corresponding to different nodes fully-serially can requires just one
memory access at a time and result in reasonably simple corresponding memory
and interconnection structures.

Summing up, when considering the hardware acceleration for LDPC decod-
ing, the possible micro-architectures span the full spectrum from a fully-serial
to a fully-parallel, and the possible macro-architectures of the multi-accelerator
structures span the full spectrum from a fully-serial [43] to a fully-parallel [44–51],
with in between a large variety of partially-parallel architectures [52–83]. These
architectures and their features are described in detail in Section 2.6. The large
variety of possible partially-parallel architectures is due to the ability of (partial)
parallelism exploitation at two levels: micro-architecture level (where the inter-
nal architecture of an elementary accelerator at the RTL-level can be parallel),
and macro-architecture level (where complex multi-accelerators can be built of
the elementary accelerators). At the macro-architecture level, the variable and
check nodes and their respective computational processes are mapped to the cor-
responding variable node (VNP) and check node (CNP) processing units (PUs),
respectively. At the micro-architecture level, both VNP and CNP computations
can be realized through a (partially) parallel or serial computation process imple-
mented in an elementary PU, in which (a number of) inputs of the VN or CN are
processed simultaneously or one by one, respectively. The PUs micro-architecture
has a huge impact on the accelerator’s throughput, because these units constitute
the computational kernels and determine the accelerator’s operating frequency.
Also, the mapping strategies of the variable and check nodes to their respective
VNP and CNP elementary processors vary from one architectural choice to an-
other and there are many various mapping possibilities for the partially-parallel
architectures.

Also, complex tradeoffs are possible between the parallelism and resources
at the micro-architecture level, and the parallelism and resources at the macro-
architecture level. Moreover, changing the level of parallelism for computations in
the micro- or macro-architecture of the LDPC accelerator requires a correspond-
ing change of the memory and communication structure. Thus, the computation,
memory and communication architectures are strictly interrelated and cannot be
designed in separation. The large number of possible micro-/macro-architecture
combinations and related node mappings leads to a large number of various trade-
off points in the LDPC accelerator design space representing various accelerator
architectures with different characteristics.

To arrive at high-quality accelerator designs, the accelerator design space ex-
ploration (DSE) is necessary in which a substantial set of the most promising of
these architectures will be constructed and analyzed, and the best of them will be
selected for further analysis, refinement and actual implementation. To perform
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the DSE, a new adequate design methodology is necessary.

2.3 Requirements of an Adequate Accelerator De-
sign

In the last two sections, the issues of hardware accelerator design for highly-
demanding applications are discussed. From the discussion, it should be clear
that the existing HLS methods, specifically developed and limited to the RTL-
level micro-architecture synthesis of processing units, are only able to partly sup-
port the internal architecture design for particular computation units, and are not
sufficient to adequately support the total complex multi-processor hardware ac-
celerator design process for the modern demanding applications. It should also be
clear that a new more complex and sophisticated design methodology is needed for
the modern demanding accelerator design than the existing HLS methods. This
new methodology should adequately address many issues, including the following:

• micro-architecture synthesis of generic processors for each of the data-parallel
task,

• macro-architecture synthesis of the multi-processor accelerator,

• memory and communication architectures synthesis, to resolve the memory
and communication issues of the massively parallel multi-processor acceler-
ators required for the ultra-high throughput applications,

• combined processor’s micro-architecture and macro-architecture design, and
the corresponding memory and communication architectures design, to re-
solve effectively and efficiently the complex mutual tradeoffs among them,

• tradeoffs exploitation between the micro- and macro-architecture for the
processors, and the corresponding memory and communication architec-
tures, as well as, among the performance, power consumption and area,

• multi-objective optimization and tradeoffs exploitation among the various
optimization objectives (performance, power consumption, area, etc), and

• adaptable accelerator design accounting for the design-time or field-use
adaptation.

From the previous sections of this chapter, it should be clear that only an appropri-
ate accelerator architecture design space exploration (DSE) and tradeoff exploita-
tion between various parts and features of possible architectures can guarantee
an adequate accelerator design quality. Thus, the design process for demanding
accelerators should rather be focused on the construction, analysis and evaluation
of promising complete complex accelerator architectures, and using this for the



2. PROBLEM ANALYSIS AND REQUIREMENTS FORMULATION 25

DSE by “what if” analysis, than on the fully automatic synthesis of individual
computing units as offered by the today’s HLS tools. At least partially, a different
kind of design support is crucial here than that offered by the traditional HLS.
HLS tools can and should be used in the scope of the demanding accelerator de-
sign, but for supporting the individual computing unit design tasks, and for so
far as they are effective for these tasks.

2.4 Research Task Formulation

Problem Statement: The general aim of the research reported in this thesis was
to analyze the issues and requirements of hardware accelerator design
for the modern highly-demanding applications, as well as, to propose,
implement, analyze and evaluate an adequate semi-automatic design
method addressing the issues and satisfying the requirements. In order
to realize this aim, the following major research tasks had to be performed:

• to analyze several highly-demanding modern applications and the issues of
accelerator design for these applications; specifically the issues that can-
not be resolved using the traditional architecture design methodologies for
hardware acceleration as HLS,

• to formulate the requirements for an adequate hardware accelerator design
method for the highly-demanding applications,

• to propose an adequate hardware accelerator design methodology to ade-
quately address the issues and satisfy the requirements,

• to propose an architecture design space exploration (DSE) framework for the
semi-automatic design, exploration and evaluation of various architectures
in order to find some optimal or near-optimal architectures, while taking into
account the design constraints and objectives and the tradeoff preferences
among the objectives,

• to analyze and evaluate the proposed design methodology and the related
DSE framework through performing a series of experiments, when using
some representative highly-demanding modern applications, and

• to arrive at some general conclusions based on the results of the research
performed.

Assumptions: The following assumptions are made in relation to the above
research task formulation and the context in which the research task is performed
and the method is proposed:

• an application demands extremely high performance that is virtually im-
possible to be achieved using any programmable (multi-)processor based
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implementation, and in consequence, requires application-specific hardware
multi-processor accelerator to be used for exploiting the application paral-
lelism to adequately satisfy the performance demands,

• an application involves a massive data parallelism and various tasks, and
the application specification at the task level is available in a fully parallel
form, with parallelism exposed for both of the architecture levels, i.e. the
micro- and macro-architecture level,

• application re-partitioning, i.e. task merging, splitting, etc, after the initial
application analysis and generic architecture platform design is not possible,
i.e. the granularity of the parallel application specification has to be decided
during or before the initial application analysis and generic platform design,
and

• application involves complex interrelationships among the data and comput-
ing operations, as well as global and/or irregular information (data) flows.

2.5 The Proposed Design Approach

In order to address the issues and requirements of the hardware multi-processor
accelerators for highly-demanding applications as formulated above, the proposed
design approach is based on the quality-driven model-based system-level design
methodology proposed by Jóźwiak [34]. According to the quality-driven design
paradigm, design requirements represent a general model of the required qual-
ity that models the design problem at hand through the imposition of a number
of constraints and objectives in relation to the acceptable or preferred problem
solutions. It is thus an abstract model of a solution to the problem. Since it
limits the space of the acceptable or preferred solutions to only a certain degree,
it models many solutions concurrently. Each of the solutions fulfills all the hard
constraints of the model, but different solutions can satisfy its objectives to vari-
ous degrees. It is possible to distinguish three kinds of requirements: functional,
structural, and parametric. Requirements of each of the three classes impose lim-
itations on the structure of a required solution, but they do it in different ways.
Structural requirements define the acceptable or preferred solution structures di-
rectly, by limiting them to a certain class or imposing a preference relation on
them. Parametric requirements define the structures indirectly, by requiring the
structures to have specific physical, economic or other properties (described by
values of some parameters) that fulfill given constraints and satisfy stated objec-
tives. Functional requirements also define the structures indirectly by requiring
the structures to expose a certain externally observable behavior that realizes the
required behavior.

The quality-driven model-based system-level architecture synthesis involves



2. PROBLEM ANALYSIS AND REQUIREMENTS FORMULATION 27

Application Class

Generic Architecture Templates

Instance

Analysis

Application 

Instance BInstance A

Application

Architecture Architecture

Design Space Exploration (DSE)

Figure 2.4: Qualitydriven modelbased system design

• an initial application (application class) analysis and generic architecture
platform (template) design or selection for reuse, and

• the final model-based architecture exploration and synthesis when using the
newly designed or selected for reuse platform or platforms

Based on the application class analysis, one or more promising generic system
architectures are proposed that could satisfy the application requirements, and
are used to design or reuse the generic architecture templates corresponding to
these architectures, as shown in Figure 2.4. Then, for a particular application
(application behavior model), and a particular instance of the generic architecture
template and an abstract decision model, the design space exploration (DSE) is
performed that aims at finding several promising architectures, and finally, the
selection of the most promising architecture, as shown in Figure 2.4.

An approach similar to the one discussed above is followed for the hardware
multi-processor accelerators design through the development and characteriza-
tion of generic architecture templates for each application class, supported by an
adequate DSE framework.
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2.6 Related Research

In the first two sections of this chapter, the main issues of the hardware accel-
erators design for highly-demanding application are discussed. Also, the main
limitation of the existing design methods and tools are described for the architec-
ture exploration and synthesis of the hardware accelerators for highly-demanding
applications. In this section, the existing methods and tools for the design of
hardware accelerators and similar systems both from the academia and industry
are discussed in more detail. The related research discussion will be made in
relation to the following three parts:

i. system-level design,

ii. methods and tools for hardware accelerator design, and

iii. hardware accelerator designs for highly-demanding applications.

Macro-architecture synthesis of the multi-processor hardware accelerators is
actually a specific case of the system-level design. One of the main problems in
the system-level architecture synthesis is the problem of scheduling and mapping.
Many scheduling and mapping methods have been proposed by the system-level
design research, as for instance discussed in [84–89]. More information on macro-
architecture exploration including scheduling and mapping can be found in [1].
However, in the research reported in this thesis, two new scheduling methods are
proposed that better suit the hardware multi-processor accelerator design through
enabling the tradeoff exploitation between the processors, and the corresponding
memory and communication structures (see Chapter 3 for details). The very
important and closely related to the focus of this thesis problem of adequate
communication and memory architecture design unfortunately did not get enough
attention in the system-level design. The related research devoted to this aspect
is separately discussed in Section 6.1. Also, a large part of the existing research
performed in the scope of the system-level design methods/frameworks is not
directly applicable to the macro-architecture synthesis of the hardware multi-
processor accelerators, as these methods/frameworks mainly cover the modeling
aspects of the system-level design, as e.g. reported in [90–93].

In the whole scope of the hardware accelerator design, only the micro-architect-
ure exploration and synthesis are reasonably supported by the methods of applica-
tion analysis and parallelization (APP), and high-level-synthesis (HLS). Since the
APP and HLS have attracted much attention and research effort in the past, the
research work reported in thesis was not focused on them, but on many other not
researched or much less researched aspects of hardware accelerator design. Nev-
ertheless, below the methods and tools for APP and HLS are briefly discussed.

The methods and tools of application analysis can be used to analyze (pro-
file) an application to discover its bottlenecks parts (called kernels) that can be
then implemented as hardware accelerators. The methods of APP can be further
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used to find some promising parallel versions of the applications or their parts
(kernels). Finally, for a given behavior specification of a kernel and of the para-
metric constraints and objectives, HLS creates a corresponding RTL-level hard-
ware structure that realizes the behavior required and satisfies the constraints
and objectives. In general, this structure involves a data-path and control-path.
The data-path represents a network of computation, memory and interconnection
components, and the control-path one or more collaborating control automata. In
virtually all cases, HLS only accounts for a simple memory in a form of registers
and simple flat interconnect structure between the data-path functional units and
registers. In case of the most popular synchronous systems, the control automa-
ton is a finite state machine (FSM). Consequently, hardware accelerator synthesis
using the APP and HLS methods and tools can produce a single (usually coarse-
grain) RTL-level hardware accelerator or a network of collaborating (mixed-grain)
RTL-level accelerators [94, 95], one accelerator for each application kernel. The
macro-architecture design, as well as, memory and communication system design
for the whole application or its more sophisticated kernels are here not considered
at all. Moreover, the APP, as well as, the HLS methods and tools have their
own limitations. The effectiveness of the HLS tools directly rely on the extent to
which the application is actually parallelized (assuming sequential specification).
Therefore, the existing APP methods and tools are explained first followed by the
HLS.

2.6.1 Application Analysis and Parallelization

Many application specifications and reference specifications of standards are for-
mulated in a sequential C, C++ or other code. Application analysis (profiling) of
C code is required in order to reveal the execution behavior and some other im-
portant characteristics of an application. Very often the compiler front-ends and
their intermediate representation (IR) are used in collaboration with application
analysis and parallelization (restructuring) tools for the application analysis and
application algorithm or code restructuring and optimization. Unlike the applica-
tion profiling from the perspective of hardware/software co-design that identifies
some frequently executed parts of the application (hot spots) to be implemented
in hardware and other parts in software, the aim of the application analysis and
restructuring from the point of view of hardware accelerators is to identify and
make explicit the various kinds of parallelism of the application.

Analysis (Profiling) of the application’s C code is required in order to re-
veal the execution behavior and some other important characteristics of an ap-
plication. The execution behavior and additional characteristics involve several
properties that are needed to be extracted using several different profiling tech-
niques. These main properties are: the application code structure; dependency
relations within the application; execution time behavior; memory access behav-
ior; code coverage. The profiling results can be used for different purposes, mainly
to: reveal how the application code works; find the bottlenecks in the application;
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architecture-independent software optimizations; architecture-dependent software
optimizations; architecture customization to a given application. Extraction of
the profiling data can be accomplished with different profiling techniques which
are mainly categorized as static and dynamic profiling. Source code is analyzed
by parsing the code in order to expose the code structure. Code structure is
usually represented with data-flow graph (DFG) and control-flow graph (CFG)
or combination of both as control data flow graph (CDFG). Results from static
profiling are totally data-independent and purely based on the analysis of code
structure. On the other hand, dynamic profilers provides information on the dy-
namic behavior of an application is analyzed by executing the code with some
input stimuli.

Further, the application profiling tools can be divided into the following three
categories: source level, intermediate representation (IR) level and assembly level
profilers. Source level profilers are the ones used in the initial phase in order to
characterize the overall execution behavior of the application. GNU gprof [96],
GNU gcov [97], VfAnalyst [98] are some examples of source level application pro-
filing tools that make explicit the application bottlenecks and perform dependence
analysis. They generate statistics about the CPU time spent in each function,
and/or loop, and/or code line of the program. IR level or precision enhanced
source code profiling intends to have more accurate profiling data. LANCE [99],
microProfiler [100] and TotalProf [101] are some of the most popular tools that
provide more accurate profiling information in comparison with source level pro-
filers. For Instance, the microProfiler provides metrics such as the execution
frequencies of different arithmetic and logical operations, frequently used C data
types together with their dynamic min/max values, as well as, the bit width of
arithmetic operands and constants [100]. It also aims to aid designers to take de-
cisions about overall memory subsystem comprising of a number of different cache
levels, scratch-pad memories and main memory by providing profiling informa-
tion such as the total amount of memory requirements (e.g. static, run-time stack,
heap) of an application, the most heavily accessed source level data objects, the
most memory intensive portions of an application, etc. Assembly/instruction-set-
simulator (ISS) based profilers provides the most accurate results. These profilers
are specific to a particular microprocessor family. Examples of such profilers are
ATOM [102], HALT [103], Spix [104], Tensilica Xtensa Xplorer [105] and Stretch
Profiler [106], etc.

The application profiling tools as discussed above analyze the applications
mainly for the purpose of performance optimization on a particular microproces-
sor family or hardware/software partitioning of an embedded application, or archi-
tecture and custom instruction synthesis of an application-specific instruction-set
processor (ASIP). In the hardware accelerator context, the profiling results can
be used to discover and characterize the bottlenecks of the application for a possi-
ble hardware acceleration. Also, the profiling tools provide analysis regarding the
memory hierarchies, cache misses, branching, etc. Since hardware accelerators are
usually targeted to those parts of an application that mainly involve deterministic
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parallelism, most of this kind of analysis results are not useful. Moreover, in most
cases the source and IR level profilers perform the performance estimation assum-
ing execution on a single-issue RISC processor. The so computed performance
estimates can be used to discover application bottlenecks, but cannot be used
directly to resolve the bottlenecks through hardware acceleration, i.e. to decide
how much parallelism and which way have to exploited to achieve the required
performance. For this purpose adequate application parallelization (APP) and
architecture exploration and synthesis methods and tools are needed.

Many compilers and APP tools are based on the Stanford University Interme-
diate Format (SUIF) compiler infrastructure [107], which was especially developed
to support parallelism identification. The SUIF frontend supports compilation of
C, C++ or FORTRAN into SUIF high-level machine-independent intermediate
representation (IR), which is a data-flow representation. From this high-level IR,
the Machine-SUIF, a back-end compiler, creates a medium-level IR and then a
low-level machine representation [108]. Many compilers and other synthesis tools
use SUIF for application analysis, as well as for machine-independent applica-
tion restructuring and optimization, HW/SW co-synthesis and high-level hard-
ware synthesis. For instance, Napa-C [109] and Nimble [110] compilers perform
HW/SW partitioning and map the hardware kernels to FPGA hardware. Mal-
leable Architecture Generator (MARGE) maps application blocks to collaborating
hardware sub-systems implemented on FPGAs as functional units composed of a
data-path and a controller [111]. CASH [112] transforms ANSI C to RTL Verilog
constructing a distributed hardware architecture. Also, the RAW compiler [113],
which converts C or Fortran to Verilog, uses SUIF to perform parallelization.
DEFACTO [114] uses SUIF to get the data flow representation from C, perform
selected loop transformations and data permutations on this representation and
produce VHDL. ROCCC compiler [115] that generates RTL VHDL from C uses
SUIF-2 and Machine-SUIF for the control and data flow graph analysis. It per-
forms loop restructuring, storage optimization and pipelining, when using its own
IR. MATCH compiler [116] uses SUIF and MATLAB M-File with compiler direc-
tives to transform architecture expressed in MATLAB into RTL VHDL for FPGA
implementation.

Several other non-SUIF-based compiler front-ends are used for analyzing ap-
plications, including the well-known GNU GCC compiler [96, 97]. For instance,
ASC [117] translates C++ programs into FPGA hardware, when making possi-
ble an iterative design space exploration and tradeoff’s exploitation among the
latency, throughput and area. Trimaran [118] and LANCE [99] environments use
C front-ends and DFG IR representations for the application code analysis and
parallelization.

Automatic parallelization (restructuring) consists of converting a sequential
application code into a functionally equivalent more parallel version of the code
that can be executed simultaneously using multiple hardware resources (e.g. sev-
eral basic processors, accelerators or functional units). Automatic parallelization,
in many cases mainly focuses on loop optimization, because very often loops ac-
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count for a large majority of the computation effort and time.
Loop parallelization, also referred to as loop optimization, is performed as

a combination of several different loop transformations. For instance, loop par-
allelization tries to split or unroll a loop so that its different iterations can be
executed concurrently. However, before a loop can be actually parallelized, it has
to be analyzed if the parallelization is safe and worth of effort. The first question
is answered through data dependence analysis, i.e. determining whether the loop
iterations can be executed independently of each other, and the second through
estimation and comparison of the sequential and parallel execution times (also
accounting for the communication overhead) and of the resources used in each
case. Loop analysis is hard, mainly due to the difficulty of dependence analy-
sis (e.g. pointers, recursion, indirect addressing, indirect calls, etc.), accesses to
shared variables, I/O and other global resources, and the often unknown number
of loop iterations.

Popular loop transformations include: loop splitting/strip mining (breaks a
loop into multiple loops with the same bodies, but with different loop index sub-
ranges, with its special case being loop peeling that decides to perform that first
loop iteration before entering the loop for the remaining iterations); loop fis-
sion/tiling (splits a loop into several loops over the same index range, but each
having as its body only a part of the original loop’s body); loop fusion (com-
bines bodies of independent successive loops with the same number of iterations);
loop-invariant code motion (places a loop-invariant code before the loop); loop
permutation/interchange (exchanges inner loops with outer loops); loop unrolling
(replicates the loop body several times to decrease the number iterations, i.e. the
number of the loop condition tests and jumps - it is a kind of nested loop ex-
pansion enabling parallelism exploitation of the inner loops); loop un-switching
(moves an if/else condition from inside of a loop to the outside through duplicat-
ing the loop’s body and putting a copy of the body in both if and else clauses);
loop reversal (reverses the order of the index variable assignment, and this way en-
ables some dependency elimination); loop skewing (rearranges multi-dimensional
array accesses of a nested loop in which each iteration of the inner loop depends
on previous iterations, so that the dependencies are only between iterations of
the outer loop); software pipelining (a specific out-of-order execution of loop it-
erations used to hide the different latencies of various functional units that shifts
operations across the iteration borders through subdividing the loop operations
into several stages and executing in a single iteration stage 1 from iteration i, stage
2 from iteration i-1, etc.). Recursive Variable Expansion (removes all the data de-
pendencies from the loop and then the parallelism is only bounded by the amount
of available resources [119, 120]). More information on loop parallelization can be
found in [121–125].

For many applications, parallelism can also be substantially increased through
control restructuring, i.e. combining of control nodes, so that the operations cor-
responding to these nodes can be executed in parallel. Transformation of a serial
nested if-then-else structure into a parallel switch/case multi-branch structure can
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serve here as an example. More generally, the control restructuring involves join-
ing together frequently executed sequences of basic operation blocks. Since the
average instruction-level parallelism per basic block is between 2 and 3.5 [126],
basic block combining can further increase the instruction-level parallelism. Its
examples include the trace scheduling [127], as well as super block [128, 129] and
hyper-block formation [130, 131]. Combining of the frequently executed basic
block sequences makes it possible to eliminate the control constraints associated
with the alternative execution traces. For instance, trace scheduling finds com-
plete traces from the start to the end of a given control data flow graph (CDFG)
and combines the basic blocks of each such trace. Finalizing this section, it has
to be acknowledged that some information for this section has been recalled from
reference [1].

2.6.2 High-Level-Synthesis

The three main HLS tasks are: resource allocation, operation binding and opera-
tion scheduling. Resource allocation consists in deciding the quantity of hardware
resources of each type. Operation binding (assignment) consists in the mapping
of one or more operations on a given allocated resource instance. Binding of
several mutually exclusive operations to one resource instance realizes resource
sharing and facilitates hardware minimization. Scheduling determines the tem-
poral ordering of operations through assigning each operation to a given time
(control) step that corresponds to a state in the related control FSM. Two spe-
cific scheduling algorithms are ASAP (as soon as possible) and ALAP (as late
as possible). The difference between the ALAP and ASAP time steps of a given
operation represents the scheduling freedom of the operation. ASAP optimally
solves the unconstrained scheduling problem and its run-time is proportional to
the number of vertices and edges in the scheduled DFG. The constraint scheduling
problem is NP-complete [132, 133]. Therefore, heuristic algorithms are usually
used to solve it efficiently, as e.g. list scheduling [134], trace scheduling [135],
force directed scheduling [136], percolation scheduling [137], etc. Scheduling can
be performed before, after or together with binding. Since scheduling and binding
are strictly interrelated, several methods have been proposed to deal with their
interdependencies [138–140]. However, HLS still requires adequate extensions for
the control-dominated and mixed applications, speculative execution and con-
ditional resource sharing [141, 142], as well as, for the run-time reconfigurable
systems.

Moreover, most of the HLS methods were developed for the former ASIC
technologies. They made assumptions on costs of different kinds of hardware re-
sources that do not hold for the modern nano-dimension technologies and FPGAs.
For instance, the interconnection costs of secondary importance in traditional
ASIC technologies are dominant in the modern nano-dimension technologies and
FPGAs, simple arithmetic units (e.g. adder) traditionally assumed to be much
more expensive than multiplexers or registers are of comparable cost in FPGAs,
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etc. Also, power and energy minimization is very important for modern appli-
cations and implementation technologies with static (leakage) power becoming
more and more important factor. Consequently, while traditional HLS meth-
ods were focused on the optimization of a certain tradeoff between the hardware
speed and arithmetic resources needed, the HLS methods required for the modern
re-configurable systems have to perform the multi-objective optimization of the
overall architecture, while adequately addressing the growing interconnect and
power/energy consumption importance. Below the recent research in the fields
that require re-work or extensions are briefly reviewed.

Some of the HLS methods that account for interconnect and other resource
minimization are discussed in [143–149]. Most of them are focused on bit-width
aware scheduling and binding or multiplexer cost minimization during binding.
However, one should also not forget the importance of accounting for the complex-
ity of controllers necessary for the implementation of resource sharing, conditional
execution and other concepts, their interrelations and interconnections with the
controlled data-paths, as well as for the overall hardware architecture refinement
and optimization at the RTL-level between the traditional output of HLS and
input of the actual circuit synthesis. Adequate addressing of these issues can
give substantial resource reduction effects [150]. For applications involving both
data and control dependencies specific scheduling heuristics [151, 152], as well as,
speculative execution [153] and conditional resource sharing [152] techniques have
been proposed.

Traditional HLS tools work for a static hardware and require a substantial
extension to support the run-time re-configuration, and particularly, to account
for the temporal partitioning and re-configuration overhead. One of the first works
on scheduling and temporal partitioning, while accounting for the re-configuration
time is reported in [154]. In [154, 155] temporal partitioning, scheduling and
clustering is discussed for DFG modeled behaviors, and in [156–158] for mixed
behaviors. In [159] a tabular method is proposed for synthesis of re-configurable
control-dominated systems. It should be stressed that algorithm parallelization
techniques, pipelining, as well as scheduling and binding optimization of the loop
bodies are the main techniques that have to be used in combination to create
high-quality coarse-grain hardware accelerators. Consequently, these techniques
have attracted much attention in recent research and development in the field of
the coarse-grain accelerator synthesis [160–167].

In the past, there has been a substantial body of research and development
in the coarse-grain acceleration, especially related to the loop extraction and
their parallel hardware implementation. For instance, the Nimble compiler [168]
extracts loops for hardware acceleration and performs hardware-oriented loop
optimizations (e.g. loop unrolling, fusion, and pipelining) to generate multiple
optimized versions of each loop. Subsequently, it decides which loops and which
loop version will be actually implemented in hardware using a quality metric
accounting for the execution times in hardware and software, and hardware re-
configuration time. In a similar way, BRASS [169, 170] and DEFACTO [114]
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select and process loops for their realization in hardware. Also, the innermost
loop synthesis was investigated using some loop transformations techniques for
re-configurable co-processors through pipeline vectorization in [171]. Loop tiling
was considered for re-configurable accelerators in [172].

Hardware compilation from HLLs, and specifically from C sub-sets or dialects,
has been intensively studied already since the early 1990s. For instance, PRISM
[173] compiled from a C sub-set to an FPGA-like architecture. Deep C com-
piler [174] created synthesizable Verilog from C or FORTRAN. There are also
many recent works in this field. SPARK [13] compiles C to synthesizable RTL
VHDL. It creates data-path/controller architectures through performing some
optimizations and scheduling of the application flow graphs, when exploiting the
loop transformations and other code-restructuring techniques, as well as resource
binding that minimizes interconnects. In the scope of the Cameron project [175],
the SA-C (single assignment C) dialect of C has been developed to support hard-
ware compilation for image processing applications for general re-configurable
architectures, when using compiler directives to describe the hardware structure.
SA-C is translated to behavioral VHDL using DFGs as IR, by exploiting similar
techniques to SUIF (e.g. loop transformations, pipelining, data analysis, etc.) to
create optimized DFGs. The DFG nodes representing arithmetic or logic opera-
tors are then implemented as combinational circuits, loops as pipelines controlled
by FSM controllers, and data transfers as communication circuitry. This results
in a heterogeneous mixed-grain accelerator architecture.

Recently, the exploitation of HLL compilers for application analysis and hard-
ware compilation gets much more popularity in the industry. Synopsys provides
hardware compilation from untimed sequential C algorithms with a HLS tool
called Synphony C Compiler. Another Synopsys tool called the Synphony Model
Compiler provides an automated method to synthesize electronic-system-level
algorithmic representations from the Simulink/MATLAB model-based design en-
vironment. The tool allows the designers to explore the area/speed tradeoffs
from a single model and to automatically create RTL-level hardware implemen-
tations. The Cadence C-to-Silicon HLS tool creates synthesizable RTL from un-
timed C/C++/SystemC algorithmic specifications. The Mentor’s Catapult C
Synthesis [20] HLS tool performs an automatic compilation from C/C++ into an
RTL-level hardware netlist guided by the synthesis directives. It performs loop
restructuring, variable and array mapping, and scheduling. Impulse CoDeveloper
[22] includes a HLS tool called the Impulse C compiler that is based on the stan-
dard ANSI C. It provides an interactive parallel optimizer and Platform Support
Packages for a wide range of FPGA-based platforms. It supports application
profiling and HW/SW partitioning, parallelization and pipelining of critical C
code sections mapped to hardware, and automatic generation of the correspond-
ing FPGA hardware. The FORTE design system [176] provides a HLS tool called
Cynthesizer that generates RTL from a high-level SystemC-TLM design descrip-
tion as input. MATLAB provides a hardware compilation tool HDL Coder [177]
that compiles DSP applications specified in Simulink models and MATLAB code
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to their corresponding VHDL code for FPGA implementation, when exploiting
pre-designed IP hardware blocks. The Xilinx AutoESL [25] HLS tool enables C,
C++ and SystemC specifications of the applications and generates synthesizable
RTL targeted to various Xilinx FPGAs devices. In parallel to the above commer-
cial tools, some HLS tools are also researched in academia such as LegUp [19] and
GAUT [178], etc. The LegUp is an open source HLS tool based on the LLVM
compiler infrastructure [179] that generates RTL Verilog for Altera FPGA de-
vices. The LegUp tool employs the basic ASAP and ALAP scheduling techniques
for operation scheduling based on the LLVM IR format. The GAUT is dedicated
specifically to DSP applications. Starting from a pure C function, GAUT ex-
tracts parallelism before the resource allocation, assignment and scheduling. It
generates as an output a synthesizable RTL level VHDL.

There are several reasons of the inadequacy of the traditional design ap-
proaches discussed in the previous two sections for the hardware accelerator design
for highly-demanding applications. Some of the major reasons are the following.
While the existing APP methods and tools may reasonably well make explicit the
application bottlenecks and parallelism potential, exploitation of this potential to
resolve the bottlenecks, while satisfying the application-specific constraints and
objectives, is a very complicated task that is not well supported. It requires a
combined exploitation of many possible parallelization operations at both micro-
and macro-architecture level in such a way that the result satisfies the applica-
tion constraints and optimizes the required tradeoffs among its objectives. It
requires an actual (partial) architecture exploration and synthesis based from one
side on the application analysis results, as delivered by the APP techniques, but
from the other side on the estimation of the physical, economic, etc, parame-
ters of the architectures under exploration and construction that are involved in
the constraints and objectives. To our knowledge, no method has been proposed
to perform such accelerator architecture exploration and synthesis. Therefore, a
novel quality-driven model-based design method is proposed in the research re-
ported in this thesis. Another major limitation is that the HLS tools only support
the micro-architecture synthesis of a single processing unit, while not taking into
account for the micro-architecture, memory and communication structures and
tradeoffs among them. Even in case a parallel application structure is available,
the complex task-level inter-/intra-/iteration-level loops dependencies between
the data and computing operations require optimum design of complex memory
and communication structures for the inter-/intra-loop data transfers, as well as,
the complex scheduling problems on multiple resources (e.g. several basic proces-
sors, accelerators or functional units), that are far beyond the capabilities of the
traditional HLS methods and tools.

Summing up, the existing application analysis and parallelization (APP), and
the high-level-synthesis (HLS) tools offer only some limited partial capabilities
for supporting the design of high-performance hardware accelerators for highly-
demanding applications.
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2.6.3 Overview of Hardware Accelerator Designs for Highly-
demanding Applications

Here, several architecture designs proposed in the past for the LDPC decoding
applications are discussed. They are further used in the evaluation of the proposed
design methodology.

LDPC decoder design space is a complex multi-dimensional space. Many
LDPC codes have been developed for various communication system standards
with several code rates (R) and code lengths (L) in different application scenarios.
From the algorithmic perspective, several different iterative decoding algorithms
are available with varying error-correcting performances and complexities. Fi-
nally, numerous decoder architectures and their implementations are possible.
Each of the above-mentioned aspects has a different impact on the accelerator de-
sign and generates various tradeoffs. For instance, more effective error-correcting
algorithms require more complex computation processes, what results in a lower
performance or in an increased accelerator hardware complexity and increased
energy consumption. An often need to account for various LDPC standards with
several PCMs, code rates or code lengths in one system, demands from the ac-
celerator to be (re-)configurable. The ultra-high throughput demands and other
stringent requirements decide to a high degree the accelerator architecture and
implementation strategies. Having particular application requirements, all the
above-mentioned design aspects have to be taken into account together to design
an effective and efficient hardware accelerator for the LDPC decoding application.

The belief propagation (BP) algorithms, also known as message passing (MP)
algorithms, are the most popular algorithms used for the LDPC code decoding.
These algorithms are more precisely described in Chapter 4 of this thesis. They
were proposed by Gallager [2], with a large algorithmic level optimizations pro-
posed recently [40–42]. One of the most popular optimization is the layer belief
propagation (LBP) algorithm, that serializes the BP algorithm in terms of its
message updating sequence between the check and variable node updates, what
results in convergence in half the number of iterations of BP algorithm [41]. In
the original BP algorithm, all the variable nodes can be updated simultaneously,
followed by the check node updates. However, in the LBP algorithm, together
with each variable/check node update, all the connected check/variable nodes are
also updated, before the start of next variable/check node update. This way all
the recent updates, i.e. the most up-to-date information is used, which acceler-
ates the convergence process. On the other hand, the benefit of the standard BP
is their high parallelism in one or other kind of nodes, thereby the possibility of
exploiting more parallelism, what is actually needed for the highly-demanding ap-
plications. On the hand, the LBP algorithms are sequential, but converge faster
and require less number of iterations compared to the standard BP algorithms.

Several LDPC decoder implementation strategies are researched in the past.
The implementation spectrum of LDPC codes spans between the two extremes
of a fully-serial and a fully-parallel realizations, with in between a large number
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of partially-parallel choices. The partial parallelism can be realized at two lev-
els, i.e. the micro-architecture and the macro-architecture level. However, the
past research only exploits full parallelism at each of the two levels [44–51], or
fully-serial at both levels [43]. On the other hand, in case of partially-parallel
macro-architectures, the partial parallelism is exploited only at the two extremes
of micro-architecture level (fully-serial or fully-parallel micro-architecture) with
just one ad-hoc selected macro-architecture partial-parallelism to achieve the re-
quired performance, without actually taking into account the mutual tradeoffs
between the micro- and macro-architecture level, and even more importantly,
without considering the complexity of the corresponding memory and commu-
nication structures [52–83]. As a result, the research efforts then concentrated
on some ad-hoc approaches to optimize the various design parameters for these
limited architecture choices, without actually exploring the architectures with all
their complexity result in inferior designs. The above-mentioned architectures
and their features are discussed in more detail as follows.

The advantage of the fully-parallel implementations is the very high through-
put, but they are very complex and costly, and extremely inflexible regarding
adaptation to various code lengths and code rates. The main problem of in-
terconnects complexity for the fully-parallel LDPC decoders has been the focus
of several research works in the past, with the main aim to minimize the in-
terconnect complexities and delays [44–51], while satisfying the high-throughput
requirements. The approaches proposed in the above-cited works try to solve the
interconnect problems using the physical level interconnects optimizations, such
as wire partitioning or an adequate floor-planning, etc, instead of architecture-
level solutions. Moreover, the fully-parallel architectures can make sense only for
the short-length LDPC codes. For the long codes, they are impossible to realize
due to physical limitations. For example, the fully-parallel LDPC decoder de-
sign presented in [44] for the rate-1/2 LDPC codes and even of short length of
1024-bit lead to an average net length of 3 mm, the total die size of 52.5 mm2,
the power consumption of 690 mW and delivers a throughput of 1 Gbps. The
architecture was targeted to CMOS 0.16 µm technology with five metal layers.
However, the LDPC codes used in the digital video broadcasting standard (DVB-
S2) are of 16200-bits or 64800-bits in length, what makes it impossible to realize
in fully-parallel with a reasonable area and power consumption.

On the other hand, the fully-serial approach (both at the micro-/macro-
architecture level) results in a low cost and a highly flexible architecture but
with an extremely low throughput [43]. The partially-parallel approaches are
most popular in research community mainly for the reasons of moderate level
of throughput, area and flexibility [52–83]. Different micro-/macro-architecture
parallelism levels result obviously in different architectures, which is presented
in most of the state-of-art research works on LDPC decoders with a kind of ad-
hoc complexity, performance and power comparisons. It is worth to be noted
that these architectures only exploit the macro-architecture level parallelism and
only consider the fully-serial or fully-parallel micro-architectures, with an ad-hoc
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selected macro-architecture level parallelism to satisfy the performance.
The above-mentioned architectures are further sub-categorized based on their

micro-architecture parallelism exploitation, i.e. either the fully-serial or fully-
parallel micro-architectures, to get an insight into their features. The architec-
tures proposed in [52–60, 62] exploit the fully-serial micro-architectures with some
macro-architecture level parallelism to meet the performance demands. However,
to meet the high performance demands with serial micro-architecture, a huge
macro-parallelism is usually required. Even exploiting the full macro-architecture
level parallelism, it is impossible to meet the high performance demands. More-
over, these architectures normally operate at high clock speeds due to their no
micro-architecture parallelism exploitation, which also causes a high dynamic
power consumption. This makes them specifically inappropriate for low power
applications. Finally, more macro-parallelism means even more complex memory
and communication structures.

On the other hand, the architectures presented in [61, 63–69] exploit the
fully-parallel micro-architecture and an ad-hoc selected macro-architecture paral-
lelism to meet the required performance demands. When the fully-parallel micro-
architectures are realized for high-degree check or variable nodes (i.e. computing
nodes with many inputs), the clock frequency drops tremendously due to a long
critical path, which drastically reduces the performance. To improve the perfor-
mance of such fully-parallel processing units, the processing units are aggressively
pipelined (even in some cases multiple pipeline stages) to increase the clock speed,
what in turn result in throughput improvement. Since for the high-end applica-
tions, hundreds of such processors are required, usage of the fully-parallel micro-
architectures results in a huge accelerator cost, due to the extremely large number
of pipelined registers. It is necessary to note that each processing element requires
as many pipeline registers as its processing parallelism, and not a single register.
Moreover, a further substantial increase of the cost results from the facts that for
the fully-parallel micro-architecture pipelining is also required on the memory and
communication side due to two reasons: the memory or communication structure
delays may surpass the processors delays after the processor pipelining; and to
balance or synchronize the pipeline.

Moreover, the memory and communication architecture design and related
complexity can not be ignored for the high-end applications. Therefore, to de-
crease the communication complexity, the more regular Quasi-Cyclic (QC)-LDPC
codes are adopted by the most communication standards, and the decoders are
designed specifically for these codes. Below, the papers that account in a way for
the memory and communication architecture for QC-LDPC codes are discussed.

Several papers on architectures for processing a single sub-matrix (serial micro-
architectures for CNP) of a single macro-row (macro-architectures parallelism of
CNP) and a single sub-matrix (serial micro-architecture for VNP) of a single
macro-column (macro-architecture parallelism of VNP) are published. While pro-
cessing a single sub-matrix in isolation only requires a simple local communication
network (switch) and a simple memory structure [52, 56, 57, 62, 72], it does not
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solve and does not even address the problem of an effective and efficient processing
of the whole PCM matrix and related required communication architecture for this
aim. Also, some architectures for processing only a single (or a part) macro-row
and a single (or a part) macro-column in a fully-parallel micro-architecture were
proposed, what required multiple local communication networks but no global
network [58, 61, 82]. However, as demonstrated in Chapter 6 of this thesis, for
the demanding accelerator cases, multiple such macro-rows and macro-columns
have to be processed in parallel. This requires solution of a much more complex
system of combined global and local communication problems, which results in
hierarchical networks and complex memory architecture.

A direct comparison of the LDPC decoder architectures presented in literature
is impossible due to the multi-dimensional and multi-objective design space of the
LDPC code decoders. The various dimensions are well discussed earlier. These
are: the various kinds of LDPC codes (code rates and code lengths) and their code-
specific implementations; various LDPC code decoding algorithms with different
complexities; different measures of number of iterations and bit precisions for
different bit-error-rate (BER) and frame-error-rate (FER); various application
requirements; different target technologies.

Due to the above issues, it is impossible to make a fair direct comparison
of these various architecture. Additionally, the various processing parallelism
exploited by different architectures further influences the picture. Nevertheless,
some comparisons can be found in literature, and they are mostly based on com-
paring the performance, power consumption, area (PPA) and in some cases, the
flexibility for different codes. Although authors of most architectures proposed for
LDPC in the past perform some sort of comparison based on the above-mentioned
parameters, these comparisons are not fair and of low value in most of the cases.
For example, comparing the architectures for one kind of LDPC codes with one
for another kind that are completely different in their features and requirements.

2.7 Conclusions

In this chapter, using examples of several modern highly-demanding applications,
it was shown that today’s programmable processors are not able to satisfy the per-
formance targets of many modern highly-demanding applications. To satisfy their
performance/power/cost demands, massively parallel hardware multi-processors
are needed. Afterwards, the main issues involved in the design of hardware accel-
erators for highly-demanding applications were discussed. It was shown that those
issues cannot be resolved using the traditional methodologies used for hardware
accelerator design, specially, “application analysis and parallelization” (APP) and
“high-level-synthesis” (HLS) methods, due to the APP and HLS limited scope
and capabilities. The issues were further elaborated using as an example real-life
application of LDPC decoding. Based on the analysis of the issues, the require-
ments were formulated that have to be satisfied by an adequate accelerator design
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method. Subsequently, the main concepts of the proposed design method were
discussed. This method will be discussed in detail in the next chapter. Finally,
an overview of the related research was presented.
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CHAPTER 3

Quality-driven Model-based Multi-processor

Accelerator Design Methodology

In the previous chapter, the issues of accelerator design for highly-demanding ap-
plications were analyzed and the main requirements that have to be satisfied by an
adequate accelerator design methodology were formulated. This chapter discusses
our novel quality-driven model-based multi-processor accelerator design method-
ology, which addresses the issues and satisfies the requirements. The methodol-
ogy is quality-driven and model-based. It is based on the quality-driven design
paradigm. It exploits the concept of a generic architecture platform, modeled us-
ing generic architecture templates, and is supported by a novel multi-objective and
multi-dimensional design space exploration (DSE) framework. The DSE frame-
work explores the various tradeoffs among the micro- and macro-architecture for
processors, and the corresponding memory and communication architectures, to
construct high-quality multi-processor accelerators. The complete DSE flow is
discussed in detail, starting from the design requirements to the final accelerator
implementation, and the importance of each possible tradeoff at each exploration
point is highlighted. The advantages of the proposed design method are discussed.
LDPC decoder design is briefly introduced as a case study, and the design param-
eters that can be influenced and decided during the DSE are discussed.

This chapter is organized as follows. Section 3.1 discusses our proposed
quality-driven model-based multi-processor accelerator design methodology and
the related design space exploration framework. In Section 3.2, the design method-
ology is extended to the design of re-configurable hardware accelerators. Section

43
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3.3 presents the proposed multi-objective and multi-dimensional design space ex-
ploration framework. Section 3.4 discusses the proposed architecture design space
exploration and synthesis algorithms for various design issues. Section 3.5 dis-
cusses the advantages of the proposed design method. Section 3.6 discusses the
design decision space and the search complexity of the proposed DSE approach.
Section 3.7 briefly discusses the application of the design methodology to the de-
sign of LDPC decoders and the parameters that can be influenced and decided
during the DSE. Section 3.8 concludes this chapter.

3.1 Quality-driven Model-based Multi-processor Ac-
celerator Design Methodology

In this section, we propose and discuss an accelerator design methodology which
addresses the issues of accelerator design for demanding applications and satis-
fies the requirements of an adequate accelerator design considered in the previous
chapter. This methodology accounts for the micro-architecture synthesis of basic
accelerators, as well as, for the macro-architecture, memory and communication
synthesis of the multi-processor accelerators. It considers the micro-architecture
and macro-architecture for the processors, and the corresponding memory and
communication architectures synthesis, as one coherent complex task of the ac-
celerator architecture synthesis, and not as several separate tasks. This allows
for an adequate resolution of the strong interrelationships between the micro-
architecture and macro-architecture for the processors, and the corresponding
memory and communication architectures, as well as, among the performance,
power consumption and area.

The methodology is quality-driven and model-based . It is well-known
that the design productivity and the design quality are major concerns in an
(embedded) system development. In order to adequately address the above issues,
quality-driven system design approach is proposed by Jóźwiak [1, 34–37], with a
new definition of the quality. According to the quality-driven design paradigm,
system design is actually about a definition of the required quality , in the
sense of a satisfactory answer to the following questions:

• What (new or modified) quality is required?

• How can it be achieved?

Consequently, quality-driven design methods and tools are necessary to ensure
that a system will represent the actually required quality. Therefore, the design
process for demanding hardware accelerators introduced and discussed here is a
specific realization of the quality-driven design process proposed and discussed
in [34]. In order to bring the quality-driven design into effect, quality has to be
modeled, measured and compared. To enable it, the following generic quality defi-
nition has been proposed in [34]: Quality of a purposive systemic solution is
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its total effectiveness and efficiency in solving the problem the solution
is required for. Effectiveness is the degree to which a solution attains its goals.
Efficiency is the degree to which a solution uses resources in order to realize its
aims. In turn, the effectiveness and efficiency can be expressed in terms of mea-
surable parameters, and in this way quality can be modeled and measured. Ef-
fectiveness and Efficiency of a systematic solution together decide its grade of
excellence. Their aggregation expresses quality. Design space exploration (DSE)
with usage of well-structured quality models makes us possible to limit the scope
of subjective design decision making and enlarge the scope of reasoning-based
decision making with open and rational procedures which can be computerized.
In particular, quality can be modeled in the form of multi-objective decision
models, being partial and abstract (i.e. reduced to the relevant and/or feasible
concerns and precision levels) models of the required quality, expressed in the
decision-theoretical terms. Multi-objective decision models, together with meth-
ods and tools for the estimation of the design parameters of these models related
to the relevant design aspects and performances, enable application of the multi-
objective decision methods for construction, improvement and selection of the
most promising solutions.

A very important aspect of the quality-driven system design is design reuse,
because it simultaneously enhances the system quality (due to the “maturity”
of the reused designs) and the development efficiency (due to reuse of results of
some development phases that are not necessary to be repeated). Therefore, our
accelerator design methodology exploits a mixture of design reuse and synthesis.
Generic system solutions, and especially generic system platforms for partic-
ular problem classes and generic architecture templates being their models,
are among the major enablers of an adequate mixture of design reuse and syn-
thesis. Since the generic templates are pre-designed based on the application
class analysis, they can be reused to organize, direct and speedup the acceler-
ator development process for each specific application of the class. Since they
are generic, they and their parts can be adequately instantiated to (better) suit
a particular application of a given class, but also some new application-specific
modules may be added. The general form of a generic template constrains the
solution search space to such a degree that the construction of particular solu-
tion instances for particular applications can be efficiently performed through an
appropriate instantiation of the generic architecture template, and computation
process scheduling and mapping on the instance of the template [34]. More general
templates can adequately support larger application classes, which makes them
better economically justified, as their non-recurring engineering (NRE) costs can
be shared by more applications. On the other hand, more specific templates can
be more effective and efficient in serving a particular application. The generic
template based system approach to application-specific system development is
thus well motivated both from the technological and economical viewpoint.

In order to explore the multi-objective and multi-dimensional design space
of hardware multi-processor accelerators effectively and efficiently, the generic
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model-based design approach is followed. According to Jóźwiak [34] well struc-
tured models of the required, proposed or delivered design quality can serve to
conceptualize, denote, analyze and communicate the customer’s and designer’s
ideas, to show that the requirements and designs are meaningful and correct, to
guide the design process, to enable the explicit and well-organized design decision
making with open and rational procedures, to enable design automation, etc. A
general model of the required quality is formed by the system requirements. It
is possible to distinguish three sorts of requirements: functional, structural, and
parametric (involving some physical performance parameters, economic parame-
ters, etc.). All the three sorts of requirements impose limits on the structure of a
required solution, but they do so in different ways. The structural requirements
define the acceptable or preferred solution structures directly, by limiting them to
a certain class or imposing a preference relation on them. The parametric require-
ments define the structures indirectly, by requiring that the structure has such
physical, economic or other properties (described by values of some parameters)
as fulfill given constraints and satisfy stated objectives. The functional require-
ments also define the structures indirectly, by requiring the structure to expose
a certain externally observable behavior that realizes the required behavior (fully
- if the requirements are formulated as hard constraints, or to a certain degree -
if they are formulated as objectives). The model of the required quality, repre-
sented by the design requirements, models the design problem at hand through
the imposition of a number of requirements on the acceptable or preferred solu-
tions, and so it can also be considered as an abstract model of a solution to the
problem. Since such a model limits the space of acceptable or preferred solutions
to a certain degree only, it models many solutions concurrently. Each of them
fulfils all the hard constraints of the model, but different solutions can satisfy its
objectives to various degrees.

For the reasons discussed above, the proposed accelerator design methodology
adopts the quality-driven model-based design exploration and architecture syn-
thesis approach proposed in [34], and exploits the concept of generic architecture
templates. The quality of the accelerator required is modeled in the form of its
design requirements involving the demanded accelerator behavior, and the struc-
tural and parametric constraints, objectives and tradeoffs to be satisfied by its
design.

Accelerator architecture synthesis consists in the creation of an accelerator
structure specification at the architecture level that supports the realization of the
accelerator’s behavior as specified by its behavioral requirements, and fulfills the
structural and parametric requirements to a satisfactory degree. This structural
specification defines:

• a set of architectural structural resources (i.e. computation, memory and
communication resources),

• an exact composition of the architectural resources to form the architecture
platform, and
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• a corresponding mapping of the required computation processes on the so
constructed architecture platform and a schedule of the computation pro-
cesses.

To perform the accelerator architecture exploration and synthesis effectively and
efficiently, the original accelerator requirements have to be analyzed and a partial
(reduced to only certain architecture related concerns) and abstract (reduced to
the necessary and/or possible precision level) architecture-level model of the re-
quirements being adequate for the architecture design issue has to be constructed.
The actual accelerator architecture exploration starts with such an abstract model
of the architecture design issue composed of:

• an abstract system behavior model representing a system of computations
that have to be realized;

• an abstract accelerator hardware platform model representing selected generic
architecture templates; and

• an abstract decision model composed of a set of constraints, objectives and
tradeoff preferences related to all accelerator characteristics important for
the architecture synthesis issue.

The decision model defines how the hardware resources and the mapping and
scheduling of the computational components onto the hardware resources are
constrained and interrelated, and represents the designer’s preferences and aspi-
rations. Its constraints and preferences have to be fulfilled to a satisfactory degree
by each acceptable architecture supporting the required computational processes.

Based on the analysis results of the so modeled required quality, the generic
architecture templates of a multi-processor and its modules are instantiated and
used to perform the DSE that aims at the construction of one or several most
promising accelerator architectures supporting the required behavior and satisfy-
ing the demanded constraints and objectives. This is performed through analysis
of various architectural choices and tradeoffs. The proposed approach consid-
ers the micro- and macro-architecture synthesis and optimization, as well as, the
computing, memory and communication structures’ synthesis as one coherent ac-
celerator architecture synthesis and optimization task, and not as several separate
tasks, as in the state-of-the-art methods. This allows for an adequate resolution
of the strong interrelationships between the micro- and macro-architecture, and
computation unit, memory and communication organization. It also supports
an effective tradeoff exploitation between the micro- and macro-architecture, the
memory and communication architecture, as well as, between the various aspects
of accelerator’s effectiveness and efficiency. According to our knowledge, the so
formulated accelerator design problem is not yet explored in any of the previous
works related to hardware accelerator design.

In more precise terms, the proposed quality-driven model-based multi-processor
architecture design method involves the following core activities:
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• design of a pool of generic architecture platforms and their main modules,
and platform modeling in the form of an abstract architecture template (once
for an application class)

• abstract requirement modeling (for each particular application),

• generic architecture template and module instantiation (for each particular
application),

• computation scheduling and mapping on the generic architecture template
instance (for each particular application and template instance)

• architecture analysis, characterization, evaluation and selection (for each
constructed architecture),

• architecture refinement and optimization (processing, interfacing, and mem-
ories abstraction refinement and optimization - for the selected architectures
only).

To perform the accelerator architecture exploration and synthesis effectively
and efficiently, a pool of generic architecture templates corresponding to a given
application class and their main resources (processors, memories and communica-
tion resources) are developed and modeled in advance. The generic architecture
templates and units are pre-designed by analyzing various applications of this
class, and particularly, analyzing the application’s required behavior, and ranges
of their structural and parametric demands. Each generic architecture template
specifies several general aspects of the modeled architecture set, such as presence
of certain modules types and the possibilities of the module’s structural com-
position, and leaves other aspects (e.g. the number of modules of each type or
their specific structural composition) to be derived through the DSE in which a
template is adapted for a particular application. To prepare an adequate set of
templates and models of their basic units, a significant analysis of the application
class and possible corresponding conceptual accelerator designs is necessary. In
fact, the generic templates represent generic conceptual accelerator designs which
become actual designs after adequate further template instantiation, refinement
and optimization for a particular application. The adaptation of a generic archi-
tecture template to a particular application with its particular set of behavioral
and other requirements consists of the DSE through performing the most promis-
ing instantiations of the most promising generic templates and their resources
to implement the required behavior, when satisfying the remaining application
requirements. In result, several most promising architectures are designed and
selected that match the requirements of the application under consideration to a
satisfactory degree. The significant analysis and design effort required to design
the architecture templates is however compensated due to enabling an effective
and efficient DSE when using the templates.
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ators

Figure 3.1 shows an example of a generic architecture template for an LDPC
decoding accelerator prescribing the presence and general structural organization
of the architectural resources. It involves parameterized variable node proces-
sors (VNP) and check node processors (CNP), memories and a communication
network for the communication among various processors and memories, ROM
that can be configured to particular PCM, Hard Decision and Parity Check Unit,
as well as, the Main Controller and Channel I/O Interface (see Section 4.3 of
Chapter 4 for more details). Different instances of the generic architecture tem-
plates and their processing, memory and communication modules define different
specific accelerators. Also, the original accelerator requirements, that may be
very complex and include many details not relevant for architecture synthesis,
have to be analyzed, and a much simpler abstract model of the behavioral and
parametric requirements being adequate for the architecture design issue has to
be constructed to enable an effective and efficient accelerator architecture explo-
ration. The actual architecture exploration starts with such abstract model of the
architecture design issue constructed in advance (see Figure 3.2).

For the development of the generic architecture templates and its modules ex-
isting system and circuit design methodologies and electronic design automation
tools can be used. This involves the design and implementation of the generic
template modules in hardware description languages (HDL) like VHDL or Ver-
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ilog, which include optimized parameterizable processing units, communication
and memory elements, and other generic architecture modules for an application
class. It also involves the design of the top-level generic architecture templates.
The generic HDL models can then be synthesized for different set of parameters,
what enables estimation of their physical parameters, and will be used to evaluate
the quality of various possible solutions. Moreover, the architecture models can be
used for simulation (executable models) and the actual hardware prototyping or
implementation as they are synthesizable models. The generic architecture tem-
plates are somewhat more difficult to develop than the instance templates due to
their generality for a given application class. However, without such generic mod-
els it would be impossible to make any reasonably accurate design decisions on
the architecture proposals. The carefully constructed and characterized generic
architecture models make possible evaluation of complex architecture decisions
with the necessary accuracy. Some practical examples of known generic architec-
ture platforms and templates are numerous FPGA platforms (e.g. from Xilinx
and Altera, etc) and (re-)configurable ASIP processors (e.g. from Tensillica or
SiliconHive, etc).

To start the actual architecture exploration and synthesis process, the abstract
behavioral and parametric requirements of a given application are analyzed to de-
cide the most promising instantiations of the most promising generic templates
and their resources (see Figure 3.2). Based on this analysis, the designer makes
a proposal of one or more promising generic architecture template instances and
their resource allocation that are expected to be adequate to realize the required
accelerator behavior and satisfactorily fulfill the parametric and structural re-
quirements. His decision is implemented through a corresponding instantiation
of the generic architecture template and of its modules. Moreover, the network
of computations represented by the accelerator behavior model is appropriately
distributed over the structure of modules of each of the promising instances of
the generic architecture templates and scheduled, when observing the paramet-
ric constraints, objectives and tradeoff preferences, to define one or more actual
accelerator architectures that satisfy the specific (structural, physical, etc.) hard
constraints and optimize the objectives of the quality model. Each actual ac-
celerator architecture is defined through the selected template configuration (i.e.
the selection and interrelationships of modules of a particular template), tem-
plate module configuration, as well as, assignment of the required computations
to the template modules and their schedule. The so constructed architecture is
subsequently examined and analyzed to check to what degree the constraints,
objectives and preferences are satisfied, this way, to provide feedback on the
exploration result to the designer. In this architecture synthesis process, both
the available accelerator resources, and the objectives, constraints and tradeoff
preferences are imposed by the designer. On the other hand, the mapping and
scheduling decisions determine the actual accelerator resource requests. To be ac-
ceptable, the resource requests must match in a satisfactory way the pool of the
available resources, in the light of the objectives, constraints and tradeoff prefer-
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ences. If this is not the case, the designer may decide to propose new promising
template instances (e.g. with more or more effective resources), create new more
adequate units, modify templates or create new templates, or even modify the
design requirements, and subsequently, to perform the next exploration cycle. If
the requirements are satisfactorily fulfilled by one or more of the created archi-
tectures, some of the satisfactory architectures are further analyzed, refined and
optimized, and finally, one of them is selected to be the actual application-specific
architecture instance for the application considered (see Figure 3.2). This way,
the pool of generic architecture templates and their corresponding parameterized
processing, memory and interconnect resources available for a given class of ap-
plications is adapted to a particular application characterized by its particular set
of behavioral and other requirements (see Figure 3.2).

During the DSE the major aspects of the multi-processor accelerator design,
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being its micro-architecture, macro-architecture, memory architecture and com-
munication structure, as well as, the tradeoffs among these aspects are considered
and decided to optimize the accelerator quality expressed with its quality met-
rics (such as throughput, operation frequency, area, energy consumed, cost etc.)
and information on the required tradeoffs. It is important to stress that these
macro- and micro-architecture decisions are taken in combination, because both
the macro- and micro-architecture decisions influence the throughput, area, and
corresponding other important parameters, but they do it in different ways and to
different degrees. For instance, by a limited area, one can use more elementary ac-
celerators, but with less parallel processing and related hardware in each of them,
or vice versa, and this can result in a different throughput and different values
of other parameters for each of the alternatives. Therefore, during the DSE, sev-
eral different promising combinations of the micro- and macro-architectures are
constructed and analyzed.

Finally, to decide the most suitable architecture, the promising architectures
constructed during the DSE are analyzed and characterized in relation to various
metrics of interest and basic controllable system attributes affecting them (e.g.
number of accelerator modules of each kind, clock frequency of each module,
communication structures between modules, schedule and binding of the required
behavior to the modules etc.), and the results of this analysis are compared to the
design constraints and optimization objectives. This way, the designer receives
feedback, composed of a set of constructed architectures and important character-
istics of each of the architectures, showing to what degrees the particular design
objectives and constraints are satisfied by each of the them. This feedback is used
by the designer to control the further progress of the architecture exploration
and synthesis process, and to decide the most suitable architecture. If all the con-
straints and objectives are met to a satisfactory degree by some of the constructed
architectures, the most suitable of the architectures satisfying the requirements
is selected, further analyzed, refined and optimized to represent the actual de-
tailed design of the required accelerator. This way, the architecture DSE results
in creation of an architectural structure that defines a specific composition of the
computation, memory and interconnection resources at the macro- and micro-
architecture level that supports the application’s behavior required and satisfies
its parametric constraints and objectives to a satisfactory degree.

3.2 Extension to (Re-)configurable Multi-processor
Accelerator Design

The re-configurable accelerator DSE aims at deciding one globally optimal adapt-
able accelerator architecture that adequately satisfies the requirements for all the
particular accelerator instances required for a given application (see Figure 3.3).
It decides one globally optimal adaptable accelerator architecture for all the ac-
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celeration cases required, and not a set of the best individual accelerators for each
particular acceleration case and their combined reconfigurable implementation.
For instance, for the rate-7/8 672-bit LDPC code of IEEE 802.15.3c standard
that has the highest check node degree (number of inputs) of 32 can be efficiently
realized using serial micro-architecture, while the rate-1/2 672-bit code could be
more efficiently realized in a parallel micro-architecture. Since the two architec-
tures have not much in common, their joint reconfigurable implementation as an
ASIC would involve extensive computation, communication and reconfiguration
resources, and would not be efficient. In case of the LDPC decoding, the goal is
to find one most promising reconfigurable accelerator architecture to adequately
satisfy the combined requirements of all the codes for a particular application,
and not a set of the best individual accelerators for each code separately and
their combined reconfigurable implementation. Moreover, it also accounts for the
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total re-configuration resources during the DSE. The actual DSE is performed as
follows.

Using the DSE approach of the non-reconfigurable accelerators as discussed
earlier, it first determines suitable accelerator architectures for the particular re-
quired acceleration cases that are most demanding in terms of throughput, area,
etc, (i.e. suitable decoding accelerators for the particular most demanding code
classes in case of LDPC). This results in finding a sub-set of suitable architec-
tures for each of the most demanding acceleration cases that satisfy hard con-
straints. The architectures determine alternative sets of the necessary resources
and configurations of the reconfigurable accelerator that are able to satisfy the re-
quirements of the most demanding acceleration cases, i.e. the resources and their
configuration that must be present in the reconfigurable acceleration system under
construction. Subsequently, some sub-sets of promising architectures for the less
demanding acceleration instances (codes) are explored and analyzed to determine
similarity in their structure to the most demanding accelerator architectures. Ex-
ploitation of the architecture similarity for different acceleration cases required
for a given application is of crucial importance for an adequate reconfigurable
accelerator construction. It is necessary to efficiently re-use the processing, com-
munication and memory resources for different required acceleration cases, and
to reduce the re-configuration resources.

Finally, knowing the necessary resources and the architecture similarity for
different required acceleration cases, the reconfigurable accelerator architecture
construction adequately adapts the accelerator architecture of the most demand-
ing case(s), or adapts and combines the accelerator architecture of the most de-
manding case(s) and several other individual accelerator architectures in such a
way, as to realize all the required acceleration cases (decoders for all the required
codes) and their particular requirements, but at the same time to minimize the
total processing, memory, communication and reconfiguration resources, and the
related power consumption, costs, etc.

As explained in Section 2.2 of Chapter 2, for ASIC-implemented re-configurable
accelerators the total re-configuration when using very general re-configuration
resources as in FPGAs is impractical. Therefore, to instantiate a particular accel-
erator, the aim is to (almost) only re-configure the interconnections between the
basic processing units to form larger processing units, and between the process-
ing units and memories, and to avoid the low-level reconfiguration inside of basic
processing units (e.g. to form the basic processing units from gates). For the
LDPC codes this is possible due to the strong similarities in the code structures,
decoding algorithms and operations required for different code rates, code lengths
and other requirements. Due to the re-configuration limited to the interconnect
configuration at the level of basic functional units, the re-configuration resources
remain limited, and the re-configuration overhead in the form of the configuration
controller and configuration information remains low.
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3.3 Multi-objective, Multi-dimensional Design Space
Exploration

In the previous two sections, the design methodology and its design space explo-
ration (DSE) framework for the multi-processor hardware accelerators are gener-
ally discussed. In this section, the core activities of the proposed multi-objective
and multi-dimension DSE framework are more precisely discussed. The DSE
framework is multi-dimensional in the sense that it jointly considers all the de-
sign dimensions: the processor, memory and communication sub-systems, as well
as, the mutual complex tradeoffs among them. It is multi-objective in the sense
that it targets various performance, area and power constraints/objectives and
tradeoffs among them through controlling the basic parameters that influence
them.

The multi-dimensional DSE enables to make adequate design decisions about
all design elements relative to their significance and impact from the total solu-
tion viewpoint. For example, for the applications involving complex memory and
communication issues, minimization of the processing resources for a certain per-
formance level may influence the memory and communication cost significantly.
Therefore, the DSE is performed considering the global optimization objectives
and tradeoffs among all the design dimensions, considering their relative influ-
ences and significance. This cannot be achieved with the limited exploration
capabilities offered by the today state-of-the-art architecture synthesis methods
and tools (considering in most cases only the processing resources as being repre-
sentative to considering the overall system resources). Moreover, in each of the de-
sign dimensions further explorations are possible to exploit other various complex
tradeoffs inherent to the dimension. For instance, the performance/area/power
is influenced in a different way and to a different degree by each micro-/macro-
architecture decision regarding processors for a certain performance level. More
importantly, while considering the total solution quality, adequate decisions have
to be made regarding the communication and memory architecture for a particu-
lar processing micro-/macro-architecture, as well as, the mutual tradeoffs among
them. Therefore, we account in the design exploration for all the above discussed
and similar issues related to all design elements, and integrated the corresponding
adequate mechanisms into the multi-objective multi-dimension DSE framework.

To adequately serve applications that demand ultra-high throughput, mas-
sively parallel hardware multi-processors are required. If these applications in-
volve massive operations on data and complex irregular relationships between the
data and computing operations on the data (as e.g. in the LDPC decoding),
the communication and memory influence on the performance, area and energy
consumption tends to dominate the processor influence. Therefore, in the design
of high-performance accelerators for the data and communication intensive ap-
plications all the architecture and mapping decisions regarding processors should
be made in favor of reducing the complexity of the communication and memory
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structures. For some less memory or communication intensive applications, the
decision can be made in favor of computing hardware. These decisions among
others are the scheduling and mapping decisions regarding the processors and
the data allocation and mapping decisions regarding memories, etc. The multi-
objective and multi-dimensional DSE is able to take adequate design decisions
based on the actual influence and significance of each design element, and this
way to control the global quality and tradeoffs in multiple dimensions.

The multi-objective and multi-dimensional DSE framework is represented in
the form of a flow diagram in Figure 3.4. To start the actual architecture ex-
ploration and synthesis process, based on the initial requirement analysis and
information on values of the design element characteristics, the designer makes
a proposal of a certain number of particular instances of processors that would
be sufficient to realize the required system behavior while satisfying the design’s
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parametric requirements. The processors have to handle the overall computation
load. The number of processors and the processor type directly influence the
performance. Therefore, the DSE seeds with a particular processing parallelism
represented by the number and type of processors, that seems to be sufficient
to realize the required performance. The parallelism can be realized through a
number of promising micro-/macro-architecture combinations, as shown in Fig-
ure 3.4. Since a generic template-based design approach is followed, the generic
processor templates make it possible to instantiate many different architecture
instances with different micro-architecture level parallelism for a given applica-
tion task (as e.g. in case of LDPC decoding, for the check node and variable
node computations). Each micro-/macro-architecture combination influence the
performance and other related attributes to different degrees. For instance, in-
crease of the micro-parallelism for a specific task can reduce the number of clock
cycles to execute the task and this way improve the performance. However, it
is accompanied by an increase in resources, as well as, the increase of critical
path delays (what results in the reduction of the processor clock speed), thereby
negatively influencing the overall performance. Tradeoffs of this kind have to be
considered during the micro-architecture exploration and synthesis, as shown in
Figure 3.4. Moreover, the application or designer can impose the clock speed as a
hard constraint, and in consequence, the micro-architectures that do not satisfy
this constraint will be directly pruned away, reducing the search space. Also,
the tradeoffs at the macro-architecture levels have to be considered together with
the micro-architecture parallelism. In addition to the mutual tradeoffs between
the micro-/macro-architecture levels, the processing architecture at both levels
can also influence the related memory and communication structure in various
ways and to different degrees. For instance, for a high micro- and low macro-
parallelism, the local communication complexity may be high compared to the
global, and vice versa. All these tradeoffs regarding processors and their signifi-
cance will be explained in detail in Chapter 5.

An important exploration decision related to the processors is the task schedul-
ing and task mapping on the processors (e.g. in case of LDPC decoding the
mapping of Tanner graph nodes to check and variable node processors). Two
kinds of schedules, namely the tight schedules (TS) and relaxed schedules (RS)
are employed in the proposed DSE framework. The tight scheduling is performed
through the exploitation of any possibility to maximize the processor utilization.
This would result in the reduction of the total schedule length and this way en-
hances the performance. Alternatively, a reduction in the number of processors
can be achieved for a fixed performance. However, it may increase the complexity
of the communication and memory architectures as discussed earlier. Therefore,
we refer to this type of schedule as the tight schedule, in which the processor
utilization is maximized (equivalently minimize the schedule length for the allo-
cated resources), and then must guarantee the necessary data transfer bandwidth
at any cost of memory and communication. In the tight schedules, there is no
possibility for the task rescheduling to processors. On the other hand, in the re-
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laxed schedules, some rescheduling possibility of tasks to processors is preserved
(while still meeting the performance constraints), thereby utilizing this scheduling
freedom for the memory or communication costs reduction, in case the memory
or communication costs dominates the processors cost. Through exploitation of
the TS and RS schedules, the following two aims are realized. For the processing
intensive applications, i.e. when the processors costs have the major influence
on the overall system costs, the aim is to decrease the cost of the processing re-
sources through applying the proposed TS scheduling approach. For the memory
and communication intensive applications, i.e. if the memory or communication
costs dominate the processors costs, the aim is to tradeoff the processors costs for
the memory and communication costs through applying the relaxed scheduling.

All the information from the processor exploration (e.g. the number of proces-
sors and each processor type and the multiple scheduling decisions as described
above) are passed to the total DSE that acts as a total system quality controller
and decision maker, as shown in Figure 3.4.

The processor micro-/macro-architecture decisions and the associated initial
scheduling and mapping decisions are passed through the total multi-processor
DSE framework to the communication and memory architecture exploration and
synthesis engine, as shown in Figure 3.4. The communication and memory ar-
chitecture exploration and synthesis aims at finding an adequate communication
and memory architecture to satisfy the required bandwidth among the memories
and processors or processors and processors for the instantiated micro-/macro-
architectures, while taking into account the processor scheduling and mapping
decisions. The memory exploration engine resolves the memory access bottle-
necks and ensures the required memory bandwidth in the presence of complex in-
terrelationships among the data and computing operations through effective data
allocation and mapping in multiple vector/multi-bank memories, supported by the
communication exploration engine (see Figure 3.4). Specifically, we incorporated
into the memory and communication architecture exploration framework, some
novel memory and communication design strategies that ensure the memory and
communication scalability for the massively parallel hardware multi-processors re-
quired for the ultra-high (multi-Gbps) performance applications. The particular
strategies of the memory and communication exploration and the related trade-
offs will be explained in detail in Chapter 6 on the memory and communication
architectures.

All decisions regarding memory and communication, as well as, re-scheduling
decisions (if any) about processors are passed to the total design space explo-
ration engine for each architecture instance. The total design space exploration
has a built-in hardware estimator that computes the contribution of the indi-
vidual design element to the total design area (cost), delay/throughput, power
consumption, etc, to see their relative impact on the overall system quality. This
way through the (partial) construction, analysis and evaluation of a number of
promising architectures, an architecture that satisfies all the design constraints
and objectives in the best possible way is actually constructed and selected.
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All the architecture related information (e.g. the number and processor types,
the memory and communication architectures) of the selected architecture are
passed to the architecture template instantiation engine that creates the complete
top-level RTL description of the selected architecture, that could further be used
by the back-end synthesis and place and route tools for ASIC synthesis or for
rapid prototyping using FPGAs, as shown in Figure 3.2. This way a high-quality
hardware accelerator for a particular set of requirements can be very effectively
and quickly created through the proposed novel quality-driven model-based multi-
processor design methodology supported with a novel multi-objective and multi-
dimensional DSE framework.

3.4 Architecture Design Space Exploration and Syn-
thesis Algorithm

The proposed design space exploration (DSE) approach is not a “generate and
check” approach in which the architectures are exhaustively or randomly gener-
ated and then checked to select the best of them, but it is a careful construction,
analysis and selection approach in which only a limited set of the most promising
architectures is stepwise constructed, analyzed and selected. The careful construc-
tion, analysis and selection of the (partial) solutions is a specific implementation
of the quality-driven design decision-making process described in [35]. In this
process, the design problem is decomposed into a number of interrelated issues.
For each of the issues an issue quality model is extracted from the quality model
of the total problem to guide the design decision making in the scope of this is-
sue. The quality models involve the behavioral, structural and parametric parts.
Using the issue quality models the set of issues is solved and the issue solutions
are then composed to the complete problem solutions.

Unlike the traditional top-down design approach, in which the solutions (ar-
chitectures) are generated and iteratively refined based on only (or mainly) the
behavioral and parametric specifications, the proposed approach constructs so-
lutions (architectures) heavily based on the structural specifications and related
structural models, and not only on the behavioral and parametric specifications.
The architecture construction is guided by the earlier developed quality models
involving: behavioral models, structural (architecture) models and parametric
models. The DSE framework operates on these models to perform the actual
architecture synthesis. This way, our approach is a “meet in the middle” ap-
proach, which is neither a fully top-down nor a fully bottom-up approach, but
a wise combination of these two approaches. Like in the bottom-up design ap-
proach, the structural models of the basic processing, memory and communication
elements are constructed and characterized in advance (modeled in a hardware
description languages like e.g. Verilog/VHDL). These basic elements are however
generic (parameterized) and can be instantiated to suit different requirements.
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Also, a generic top-level architecture template is constructed in advance. Then,
the DSE is performed in the top-down manner to construct and explore different
architectures, starting from the applications behavioral requirements and related
parametric constraints and objectives, but only constructing some of the most
promising architecture instances defined by the generic architecture template and
its generic modules, and analyzing the architectures based on the known module
characteristics.

Since this research does not focus on application parallelization that is reason-
ably covered by related research (see Section 2.6 of Chapter 2), it is assumed that
the application specification at the task level is available in a fully parallel form,
with parallelism exposed for both of the architecture levels, i.e. the micro- and
macro-architecture level. The major exploration activities in the DSE framework
involve the construction, analysis and the selection of various most promising
combinations of application-specific processors micro- and macro-architecture in-
stances, and the corresponding memory and communication architecture instances
realizing the application’s behavior in the light of the specific design constraints
and objectives.

The quality of the required accelerator is represented by the following require-
ments: the behavioral accelerator specification in an adequate parallel form, the
required accelerator throughput and frequency, as well as, the required tradeoff
between the accelerator’s area and power consumption, and the structural require-
ment to be constructed as one of the possible instances of the generic architecture
template and its modules. In a large majority of practical cases, the throughput
and clock speed are the hard constraints that must be satisfied, while the area,
power and their mutual tradeoffs are considered as the design objectives that
have to be optimized. In these cases, the effectiveness of an accelerator is rep-
resented/measured by the throughput (Tcstr) and frequency (Fcstr) constraints,
while the area, power and their mutual tradeoffs reflect the efficiency of the accel-
erator. This way, the required accelerator quality is modeled, and this model of
the required quality is then used to drive the overall design process that carefully
step-wise constructs the most promising architectures. Any other formulation of
the required quality is also possible, like for instance performance optimization for
a given limit on resources. However, in most of the practical hardware accelerator
design problem formulations, the throughput and clock speed are considered as
the hard constraints, while the area, power, and the tradeoffs between them as
optimization objectives. Therefore, this formulation of the required quality was
used to perform the actual DSE in the design experiments.

Before further discussing the DSE and synthesis algorithm, the multi-objective
decision making (MODM) problems, as well as, the related basic definitions and
types of solutions (alternatives) are briefly introduced. This will help in under-
standing of the decision-making approach at each step of the DSE and synthesis
algorithm.
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MODM problems are usually formulated as:

min
x∈S

z(x) = min
x∈S

[z1(x), z2(x), ....., zk(x)]T (3.1)

subject to: gj(x) ≥ 0, j = 1,2,.....,m, and x = (x1,.....,xn) ∈ S (3.2)

where x ∈ S is an n-dimensional vector of decision variables, which represents
an alternative, and S is the decision space; zl(x) = lth is objective function, l =
1,2,...,k ; gj(x) = jth constraint function, j = 1,2,...,m; and z(x) = [z1(x), z2(x),
....., zk(x)] is the vector of objectives to be optimized.

There are many different types of solutions (alternatives) distinguished in
MODM problems. However, here the two types of solutions (alternatives) will
be introduced that make the basis for the design decision-making in the DSE
algorithm.

Definition 1. Feasible Solution: A feasible solution is a solution that
meets or exceeds the decision maker’s (DM) minimum expected level of achieve-
ment for all decision criteria. Criteria represent the rules of acceptability or stan-
dards of judgment for the alternatives. The solutions satisfying the constraint
gj(x) ≥ 0 constitute a feasible decision space S′ ⊂ S.

Definition 2. Non-dominated (Efficient) Solution: A feasible solution
(alternative) x(1) dominates another feasible solution (alternative) x(2), if x(1)

is at least as good as x(2) with respect to all criteria and is better than x(2)

with respect to at least one criterion. A non-dominated solution is a feasible
solution that is not dominated by any other feasible solution. That is, for a non-
dominated solution an increase in the value of any one criterion is not possible
without some decrease in the value of at least one other criterion.

Definition 3. Ideal Solution: An ideal solution is the vector of individual
optima obtained by optimizing each objective function separately ignoring all
other objectives in the feasible region. That is a point z◦ = (z◦1 , z◦2 , .....z◦k) is
an ideal vector, if it minimizes each objective function zi in z(x), i.e. z◦i =
min(zi(x)), x ∈ S, i ∈ [1, ....., k]. In most practical cases, the ideal objective
vector corresponds to a non-existent solution.

Definition 4. Dominance Relation: The dominance relation “alternative
x(1) dominates x(2)” (x(1) � x(2)) is defined as

x(1) � x(2) ↔ ∀i ∈ [1, ....., k] : z
(1)
i ≤ z

(2)
i ∧ ∃i ∈ [1, ....., k] : z

(1)
i < z

(2)
i (3.3)

Definition 5. Pareto Optimality: A solution x∗ ∈ S is Pareto-optimal if
for every x ∈ S, z(x) does not dominate z(x∗), i.e. z(x) � z(x∗).

In the DSE algorithm, the decision making on a particular alternative for a
certain design issue is based only on the hard constraints and dominance rela-
tion, and tradeoffs regarding the optimization objectives. In most cases, the hard
constraints are on the throughput and the clock speed, and the optimization ob-
jectives are related to the area and power consumption, and tradeoffs between
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them. Violation of any of the hard constraints would rule out a potential solu-
tion. The dominance relations are devised for each of the design issues. It will
be explained latter how the hard constraints and dominance relations are used
in pruning the design space towards the Pareto-optimal (non-dominated) partial
solutions at each step in the DSE algorithm for each particular issue. The ar-
chitecture decisions are evaluated based on the values of the parameters of the
pre-designed architecture models for various partial solutions at each step of the
design. The parameters set consist of {Fmax, CC, A, PW@Fmax} for a given com-
putation task, where Fmax represents the maximum clock speed of the processor,
CC represents the number of clock cycles required for a given computation task,
A represents the (resources) area, PW represents the total power consumption
at Fmax. Some parameters may not be applicable for certain design issues, for
instance CC in case of memories. First, the design issues that are considered
during the DSE are described, followed by their resolution method based on the
hard constraints (constraint satisfaction) and dominance relation.

The architecture design space exploration and synthesis is composed of the
three main stages and is performed as follows. Each of the three main stages
corresponds to one of the main design issues (sub-problems) that have to be
solved to result in a complete accelerator architecture solution:

1. decision of the processing engine architecture, and basically, decision on the
processing parallelism, which decomposes further into:

i. decision on the micro-architecture of each particular processor, and

ii. decision on the multi-processor accelerator macro-architecture;

2. decision of the memory and communication architecture, and involves:

i. coarse communication architecture design (decision on hierarchy and
partitioning)

ii. memory and communication refinement and final synthesis

3. final selection and actual composition of the complete accelerator architec-
ture.

The design decision (search) space can be represented in the form of a search
tree, as shown in Figure 3.5. It represents the various kinds of possible archi-
tectural decisions at each level (depth) of the tree. It also shows the number
of possible decisions at each particular tree level. The tree grows in breadth at
each step of the design as the number of combinations grows. For instance, for
each of the m possible micro-architecture decisions at level-1 of the search tree,
there are n possible macro-architectures at level-2 of the search tree, as shown
in Figure 3.5, which together results in m.n possible micro-/macro-architecture
combinations. Moreover, for a particular micro- and macro-architecture combi-
nation, there are several compatible memory and communication architectures
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Figure 3.5: Design space exploration search tree representing particular architec

tural decisions at each level of the tree

possible, which are represented by the leaf nodes of the search tree. In Figure
3.5, they are shown as q possible decisions for each of the processor’s micro- and
macro-architecture decision. One complete path from the root node to the leaf
represents a complete architecture composed of various decisions at each level
of the tree. In the proposed approach, this search tree remain implicit, in the
sense that it will never be fully constructed or traversed. When examining this
tree, the proposed approach resembles the breadth-first-search (BFS), but only
in relation to the search organization. First, a sub-set of the most promising
micro-architectures is decided, which represents some of the decisions at the same
level of the search tree, i.e. level-1. The key property of this search is that it
proceeds by constructing and testing each node that is reachable from a parent
node (partial architectures) before it actually expands any of the children. There-
fore, the search tree is examined in a BFS way, contrary to a depth-first-search
(DFS). In case of DFS, it would mean to construct and evaluate each complete
architecture, because in DFS, the tree is examined to the leaf node before another
path is considered. The proposed DSE approach is a parallel constructive search
technique. It is parallel in the sense that several architecture points (decisions)
are evaluated and selected in parallel for each design issue, when observing the
design constraints and optimization objectives.

In general, given a branching factor b and a tree with depth d, the asymptotic
time and space complexity is of the order O(bd) for the BFS approach. Equiv-
alently, O(|V | + |E|), where |V | represents the cardinality of the set of nodes
(vertices) and |E| represents the cardinality of the set of edges in the search tree
(graph). However, unlike the BFS that exhaustively enumerates all the nodes,
in the proposed approach all the nodes at any level (depth) of the tree are not
searched and evaluated. The proposed DSE algorithm selectively (rather than
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exhaustively) search the space for the most promising architectural decisions
(non-dominated partial architectures). These decisions are based on the hard
constraints, dominance and implication relations, what results in a well-informed
search. This very much reduces the sub-sets of the actually constructed (partial)
architectures, and in consequence, the search time of the proposed DSE algorithm.
In the following, it is described how the DSE algorithm on one hand ensures the
optimality of the solutions, while on the other hand, much reduces the complexity
of the search compared to the exhaustive approach for which the complexity is of
the order O(m.n.q).

The actual DSE algorithm organizes the design decision (state) space for the
design decision-making at two abstraction levels. The top-level breaks down the
decision space into a number of distinct issues in a tree like structure, as shown in
Figure 3.5. The lower-level represents the actions (operators) that are performed
at different stages (corresponds to particular nodes in the search tree at a par-
ticular level) during the search for the solutions. Moreover, each stage can itself
represent a complete search problem implemented with a feasible search strategy
relevant to the issue. It may also be just a state (node) in which some action
(operators) can be used to evaluate (directly or indirectly) a node (state) towards
the goal state (required solution). In the proposed DSE approach, the actions (op-
erators) represent various evaluation functions that check each decision at each
stage of the design. For instance, an evaluator function during micro-architecture
decision stage is to check whether a given micro-architecture satisfy the clock
speed constraint or not.

Since the throughput and clock speed are the hard constraints, and their
satisfaction mainly depends on the processing parallelism, and in turn the required
processing parallelism decides to a high degree the memory and communication
architecture. Therefore, the architecture exploration starts with the decision of
processing parallelism, and specifically, the selection of the micro-architecture
(Pmic) parallelism for each of the task. The other reasons for initializing the
search with the micro-architecture decisions are the the fewest legal values for
Pmic compared to Pmac. This decision variable ordering is called “minimum-
remaining-values (MRV) heuristic”. It also helps in pruning the search tree by
eliminating a large number of branches at the second step (usually more macro-
architectures than micro-architectures). Each of the micro-architectures for the
same task has different execution time expressed in clock cycles, and different
clock frequency, area and power.

As the clock speed is a hard constraint, only the micro-architectures (Pmic)
that satisfy the clock speed constraint are further considered, and those that do
not satisfy the clock speed constraint are pruned away (see Steps 1-3 of Algorithm
1). This decision is possible to be made, due to the availability of the generic
micro-architecture models for the processors and the related parameter estimates
(clock frequency, execution time in clock cycles, area and power consumption).
Lack of such quality models in the case of the traditional top-down design ap-
proach results in unpredictable and often lower accelerator quality, as well as,
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expensive design re-iterations, which negatively impacts the design efficiency in
terms of design-time and cost.

For a given computation task, the search of the micro-architectures is per-
formed in the order of increasing micro-architecture parallelism. The processor’s
micro-architecture and frequency are related and satisfy the following relation,

x(1)(i) < Fcstr =⇒ x(2)(i′) < Fcstr, subject to (i 6= i′) ∧ (i′ > i) (3.4)

That is, if an alternative x(1) of micro-architecture parallelism i is non-feasible
(considering the clock speed constraint), then all the alternatives x(2) of higher
micro-parallelism (i′ > i) are also non-feasible. The above implication relation
is valid for various micro-architectures under the assumption of no pipelining of
micro-architectures. This rule allows the DSE framework to implicitly inference
the non-feasibility of solutions and eliminate all the non-feasible solutions after
explicitly finding only the first non-feasible solution. Elimination of a particular
micro-architecture (Pmic) drastically reduces the search space, as it also elimi-
nates the related macro-architectures (Pmac) that otherwise might be in the set
of candidate architectures (SArch). The selected micro-architectures (Pmic) that
satisfy the clock speed constraints are preserved and this information about the
micro-architectures (Pmic) is added to the list of newly created set of candidate
architectures (SArch) (Step 2). This type of exploration is performed for each
different type of computing task, if an application involves different kinds of tasks
that require different processors for their execution (Step 3). This way due to the
clock speed constraint (Fcstr) consideration a large sub-set of micro- and macro-
architecture combinations is eliminated from further consideration. A limited set
of candidate architectures (SArch) is then passed to the next stage of exploration.

In the second step of first stage, the exploration of the required number of
processors of each kind, i.e. the macro-architecture exploration is performed for
each of the selected micro-architectures (Pmic). As the throughput is the other
hard constraint (Tcstr) that must be satisfied, the macro-architectures (Pmac) are
constructed that minimally satisfy the throughput constraint (Tcstr) with each
of the micro-architectures (Pmic) selected in the previous step. These macro-
architectures correspond to architectures involving minimum macro-parallelism
(minimum resources) necessary to satisfy the throughput constraints when ex-
ploiting a given micro-architecture. This way, the hard constraint on the through-
put usually eliminates a large number of non-feasible micro-/macro-architecture
combinations from further consideration. However, for each of the micro- and
macro-architecture combinations that minimally satisfy the Tcstr, all other solu-
tions with higher macro-parallelism for each of the micro-architectures considered
are also feasible solutions (a large design space due to large number of possible
macro-architectures). To find the set of non-dominated macro-architectures in
this large space in an acceptably short time, the dominance relation is used. The
dominance relation ensures that all the dominated solutions (macro-architectures)
are implicitly considered and eliminated from the set of candidate architectures
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without the actual construction. The dominance consideration is based on the
following two observations:

Algorithm 1 : Design space exploration (DSE) and synthesis algorithm for
multi-processor accelerators

Input → Behavioral (Task) specification, Throughput (Tcstr), Frequency (Fcstr)
Input → set Aspiration Point (AP) for Area (Aobj) and Power (Pobj)
Output ← SArch = {x1, ....., xn} // set of architectures {1....n} that minimally satisfy the
hard constraints of clock speed and throughput, and optimize the tradeoffs between area and
power, where x = {processors, memory, communication}
Initialize SArch = ∅
Step 1: for each micro-architecture i ∈ Pmic for a given task, check if i satisfy Fcstr, if yes go
to step 2, else go to step 3 {implication relation holds, no need to check micro-architectures
with higher parallelism} (search is performed in increasing Pmic order)
Step 2: create a new architecture instance x and update x with micro-architecture decision
i and add to SArch={S ∪ x}, go to step 1
Step 3: repeat steps 1 and 2 for all other tasks
Step 4: for each x ∈ SArch with micro-architecture i selected in step 2
Step 5: search for the macro-architecture j ∈ Pmac that minimally satisfy Tcstr, if yes go to
step 6, else go to step 7 {Note: Tcstr is computed based on the actual scheduling and mapping
or analytically if trivial}
Step 6: update x with macro-architecture decision j, go to step 4 {[not to step 5] as further
increase in Pmac with the same Pmic result in a feasible but not efficient solution both locally
and globally}
Step 7: delete architecture instance x from SArch={S \ x}, as it does not satisfy Tcstr with
maximum Pmac, go to step 4 if all candidate x are not explored for Pmac, else go to step 8
Step 8: for each x ∈ SArch compute the required memory and data transfer bandwidth, go
to step 9 {Note: aggregate bandwidth = Pmic×Pmac×b: to match the processing bandwidth
with the data transfer bandwidth}
Step 9: realize memory bandwidth using various memories architectures
Step 10: realize data transfer bandwidth using various communication architectures
Step 11: Among all the possible memory and communication architectures for the given
micro-/macro-architecture combination that satisfies Tcstr, choose the one that satisfy Tcstr

with minimum area or minimum power and go to step 12, if none of them satisfies the Tcstr

then go to step 13
Step 12: update x with the selected memory and communication architecture decision, if all
candidate x are not explored, go to step 8, else go to 14
Step 13: delete architecture instance x from SArch={S \ x}, if all x are not explored, go to
step 8, else go to 14
Step 14: for each x ∈ SArch, synthesize the architecture based on the decision vector values
of processor’s micro-/macro-architecture, memory and communication architecture

1. After finding a macro-architecture for a particular micro-architecture that
minimally satisfies the throughput constraint, any further increase in the
macro-architecture parallelism (number of processors) for the same micro-
architecture will result in a feasible, but a non-efficient dominated solution,
because both the area and power consumption increase due to the increase
in the macro-architecture parallelism (more processors) for the same micro-
architecture. It should be clear that due to the hard constraint on frequency
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any tradeoff between power consumption and area through increasing par-
allelism and lowering frequency is not possible.

Mathematically, this dominance relation under the hard constraint of clock
speed is represented as follows,

x(1)(i, j) � x(2)(i′, j′), subject to (i = i′) ∧ (j′ > j) (3.5)

where i, i′ represents the micro-parallelism and j, j′ the macro-parallelism of
the alternatives x(1) and x(2), respectively. This way, we have to explicitly
consider only the guaranteed non-dominated solutions being a particular
micro-architecture combination with a macro-architecture that minimally
satisfies Tcstr.

2. It is guaranteed that the macro-architecture (number of processors) for each
micro-architecture which minimally satisfies the Tcstr is a non-dominated
solution based on the dominance relation as discussed above. However, a
macro-architecture for a particular micro-architecture that minimally sat-
isfies Tcstr is non-dominated only locally (in relation to the given micro-
architecture) and not globally (i.e. across the different micro- and macro-
architecture combinations). In order to ensure that it is also non-dominated
globally, the following observation is exploited about different micro- and
macro-architecture combinations that minimally satisfy the Tcstr and Fcstr.
A micro- and macro-architecture combination that minimally satisfies the
Tcstr and Fcstr with a higher micro-architecture parallelism results in a lower
power consumption than the one with lower micro-architecture parallelism,
and the other way round for area. That is, the power cannot be improved
without causing a degradation in area and the other way round for area
(condition for Pareto-optimality). This observation (relation) ensures that
all the different micro- and macro-architectures that minimally satisfy the
Tcstr and Fcstr are also globally non-dominated solutions. This dominance
relation for alternatives that are locally non-dominated under the condition
that the relation in equation 3.4 is satisfied can be represented using the
following equations:

∄x(2)(i′, j′) � x(1)(i, j), subject to (i′ > i) ∧ (j′ <= j) (3.6)

∄x(2)(i′, j′) � x(1)(i, j), subject to (i′ < i) ∧ (j′ >= j) (3.7)

That is, there exist no alternative x(2) that dominates x(1). x(1) represents
a non-dominated alternative, and i, i′ represents the micro-parallelism and
j, j′ the macro-parallelism of the alternatives x(1) and x(2), respectively.

This way, the hard constraint of throughput and clock speed and the dominance
relations as discussed above for the micro-/macro-architecture combinations guar-
antee the Pareto-optimality of the micro-/macro-architecture combinations, and
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at the same time enable a quick implicitly exhaustive search of the solution space,
while explicitly considering only a small sub-set of all possible solutions.

The throughput estimation for a particular micro-/macro-architecture combi-
nation is performed either based on the scheduling of tasks on the processors, and
this way computing the schedule length in clock cycles (CC), or analytically in
case the scheduling problem is trivial. This way, the delivered throughput (Tdel)
measured in Mbps, which is one of the design quality metrics, can be determined
using the following expression,

Tdel = β.(Fcstr/CC) (3.8)

where β is a constant factor that depends on the application under considera-
tion. For instance, in case of the LDPC decoding, β represents the ratio of the
frame size of a given LDPC code and the required number of decoding iterations.
There are two possible cases during the macro-architecture (Pmac) exploration for
a particular throughput constraint (Tcstr) when considered in combination with
each of the micro-architectures (Pmic) with different parallelism (selected in the
previous step). Either the throughput is achieved with some macro-architecture
parallelism (Pmac) and micro-architecture parallelism Pmic (Steps 5-6). If this is
the case, increasing the macro-architecture parallelism after finding the first feasi-
ble solution would result in a dominated solution (as discussed above). Therefore,
the macro-architectures beyond this point with that particular micro-architecture
(Pmic) are not further considered. This way, all the other solutions beyond this
macro-architecture parallelism are not constructed, but observe that they were
anyway considered implicitly. The second case is that it turns out to be impossi-
ble to realize the throughput (Tcstr) for a particular micro-architecture Pmic even
exploiting the maximum (full) macro-architecture level parallelism. In this case,
the micro-architecture (Pmic) and all the related macro-architectures (Pmac) will
be pruned away from the set of candidate architectures (SArch) (Step 7). This
way, a limited set of non-dominated solutions (Pareto-optimal solutions SArch),
i.e. combinations of processor micro- and macro-architectures will be constructed.

In the second stage, the memory and communication architectures are decided
for each of the earlier constructed candidate partial architectures (SArch) repre-
senting particular micro- and macro-architecture combinations (Pmic, Pmac) (Step
8). Each of the processor’s micro- and macro-architecture combination required a
compatible memory and communication architecture. For a memory architecture
March to be compatible with the processors, the number of input and output
ports of the memories must be the same as the number of input and output ports
of processors. Therefore, the storage and data transfer bandwidth per clock cycle
must match the processing bandwidth, i.e.

bandwidth/cc = Pmic.Pmac.b (3.9)

where b represents the bit width of data.
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To ensure the storage and data transfer bandwidth required by processors on
a low cost and satisfactory delays, different memory and communication archi-
tectures are considered during the DSE. The memory architectures include the
simple multi-port vectorized memories and the complex multiple single/dual-port
vectorized or multi-bank memories (Step 9). The communication architectures in-
clude the simple homogeneous flat architectures and the complex heterogeneous
hierarchical partitioned communication architectures (Step 10). Moreover, the
memories can be realized as SRAMs or register-based memories and the commu-
nication architectures using single-stage and multi-stage switches and shifters.

Although the top-level generic architecture template includes information about
different types of memories required for different tasks and the data flows between
the different tasks. The required storage and data transfer bandwidth depend on
the micro- and macro-architecture processing parallelism required to satisfy the
throughput constraint (Tcstr). Therefore, during the DSE different memory and
communication architectures have to be considered. It should be noted that the
actual data mapping to memories and the communication between the memories
and processors are resolved statically during the mapping of tasks to processors
and the corresponding data to memories. The physical RD/WR addresses for var-
ious memories and the routing addresses for various switches and shifters of the
communication network are computed off-line. The off-line computed addresses
are then used at run-time to control the RD/WR of data from/to memories and
the communication (routing) among various processors and memories. More infor-
mation on the memory and communication architectures can be found in Chapter
6 of this thesis.

The search, evaluation and selection of the memory and communication archi-
tectures is based on the area and power consumption of each particular memory
and communication architecture and their impact on the throughput and the
clock speed constraints (Step 11). The selection is made according to the follow-
ing criteria. For a particular micro- and macro-architecture combination, only
those memory and communication architectures are considered that satisfy the
throughput and clock speed constraints. Therefore, the Tdel and Fdel is recom-
puted for each of the candidate architecture in SArch while taking into account
the memory and communication structures delays. From among these architec-
tures, only those are further considered, which cause the lowest increase in the
area or power consumption. Those complete architectures Archinst that satisfy
the throughput and clock constraints are selected to the final candidate set of
architectures (SArch) (Step 12), otherwise they are pruned away from the set of
candidate architectures (Step 13).

This way, the DSE is accomplished for a particular set of requirements. Since
the number of Pareto-optimal candidate processors’s micro-/macro-architecture
combinations obtained in the previous step is usually small, performing the mem-
ory and communication architectures design step exhaustively for each micro-
/macro-architecture combination does not substantially impact the overall DSE
efficiency. The experiments demonstrated that for a low processing parallelism,
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the flat communication architecture performs the best, while for the moderate
to high parallelism levels the hierarchical partitioned architecture performs the
best both from the point of view of performance and area (see Chapter 6 for
details). These observations are used to speed-up the memory and communica-
tion architectures exploration, when exploiting the information on the processing
parallelism.

Above the basic operation of the method and DSE framework is explained,
which is based on the exploitation of hard constraints and dominance relations.
However, with the proposed method the tradeoffs among the different optimiza-
tion objectives can also be exploited by application of the tradeoff resolution
methods to the partial architectures SArch obtained in a given step. This can
be done, for instance, using the distance-based multi-objective decision-making
method called the ideal point or aspiration point method, i.e. by finding the
distance between the ideal/aspired (solution) value of a criterion (power or area)
and the actually achieved value of that criterion (power or area) in an alternative
[180–183].

The tradeoff resolution can be for instance needed if for a given application no
particular clock frequency is required. In this case, the architecture parallelism
(area) can be traded against the power consumption. Lower power consumption
can be obtained by increasing the processing parallelism above the required to
minimally satisfy the throughput constraint and decreasing the clock frequency.
In this case, the simple usage of the dominance relation to limit the set of the
explicitly considered partial solutions, as described above is not possible, but just
the tradeoff resolution helps to guarantee the high solution quality, while at the
same time limiting the search space.

For the case, when the clock speed is not a hard constraint, all the processor’s
micro-architectures have to be considered (selected) during the micro-architecture
exploration for each of the tasks. The following two assumptions are made in
relation to this case. First, each of the processors operates at its maximal clock
speed (Fmax) determined by the processor’s critical path delay. This is necessary
to compute the corresponding throughput. Second, the designer/customer has to
explicitly specify his aspirations regarding the required quality i.e. specify the
area and power values as optimization and tradeoff goals (the solution is aimed
to be as close as possible to the ideal/aspiration point of all the optimization
objectives in case it is impossible to the solution with over parameters values in
the actual ideal point). As the throughput is the only hard constraint that must
be satisfied, the macro-architecture that minimally satisfies Tcstr with each of the
micro-architecture combinations at their corresponding maximum clock speed are
selected for further consideration. This way, a set of Pareto-optimal solutions is
actually considered like in the previous basic case with a hard constraint on clock
frequency, but only under the maximum clock speed assumption.

There are again two possible cases: either the macro-architecture with a par-
ticular micro-architecture satisfies Tcstr or do not satisfy. However, in this case,
for each micro-/macro-architecture combination that satisfies Tcstr power can be
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Figure 3.6: Ideal point method for tradeoff resolution among area and power

traded against area by further increasing the macro-architecture parallelism for
each particular micro-architecture parallelism and reducing the clock speed or the
other way round. This would result in a very large search space due to a large
number of alternatives in the former (increasing macro-architecture parallelism)
compared to the latter case (increasing micro-architecture parallelism). Therefore,
to reduce the search space and to obtain the required power and area tradeoffs
close to the ideal/aspired values, the search in the DSE algorithm is based on the
following experimental observations.

After finding a micro-/macro-architecture combination that minimally satis-
fies the Tcstr, increasing the macro-architecture parallelism beyond that point
to trade power against area will result in higher area increase and lower power
reduction than by increasing the micro-architecture parallelism only (this is con-
firmed by experiments performed). For instance, consider the point m in Figure
3.6 (the decision space), approaching this point in the direction of increasing
macro-architecture parallelism, i.e. from point ms, cause more area and lower
reduction in power than when this point is approached from point mw just only
by increasing the micro-architecture parallelism (assuming that both points are
at Pareto-optimal front based on the maximal clock speed). However, the prob-
lem is actually to which of the micro-/macro-architecture combinations to select
to direct the search for the required tradeoffs among power and area and at the
same time reduce the search space. For this purpose, the ideal/aspiration point
distance-based tradeoff resolution method is used [180].

The distance lp(x) of any point z(x) in the objective space from the ideal point
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z◦ can be calculated as,

lp(x) = min

( k
∑

i=1

wi[zi(x) − z◦i ]p
)1/p

, 1 ≤ p ≤ ∞, subject to x ∈ S (3.10)

where k represents the number of criterion, wi is their weights, z◦i the ideal point
value of criterion i and x ∈ S represents an alternative. The p can take any
value between 1 and ∞. If the value of p is set at 1, the rectangular distance is
computed. If p = 2, the straight-line (Euclidean distance) is computed. When
p = ∞, the problem reduces to the problem of minimizing the largest deviation
[zi(x) − z◦i ].

lp(x) = min max
i∈[1,k]

(

wi[zi(x) − z◦i ]

)

, subject to x ∈ S (3.11)

In our problem formulation, the value of p = {1, 2} for the reason of two objectives
(area and power). First, the distance is computed of each alternative (solution)
selected based on the maximal frequency from the ideal solution z◦. This is
possible in the proposed architecture synthesis method due to the availability of
parametric quality models of the architecture elements (processors). Among those
alternatives, the one with the minimum distance min(lp(x)) from the ideal point
is chosen. Moreover, the search is carried out in the direction of increasing the
micro-architecture parallelism, as this deliver the best tradeoff between the area
and power consumption, as discussed earlier. This way, the optimality of the final
architecture(s) in respect to the required quality is guaranteed in relation to (with
precision of) the architecture models used and their characterization parameters.

There are also other formulations possible. For instance, if the objective is the
minimization of power, one have to choose the fully-parallel micro-architecture
and increasing the macro-architecture parallelism until the minimum power is
obtained but at the cost of maximum area. In other case, if the objective is to
maximize power reduction with minimum increase in area, then one choose the
fully-serial micro-architecture and increase the macro-architecture parallelism, as
shown in Figure 3.6.

After the final selection of one (or more) of the constructed most promis-
ing architectures, all the decisions regarding the processor micro- and macro-
architectures for each processor type and the memory and communications ar-
chitectures for all the selected architectures SArch are passed to an automatic
architecture instantiation engine. The architecture instantiation engine generates
the corresponding RTL-level structure for each of selected architecture SArch.
The RTL-level accelerator structures can then be used for further analysis, rapid
prototyping, refinement and final selection of the architecture.
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3.5 Advantages of the Proposed Design Method

The major advantages of the proposed multi-processor accelerator design method
include the following: higher quality-of-results (QoR) and much higher develop-
ment efficiency comparing to design without using the method.

The high QoR is ensured by the DSE that efficiently searches the large space of
possible accelerator structures to construct the accelerator, which maximizes the
actually required quality, represented by the accelerator’s behavioral, structural
(generic architecture templates) and parametric (performance, power consump-
tion and area) requirements. In its search, the DSE method constructs, analyzes
and evaluates the architectures, when using the actual floorplanning data of the
generic architecture templates, as well as, the actual values of the generic mod-
ules physical parameters (throughput, frequency, area, power) obtained through
their physical characterization. Usage of the actual parameter values, instead of
some rough estimated values, as could be computed from some abstract models,
makes the architecture analysis and estimation of the DSE method very precise
(the estimated values are very close to the actual values). This makes possible a
very precise decision-making during the DSE, and in consequence, construction
and selection of an architecture that maximizes or almost maximizes the actually
required quality.

The second major advantage is the very low designer effort and very short time
required for the construction of a particular accelerator for a particular application
and its requirements. For instance, using the method, one designer can construct
a complete high-quality accelerator for LDPC decoding in a few hours, while the
effort required for a single LDPC decoder design without using such a method and
DSE tool represents a work of a small design team in approximately six months.
This way the design method has a development efficiency of several orders of
magnitude higher in comparison to the construction of a single accelerator for a
particular application case in a traditional way.

This huge design efficiency and result quality increase is on the cost of a prior
development of the generic architecture template, its generic modules for pro-
cessing, memory and communication, and the DSE framework. However, this
only requires a comparable amount of effort and time as required for developing a
single accelerator for such an application (as discussed above for the LDPC decod-
ing). The architecture templates were designed and implemented by one designer
within 5 months (including the application analysis and building an automatic
template characterization engine), and required another 2 months for further tem-
plate optimizations. The DSE framework was designed and implemented by one
designer within 5 months. From this, it follows that a comparable amount of
effort and time (please note individual versus small team) is needed for building
an architecture synthesis framework and its generic templates, as for a single ac-
celerator design. However, the initial effort of building the templates and DSE
framework is immediately compensated by the high development efficiency and
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quality-of-results (QoR) delivered by the method when constructing accelerators
for different application cases.

It is worth to note that building such an architecture synthesis framework in
a short time requires a solid knowledge and reasonable experience from multiple
domains, including: application domain, architecture design, physical design and
electronic design automation.

3.6 Design Decision Space and Search Complexity

The size of the design decision space in the proposed multi-processor accelerator
architecture synthesis process can be mathematically expressed as:

N
∏

i

(mi.ni).

Q
∏

q

qj,k (3.12)

where mi and ni represent all the possible micro- and macro-architecture alterna-
tives for a given data-parallel task i, respectively. N represents the total number
of different types of tasks for a given application. Since for each micro-architecture
m of a given task i, there are n possible macro-architectures, the number of possi-
ble micro- and macro-architecture combinations will be the product of mi and ni.
This is true for all the N tasks of a given application. Thus, the size of the search
space rapidly increases with increase in the number of tasks N , as represented
by the expression 3.12. For instance, for the rate-7/8 672-bit IEEE 802.15.3c
LDPC code, 32 micro-architectures and 84 macro-architectures are possible for
check node computation task. Similarly, 4 micro-architectures and 672 macro-
architectures are possible for the variable node computation task. This in total
results in a large number of possible micro- and macro-architecture combinations
for both tasks 7225344 (= 32 × 84 × 4 × 672).

Each of the processor’s micro- and macro-architecture combinations requires
a compatible memory and communication architecture qj,k. In qj,k, the subscript
j represents a memory architecture (March) and k a communication architec-
ture (Carch). Q represents the total number of different types of memory and
communication architectures.

Several compatible memory architectures are considered in the proposed DSE
approach. For a memory architecture March to be compatible with the proces-
sors, the number of input and output ports of the memories must be the same
as the number of input and output ports of processors. The March involve sev-
eral different memories as defined in the top-level generic architecture template
for a particular application. The memory bandwidth for each kind of memory
must match the bandwidth required for the processors. Two types of memory
organizations are considered in the proposed approach: multi-port memories and
vectorized single/dual port memories. Moreover, the proposed approach consid-
ers two types of memory implementations, Flip-Flop-based memories and SRAM



3. MULTI-PROCESSOR ACCELERATOR DESIGN METHODOLOGY 75

memories. Thus, the search space for the memory architectures involve two kinds
of memory organizations (multi-port or vectorized single/dual port) and two pos-
sible implementations for each kind of memory. This has to be decided for each of
the memory involved in the top-level generic architecture template. This is suffi-
cient only to satisfy the bandwidth compatibility relation of the various memories
with their corresponding processors.

Moreover, another important aspect of the March design is to distribute, as-
sign and map the data in the partitioned single/dual port vectorized memories.
It should be noted that all such possible memory architectures have to be consid-
ered for each of the processor’s micro- and macro-architecture combination (see
Chapter 6 for details).

Similarly, the communication architectures Carch realize the different commu-
nication segments among the various memories and processors as defined in the
top-level generic architecture template. Three types of communication architec-
tures Carch are considered to realize the required data transfer bandwidth between
different memories and processors. They are flat, hierarchical and hierarchical-
partitioned communication networks. Each of the communication network (for
each segment) can be realized using various kind of switches and shifters. Thus,
in total three types of communication architectures (Carch) with various combina-
tions of switches and shifters are searched for each of the communication segment
in the proposed DSE approach. It should be noted that the search for the com-
munication network have to be performed for each of the processors’ micro- and
macro-architecture combination. Carch must be compatible from one side to the
memories and on the other side to the processors (see Chapter 6 for details).

To keep the search complexity lower and at the same time guarantee that
non-efficient solution will be pruned away, the search approach in the proposed
DSE algorithm is based on the dominance, implication and compatibility relations
defined on the parameters of the pre-designed architecture models for various
partial solutions at each architecture construction step. The physical parameter
set consist of {Fmax, CC, A, PW@Fmax} for a given computation task, where
Fmax represents the maximum clock speed of the processor, CC represents the
number of clock cycles required for a given computations task, A represents the
(resources) area, PW represents the total power consumption at Fmax. The design
constraints (Tcstr and Fcstr) are successively used at each design step together
with the dominance, implication and compatibility relations to limit not only the
search space, but also to prune away the dominated solutions.

In the following, it is discussed how the proposed DSE algorithm reduces the
search complexity by explicitly evaluating a limited number of solutions rather
than exhaustively enumerating all possible solutions at each exploration step.

The DSE algorithm first decides on the micro-architecture (Pmic) parallelism
for each task based on the Fcstr. In the worst case, all the micro-architectures
for all the tasks may satisfy the Fcstr, while in the best case, only a single one
or a small number of micro-architectures. It would correspond to the evaluation
of all m possible micro-architectures in the worst case, while only a single one
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in the best case at level-1 of the search tree, as shown in Figure 3.5. Rather
than evaluating all the micro-architectures exhaustively, the search for the micro-
architectures is performed based on the implication relation that limit the number
of micro-architectures, which are evaluated explicitly. This way, the DSE algo-
rithm searches a limited set of micro-architectures ms among all the possible
micro-architectures mt. The proposed DSE approach not only reduces the search
complexity of the current stage but also reduces the complexity of the successive
stages. For instance, if a micro-architecture that violates Fcstr, it means that
all the Pmac combinations for this Pmic would also violate the Fcstr. Therefore,
all the branches of the tree which violate the Fcstr at level-1 are not considered
for search during the Pmac step. Thus, the design decision space reduces for the
macro-architecture decision stage from mt.nt to ms.nt. Equivalently, (mt−ms).nt

solutions are pruned away prior to the macro-architecture exploration stage.
In the macro-architecture selection stage, the reduced decision space of size

ms.nt from the prior step is searched. This corresponds to all the n branches of
the tree at level-2 for each of the branch selected at level-1, as shown in Figure 3.5.
The search in the proposed DSE algorithm is limited by the throughput constraint
(Tcstr) together with the dominance relation, as discussed earlier in Section 3.4
of this chapter. In the worst case, all the nt macro-architectures (Pmac) for a
particular micro-architecture (Pmic) among the ms would not satisfy the Tcstr,
while in the best case a single one or a small number of macro-architectures.
This would correspond to the evaluation of all nt possible macro-architectures
in the worst case, while a single one in the best case at level-2 of the search
tree, for each of the Pmic selected in the previous step, as shown in Figure 3.5.
As the dominance relation eliminates all the dominated solutions, only ms.ns

are explicitly evaluated compared to the exhaustive approach in which all the
ms.nt micro- and macro-architectures combination have to be evaluated. Here,
ns represents the set of macro-architectures that are evaluated explicitly. This
way, it reduces the search complexity of the macro-architecture exploration stage.
Equivalently, ms.(nt−ns) are eliminated without the explicit evaluation based on
the dominance relation. It also reduces the search complexity of the next stage, i.e.
the memory and communication architecture exploration stage, by eliminating a
large number of micro-/macro-architectures combinations that otherwise have to
be considered.

For each of the selected micro-/macro-architecture combination in the reduced
decision space of ms.ns, the corresponding compatible memory and communica-
tion architectures are explored. Since at this step the number of micro- and
macro-architectures combinations to be further considered is usually very small,
employing this step even exhaustively for each of the micro-/macro-architecture
combination does not impact much the overall search efficiency. Nevertheless,
some strategies are applied in the proposed DSE approach that reduce the com-
plexity of the search during the memory and communication architecture explo-
ration stage. For instance, for lower micro-/macro-architecture combinations, the
fully-flat communication network performs better than the others. This way, the
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search complexity can be further reduced during the memory and communication
architecture exploration stage.

3.7 Case Study: Hardware Multi-processor LDPC De-
coder Design

To analyze and evaluate the accelerator design methodology discussed above, it is
applied to the design of demanding hardware accelerators for LDPC code decoders
for some of the newest demanding communication system standards. In this pro-
cess, generic architecture templates are used similar to the one shown in Figure
3.1. The aim of the design process is to find the best possible application-specific
accelerator architecture for a particular LDPC application, through promising in-
stantiations of the generic accelerator architecture templates, behavior mapping
and scheduling on those templates, and analysis of the constructed alternative ar-
chitectures. The required quality of the accelerator is characterized by the LDPC
code required to be decoded and its associated parity check matrix (PCM) rep-
resenting the accelerator’s required behavior, as well as, by a set of parametric
requirements related to the error correcting performance, throughput, and accel-
erator area. The design parameters that can be influenced and decided during
the DSE include the following:

• the algorithm to be used for decoding;

• the intrinsic and extrinsic messages bit-precision (when accounting for the
error-correcting performance needed in the form of bit error rate);

• the maximum number of iterations and the stopping criteria (dependent on
the type of algorithm used);

• the accelerator operating frequency;

• the micro-architecture of the elementary processing units (specifically, the
parallelism level of the processing units);

• the macro-architecture (specifically, the number of processing units to be
used and assignment of nodes to processing units);

• the number, size, structure and organization of memory modules;

• the kind and organization of interconnect resources and switching network
(e.g. logarithmic or barrel shifter, Benes network).

Since the research reported in this thesis is devoted to multi-processor architec-
tures and their design methods, the first three parameters related to the decoding
algorithms were not so interesting as the other ones, and therefore they were set
to some constant values. In the case study and related design space exploration,
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the focused was on the last five parameters directly related to the accelerator
multi-processor architectures.

3.8 Conclusions

In this chapter, a novel quality-driven model-based multi-processor accelerator
design methodology was presented that addresses the issues and satisfies the re-
quirements of multi-processor accelerators design for highly-demanding applica-
tions. The methodology extension to the design of re-configurable multi-processor
accelerators was also discussed. Afterwards, a novel multi-objective and multi-
dimensional design space exploration (DSE) framework for this methodology was
described that resolves the complex processor, memory and communication is-
sues, and their mutual tradeoffs effectively and efficiently. The numerous impor-
tant tradeoffs related to various design dimensions addressed by the proposed
DSE framework were described in detail. In particular, it was discussed how the
proposed DSE framework resolves the complex problem of the combined proces-
sor micro-/macro-architecture design, as well as, the corresponding memory and
communication architecture design for massively parallel multi-processor acceler-
ators. The DSE algorithm and its different stages were discussed in detail related
to each of the design issue. It was described how the DSE algorithm explores and
constructs various multi-processor accelerators of the required quality expressed
by the design quality metrics for a particular application. Moreover, it was shown
how the proposed DSE algorithm, at on one hand, ensures the optimality of the
solutions, while on the other hand, much reduces the complexity of the search.
The advantages of the proposed design methodology in relation to the existing
design approaches were also discussed. At the end, the application of the multi-
processor accelerator design methodology to the design of decoders for the LDPC
decoding applications was briefly discussed.



CHAPTER 4

Implementation of the Design Methodology for its

Application to LDPC Decoding

Application of the quality-driven template-based hardware multi-processor de-
sign methodology proposed and discussed in the previous chapter to the semi-
automatic design space exploration (DSE) and synthesis of accelerators for a
given application class starts with adaptation of the methodology to this class,
which mainly involves development and characterization of architecture templates
for this application class. This chapter focuses on the application of our proposed
design methodology to the design of decoders for LDPC applications. LDPC
decoding algorithms and its derivatives are introduced first. Then, the generic
architecture template for LDPC decoders, template features, various template
modules, and the related module library are described. The library includes
various kinds of generic application-class specific processors, as well as various
kinds of generic memories and interconnect resources. The design, modeling and
characterization are thoroughly explained for various kinds of processors for re-
quired computations, various kinds of memories, various kinds of switches for
communication between the processors and memories, and other related com-
ponents, as well as, of the top architecture module representing the accelerator
multi-processor architecture, which together represent the generic architecture
template. Also, various possible complex tradeoffs among different architecture
elements are explained. The DSE for the LDPC decoding is discussed in detail.

The rest of the chapter is organized as follows. Section 4.1 is about the LDPC
decoder design considerations. Section 4.2 introduces LDPC decoding algorithms

79
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and its derivatives. Section 4.3 describes the LDPC decoder architecture template
and it main features. Section 4.4 describes the design of the generic component
library including generic application-class specific processors, memories and in-
terconnects, as well as, their characterization. Section 4.5 describes the DSE for
the LDPC decoding. Section 4.6 describes the architecture template instantia-
tion and rapid prototyping. Section 4.7 discusses how the method ensures the
construction of correct architectures. Finally, Section 4.8 concludes this chapter.

4.1 LDPC Decoder Design Considerations

Design of hardware LDPC decoders is complex and difficult for several reasons.
First of all, the LDPC decoder design space is a complex multi-dimensional space.
Several LDPC codes have been developed for various communication system stan-
dards with several code rates (R) and code lengths (L) in different application
scenarios. From the algorithmic perspective, several iterative decoding algorithms
are available with varying error-correcting performances and complexities. Fi-
nally, many decoder architectures and their implementations are possible. Each
aspect has a different impact on the accelerator design and generates various
tradeoffs. For instance, more effective error-correcting algorithms require more
complex computation processes, which results in a lower performance or in an
increased accelerator hardware complexity. A need to account for various LDPC
standards with several PCMs, code rates or code lengths in one system, demands
for the accelerator to be (re-)configurable. High-throughput demands and other
stringent requirements decide to a high-degree the accelerator architecture and
implementation strategies. Having particular application requirements, all the
above mentioned design aspects have to be taken into account to design an effec-
tive and efficient hardware accelerator for LDPC decoding.

The architecture spectrum of LDPC decoders spans between the two extremes
of a fully-serial and a fully-parallel realizations with in between a large number of
partially-parallel choices. The advantage of the fully-parallel implementations is
their high throughput, but they require a lot of hardware, consume much energy,
and are extremely inflexible regarding adaptation to various code lengths and
code rates. The problems of interconnect, memory, and computational nodes
complexity reduction for the fully-parallel decoders and high-throughput has been
the focus of several researchers [44–51]. The fully-serial approach results in a
low throughput, but at a low area and complexity, and with a high flexibility
[43]. In result, the partially-parallel approach seems to be the most promising
for the purpose of an adaptable accelerator design, and most popular, mainly
for the reasons of a relatively low adaptability cost of the decoder to various
codes lengths, code rates, moderate area and complexity, and tradeoff possibility
between throughput, area and other parameters [52–83]. Although the research
reported in this thesis accounts for the full spectrum of accelerator architectures,
the focus was on the partially-parallel architectures. Further information on the
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above proposed architectures and their architectural features can be found in
Section 2.6 of Chapter 2 of this thesis.

4.2 LDPC Decoding Algorithms

LDPC codes can be decoded efficiently using the sum-product (SP) algorithm
[39], also known as message-passing (MP) or belief propagation (BP) algorithm.
Inputs of the algorithm are the so-called intrinsic log-likelihood ratios (LLRs), In,
of the received symbols based on the channel observations, defined as [39]:

In = LLR(yi) = log
(P (xi = 1|yi

P (xi = 0|yi

)

(4.1)

where, xi stands for transmitted symbol, yi for received symbol. Based on the
intrinsic LLR values, the algorithm iteratively updates the extrinsic LLR messages
among the variable nodes (VNs) and check nodes (CNs) along the edges of the
Tanner graph for a certain number of iterations, as shown in Figure 4.1. Let Cmn

denote a check node LLR message sent from the check node m to the variable
node n. Let Vmn denote a variable node LLR sent from the variable node n to
check node m.

The algorithm iteratively updates the VNs and CNs messages in the following
steps.

1. Initialization: Initialize each variable node LLR, Qn, and the relevant Vmn

to the intrinsic LLR, In, of the corresponding received symbol.

Vmn = In (4.2)

2. Updates the messages from check nodes to variable nodes : In the first half
of the iteration, the CN m receives the messages Vmn from the neighboring
VNs and propagates back the updated messages Cmn computed as:

Cmn =
∏

j∈{Nm\n}

sign(Vmj) × Φ−1

{

∑

j∈{Nm\n}

Φ(|Vmj |)

}

(4.3)

where Nm represents the set of all VNs connected to CN m, and Nm\n
denotes the set of VNs excluding n connected to the CN m. Φ(x) is a
non-linear, non-limited function defined as

Φ(x) = Φ−1(x) = −ln
(

tanh
(x

2

))

(4.4)

3. Updates the messages from variable nodes to check nodes : In the next half
of iteration, the VN n receives the messages from the neighboring CNs and
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propagates back the updated messages Vmn computed as:

Vmn = In +
∑

i∈{Mn\m}

Cin (4.5)

where In is the intrinsic LLR of the current bit n, Mn is the set of all
check nodes connected to the variable node n, and Mn\m is the set of CNs
excluding m connected to the VN n.

4. Check stop criterion: The LLR Qn of each symbol is calculated as:

Qn = In +
∑

i∈{Mn}

Cin (4.6)

A hard decision is made according to the signs of the messages of each
symbol as follows:

Xi =

{

1, if Qn > 0

0, else
(4.7)

The decoded codeword is created as:

Xw = (X1, X2, X3, .....Xn) (4.8)

If the parity check equation H.XT
w = 0 is satisfied, the decoding stops and

Xw is considered as valid codeword. Otherwise, the algorithm repeats from
step (2), until the maximum number of iterations is reached.

These steps can be well-described in the form of a data-flow diagram, as shown
in Figure 4.2. In order to reduce the complexity of the check node computation
(Equation 4.3), in state-of-the-art decoders, a reduced complexity min-sum (MS)
[40] decoding version of the SP algorithm is employed that introduces a slight
loss in performance (communication efficiency). Equation 4.3 is estimated for MS
algorithm as:

Cmn =

{

∏

j∈{Nm\n}

sign(Vmj)

}

× min
j∈{Nm\n}

(|Vmj |) (4.9)

To compensate for the loss in performance of the min-sum algorithm a modi-
fied min-sum (MMS) algorithm [42] is also proposed, which would achieve a nearly
comparable performance to SP algorithm. Another algorithm, the so-called lay-
ered belief propagation (LBP) [41], has a different node update schedule than the
SP algorithm. Unlike the SP algorithm that first updates all CNs followed by the
update of all VNs at any iteration, the LBP updates a single or a certain number
of CNs (called layer), followed by the update of the whole sub-set of connected
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Figure 4.1: PCM for a (7,4) LDPC code and its corresponding Tanner graph, where

{v0........v6} represents variable nodes, {c0........c2} represents check nodes and

{I0........I6} represents the input intrinsic channel information
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Figure 4.2: Decoding flow diagram representing the main steps of MPA algorithm

VNs, and so on. For example, Figure 4.3 shows this layer-wise decoding for the
(7,3) LDPC code. After the check node update {C1}, all the connected variable
variable nodes {V1, V3, V4, V5}, highlighted in red, are updated followed by the
next check node {C2} and its connected variable nodes, as shown in green in
Figure 4.3. The advantage of LBP is its almost double faster convergence. The
MMS-LBP is the most popular algorithm adopted in the state of the art decoders
due to their comparable performance figures to SP algorithm, lower complexity
and an almost 2-fold higher throughput. However, the sequential layer-wise pro-
cessing is the main limitation of the LBP algorithm, what prevents its utilization
in applications that require ultra-high throughput.
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Figure 4.3: PCM for a (7,4) LDPC code and its layerwise decoding using layered

belief propagation (LBP) algorithm

4.3 LDPC Decoder Architecture Template and Tem-

plate Features

Figure 4.5 shows in detail a graphical representation of the top-level of the generic
architecture template for LDPC decoding. It prescribes the presence and general
structural organization of the decoder’s architectural resources. It involves pa-
rameterized elementary VNP and CNP processors, various memories (Mcv, Mvc,
Mch, MHD), a communication network with several communication segments that
enables the communication among various processors and memories, several read-
only-memories (ROMs) that can be configured to particular PCM, Hard Decision
and Parity Check Unit, as well as, the Main Sequencer/Controller and Channel
I/O Interface. The Mcv and Mvc are shared between the CNP and VNP pro-
cessors, while the Mch and MHD are used by the VNP processors for reading of
channel data and writing of decoded messages, respectively, as shown in Figure
4.5. Different instances of the generic architecture templates and their processing,
memory and communication modules define different specific accelerators.

Since the processing elements are generic, therefore, for each kind of process-
ing elements and related computations that are mapped on the processing ele-
ments, a certain computation time (measured in clock cycles) depending on the
micro-parallelism of the processing unit is assumed. For example, a fully-parallel
processing element would perform the computation in a single cycle, while the
serial would take as many clock cycles as the total number of inputs. More-
over, the generic processors, both the CNP and CNP, are designed in such a way
that they support in parallel the processing of two check nodes or two variable
nodes, respectively. For instance, the serial and partially-parallel processing units
(VNP, CNP) overlap the processing of two nodes. Further, details on the micro-
architecture design of CNP and VNP processors can be found in the next section
of this chapter.
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Moreover, the memory operations (load and store) are performed in parallel
with the execution of processing elements in the proposed architecture template,
as shown in Figure 4.4. This way the total execution cycles for all the decoding
computations would reduce to just the computation time taken by the process-
ing units hiding the memory read (load) and write (store) latencies. In each
clock cycle, as many memory operations (load and store) can be performed as the
computation operations require to match the computation loads with memory
loads. An important feature of the proposed architecture template is that any
memory can communicate with any processor through a configurable communica-
tion network. Such application-specific communication networks are unavoidable
for this kind of demanding applications due to the complex global and irregular
information (data) flows in the application.
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Figure 4.4: Memory operation is performed in parallel with the processor execution

in the proposed toplevel generic architecture template for LDPC decoding

One of the important design quality metrics for LDPC decoding is the through-
put. The throughput in Mbps (TMbps) for the LDPC decoding can be estimated
based on the message passing (MP) algorithm and the parameter values of the
architecture elements using the following formula:

TMbps =
R.N.FMHz

CCPI.Itot
(4.10)

where R stands for the code rate, N stands for the code length (size of data
frame), Itot stands for the total number of iterations required to decode a frame,
FMHz stands for the clock frequency measured in MHz and CCPI represents the
number of clock cycles per iteration. Knowing the values on the right hand side of
equation 4.10, the throughput can be estimated. For a particular application, the
LDPC code and its parameters such as N, R, Itot and Frame Error Rate (FER)
are decided in advance. Therefore, the parameters that remain to determine
the throughput are the CCPI and FMHz . The CCPI directly depends on the
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micro- and macro-architecture parallelism exploited. The FMHz depends on the
processor’s critical path delays plus the physical delays of the communication and
memory structures.
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Figure 4.5: A detailed view of the toplevel LDPC decoder architecture template

Above the main architectural elements and the operational features of the
proposed generic architecture template for LDPC decoding are explained. Here,
those parameters are discussed which are of interest for the design’s decision-
making during the actual DSE for a specific set of design requirements. The
generic architecture template is a scalable multi-processor template in the range
of hundreds of heterogeneous hardware processors (CNP, VNP) at the macro-
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architecture level. This would enable us to consider different number and types
of processors during the DSE for a particular set of requirements, and this way
to explore the influence of various micro-/macro-parallelism combinations on the
system parameters, like delay, latency, performance, area and power consump-
tion, etc. For each type of processor, the generic architecture template supports
various micro-architectures with different area, delay, latency and power char-
acteristics, which in turn influence the design parameters in different ways and
to different degrees. For instance, different processor micro-architectures for a
specific task can result in different number of clock cycles to execute the task
and the related clock speed and latency (which would influence the performance),
amount of hardware resources and power consumption, etc. Importantly, the
micro-/macro-architecture combinations can result in many various architectures
with much higher diversity in different design dimensions (e.g. area, delay, la-
tency, throughput, power, etc). Similarly, the generic architecture template in-
cludes the support of various generic memory and communication structures that
are different regarding their features (e.g. area, delay, latency, throughput, power
consumption, etc). For instance, various kinds of interconnection structures (e.g.
single-stage and multi-stage switches and cyclic shifters) and various kinds of
memory structures (e.g. single or multi-port, vector or multi-bank, SRAM or
register-based). This way, with the assistance of the top-level generic architec-
ture template and its generic modules, many architectures with diverse processor
micro-/macro-architectures, as well as, the processor’s compatible memory and
communication architectures can be selected, decided and constructed during the
DSE with different physical features based on the actual application behavioral
and parametric constraints and objectives. Moreover, the top-level generic archi-
tecture template when instantiated enables a fast track for the final evaluation
and synthesis of various decoder architectures using the back-end SoC and FPGA
synthesis and physical design tools. In the next section, each architecture element
is described in detail, as well as, the design, modeling and characterization of the
architecture elements with values and ranges of different parameters expressing
their characteristic features of interest for the architecture design decisions.

4.4 Design of Generic Component Library

The generic components library includes a top-level generic architecture template,
as well as, generic templates of application-specific processors, memories and com-
munication components. The components are designed and modeled in Verilog
HDL that can be targeted to various implementation technologies. For perform-
ing the experiments reported in this work, it has been targeted at CMOS 90nm
technology1. The processors are configurable which enable us to explore the var-
ious tradeoffs at the micro-architecture level. Analogously, various tradeoffs can
be explored for the configurable memory and communication modules.

1TSMC 90nm LPHP Standard Cell Library
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4.4.1 Processing Elements Design and Characterization

In this section, the architecture design and characterization of the processing
elements used for the computation of check and variable node processing are
discussed. Also, numerous possible partially-parallel micro-architectures are dis-
cussed that are situated between the two extremes of fully-serial and fully-parallel
architectures, as well as their characterization.

Check Node Processor Micro-architectures

Equation 4.9 represents the computations performed by the check node processor
(CNP). Each output (check to variable node messages (Cmn)) is determined by
finding the minimum value among all dc input values (variable to check node
messages (Vmn)) excluding one input. The excluded input is the variable to check
node messages (Vmn) from that variable node n for which the output (check
to variable node message (Cmn)) is computed. Figure 4.6 further clarify this
input/output relationship.
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Figure 4.6: Check node computation and input/output relationship

For every check node, a total of dc minimum values are computed that are
sent to the dc connected variable nodes {v1.......vdc}. Hence, using a single binary
search tree for the minimum computation, it would require to repeat the same
computation dc times to compute all the minimum values, as shown in Figure 4.7.
Otherwise, it would require dc binary search trees to compute all the minimum
values in parallel. On one hand, computing all the dc minimum in parallel using
dc independent binary search trees would have a huge computational complexity
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of d2
c in terms of area and log2(dc − 1) in terms of delay. On the other hand,

implementing even a single binary search tree for a large number of inputs (32
inputs in case of rate-7/8 672-bit IEEE 802.15.3c LDPC code) is costly as it would
require dc−1 comparators but also would result in a huge delay of log2(dc−1) due
to large number of comparator stages (in this case 5). Further, this direct parallel
implementation of the binary search tree would make the partially-parallel micro-
architecture impossible and also limits the configurability of the processing units
for different dc values.
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Figure 4.7: Direct implementation with multiple binary comparator trees each com

puting a single output of the CN, the figure shows the implementation for the output

O1.

In the second possible approach, the comparisons are organized, combined
and distributed in such a way that at the end one get the individual minimum
excluding the input for which the output has to be computed (a sort of com-
pression and expansion binary trees), as shown in Figure 4.8. This approach for
the CN computation has been presented in the past for the LDPC decoders [80].
The micro-architecture of the CNP based on this approach has the computational
complexity of dc/2 in terms of comparator stages and 3(dc−2) in terms of number
of two-input comparator units (CMP). This micro-architecture has the drawback
that it could only be used for parallel micro-architectures of processing elements.
Further, it can only support a certain number of inputs, and cannot be scaled for
various numbers of inputs.

To address the above drawbacks, we proposed the following approach for the
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combining intermediate summations and shuffling

CN computation. First, the two minimal values, minimum (min) and second
minimum (min2), among all the input values are computed. Based on the min
and min2 computation, the computations of all the outputs can be performed as
follows:

• the min is assigned to those outputs whose value is greater than or equal
to the min2, and

• the min2 is assigned to those outputs whose value is equal to the min.

It can be represented using the following equation:

Ox =

{

min2, if Idxx == Idxmin, else

min, where x = {1, ....., dc}
(4.11)

where Idxx represents the index of an arbitrary input x and Idxmin represents
the index of the min. This way, for every check node all the dc minimum values
(outputs) for all the connected variable nodes {v1.......vdc} are determined using
just a single search tree. In this case, the search tree computes only the min and
min2 among all the input values.

This approach delivers the following two main benefits. Firstly, all the dc min-
imum computations can be performed using a single binary search tree, without
multiple binary trees that search for the minimum of dc − 1 values indepen-
dently. Secondly, to cope with the complexity of the single binary search tree
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that computes the min and min2, this search can be performed in any fash-
ion: serial, partially-parallel or fully-parallel. This enables to construct different
micro-architectures with different tradeoffs regarding delay, number of cycles (cy-
cle count), area and power consumption, etc.

The top-level architecture of the CNP based on the proposed approach is
shown in Figure 4.9. The architecture composed of two kinds of min & min2

search blocks, a storage block and a data distribution block. The CN computation
is organized in two stages in the CNP.

In the first stage, the min and min2 are computed for a CN among all the
inputs. It is performed as follows. For a certain sub-set of inputs, during the
first clock cycle the architecture computes the (current) minimum (minc) and
second (current) minimum (min2c) using the search unit (min & min2 search
unit). The size of the sub-set depends on the partial parallelism. For instance,
1 in case of serial, Pmic in case of partial parallel with micro-parallelism of Pmic

and dc in case of fully-parallel. In the same cycle, these values are then combined
with the previous minimum (minp) and the second minimum (min2p) value (if
any2) to compute the new minimum (minn) and the second minimum (min2n)
and is stored in temporary registers, as shown in Figure 4.9, which becomes
minp and min2p in the next clock cycle. Then, in the second clock cycle, the
minn and min2n is computed for the next sub-set of inputs and combined with
the minp and min2p (see Figure 4.10-A). This way all the inputs of a CN are
processed sequentially in sub-sets to find the global minimum (min) and second

2For the first sub-set of inputs, they are compared with the maximum values
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global minimum (min2). Also, in this stage, the sign computation, represented in
equation 4.9, is performed by a simple XOR (exclusive-OR) operation of the signs
of the inputs. At the same time, the signs of the inputs are pushed into a sign
FIFO that are used latter in the second stage during the computation of the signs
of outputs. At the completion of processing of all the inputs for a particular CN,
the global min and min2 are moved into a buffer from the temporary registers
(see Figure 4.10-B).
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Figure 4.10: (A) min & min2 search unit (twounknowns) (B) Storage unit composed

of temporary registers, a buffer and a sign FIFO

In the second stage, the computation of the outputs for the current CN is initi-
ated in the distributor using the global min and min2 and index of the minimum
(Idxmin) stored in the buffer module. Also, the signs of inputs are popped up
from the sign FIFO, XOR with the total sign value (sgn) stored in the buffer to
compute the signs of the outputs. In parallel, the search unit initiates the com-
putation of the next CN, i.e. its first stage. This is possible because the search
unit is free during the second stage of the current CN processing. This parallel
(overlap) processing of two check nodes (CNs) in a CNP is shown in Figure 4.11,
which is our proposed throughput enhancement strategy.

The number of clock cycles required to complete the processing of a single
CN is dc and dc/Pmic for the serial and partially parallel (micro-parallelism of
Pmic) architectures, respectively. However, the fully-parallel CNP performs the
CN computation in a single clock cycle. Mathematically,

Tcc = dc/Pmic, Pmic = {1, ....., dc} (4.12)

where Tcc represents the total number of clock cycles required for processing a
single check node. Let DPmic

represent the critical path delay of a CNP of micro-
parallelism Pmic, then the total computation time can be determined as follows:

TPmic
= Tcc × DPmic

, Pmic = {1, ....., dc} (4.13)
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where TPmic
represents the total execution time for processing a single node using

a processor with micro-parallelism of Pmic. The TPmic
can be used as a useful

measure of timing, as serial processors have relatively low critical path delays,
however, require a large number of clock cycles to compute a node, and vice versa
for parallel processors. Hence, these tradeoffs have to be taken into account during
the micro-architecture exploration.

The internal structure of each block of the CNP is described in more detail
as follows. The min & min2 search unit can be divided into two parts for under-
standing purposes. One part computes the min and the other min2. The part
that computes the min is composed of two-input compare-select-flag units (CMP).
The CMPs are organized in a binary search tree to compute the min, as shown in
Figure 4.12. The CMP unit computes the min of two inputs by subtraction and
then based on the sign flag selects the min. The flag is used further in the search
for the min2 after finding the min as follows. The tree is traced back based on
the CMP flags of each stage to find min2 in the following manner. Starting from
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the leaf node, at each level of the binary search tree the min2 is traced back and
is compared with another min2 one-level up on one of the selected branch of the
tree. That tree branch is selected on which the min is found, for the other tree
branch, i.e. of min2, it is obvious that a value less than min2 is not possible, as
it is minimum search tree and therefore a candidate for min2. Hence, that min2

branch is not searched further and supplied as the lower input of the leaf CMP
unit, as shown in Figure 4.13. This way another min2 is searched that will make
the lower branch of another CMP on the sequential tree till the root of the tree
is reached that makes the upper branch of the tree, as shown in Figure 4.13.

The data distributor block generates 1, Pmic or dc number of outputs for
serial, partially-parallel and fully-parallel micro-architecture, respectively, based
on the min, min2 and the Idxmin, as shown in Figure 4.14. To generate the
min for each output, the minimum index (Idxmin) is compared with the index
of the output (Idxx). In case of match that output will get the min2, otherwise
it will be assigned the min value, as given in equation 4.11. This approach
needs a comparison operation of each output index (Idxx) with the index of
the minimum (Idxmin). For low micro-parallelism or codes with low dc values,
the direct comparison is possible with low complexity, as only a few comparators
would be required. However, for high micro-parallelism this would required a large
number of comparators equivalent to the micro-parallelism (Pmic). For example,
the CN of degree 32 of the rate-7/8 672-bit IEEE 802.15.3c LDPC code, when
realized in fully-parallel would require 32 such comparators, which is costly in
terms of resources (area). Hence, the data distributor is designed in such a way
that it avoids the comparison operations, as shown in Figure 4.14. It works as
follow.

First, the Idxmin is decoded by a decoder of size log2(dc) × dc. Then, based
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on the sub-set of outputs, i.e. Pmic, for which the min has to be computed,
that group of the decoder output is selected by a group select multiplexer of size
dc/Pmic × 1. The output of this multiplexer acts as a select line of a 2 × 1
multiplexer array that selects min or min2 for each output based on whether the
decoded value is 0 or 1. For example, for dc = 32 and Pmic = 8, a decoder of size
5×32, a group select multiplexer of size 4×1 (4 groups each of 8 inputs) selecting
8 decoder outputs, and a 2 × 1 multiplexer array of size 8 would be required for
this data distributer. The proposed data distributor is also generic and scalable
to different number of outputs just by changing the parameter values of different
sub-blocks.

For micro-architecture with Pmic ≤ 2, the above architecture of CNP does
not seem to be adequate, because for serial architecture only a single input has
to be compared with the previous minp and min2p to compute the new minn

and min2n. Therefore, we propose a separate specialized architecture for the
serial case, as shown in Figure 4.15-A. For two inputs, it is possible to use the
two-level min and min2 search structure by first computing the min and min2

and then passing down to the final search stage, min & min2 search unit (two-
unknowns), to compute the new minn and min2n. Instead of doing this, the
two-stages are combined, as shown in Figure 4.15-B. This results in saving of at
least one comparator and reduction in the critical path delay.

The proposed generic architecture of the CNP is utilized in the architecture
DSE framework to explore the various tradeoffs regarding different micro-/macro-
parallelism combinations for certain design requirements. A particular instance3

of the proposed generic CNP micro-architecture with 4-inputs and 4-outputs (32-

3Schematics of the synthesized CNP processors can be found in the Appendix-B
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inputs in total) is shown in Figure 4.16. It should be noted that such highly
optimized application-specific generic processor architecture templates cannot be
constructed (designed) automatically with the high-level-synthesis (HLS) tools.

Although the CNP architectures similar to the proposed approach can be
found in the literature, but they exploit it only for the fully-serial [52–59, 61,
63] or the fully-parallel micro-architectures [64, 71, 83]. On the other hand, we
exploit the approach for the full range of micro-architectures from the partially-
parallel (except the serial and the two inputs partially-parallel micro-architecture)
to the fully-parallel micro-architectures. This actually requires a large micro-
architecture level modifications (e.g. different min and min2 search units, sign
FIFO depths and widths, different data distributors, etc) and is not directly
scalable at all.

In order to overcome the large critical path delays of the fully-parallel CNP
micro-architectures, the architectures mentioned above [64, 71, 83] used aggres-
sive pipelining (in some cases multiple pipeline stages) within the CNP micro-
architecture to increase the clock speed, thereby increasing the throughput. Al-
though pipelining is a well known throughput enhancement strategy. However,
for the high-end applications that requires a large number of such processors, it
would cause a huge increase in the accelerator cost and power consumption due
to the extremely large number of required pipelined registers. It should worth
to note that each processor requires as many number of pipeline registers as the
micro-architecture parallelism and not a single register. Moreover, for the fully-
parallel pipelined micro-architecture, pipelining is also required on the memory
and communication side due to the following two reasons:
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Figure 4.16: A particular instance of the generic CNP with 4inputs and 4outputs

(32inputs in total)

• the memory and/or communication structure delays may surpass the pro-
cessors delays after the processor pipelining, and

• to balance or synchronize the pipeline.

This causes a further increase in the overall accelerator cost and power consump-
tion, etc. Thus, for high-end applications that demand a large number of pro-
cessors, processor micro-architecture pipelining does not seem anymore to be a
valid throughput enhancement strategy. Its adequacy have to be carefully ex-
plored. Therefore, the proposed DSE framework also takes into account this
issue. Moreover, the proposed various partially-parallel micro-architectures limits
the critical path in a much better way just by reducing the number of inputs
processed simultaneously, unlike in the state-of-the-art CNP processors by using
aggressive structure pipelining of the fully-parallel micro-architecture to enhance
the throughput or meet the clock speed constraint.

Characterization of Check Node Processor

The proposed generic check node processors are modeled in Verilog HDL and
characterized its various instances in TSMC 90nm LPHP standard cell library.
The characterization results are shown in Table 4.1. Although the generic check
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Table 4.1: CNP characterization results for different microarchitectures parallelism

in TSMC 90nm LPHP Standard Cell Library

Parallelism
dc

Optimized for Area* Optimized for Speed

(Pmic) Area Delay Clock Area Delay Clock

(mm2) (ns) Cycles (mm2) (ns) Cycles

1

8

0.001865 2.303 8 0.002759 0.751 8

2 0.002501 5.119 4 0.003933 1.413 4

4 0.003487 7.137 2 0.005998 2.105 2

8 0.003615 9.388 1 0.008709 2.709 1

1

16

0.002115 2.303 16 0.002969 0.746 16

2 0.002936 5.119 8 0.004361 1.413 8

4 0.003894 7.137 4 0.006403 2.105 4

8 0.005808 10.914 2 0.010949 3.175 2

16 0.007459 12.617 1 0.018210 3.556 1

1

32

0.002539 2.303 32 0.003412 0.751 32

2 0.003714 5.119 16 0.005155 1.413 16

4 0.004647 7.137 8 0.007149 2.105 8

8 0.006525 10.914 4 0.009810 3.175 4

16 0.010239 14.061 2 0.020649 3.972 2

32 0.015102 16.710 1 0.034077 4.816 1

*Area of a NAND Gate in CMOS 90nm = 2.1168 um2

node processor can be configured for any micro-parallelism and check node degree
(dc). However, Table 4.1 shows only the results for the micro-parallelism and check
node degree (dc) configurations employed in the IEEE 802.15.3c LDPC codes, that
would be further used for the discussion on the various micro-/macro-architecture
tradeoffs in the next chapter.

Further, the proposed CNP micro-architectures are characterized using the
following two optimization criteria:

• optimization for area, and

• optimization for performance

In optimization for area, the binary search tree is implemented using the low-area
ripple carry adders (RCA). However, for high-performance, the same architecture
is realized using the fast carry look ahead adder (CLA) albeit with much larger
increase in area compare to its RCA-based counterpart, as shown in Figure 4.17.
The critical path delay of the CNP most of the time decides the critical path of
the whole accelerator.



4. IMPLEMENTATION OF THE DESIGN METHODOLOGY 99

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

13.00

14.00

15.00

16.00

17.00

18.00

19.00

20.00

1 2 4 8 16 32
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

C
ri
ti
c
a
l 
P

a
th

 D
e
la

y
 (

n
s
)

A
re

a
 (

m
m

2
)

Check Node Processor Micro-architecture Parallelism

CNP optimized for area (CP)
CNP optimized for area (A)

CNP optimized for speed (CP)
CNP optimized for speed (A)

Figure 4.17: Area and critical path (CP) delay tradeoffs for different micro
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tion)

Variable Node Processor Micro-architectures

Variable node computations are represented by equation 4.5 and 4.6. Equation
4.5 determines the sum of all dv input values (check to variable node messages
(Cmn)) excluding one input. The excluded input is the check to variable node
messages (Cmn) from that check node m for which the output (variable to check
node message (Vmn)) is computed. Figure 2 further clarify this input/output
relationship.

For every variable node a total of dv such additions are performed that are sent
to the dv connected check nodes {c1.......cdv}. A single adder tree can be used to
perform the addition, however, it would require to repeat the same computation
dv times for every variable node. On the other hand, it would require dv adder
trees to perform all the additions in parallel. Moreover, from equation 4.6, it is
clear that all the inputs including the In have to be added together to compute
Qn. Using this computation organization, it would require as many as vd adder
trees, each adder tree with log2(dv) number of stages of 2-input adders. In terms
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of two-input adders, it would require dv(dv-2) such adders. A single binary adder
tree for a single output computation is shown in Figure 4.19.

Another parallel computation approach, however, is possible in which the ad-
ditions are first combined and then distributed (of a sort of compression and ex-
pansion binary trees) in such a way that at the end one get the individual addition
results excluding adding the input for which the output has to be computed, as
shown in Figure 4.20. This approach for the VN computation has been presented
in the literature for the LDPC decoders [59, 80]. The approach has the compu-
tational complexity of dc/2 in terms of the number of the comparator stages and
3(dv-2) in terms of number of the two-input adder units (ADD). The approach
has the drawback that it can only be used for parallel VNP micro-architectures.
Moreover, it can only support a certain number of inputs that cannot be easily
scaled to various number of inputs. Also, for a large number of inputs (12 inputs
in case of IEEE 802.11n LDPC code) it would cause a large delay due to a large
number of adder stages.

In order to address the above drawbacks, we propose the following approach
for the VN computations. To reduce the overall computational complexity both in
terms of area (adder trees) and delay (adder stages), as well as, to make possible
configuration of the partial parallel processing unit for different number of inputs,
the computation can be reorganized as follows:

• first compute the total sum including the channel data, when using a single
adder tree, and

• then compute the output variable to check messages Vmn for a particular
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O1

variable node n connected to a check node m, by subtracting that check to
variable node message Cmn from the total sum.

This way for every variable node all the dv outputs (Vmn messages) for the con-
nected check nodes {c1.......cdv

} are determined using just a single adder tree and
a subtractor array composed of dv subtractors. Furthermore, the adder tree can
be realized in serial, partially-parallel or fully-parallel form to overcome the long
critical path delays.

The top-level generic architecture for the VNP based on the proposed approach
is shown in Figure 4.21. It consists of an adder tree with scalable number of
inputs ranging from a single input to all dv inputs, accumulator, FIFO, buffer
and a subtractor array.

The VN computation is organized in two stages in the VNP. In the first stage,
all the inputs are added together including the channel input (In). It is performed
as follows. For a certain sub-set of inputs (1 in case of serial, dv/Pmic in case of
partial parallel with micro-parallelism of Pmic and dv in case of fully-parallel),
during the first clock cycle the adder tree sum up the current inputs with the
channel input (In) and is stored in the accumulator register as the current sum
(sumc), as shown in Figure 4.21, which becomes the previous sum (sump) in the
next clock cycle. Then, in the second clock cycle, the next sub-set of inputs is
added together with the sump. A multiplexer is used to select between the sump

and the In required, because In is required to be added only once. This way



102 4.4. DESIGN OF GENERIC COMPONENT LIBRARY

ADD

1

I2

I5

I7

I3

I4

I6

I8

O8

O7

O6

O5

O4

O3

O2

O1

I7

I8

I5

I1

I2

I6

I3

I4

ADD
12

ADD
1234

ADD
34 ADD

56

ADD
78

ADD

56

78

12

34

567812

5678

567834
ADD

ADD

ADD
ADD

ADD

ADD

ADD

ADD

ADD

ADD

123478

123456

ADD

I
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based on combining intermediate summations and shuffling

all the inputs are summed up in sub-sets (size of sub-set depends on the partial
parallelism) with the sump to compute the total sum (sum). At the same time,
the inputs are pushed into a FIFO that are used latter in the second stage during
the computation of the outputs. At the completion of processing of all the inputs
for a particular VN, the total sum is moved into a buffer from the accumulator.

In the second stage, the computation of the outputs for the current VN are
initiated by subtracting the particular inputs popped up of the FIFO from the
total sum stored in the buffer (see Figure 4.22). In parallel, the adder tree initiates
the computation of the next VN, i.e. its first stage. This is possible, because the
adder tree is free during the second stage of the current VN processing. This
parallel (overlap) processing of two VNs in a VNP is shown in Figure 4.23, which
is our proposed throughput enhancement strategy.

The number of clock cycles required to complete the processing of a single VN
is dv and dv/Pmic times for the serial and partial parallel (micro-parallelism of
Pmic) architectures, respectively. However, the fully-parallel VNP performs the
VN computation in a single clock cycle. Mathematically,

Tcc = dv/Pmic, Pmic = {1, ....., dv} (4.14)

where Tcc represents the total number of clock cycles required for processing a
single variable node.

The FIFO stores the input check-to-variable Cmn messages in the partial par-
allel architectures that are used latter in the computation of the outputs after
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the completion of partial additions of all dv inputs. This data reuse reduces the
memory bandwidth requirement, however, at the cost of some local storage in
the form of FIFO buffers. For the fully-parallel architecture all the dv outputs
are computed simultaneously, and the accumulator, buffer and FIFO are not re-
quired. Moreover, the adder tree can be implemented using 2-input adder or a
carry-save adder, as shown in Figure 4.22. This give another level of exploration
at the micro-architecture level.

The proposed generic architecture of the VNP is utilized in the architecture
DSE framework to explore the various tradeoffs regarding different micro-/macro-
parallelism combinations for certain design requirements. A particular instance4

of the proposed generic VNP micro-architecture with 4-inputs and 4-outputs is
shown in Figure 4.24. It should be noted that such highly optimized application-
specific generic processor architecture templates cannot be constructed (designed)
automatically with the high-level-synthesis (HLS) tools.

Although the VNP architectures similar to the proposed approach can be
found in the literature, but they exploit it only for the fully-serial [52–57, 61, 63]
or the fully-parallel micro-architectures [66, 79]. On the other hand, we exploit
the approach for the full range of micro-architectures from the fully-serial to
the fully-parallel with in between various partially-parallel micro-architectures.
This actually requires a large micro-architecture level modifications (e.g. different
FIFO depths and widths, sizes of subtractor array and adder tree, etc). The micro-
architecture pipelining of the fully-parallel VNP is used by the above-mentioned
architectures to reduce the critical path delays. This give rise to similar kind of
issues as discussed earlier for the CNP processor.

4Schematics of the synthesized VNP processors can be found in the Appendix-B
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Variable Node Processor Characterization

The proposed VNP processor can be configured for any number of inputs (micro-
parallelism), as well as, the total number of inputs required for a variable node
processing. Various instances of the proposed VNP are characterized using the
Cadence CAD tool flow for the TSMC 90nm LPHP standard cell library. The
characterization results for VNPs of various degrees (dv) are shown in Table 4.2.

Micro-architecture Level Tradeoffs

Some important tradeoffs at the level of micro-architecture using the characteri-
zation data (see Table 4.1 and 4.2) are discussed below. It is quite obvious that
increase in the processing parallelism causes an increase in area. However, the
increase in area is not linear with the parallelism increase, which are important
from the viewpoint of optimization. An interesting specific case is the fully-
parallel micro-architecture of CNP with dc = 8, as the total area of the processor
is almost the same as its counterpart with a lower micro-architecture parallelism
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Figure 4.24: A particular instance of the generic VNP with 4inputs and 4outputs

of 4 (see Table 4.17). This is due to the fact that the storage block (temporary
registers and buffer) are not required in case of the fully-parallel processor. It
is also interesting to note that the serial micro-architecture, although, has a low
critical path delay and area, would require more clock cycles for a single check or
variable node computation. However, the same computation can be performed in
a single cycle by the fully-parallel architecture albeit with a longer cycle delay and
larger area compared to the serial architecture. The total computation time (Tt)
that take into account both the influence of the computation clock cycles (cycle
count) and critical path delay can be used as a useful performance measure. It
can be computed for both kind of processors using the following equation:

Tt =







dc/Pmic × DPmic
, Pmic = {1, ....., dc} for CNP

dv/Pmic × DPmic
, Pmic = {1, ....., dv} for VNP

(4.15)

Based on the above equation, Tt = 8.392 ns (=4×2.098) and A = 0.0021 mm2

for the serial VNP micro-architecture (Pmic = 1). However, for the fully-parallel
VNP micro-architecture (Pmic = 4), Tt = 3.079 ns (=1 × 3.079) and A =
0.0033 mm2. Thus, the gain in performance is 2.72-times with area overhead
1.57-times for the fully-parallel micro-architecture compared to the serial micro-
architecture. The partially-parallel architecture (Pmic = 2) has a performance
penalty of only 0.73-times and area saving of 1.12-times compared to the fully-
parallel micro-architecture. In comparison to the fully-serial micro-architecture,
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Table 4.2: VNP characterization results for different microarchitectures parallelism

in TSMC 90nm LPHP Standard Cell Library

Parallelism
dc

Optimized for Area* Optimized for Speed

(Pmic) Area Delay Clock Area Delay Clock

(mm2) (ns) Cycles (mm2) (ns) Cycles

1

4

0.002118 2.098 4 0.003290 0.847 4

2 0.002944 2.101 2 0.005089 0.921 2

4 0.003313 3.079 1 0.011673 1.366 1

1

8

0.002902 2.098 8 0.003995 0.847 8

2 0.003728 2.101 4 0.006376 0.958 4

4 0.005380 2.419 2 0.008899 1.437 2

8 0.006603 3.931 1 0.017568 2.724 1

1

12

0.003686 2.098 12 0.004778 0.847 12

2 0.004512 2.101 6 0.007161 0.958 6

3 0.004121 2.253 4 0.007046 1.210 4

4 0.006164 2.419 3 0.009683 1.437 3

6 0.007816 2.768 2 0.012683 1.908 2

12 0.009899 4.708 1 0.024108 3.616 1

*Area of a NAND Gate in CMOS 90nm = 2.1168 um2

it has an area penalty of 1.38-times, however, a performance gain as high as
1.99-times. Thus, the partially-parallel architecture shows good tradeoffs both
from the viewpoint of performance, as well as area. Summing up, when the per-
formance is a dominating design objective then the parallel micro-architecture
performs the best provided that the area constraint is satisfied. When the area is
the main design objective then the serial micro-architecture is the best, under the
condition that the performance constraint is satisfied. Also, if the clock speed is a
hard constraint, then the fully-parallel may not satisfy the clock speed constraint
due to its long critical path delay.

However, these are exclusively the local design decisions, only from the point
of view of the processors micro-architecture out of the context of the macro-
architecture decisions. Moreover, the memory and communication has to be con-
sidered and this may change the micro-architecture decisions that were taken
locally. For example, for the fully-parallel micro-architecture, a distributed mem-
ory architecture and the corresponding interconnect network have to be provided
to adequately support the processing parallelism. Therefore, it is very probable
that the distributed memory and interconnect structure will result in a substantial
area overhead and delay. For the fast serial micro-architecture, it is very prob-



4. IMPLEMENTATION OF THE DESIGN METHODOLOGY 107

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50

3.75

4.00

4.25

4.50

4.75

5.00

1 2 3 4 6 12
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

C
rit

ic
al

 P
at

h 
D

el
ay

 (
ns

)

A
re

a 
(m

m
2 )

Variable Node Processor Micro-architecture Parallelism

VNP optimized for area (CP)
VNP optimized for area (A)

VNP optimized for speed (CP)
VNP optimized for speed (A)

Figure 4.25: Area and critical path (CP) delay tradeoffs for different micro

parallelism of VNP: Case 1: processor optimized for area (RCAbased adder tree

realization), Case 2: processor optimized for speed (CSAbased adder tree realiza

tion)

able that the delay of the centralized memory becomes much higher than of the
processing element. From the above, it should be clear that all the architecture
decisions have to be taken in combination. This reconfirms once more that such
combined decisions require an adequate DSE framework, which is provided by the
proposed architecture design methodology.

4.4.2 Memory Elements Design and Characterization

There are four different kinds of memories involved in the LDPC decoder de-
sign. These memories also differ from each other in their required size, number
of banks, word lengths and port configurations. The memories are check node
memories (Mcv) to store the Cmn messages, variable node memories (Mvc) to
store Vmn messages, channel memories (Mch) to store the channel messages (In)
and hard decision memories (MHD) to store the hard decision messages (VHD).
The size, word length, ports and organization (vector/multi-port/multi-bank) for
each type of memory is decided during the DSE for a particular LDPC code and
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its parametric constraints and objectives. Also, from the implementation point
of view, there are two choices. The memory can be implemented using the fast
flip-flop (FF) based registers in logic cells or as an embedded SRAM in memory
cells. For the embedded SRAM characterization, the HP CACTI 5.3 tool is used
to generate different memory configurations. Table 4.3 shows the characterization
results for some of the many memory configurations both for the FF-based and
SRAM memories, and to be used in the memory architecture exploration and
synthesis.

Table 4.3: FlipFlop based and SRAM memory characterization results. FFbased

memories are characterized in TSMC 90nm LPHP Standard Cell Library while the

cellbased SRAM memories using HP CACTI 5.3 tool

Memory Parameters Memories with different Depths and Width=168

Type (1R/1W Port) 16 32 64 128

FF-based

Area (mm2) 0.057320 0.113030 0.224011 0.445970

Delay (ns) 1.343 1.620 1.456 1.791

SRAM

Area (mm2) 0.092939 0.102027 0.120094 0.155192

Delay (ns) 0.526153 0.606462 0.630445 0.748682

4.4.3 Communication Elements Design and Characterization

In LDPC decoding, there are two kinds of processors involved namely, the CNPs
and VNPs and their corresponding memories Mcv and Mvc. Different kinds of
switches are needed to communicate the processors (CNPs, VNPs) and memories
(Mcv, Mvc). To efficiently perform the DSE, several kinds of switches (single-stage
and multi-stage) and cyclic shifters (single stage and multi-stage) are designed
and modeled as Verilog templates with diverse parameters and parameter ranges.
Among others, the two important parameters are the number of input and output
ports and the port data width.

For the communication elements characterization, the Cadence CAD tool flow
was used, involving the Cadence RTL compiler for synthesis and Cadence En-
counter for floor planning, placement and routing. For different switches and
their configurations, the characterization was performed automatically using a
configuration and characterization tool, which is a part of the architecture explo-
ration framework.

The single-stage and multi-stage switches are differently organized in terms
of stages, which in turn results in different values for physical switch parameters,
such as area, delay, etc. For example, a cyclic shifter can be realized using a single-
stage multi-input multiplexer (MUX) (see Figure 4.26) or by multiple simple
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Figure 4.26: An example 4×4 single stage cyclic shifter
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2×1 multiplexers cascaded in multiple stages (log-shifters) (see Figure 4.27). As
concerned resources, the direct implementation of an N×N shifter would require
in total N multiplexers each of size N×1, while N log2N multiplexers each of size
2×1 for a multi-stage shifter. The delay in case of the direct implementation
is that of a single N×1 input multiplexers, while for the multi-stage shifter,
the delay would be log2N, i.e. the number of stages. Similarly, a global switch
that provides all the inputs/outputs permutations can be realized using a Benes
network of N/2 (2N log2-1 ) 2×2 crossbar switches (see Figure 4.29) or a direct
implementation using N N×1 multiplexers (see Figure 4.28). In case of the direct
implementation, the delay is of a single N×1 multiplexer, while for the multi-stage
shifter, the delay would be of 2log2N-1 2×2 crossbar switches, i.e. the number of
stages. This simple delay evaluation holds for small switch sizes, but shows a huge
deviation for large switches after they are physically placed and routed. This once
more reconfirms that the actual architectural element characterization and using
the data from the actual characterization for the DSE are really necessary for
taking the adequate design decisions. The characterization results for the single-
stage and multi-stage cyclic shifters with different number of ports and data width
configurations are shown in Table 4.4.



110 4.4. DESIGN OF GENERIC COMPONENT LIBRARY

4x1 Mux

1 I2 I3

I0 I1 I2 I3
I1 I2 I0I3 I2

I3 I0 I1

I0

I2I0I3

O
2

O
3

I1
Sh0 Sh1 Sh2

Sh3

O
0 O

1

Level

4x1 Mux 4x1 Mux 4x1 Mux

I

Figure 4.28: An example 4×4 single stage permuter

2x2
0

O1

O3

O2

I0

I1

I2

I3

O0

O1

I0

I1 Mux

2x1
Mux

2x1

ctrl

Cross Bar
2x2

Cross Bar

2x2
Cross Bar

2x2
Cross Bar

2x2
Cross Bar

2x2
Cross Bar

2x2
Cross Bar

O

Figure 4.29: An example 4×4 multistage permuter (Benes network)

4.4.4 Sequencer/Controller Design for LDPC decoder

Two phase message passing (TPMP) LDPC decoding algorithm consists of four
main steps: initialization, check node computation, variable node computation
and decoding termination. The steps are well-described in Section 4.2 of this
chapter. The order in which these steps are performed is shown in Figure 4.2. The
controller for the LDPC decoder consists of a Finite State Machine (FSM) con-
troller and a set of counters that together implement the control mechanism for the
above four steps, as shown in Figure 4.30. FSM is the main sequencer/controller.
Its state diagram and operations are described below.

The FSM involves four main stages corresponding to the main decoding steps:
initialization stage, check node computation stage, variable node computation
stage and decoding termination stage, as shown in Figure 4.31. Each main stage
consists of a number of internal states that implement the required control related
to that stage. Initialization stage consist of two states, the IDLE and INIT state,
as shown in golden in the state diagram of Figure 4.31. Upon the assertion of ini-
tialization signal (Start), the FSM jumps to the initialization state (INIT). In the
INIT state the channel memory is initialized with the received frame (codeword)
to be decoded. In the same state the initialization of the variable node memories
Mvc that store the variable node messages is also performed (see details in Section
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Table 4.4: Singlestage and Multistage cyclic shifters characterization results in

TSMC 90nm LPHP Standard Cell Library

Shifter W Parameters Shifters with different I/O ports and Width=8

Type 2 4 8 16 32 64

Single
8

Area (mm2) 0.000233 0.001062 0.004371 0.017441 0.071126 0.27836

Stage Delay (ns) 0.122 0.508 0.559 0.880 0.953 0.945

Multi
8

Area (mm2) 0.000233 0.000839 0.002427 0.00635 0.015697 0.037384

Stage Delay (ns) 0.122 0.276 0.429 0.582 0.735 0.888

Single
168

Area (mm2) 0.00485 0.020049 0.078298 0.313072 1.274514 5.09458

Stage Delay (ns) 0.122 0.869 0.794 1.239 1.230 1.350

Multi
168

Area (mm2) 0.00485 0.017667 0.05117 0.133255 0.331488 0.789721

Stage Delay (ns) 0.122 0.930 1.086 1.242 1.514 1.67

4.2 of this chapter). The track of the number of samples of the received frame
is kept in a counter. The channel memory Mch is implemented in the ping-pong
fashion using double buffering technique. The double buffering technique works
as follow. It employs two channel memories instead of one. One of the channel
memories (Mch) is used in decoding of the current frame, while the other is used
for storing of the next incoming frame. At the start of next frame decoding, they
switch their functionality (ping-pong). This way it reduces the decoding latency
related to the input/output (I/O) interface. The same technique is used for the
hard decision memory Mhd that stores the decoded codewords.

After the initialization, the FSM transits to the check node computation stage
upon the assertion of InitDone signal. The check node computation stage con-
sist of three states, as shown in pink in Figure 4.31. The CNP can perform the
computation in parallel for two consecutive nodes. Internally the check node com-
putation is organized in two phases (see details in Section 4.4.1 for the check node
processor micro-architecture). While processing the inputs for the current CN, it
also processes the outputs for the previous CN. Therefore, the CN computation is
divided into three states, CN RD, CN RDWR and CN WR state. This division
is required to generate specific control signals for each of the CN computation
phases. In CN RD state only the first phase of CNP is performed (first CN and
no previous CN), in the CN RDWR both CNP phases are performed for differ-
ent nodes (current and previous CN), while in the CN WR state only the second
phase of CNP is performed (last CN). More specifically, in the CN RD all the
inputs of the first check node (CN) are processed as a first phase of the check
node processor. Then, the FSM jumps to the state CN RDWR by the assertion
of the signal FCN. In this state, the FSM enables the processing of inputs for the
current CN and outputs for the previous CN in parallel. The necessary control
signals are generated by the FSM to control the processors and the corresponding
switches and memories that are active during this state. The FSM output signals,
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Figure 4.30: Main Controller/Sequencer toplevel architecture for LDPC decoding

however, are not shown in the state diagram5 of Figure 4.31. The FSM remains
in this state and controls the CN computations (input/output phases) for all the
nodes till the last CN input phase is performed. To process the last CN output
phase, the FSM jumps to the CN WR state by asserting the signal ACN true.
In this state, the FSM enables the necessary control signals to perform only the
second phase of the CN and terminates the CN computation stage. An example of
a CNP control signal is proc cnp ctrl load. When this control signal is asserted,
it initializes the processor with the maximum values in order to find the min and
min2 among all the CN inputs. This is done at the beginning of each of the CN
computations.

After processing the last CN output phase, the FSM transits to the VN RD
computation stage, as shown in blue in the state diagram of Figure 4.31. The
VN computation is divided into three states, similarly to the check node compu-
tation stage, that enables the processing of two variable nodes in parallel. The
VN computations are different than the CN computations and require different
control signals. The control signals ensure the proper timing of the VNPs, and
the corresponding switches and memories involved in the VN computations. For
instance, consider a control signal proc vnp ctrl ch in. When this control signal
is asserted, it adds up the received channel value to the running sum at the begin-
ning of every VN computation. The VN computations proceed in a way similar

5Details of the FSM output control signals can be found in Appendix-B
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Figure 4.31: Finite state machine (FSM) of controller for LDPC decoder

to the CN stage until they reach the VN WR state. In this state, when the last
VN output phase is finished, the FSM goes to the ITER CHECK state, which
is a part of the termination stage, as shown in red in Figure 4.31. In this state,
the FSM checks the number of iterations. If the maximum number of iterations
is reached for a frame or a codeword is correctly decoded, the FSM jumps to the
frame output state FRAME OUT. Otherwise, the FSM continues with the next
iteration on the current frame by jumping to the first state, i.e. CN RD, of the
check node computation stage. This is done by the assertion of IterCmpt signal
as false. In the FRAME OUT state, the FSM output the current frame in a
ping-pong fashion, as discussed earlier for Mch memory. If there are more frames
to decode the FSM goes to INIT state, otherwise the FSM remain in the decode
complete state DECODE CMPT.

Several counters are required to keep track of various necessary counts in-
cluding: the number of iterations, the number of messages per check or variable
node, the total number of nodes that are processed. Instead of using multiple



114 4.4. DESIGN OF GENERIC COMPONENT LIBRARY

Memory Tag

AC c C 0 B b B 0 aA

0AB 3 B 0 2AC 0C 3

Counter Width
Message CountCheck Node CountIteration Count

Counter Width = 11

(A)

(B)

0

Figure 4.32: (A) Single Combined Counter for different counts purposes (B) Example

of counter for rate1/2 672bit IEEE 802.15.3c LDPC code with processing parallelism

P(1, 21)

counters, a single counter can be used with its various bits assigned to count
different values. One counter organization is shown in the Figure 4.32. It splits
the bits of a single counter into three parts unlike considering three independent
counters connected in cascade. The first part (An.....A0) corresponds to messages
per check or variable node, the second part (Bn.....B0) to the total number of
nodes involved in a particular LDPC code and the last part (Cn.....C0) for the
number of decoding iterations. For instance, consider an architecture instance
for the rate-1/2 672-bit IEEE 802.15.3c LDPC code with processing parallelism
P(1, 21). The CN computation in this case requires a maximum of 3-bits to
count the number of messages for a single check node (8-inputs per CN), 4-bits
for counting the total number of check nodes (16 macro-rows) and 4-bits to count
the number of iterations (assuming the number of iterations ≤ 16), as shown
in Figure 4.32. The counter flags are then used to to generate different control
signals (FCN, ACN, LCN, FV N, AV N, LV N, IterCmpt, DecodeCmpt) for dif-
ferent state transitions in the main FSM. The advantage of using a single counter
is two fold: first, it reduces the complexity in terms of resources of the controller,
and secondly it saves the time in hand-shaking with the main FSM that would
be required in case of several individual counters.

Moreover, the counter values are used as tags for generating physical addresses
for various memories (Mch, Mcv, Mvc, Mhd). The physical memory addresses cor-
responding to the tags are stored in various read-only-memories (ROMs). These
addresses are quite random, but are computed off-line at design-time during the
memory architecture March design, and are not computed at run-time. At run-
time, the earlier computed and stored addresses are only used as physical ad-
dresses for different memories. For instance, consider an architecture instance for
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the rate-1/2 672-bit IEEE 802.15.3c code with processing parallelism P(1, 21).
For simplicity, consider the case of a check node message vector memory Mcv

assuming that the architecture P(1, 21) employs a single Mcv. The tags for Mcv

is generated in the following manner. The total number of check node messages
to be stored in this memory is 108 and the maximum number of inputs for a check
node is 8. Therefore, the first 3-bits of the counter (check node counter) are used
to tag the individual messages of a node, while the other 4-bits for counting the
number of check nodes. They together form the memory tags for the ROMs that
store the physical addresses for the Mcv, as shown in Figure 4.32.

The same counters are also used as tags to generate physical routing signals
for various switches and shifters. The routing addresses are of two types: local
routing and global routing. Both the local and global routing addresses are com-
puted during the communication architecture Carch design. Moreover, the local
routing addresses (values) have a one-to-one correspondence with the values of the
non-zero entries of the parity check matrix (PCM). The various routing address
are computed off-line at design-time during the Carch design, and are stored in
different ROMs for each of the communication segments. The off-line computed
addresses, which are stored in ROMs, are then used at run-time for controlling
the communication (interconnection) among different memories and processors.

Since the processors implement relatively simple operations, their control is
also simple and involves just a few control signals (e.g. 5-control signals both in
case of CNP and VNP). Therefore, instead of designing separate FSM controllers
for individual processors, a centralized FSM controller is designed, which is much
efficient in terms of resources. However, for the cases when the individual proces-
sors implement complex and divergent operations, such a centralized controller is
not only difficult to design but also would be inefficient both from the point of
view of resources and timing.

4.5 Application of the Design Space Exploration and
Synthesis Approach to the LDPC Decoders

In previous sections, the design of the generic top-level architecture template and
its generic modules are explained for the LDPC decoders, which is one of the
most important, difficult and time-consuming steps of the proposed architecture
design methodology. In this section, it is described that how the architecture
design space exploration and synthesis (DSE&S) approach for multi-processor ac-
celerators proposed in Chapter 3 is used for the design of LDPC decoders. The
focus will be on the massively parallel multi-processor LDPC accelerators re-
quired for the high-end applications. As briefly introduced in Chapter 3, the DSE
is performed for a given LDPC code and related set of behavioral and paramet-
ric requirements through the instantiation of the generic architecture templates,
computation process scheduling and mapping on the architecture templates, and
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analysis and selection of the constructed alternative architectures.

For LDPC decoders, the required accelerator quality is defined by a particular
LDPC code, its associated parity check matrix (PCM), its decoding algorithm to-
gether with decoding parameters, and the parametric constraints, objectives and
tradeoff preferences. The hard constraints are usually on the throughput (Tcstr)
and the clock frequency (Fcstr). The optimization objectives are related to the
circuit area (Aobj) and power consumption (Pobj). Also, the required tradeoff
between the area and power consumption should be specified. The PCM (Tanner
graph) of a given LDPC code is a fully-parallel abstract behavioral specification
of the LDPC code. A given PCM contains abstract information about all kinds of
information processing elements and corresponding architecture elements that are
relevant from the viewpoint of architecture exploration and synthesis. In partic-
ular, it defines the different kinds of processing and corresponding processors (al-
though does not give their precise processor definition) and their communication
with each other. The non-zero PCM entries represent the memory requirements.

Algorithm 2 : Design space exploration (DSE) and synthesis algorithm for
LDPC decoders
1: Input → PCM, Throughput (Tcstr), Frequency (Fcstr)
2: Input → set Aspiration Point (AP ) for Area (Aobj) and Power (Pobj)
3: Output ← SArch = {Arch1, .....,Archn} // set of architectures that satisfy the hard con-

straints of the clock speed and throughput and optimize the tradeoffs among the area and
power

4: Initialize: SArch = ∅, // where Archinst = {processors, memory, communication}
5: SED Mic(Pmic, Fcstr) // search, evaluate and decide Pmic

6: SED Mac(Pmac, Tcstr) // search, evaluate and decide Pmac

7: SED MemComm(Pmac, Pmic) // search, evaluate and decide compatible March and Carch

8: for all (Archinst ∈ SArch such that isvalid[Archinst] == True) do

9: select: Archinst → opt(Aobj , Pobj) // optimally satisfy Aobj and Pobj

10: synthesize: Archinst // synthesize the architecture
11: end for

12: for all (Archinst ∈ SArch such that isvalid[Archinst] == False) do

13: modify (improve) the architecture templates or lower the requirements
14: end for

The DSE algorithm organizes the design decision (state) space for the design-
decision-making at two levels. The top-level breaks down the decision space into
a number of main distinct issues in a tree like structure, as described in Chapter
3 (see Algorithm 2). The lower-level represents the actions (operators) that are
performed at different main stages (corresponds to the nodes in the search tree
at a particular level) during the search for the solutions (see Algorithms 3, 4, 5).

The DSE algorithm takes as it inputs the PCM (behavioral specification), as
well as the required clock speed and throughput as the hard constraints, and the
area and power consumption minimization as the optimization objectives (see al-
gorithm 2). The clock speed and throughput constraints, and the optimization
objectives of power and area represent the required properties of solutions in the
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objective space. The decision space involves the decisions about the CNP and
VNP processor’s micro- and macro-architectures, as well as, the decisions about
the different memories needed (Mcv, Mvc, Mch, MHD) and the decisions about
the communication network among the processors (CNP, VNP) and memories
(Mcv, Mvc, Mch, MHD). The constraints, objectives, and their required tradeoffs
and the design decision vector define together the multi-objective optimization
(decision) problem to be solved through the DSE. Our DSE tool, called Multi-
Processor Accelerator Explorer (MPA-Explorer), makes the decisions about the
design parameters included in the decision vector, when observing the hard con-
straints and optimization objectives. These decisions influence the constraints
and objectives through influencing the accelerator throughput, clock frequency,
area and power consumption.

The clock speed and the throughput are directly influenced and decided by
the processing parallelism. i.e. the type and number of processors. Therefore,
the architecture exploration starts with the decision of the processing parallelism,
and specifically, the selection of the micro-architecture (Pmic) parallelism for each
of the computation tasks, as represented by the procedure “SED Mic” (see line 5
of algorithm 2). SED (search, evaluate and decide) reflects the three steps that
are performed at each stage of the design decision making. The other reasons
for initializing the search with the micro-architecture decisions are much fewer
legal values for Pmic compared to Pmac. This decision variable ordering is called
“minimum-remaining-values (MRV) heuristic”. It makes possible pruning of the
search tree by eliminating a large number of branches at the second step, i.e.
macro-architecture step (usually more possibilities for macro-architectures than
micro-architectures). This is due to the fact that when building up a solution,
if any constraint is not satisfied, one can immediately reject all possible ways of
extending the current partial solution.

Algorithm 3 : Micro-architecture exploration for LDPC decoder
1: Procedure: SED Mic(Pmic, Fcstr)
2: Input → PCM , set of Tasks, Fcstr, SArch = ∅
3: Output ← SArch = {set of Pmic}
4: for all i ∈ Pmic for CNP do

5: if (Pmic[i] → Fdel ≥ Fcstr) then

6: select: Pmic[i] // select the micro-architecture that satisfies the clock constraint
7: create and update: Archinst → Pmic[i] // create the architecture instance Archi and

update it by adding the micro-architecture Pmic information
8: isvalid[Archinst] = True // Tag the architecture in the architecture database as valid

9: i := i + 1 // Test another Pmic instance
10: else

11: go to step 14 // relation holds: x(1)(i) < Fcstr → x(2)(i′) < Fcstr, s.t. (i 6= i′) ∧ (i′ > i)
12: end if

13: end for// Loop for the micro-architectures that satisfy the clock constraint
14: repeat steps 4-13 for VNP

The details of the procedure “SED Mic” are given in Algorithm 3. Various
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micro-architectures for the CNP and VNP are searched, evaluated and among
them those are selected that satisfy the Fcstr. In this step, some of the micro-
architectures with the higher parallelism can be excluded from further consider-
ation due to a long critical path delay, and consequently low maximum delivered
clock frequency (Fdel) (see line 4-13 of algorithm 3). For CNP, Pmic = {1, ....., dc}
and for VNP, Pmic = {1, ....., dv}, where dc and dv represent the maximum CN
and VN degrees of a given LDPC code, respectively. For instance, for the rate-7/8
672-bit IEEE 802.15.3c code, Pmic = {1, ....., 32} for CNP and Pmic = {1, ....., 4}
for VNP. It should be noted that the mapping possibilities in the DSE are limited
to the pre-designed generic processor architecture templates.

Algorithm 4 : Macro-architecture exploration for LDPC decoders
1: Procedure: SED Mac(Pmac, Tcstr)
2: Input → PCM , set of Pmic for each Task, Tcstr, SArch

3: Output ← SArch = {set of Pmac}
4: for all Archinst → Pmic ∈ SArch for CNP do

5: for all j ∈ Pmac for CNP do

6: determine: Pmic & Pmac for VNP // Combined micro- and macro-architecture par-
allelism for VNP must match the CNP

7: perform and evaluate: scheduling&mapping : Archinst →{CNP, VNP} // compute
the schedule length in clock cycles

8: determine: Tdel for Archinst → {CNP, VNP}
9: if (Archinst → Tdel ≥ Tcstr) then

10: select: Pmac[j] // Pmac for both the CNP and VNP that satisfy the Tcstr

11: update: Archinst → [CNP → Pmac, VNP → Pmac] // update the architecture
Archinst by adding Pmac information for both the CNP and VNP

12: go to step 5 // no need to test further Pmac {dominated architecture instances}
13: end if

14: if ((Archinst → Tdel < Tcstr) ∧ (Archinst → Pmac == max(Pmac)) then

15: isvalid[Archinst] = False // Tag the Archinst in SArch as invalid
16: go to step 5 // do not satisfy the throughput with maximum macro-parallelism
17: else

18: j := j + 1 // Test another Pmac instance
19: end if

20: end for

21: end for// Loop for the micro-/macro-architectures combinations that satisfy the Tcstr

After selecting the set of micro-architectures (Pmic) to be further considered,
the decisions about the macro-architectures (Pmac), i.e. the number of processors,
are made for both the CNP and VNP processors, as represented by the procedure
“SED Mac” (see line 6 of algorithm 2). For CNP, Pmac = {1,......,CNs}, and for
VNP, Pmac = {1,.....,VNs}, where CNs and VNs represent the total number of
check and variable nodes in the PCM of a given LDPC code, respectively. For
instance, for the rate-1/2 672-bit LDPC code, Pmac = {1, ......, 336} for CNP and
Pmac = {1,.....,672} for VNP. While the number of VNs and CNs are 64800 and
32400, respectively, for the rate-1/2 64800-bit DVB-S2 LDPC code.

The search, evaluation and selection of the macro-architectures for CNP and
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VNP are based on the throughput constraint (Tcstr) and the dominance relation.
It is performed as follows. First, Pmac is determined for CNP for each of the
Pmic selected in the previous step. It should be noted that the search for the
macro-architectures progresses in the order of increasing values of the decision
variable, i.e. Pmac. Another search strategy based on the order of the values of the
decision variable can also be devised that may impact the efficiency of the search.
After making a decision on the value of Pmac for the CNP, the Pmac for VNP is
determined in such a way that the combined processing parallelism (Pmic, Pmac)
for VNP would be the same (balanced) as for the CNP (line 6 of Algorithm 4). The
micro-/macro-architecture combination for both the CNP and VNP defines an
architecture instance (Archinst). To check whether Archinst satisfies the Tcstr or
not, Tdel is computed for the Archinst, which is then compared with the Tcstr (see
line 5-13 of Algorithm 4). To compute the delivered throughput (Tdel) for each
of the micro- and macro-architecture (Pmic, Pmac) combination, the scheduling
and mapping of the CN and VN computations are performed on the CNP and
VNP processors, respectively (line 7 of Algorithm 4). The throughput delivered
(Tdel) in Mbps that reflects the performance metric for the LDPC decoding can
be estimated based on the Message Passing (MP) algorithm using the following
formula:

TMbps =
R.N.FMHz

CCPI.Itot
(4.16)

where R stands for the code rate, N stands for the code length (size of data
frame), Itot stands for the total number of iterations required to decode a frame,
FMHz stands for the clock frequency measured in MHz and CCPI represents the
number of clock cycles per iteration. In the above equation, all the parameters
are known except the number of clock cycles per iteration (CCPI). The CCPI
depends on the processing parallelism (micro- and macro-architecture decisions)
and the scheduling of the CN and VN computations on each of the micro- and
macro-architecture combinations. The computation of each kind of node can be
performed in parallel. The CCPI is then the sum of the clock cycles required
for CN and VN computations. This corresponds to the proposed relax scheduling
(RS) technique. The computation scheduling and mapping in the LDPC decoding
seem to be quite trivial, as there are only two kinds of computation processes,
the check and variable node processing, that alternatively operate on each other
data. However, since overlapping of the CN and VN computations is possible, it
turns out to be a very complex scheduling problem. Nevertheless, we developed
the overlapped scheduling algorithms for the overlapping of CN and VN com-
putations6, which corresponds to the proposed tight scheduling (TS) technique.
Even if it is very well resolved, its (near-)optimum solution results in relatively
low gains in performance, while very much increasing the communication network
and memory complexity. The scheduling freedom can be better utilized for the
reduction of memory and communication network complexity than to increasing

6See Appendix-1 on the overlapped scheduling algorithms for LDPC decoding
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the computation speed. Knowing the schedule length (CCPI.Itot), the throughput
delivered (Tdel) can be computed for each micro-/macro-architecture combination
using equation 4.16. If Tdel ≥ Tcstr, then the Archinst satisfies the throughput
constraint (see lines 9-12 of Algorithm 4).

Since the search for the macro-architectures progresses in increasing order of
the values of Pmac for a given Pmic, any higher value for Pmac above the value
for the first found solution that satisfies the Tcstr would result in a dominated
solution. Therefore, the search terminates after finding the first feasible solution
for a given Pmic, and the search proceeds with another value of Pmic (see line
12 of Algorithm 4). This way, among all the possible Pmac for CNP and VNP
processors only those are selected for further consideration that minimally satisfy
Tcstr. The minimal satisfiability criteria for the macro-architecture (Pmac) is
based on the dominance relation. This also much reduces the search complexity,
as any higher value of Pmac above the one that minimally satisfy Tcstr would result
in a dominated solution and is not considered in the next stage of exploration.
It is also possible that for a given Pmic the Tcstr cannot be satisfied with any
macro-architecture parallelism even exploiting the macro-architecture parallelism
to the maximum. In this case, all the micro-/macro-architecture (Pmic, Pmac)
combinations that corresponds to that particular Pmic are pruned away from the
set of candidate architectures (SArch) (see lines 14-19 of Algorithm 4).

Algorithm 5 : Memory and communication architectures exploration for LDPC
decoders
1: Procedure: SED MemComm(Pmic , Pmac)
2: Input → PCM , ∀ Tasks (Pmic, Pmac) , Fcstr, Tcstr , SArch

3: Output ← SArch = set of {March, Carch}
4: for all Archinst ∈ SArch such that isvalid[Archinst] = True do

5: determine: required storage and data transfer bandwidth = Pmic.Pmac . b

6: SED Mem: memory bandwidth using various memory architectures March

7: SED Comm: data transfer bandwidth using various communication architectures Carch

8: for all March ∧ Carch do

9: determine: the memory and communication delays for each March and Carch

10: compute: (Archinst → Fdel) ∧ (Archinst → Tdel) // Take into account the March

and Carch structures delays
11: if (Archinst → Fdel > Fcstr) ∧ (Archinst → Tdel > Tcst) then

12: update: Archinst → [March, Carch]
13: else

14: isvalid[Archinst] = False

15: end if

16: end for

17: for all Archinst ∈ SArch such that isvalid[Archinst] = True do

18: select: March and Carch → min{Area or Power}
19: end for

20: end for// Loop for the memory and communication architecture exploration

In the second stage, the memory and communication architectures are de-
cided for each of the constructed and selected candidate partial architectures



4. IMPLEMENTATION OF THE DESIGN METHODOLOGY 121

Archinst ∈ SArch representing particular micro- and macro-architecture combi-
nations (Pmic, Pmac), as represented by the procedure “SED MemComm” (see
line 7 of algorithm 2). The processors (CNP, VNP) with micro-parallelism Pmic

have m data input ports and the same number of data output ports. They de-
mand a compatible memory architecture with m input and m output ports. The
required aggregate storage and data transfer bandwidth per clock cycle for a
micro-/macro-architecture (Pmic, Pmac) combination can be expressed as:

bandwidth/cc = Pmic.Pmac.b (4.17)

where b represents the bit width of data. The March for LDPC decoders involves
four different memories (Mcv, Mvc, Mch, MHD) as defined in the top-level generic
architecture template. The Mcv and Mvc are shared between the CNP and VNP
processors, while the Mch and MHD are used by the VNP processors for reading
of channel data and writing of decoded messages, respectively. The CNP reads
the check node data from the Mcv and after processing writes the result data to
the Mvc memories. Similarly, the VNP reads the variable node data from the
Mvc and after processing writes the result data to the Mcv. Therefore, Mcv must
have sufficient read ports to satisfy the read request of CNPs and must have to
enough data write ports to satisfy the write requests of VNPs. Similarly, Mvc

must have enough data read ports to satisfy the read requests of VNPs and must
have enough write ports to satisfy the write requests of CNPs. The required
bandwidth is computed for each of the architecture instance (Archinst) based on
the combined processing parallelism (Pmic, Pmac) (see line 5 of Algorithm 5).

To ensure the data storage and transfer bandwidth required by the CNP and
VNP processors on low cost and satisfactory delays, different memory and com-
munication architectures are searched, evaluated and selected during the DSE
using the procedures “SED Mem” and “SED Comm”, respectively (see lines 6-7
of Algorithm 5). The memory architectures include the simple multi-port vector-
ized memories and the complex multiple single/dual-port vectorized or multi-bank
memories. The communication architectures include the simple homogenous fully-
flat architectures and the complex heterogeneous hierarchical partitioned commu-
nication architectures. The memories can be realized as SRAMs or register-based
memories, and the communication architectures using single-stage and multi-stage
switches and shifters. The DSE algorithm explores and selects the most promising
of the communication and memory architectures for a particular micro-/macro-
architecture combination, while taking into account the design constraints and
optimization objectives.

To satisfy the memory bandwidth required for the CNPs and VNPs and to
avoid the memory access conflicts, data in each type of memory (Mcv, Mvc, Mch,
MHD) is partitioned and stored in distributed vector memories. This task is
performed by the “SED Mem” procedure. The problems of data organization
into vectors and the required number of shared vector memory tiles (partitions)
are resolved together with the communication architecture design, when the flat
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communication network is transformed into the hierarchical network. However,
providing as many shared vector memory tiles (partitions) as the processing tiles
would only partially solve the problem due to the possible memory access conflicts.
Therefore, the data distribution and data mapping in the partitioned memories
are performed with the aim to eliminate the memory access conflicts, as well as,
to ensure that the communication strategies would be applicable. Based on the
analysis of the PCM of a given LDPC code, the processing elements (VNP, CNP)
are organized in a corresponding hierarchical way into several tiles (groups). The
tiles are then structured into one global cluster or several global communication-
free smaller clusters (if possible), and their respective data in memory tiles. This
task is performed by the procedure ‘SED Comm”. The tiles and clusters replace
a flat communication network with several much smaller hierarchically organized
autonomous communication networks.

The search, evaluation and selection of communication and memory archi-
tecture is made according to the following criteria. For a particular micro- and
macro-architecture combination, only these communication and memory architec-
tures are considered that satisfy the throughput (Tcstr) and clock speed (Fcstr)
constraints. Therefore, the delivered throughput (Tdel) and clock speed (Fdel)
are recomputed once more for each of the candidate architecture in SArch, while
taking into account the communication and memory architecture delays (see lines
8-16 of Algorithm 5). From among these architectures, only such are further con-
sidered, which cause the lowest increase in the area or power (see lines 17-19 of
Algorithm 5).

It should be noted that the communication or memory architectures do not
cause extra clock cycles7 for the communication or memory operations (load and
store), as the architecture template performs the memory operations in parallel
with the computations and the communication is realized using point-to-point
(P2P) links and not using shared buses or Network-on-Chip (NoC). Moreover, the
processors, memories and communication structures are synchronized on a single
clock, i.e. they use the same system clock and not independent clocks. The clock-
based synchronization ensures correct work of the overall platform (accelerator).

This way, several most promising accelerator architectures (SArch) are con-
structed taking into account the mutual tradeoffs among processors, memories
and communication networks (see lines 8-10 of Algorithm 2). If none of the ar-
chitectures satisfies the constraints, then the requirements can be lowered or the
architecture template can be modified. Another iteration of DSE can then be
initialized (see lines 11-14 of Algorithm 2). A more precise explanation of vari-
ous parts of the architecture exploration and construction process is presented in
the successive chapters. The various possible micro-/macro-architecture tradeoffs
regarding processors will be explained in the next chapter using as an exam-
ple the design of LDPC decoders for the IEEE 802.15.3c LDPC codes and their

7This would reduce the overall throughput by increasing the total number of clock cycles
required for the LDPC decoding
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performance demands. The particular strategies of the communication and mem-
ory architecture exploration and synthesis will be described in Chapter 6 of this
thesis. Although various issues are discussed separately in different chapters to
explain them better and highlight the significance of each issue, the actual DSE is
performed in combination for all the design elements (processors, memories and
interconnects).

4.6 Architecture Template Instantiation and Rapid
Prototyping

One of the main parts of the architecture design methodology is the automatic
architecture template instantiation. The DSE specifies a set of promising architec-
tures for a particular LDPC code and parametric requirements of its application.
Subsequently, some selected architectures have to be actually instantiated pro-
totyped and/or produced through automatic instantiation of the parameterized
templates that model the architectures for the selected parameter values. The fol-
lowing are some of the main parameters that are used in the automatic template
instantiation process for a particular LDPC code decoder:

• the micro-architecture of the elementary processing units (specifically, the
parallelism level of the processing units);

• the macro-architecture (specifically, the number of processing units to be
used and assignment of CN/VN nodes to processing units);

• the number, size, structure and organization of memory modules;

• the kind, organization of and parameters of interconnect and switching re-
sources among various memories and processors (e.g. specific instances of
logarithmic or barrel shifters or permuter or Benes networks).

Based on the values of the above parameters, the architecture template in-
stantiation engine creates the actual RTL-Level model of the whole architecture
in Verilog HDL, including the corresponding controller. This simulatable and
synthesizable Verilog model can be directly used for the architecture correctness
verification and rapid prototyping. This way, the architecture can be further more
accurately analyzed and characterized for performance, area and power consump-
tion using the back-end SoC synthesis and place and route tools. Further, FPGA
emulation of the proposed architecture can be performed. The actual implemen-
tation results can be used as a feedback to the DSE engine for further architecture
optimizations. Other advantages are the acceleration of the overall architecture
DSE and synthesis process, and the avoidance of the manual translation errors
among various design representations. An example of the list of parameters for
a particular architecture instance generated by our Multi-Processor Accelerator
Explorer (MPA-Explorer) tool is shown in Table 4.5.
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Table 4.5: MPAExplorer Tool output file and the set of parameters decided during

the design space exploration for an architecture instance of the rate1/2 672bit IEEE

802.15.3c LDPC code

Block Types Parameter Values

Processors
PE cnp 84 2 8 8

PE vnp 84 2 4 8

Memories

mem cnp sramff 8 16 168 1 1 0

mem vnp sramff 8 16 168 1 1 0

mem ch sramff 4 8 168 1 1 0

mem hd sramff 4 8 21 1 1 0

Networks

sw.fr.memc.to.cnp L1 benes sw 1 8 168 PP 0 0 0 0

sw.fr.cnp.to.memv L1 benes sw 1 8 168 PP 0 0 0 0

sw.fr.memv.to.vnp L2 benes sw 1 8 168 barrel shifter 8 0 21 8

sw.fr.vnp.to.memc L2 benes sw 1 8 168 barrel shifter 8 0 21 8

4.7 Method Correctness

The method and the corresponding Multi-Processor Accelerator Explorer (MPA-
Explorer) tool produce the structural register-transfer-level (RTL) specification of
the required architecture (platform instance). The platform instance RTL-level
specification is mainly composed of RT level models of processors, memories,
communication network among the processors and memories, I/O interface and a
controller (see Table 4.5). The DSE framework decides on a particular architec-
ture and the parameters of the architecture elements for a given set of require-
ments. The parameters contain all the information needed to uniquely determine
the actual hardware structure of the multi-processor accelerator. The functional
correctness of the constructed architecture is guaranteed by the method provided
the individual architecture elements work correctly. The functional verification
of various kinds of processors, memories and interconnect structures is performed
using the RTL-level simulation during the development of the generic architecture
elements.

The interface compatibility among the architectural elements is guaranteed
by the method. The architecture elements have the same number of interface
binary signals from both sides (bandwidth compatible). Two types of signals are
distinguished for all the architecture elements, namely, the control and the data
path signals. The data path signals are used for the dataflow among the modules,
while the control signals are used for various control purposes depending on the
architecture elements involved. For example, in case of a processor, the control
signals are used to control its internal state behavior (if any). The internal states
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are only present when it implements the same computations in serial or partially
parallel fashion instead of in fully-parallel. For the communication network (com-
posed of switches and shifters), the control signals are used to control the switch
temporal interconnections among the different processors (CNPs and VNPs) and
memories (Mcv and Mvc). The control signals for switches and shifters (repre-
sented by the values of the non-zero entries in the block-structured PCM) are
stored in read-only-memories (ROMs). In case of memories, the control signals
are used to control the read/write mode of memories and also to provide the
necessary memory addresses. Since irregular memory accesses are involved due
to the complex interrelationships among the data and the computing operations
in LDPC decoding, the memory addresses are computed off-line for reading and
writing data from and into the memories (Mcv, Mvc, Mch, MHD). Several ROMs
are used to store the off-line computed addresses for reading and writing of data
in memories. This way the processors, memories and the interconnect networks
are properly controlled that guarantee the correct behavior of the whole platform.
The memories can be implemented in two ways: either as logic cells (Flip-Flops)
or the actual cell-based SRAM memories. For high processing parallelism, the
memories are usually implemented in logic turning the whole architecture into a
standard cell-based design.

The whole system implements the controller/data path paradigm of Glushkov,
where controller is an FSM and the whole system works with one clock and is
fully synchronous (clocked-mode). Correct work of a synchronous (clocked-mode)
system is generated by a proper relation between the input signals to the flip-
flops and clock signal of the flip-flops (the FF input signals must be stable during
the setup, rise and hold time of given FFs). Analogous way, the signaling cor-
rectness for SRAM memories is guaranteed. The delays in all modules (and this
way the total delays in all modules from FF-output to inputs) are precisely con-
trolled (known) because they are actually measured during the characterization.
The clock frequency (period) is decided based on the actual delay, and this way
the correctness of this fully synchronous system is guaranteed. Moreover, the
MPA-Explorer tool generates a test bench for the top-level architecture in Ver-
ilog HDL. The test bench is used to simulate and verify the top-level instantiated
multi-processor accelerator architecture. This way the method and its pre-verified
generic architecture elements and specifically its architecture DSE exploration and
synthesis guarantee the correctness of the constructed architecture.

4.8 Conclusions

In this chapter, the implementation of the proposed architecture design methodol-
ogy is described for the architecture design of LDPC decoder. The core activities
of the architecture design method are realized through the development of the ar-
chitecture template and its modules for the LDPC decoding applications, as well
as, the DSE for various tradeoffs at the micro-/macro-architecture level. Applica-
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tion of the DSE and synthesis approach to the LDPC decoder is discussed. Our
DSE tool, called Multi-Processor Accelerator Explorer (MPA-Explorer), makes
the decisions about the architecture elements to form the complete architecture
taking into account the design constraints and objectives. These decisions influ-
ence the constraints and objectives through influencing the accelerator through-
put, clock frequency, area and/or power consumption. The various possible micro-
/macro-architecture tradeoffs regarding processors will be explained in the next
chapter using as an example the design of LDPC decoders for the IEEE 802.15.3c
LDPC codes and their performance demands. The particular strategies of the
communication and memory architecture exploration and synthesis will be de-
scribed in Chapter 6 of this thesis.



CHAPTER 5

Micro-/Macro-architecture Exploration

In the previous chapter, the implementation of the proposed design methodology
is presented for the LDPC decoding applications. In this chapter, a part of the
design methodology and design space exploration (DSE) framework is thoroughly
discussed that addresses the combined micro-/macro-architecture parallelism ex-
ploration, the mutual tradeoffs between the micro- and macro-architecture, as
well as, the influence of the processor architecture decisions on the memory and
communication structures. This discussion is illustrated with experimental case
studies related to the design of LDPC decoders for the newest communication
system standards. For the combined micro-/macro-architecture tradeoffs explo-
ration, the IEEE 802.15.3c LDPC decoders are used as a case study, while taking
into account their parametric constraints and objective related to specific practical
application cases.

The micro-architecture level exploration is related to the realization of vari-
ous RTL-level multi-input multi-output (MIMO) operations involved in the algo-
rithms of many highly-demanding applications. For example, the IEEE 802.15.3c
standard specifies four different LDPC codes with variable nodes from a single
input/output to a maximum of 4 inputs/outputs, while the check nodes from a
minimum of 5 inputs/outputs to as high as 32 inputs/outputs. The implementa-
tion spectrum of these operations spans from the fully-serial to the fully-parallel
with in between these two bounds a large number of partially-parallel architec-
tures. The realization of the MIMO operations in fully-parallel or in fully-serial
may not be satisfactory for different stringent design constraints and objectives,
which necessitates a careful exploration of the micro-architecture level parallelism.
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This is due to the fact that the fully-serial micro-architecture requires a large num-
ber of computation cycles, however, due to a long critical path delay in case of
the fully-parallel micro-architecture, which negatively influence the performance.

At the macro-architecture level multiple such (partially-) parallel processors
have to be considered to satisfy the ultra-high throughput requirements of many
of the modern demanding applications. This is possible because these applications
involve massive data parallelism or task-level functional parallelism. For example,
the rate-1/2 672-bit IEEE 802.15.3c LDPC code consist of 672 variable nodes
(VNs) and 336 check nodes (CNs) that correspond maximally to the same number
of variable and check node processors, respectively, at the macro-architecture level.
Consequently, depending on the actual performance requirements complex multi-
processor accelerators can be build of the elementary processors or accelerators
to satisfy the requirements. Moreover, for various performance levels, there are
different tradeoffs among the resources at the micro- and macro-architecture level.
For example, for the LDPC decoders, lower number of more parallel processors
(CNPs and VNPs) can be required to reach a similar performance level as with
more but less parallel processors.

Additionally, the memory and communication structures are strongly related
to the parallelism at each of the two architecture levels, due to the complex inter-
relationships between the data and computing operations. Although the results
of the exploration of the micro-/macro-architecture are discussed in isolation from
the corresponding memory and communication exploration just to get an insight
into the kind of possible tradeoffs. However, the processor, memory and com-
munication architectures are considered together during the actual design space
exploration (DSE). The results of the experiments with various processing paral-
lelism and its influence on the communication and memory architectures shows
the dominating influence of the memory and communication on the overall sys-
tem costs and performance. Moreover, the influence of the operation scheduling
shows some important tradeoffs among the different types of schedules that must
be taken into account and are discussed in a separate section of this chapter.

The rest of the chapter is organized as follows. Section 5.1 describes in de-
tail the various tradeoffs possibilities both at the micro- and macro-architecture
level. Section 5.2 introduces the IEEE 802.15.3c LDPC codes that are used for
experimentation. Section 5.3 discusses the results of the experiments performed
for various micro- and macro-architecture combinations and their mutual trade-
offs. The influence of increase in the processing parallelism on the memory and
communication architectures is discussed in Section 5.4. Section 5.5 discusses the
influence of the operation scheduling on the performance and on the complexity
of the memory and communication architectures. Finally, Section 5.6 closes this
chapter with some important conclusions.
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5.1 Micro-/Macro-architecture Parallelism Exploration

As argued in the previous chapters, for an adequate quality accelerator a care-
ful tradeoffs exploration and exploitation at the micro- and macro-architecture
levels is unavoidable, specifically in relation to the parallelism at both architec-
ture levels. Choosing the right number of processors for a given application with
its requirements, i.e. the macro-architecture decision cannot be separated from
the right processor type selection, i.e. the micro-architecture decision and the
micro-architecture implementation choices, especially, for the kind of applications
involving complex multi-input multi-output MIMO operations.

The memory and communication structure design further complicates the de-
cision problem of the micro-/macro-architecture, especially, for the kind of ap-
plications involving complex interrelationships between the data and computing
operations, as both the micro- and macro-architecture directly influence the mem-
ory and communication architecture design but in different ways and to different
degrees. Therefore, complex tradeoffs have to resolved to find an adequate balance
between the kind of processors and their macro-level organization, and the related
memory and communication architectures, and specifically, between the amount
of parallelism at the micro- and macro-architecture level and the memory and
communication structure complexity. This task can effectively and efficiently be
performed through an adequate DSE for a number of promising micro-/macro-
architecture combinations and, finally, the selection of the best of them for an
actual realization (see Figure 5.1).

The micro-architecture level decisions influence the system-level decision in
several ways. For instance, increase of the micro-parallelism for a specific task
can reduce the number of clock cycles to execute the task and this way improve
the performance. However, it is accompanied by increase in the resources as well
as the critical path delays (reduces the processor clock speed), which negatively
influences the overall performance. This kind of tradeoffs exploration is specif-
ically important for the kind of applications involving complex multi-input and
multi-output (MIMO) operations. Implementation of these operations using dif-
ferent parallel micro-architectures influences the critical path delay, the number
of clock cycles required and the amount of resulting hardware significantly, and
this way has a complex influence on the performance, power consumption and
area. Through the experimental results, it will be shown that neither the fully-
parallel nor the fully-serial micro-architectures are adequate for the most high-end
demanding applications. This results from these complex influences and trade-
offs, which necessitates partial parallelism exploration and exploitation at both
architecture levels. Additionally, the clock speed might be a hard constraint, in
that case many micro-architectures (specifically the more parallel ones) may not
satisfy the clock speed constraint. To adequately make this kind of decisions, pro-
cessors with different parallelism levels have to considered during the DSE. The
promising micro-architectures that satisfy the hard constraints and other design
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objectives have to be considered for further design exploration and evaluation (see
Figure 5.1).

Another important tradeoff is the power against area for a certain perfor-
mance level. Exploiting the higher degree of parallelism is a well-known method
to trade power against area through operating more processors at a lower clock
speed. The power/area tradeoff under a certain performance constraint can also
be achieved by exploiting processors with different micro-parallelism, unlike the
traditional power (optimization) reduction technique just by increasing the num-
ber of processors. In particular, processors with different micro-parallelism can
be tried while keeping the macro-parallelism the same, but in general, various
micro-/macro-parallelism combinations should be explored for this aim. This
way substantially higher power reduction can be obtained at a lower area than
what is offered by the traditional parallelism/power tradeoff approach. Please ob-
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serve that high parallelism is accompanied by an increase in the static power that
for the latest nanometer technologies has a growing contribution compared to the
dynamic power. Thus, the joint consideration of the micro-/macro-architecture
parallelism provides a new dimension for the power optimization and power/area
tradeoffs under a given performance constraint. The proposed combined micro-
/macro-architecture based power optimization approach is further elaborated by
the experiments presented in the latter sections of this chapter.

An important benefit of a combined micro-/macro-architecture exploration is
to restrain the over-dimensioning of the system regarding its cost under a perfor-
mance constraint. Considering the macro-architecture or micro-architecture inde-
pendently under a performance constraint may unnecessarily increase the system
cost, because it is possible that the performance might be marginally not met.
Increasing the macro-architecture parallelism in this situation would be a costly
decision. As the micro-architecture design also influences both the performance
and cost, but it does it with different tradeoffs between the two aspects than at
the macro-architecture level. This can be resolved in a much better way through
taking into account the micro-architecture enhancement that may restrain the
system from over-dimensioning, while meeting the performance constraint with
no or relatively lower increase in cost. This way the cost would be adequately
tuned to the performance, which is only possible through the joint micro-/macro-
architecture parallelism consideration. Thus, the joint consideration of the micro-
/macro-architecture parallelism provides a novel way for controlling the system
cost against over-dimensioning under a given performance constraint.

All the above mentioned tradeoffs will be elaborated through the design and
analysis of various multi-processor accelerator architectures for LDPC decod-
ing for the latest communication systems standards, when using the proposed
generic architecture template and generic components library supported by the
DSE framework. In the next section, the LDPC codes of the IEEE 802.15.3c
standard [3] will be introduced that were used for the experimentation partly
reported in this thesis.

5.2 LDPC Codes of the Newest Communication Sys-

tem Standards

For the purposes of analysis and evaluation of the proposed multi-processor ac-
celerator design methodology and its design space exploration (DSE) framework,
it is applied to the design of numerous decoder architectures for the LDPC codes
specified in the IEEE 802.15.3c standard [3]. These LDPC codes are standardized
for the future high-speed communication systems, such as mmWave WPAN. The
standard specifies four LDPC codes of rate 1/2, 5/8, 3/4 and 7/8, but of the
same code length of 672-bit. The codes are irregular and have different check
node degrees (dc) and variable node degrees (dv), as shown in Table 5.1.
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Table 5.1: Variable and check node degree distribution, number of macrorows and

macrocolumns of the PCMs of various IEEE 802.15.3c LDPC codes

Code Macro- Macro- Column Row Non-zero

Rate columns (Nb) rows (Mb) Weight (dv) Weight (dc) Blocks

1/2 32 16 [20,4,4,4]={4,3,2,1} [4,4,4,4]={7,6,8,6} 108

3/4 32 8 [24,3,2,2]={4,3,2,1} [2,2,2,2]={14,15,13,16} 116

7/8 32 4 [29,1,1,1]={4,3,2,1} [1,1,1,1]={29,30,31,32} 122

For various applications that impose different performance requirements three
different performance classes {1,2,3} are part of the IEEE 802.15.3c standard.
Class 1 is targeted to low-power low-cost mobile market while maintaining rel-
atively high data rates of up to 1.5 Gbps. Class 2 is specified to achieve high
data rates up to 3 Gbps. Class 3 is specified to support ultra-high performance
applications with data rates above 3 Gbps, like the transmission of uncompressed
high definition (HD) video and audio. Each class utilizes one or more codes for
diverse requirements ranges. For example, the rate-1/2 LDPC code is specified
for the 385 and 770 Mbps in class 1 and for 1540 Mbps data rate in class 2. The
rate-7/8 LDPC code is specified for class 2 applications with the throughput re-
quirement of 3080 Mbps. However, the rate-3/4 code is defined in all classes {1,
2, 3} for different throughput requirements. For instance, 1320 Mbps for class
1, 2640 Mbps for class 2 and 5280 Mbps for class 3 applications. These perfor-
mance requirements and the particular LDPC code will be used to illustrate the
proposed design methodology and its DSE framework.

The PCMs of rate 1/2, 5/8, 3/4 and 7/8 LDPC codes are shown in Table 5.2,
5.3, 5.4 and 5.5, respectively. It is clear that different applications demand var-
ious performance ranges from moderate to extremely high. Therefore, to satisfy
these different performance levels, especially, high or ultra-high, processing paral-
lelism at both architecture levels needs to be adequately explored and exploited.
This kind of parallelism exploration is offered by the proposed multi-processor
accelerator design methodology and its DSE framework.

5.3 Micro-/Macro-architecture Design and Tradeoff
Experiments

A series of design experiments were conducted with multi-processor decoders for
the IEEE 802.15.3c LDPC codes with different processing parallelism combina-
tions. The main aim of the experiments was to explore the numerous design
tradeoffs between the micro- and macro-architecture design, when considering
the micro- and macro-architectures in combination. We were especially inter-
ested in investigating the influence of processing parallelism applied at each of
the architecture levels on the design quality metrics (performance, power con-
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Table 5.2: blockstructured PCM of the rate1/2 IEEE 802.15.3c LDPC code with

32 macrocolumns and 16 macrorows, size of each submatrix is 21x21 and code

length is 672, ‘’ represents zero matrices

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

1 - - - 5 - 18 - - - - 3 - 10 - - - - - - 5 - - - - - - - 5 - 7 - -

2 0 - - - - - 16 - - - - 6 - - - 0 - 7 - - - - - - - 10 - - - - - 19

3 - - 6 - 7 - - - - 2 - - - - 9 - 20 - - - - - - - - - 19 - 10 - - -

4 - 18 - - - - - 0 10 - - - - 16 - - - - 9 - - - - - 4 - - - - - 17 -

5 5 - - - - - 18 - - - - 3 - 10 - - 5 - - - - - - - - - - - - - 7 -

6 - 0 - - - - - 16 6 - - - 0 - - - - - 7 - - - - - - - - - 19 - - -

7 - - - 6 - 7 - - - - 2 - - - - 9 - 20 - - - - - - - - - - - 10 - -

8 - - 18 - 0 - - - - 10 - - - - 16 - - - - 9 - - - - - - - - - - - 17

9 - 5 - - - - - 18 3 - - - - - 10 - - 5 - - 4 - - - - 5 - - - - - 7

10 - - 0 - 16 - - - - 6 - - - 0 - - - - - 7 - 4 - - - - - 10 - 19 - -

11 6 - - - - - 7 - - - - 2 9 - - - - - 20 - - - 4 - 19 - - - - - 10 -

12 - - - 18 - 0 - - - - 10 - - - - 16 9 - - - - - - 12 - - 4 - 17 - - -

13 - - 5 - 18 - - - - 3 - - - - - 10 - - 5 - - - - - - - 5 - - - - -

14 - - - 0 - 16 - - - - 6 - - - 0 - 7 - - - - - - - 10 - - - - - - -

15 - 6 - - - - - 7 2 - - - - 9 - - - - - 20 - - - - - 19 - - - - - -

16 18 - - - - - 0 - - - - 10 16 - - - - 9 - - - - - - - - - 4 - - - -

Table 5.3: blockstructured PCM of the rate5/8 IEEE 802.15.3c LDPC code with

32 macrocolumns and 12 macrorows, size of each submatrix is 21x21 and code

length is 672, ‘’ represents zero matrices

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

1 0 - - 5 - 18 16 - - - 3 6 10 - - 0 - 7 - 5 - - 4 4 - 10 - 5 - - - -

2 - - 6 - 7 - - - - 2 - - - - 9 - 20 - - - 4 - - - - - 19 - - - - -

3 - 18 - - - - - 0 10 - - - - 16 - - - - 9 - - 12 - - 4 - - - - - 17 -

4 5 0 - - - - 18 16 6 - - 3 0 10 - - 5 - 7 - 4 - - - - - - - - - - -

5 - - - 6 - 7 - - - - 2 - - - - 9 - 20 - - - 4 - - - - - - - - - -

6 - - 18 - 0 - - - - 10 - - - - 16 - - - - 9 - - 12 - - - - - - - - -

7 - 5 0 - 16 - - 18 3 6 - - - 0 10 - - 5 - 7 4 4 - - - 5 - - - - - -

8 6 - - - - - 7 - - - - 2 9 - - - - - 20 - - - 4 - 19 - - - - - - -

9 - - - 18 - 0 - - - - 10 - - - - 16 9 - - - - - - 12 - - - - - - - -

10 - - 5 0 18 16 - - - 3 6 - - - 0 10 7 - 5 - - 4 4 - 10 - 5 - 7 - - -

11 - 6 - - - - - 7 2 - - - - 9 - - - - - 20 - - - 4 - 19 - - - - - 10

12 18 - - - - - 0 - - - - 10 16 - - - - 9 - - 12 - - - - - - 4 - 17 - -

Table 5.4: blockstructured PCM of the rate3/4 IEEE 802.15.3c LDPC code with 32

macrocolumns and 8 macrorows, size of each submatrix is 21x21 and code length

is 672, ‘’ represents zero matrices

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

1 0 - - 5 - 18 16 - - - 3 6 10 - - 0 - 7 - 5 - - 4 4 - 10 - 5 - - - -

2 - 18 6 - 7 - - 0 10 2 - - - 16 9 - 20 - 9 - 4 12 - - 4 - 19 - - - - -

3 5 0 - - - - 18 16 6 - - 3 0 10 - - 5 - 7 - 4 - - 4 5 - 10 - 19 - - -

4 - - 18 6 0 7 - - - 10 2 - - - 16 9 - 20 - 9 - 4 12 - - 4 - 19 - 10 - -

5 - 5 0 - 16 - - 18 3 6 - - - 0 10 - - 5 - 7 4 4 - - - 5 - - - - - -

6 6 - - 18 - 0 7 - - - 10 2 9 - - 16 9 - 20 - - - 4 12 19 - - - - - - -

7 - - 5 0 18 16 - - - 3 6 - - - 0 10 7 - 5 - - 4 4 - 10 - 5 - 7 - 19 -

8 18 6 - - - - 0 7 2 - - 10 16 9 - - - 9 - 20 12 - - 4 - 19 - 4 - 17 - 10



134 5.3. MICRO-/MACRO-ARCHITECTURE DESIGN AND TRADEOFF EXPERIMENTS

Table 5.5: blockstructured PCM of the rate7/8 IEEE 802.15.3c LDPC code with 32

macrocolumns and 4 macrorows, size of each submatrix is 21x21 and code length

is 672, ‘’ represents zero matrices

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

1 0 18 6 5 7 18 16 0 10 2 3 6 10 16 9 0 20 7 9 5 4 12 4 4 4 10 19 5 10 - - -

2 5 0 18 6 0 7 18 16 6 10 2 3 0 10 16 9 5 20 7 9 4 4 12 4 5 4 10 19 19 10 - -

3 6 5 0 18 16 0 7 18 3 6 10 2 9 0 10 16 9 5 20 7 4 4 4 12 19 5 4 10 17 19 10 -

4 18 6 5 0 18 16 0 7 2 3 6 10 16 9 0 10 7 9 5 20 12 4 4 4 10 19 5 4 7 17 19 10

sumption and area). To be able to obtain the experimental results presented in
this chapter, several most promising hardware multi-processor architectures had
to synthesized and analyzed for different codes and various application require-
ments of these codes. The synthesis and evaluation of such a huge number of
architecture instances in a reasonably short time was only possible through usage
of the proposed DSE framework, supported by the generic accelerator architecture
template(s) and a parameterizable generic component library for each component
type, like processors, memories and communication network elements. The exper-
iments are performed through the design of various decoders for the rate-1/2 672-
bit IEEE 802.15.3c LDPC code under the assumption of data-precision of 8-bits
for computations and 10 iterations per frame decoding. The main consideration
in this set of experiments is to show the processor micro- and macro-architecture
influence on performance, power consumption and area and their mutual trade-
offs. The experimental results are analyzed and discussed in the following three
profiles:

1. Fixed micro-parallelism and various macro-parallelism

2. Fixed macro-parallelism and various micro-parallelism

3. Similar parallelism strengths

At one hand, the experiments will provide an insight into the various tradeoffs
between the micro- and macro-architecture parallelism. On the other hand, based
on the analysis of the results from these experiments, a set of general design
rules is established. These rules are incorporated into the DSE framework to
effectively prune the design search space and quickly reach an adequate accelerator
architecture for a certain quality requirement. Also, this specific experiments
organization keeping one level of parallelism fixed, while varying the other will
show the impact more clearly. Moreover, it will reconfirm the fact that only with
such a design approach it would be possible to explore the numerous tradeoffs in
the design of massively parallel multi-processor accelerators.

5.3.1 Fixed Micro-parallelism and Various Macro-parallelism

This set of experiments is used to explore the numerous tradeoffs with various
micro- and macro-parallelism combinations, while keeping the micro-parallelism
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at a fixed level and varying the macro-parallelism possible to exploit for the LDPC
codes as mentioned in the previous section.

The exploration experiments are performed for various combinations of micro-
architecture parallelism {1, 2, 4, 8} and macro-architecture parallelism {21, 42,
84, 168, 336}, as shown e.g. in Figure 5.2. In all figures presenting experimental
results, P(a, b) denotes a combined micro- and macro-architecture parallelism. In
tuple P(a, b), a represents the micro-architecture parallelism of a processor (i.e.
the number of processor inputs/outputs), and b represents the macro-architecture
parallelism (i.e. the number of processors). The tuple P(a, b) represents a certain
micro- and macro-architecture combination with the combined micro- and macro-
parallelism (a, b) of the CNP processors (shown on the x-axis in the figures
presenting the results). Similar notation for the combined processing parallelism
is used for the VNP processors (although, not shown on the x-axis of the result
figures).

Design quality metrics, their estimation and evaluation

Among others, the three major design quality metrics are the performance, power
consumption and area, as discussed in Section 3.4 of Chapter 3. In the following,
it is described how these quality metrics are estimated for various micro-/macro-
architecture combinations for LDPC decoders. These metrics are then used to
evaluate and compare various architectures based on their total delivered quality
and this way to make quality-driven architecture design decisions.

The throughput in Mbps that reflects the performance metric for the LDPC
decoding can be estimated based on the message passing (MP) algorithm using
the following formula:

TMbps =
R.N.FMHz

CCPI.Itot
(5.1)

where R stands for the code rate, N stands for the code length (size of data
frame), Itot stands for the total number of iterations required to decode a frame,
FMHz stands for the clock frequency measured in MHz and CCPI represents the
number of clock cycles per iteration. When CCPI is multiplied with Itot, it gives
the total schedule length, as shown e.g. in Figure 5.2. The total schedule length
represents the number of clock cycles (CC) to decode a single LDPC frame on a
given micro-/macro-architecture combination. Our proposed schedulers compute
the schedule length for a particular micro-/macro-architecture combination, which
is then used to determine the throughput using equation 5.1. This way various
processor micro-/macro-architecture combinations can be compared in terms of
performance, which is one of the design quality metrics. Figure 5.2 shows the ex-
ploration results regarding the schedule lengths, determined in clock cycles using
the relaxed scheduling (RS) approach, for various micro- and macro-architecture
parallelism combinations. The exploration results will be discussed latter in this
section.
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Figure 5.2: Schedule length in clock cycles (CC) for the rate1/2 672bit IEEE

802.15.3c LDPC code and assuming 10 iterations/frame decoding.

In general, the relaxed schedule (RS) is a kind of schedule in which some re-
scheduling possibility of operations to processors is preserved (while still meeting
the performance constraints), thereby utilizing this operation scheduling freedom
for the memory and communication cost reduction during the memory and com-
munication architecture design. The relaxed schedule is applied in cases where the
memory and communication structure influence dominate the processor influence
on all or some important design aspects. The other proposed scheduling approach,
the so-called tight schedule (TS), mainly aims at the exploitation of any possibility
to maximize the processor utilization. This would result in the reduction of the
total schedule length and this way enhance the performance, equivalently, a re-
duction in the number of processors for a fixed performance. The tight scheduling
is applied only in cases where the processor influence dominates the memory and
communication structure on all or some important design aspects. However, it can
influence further the complexity of the communication and memory architectures.
When the processor utilization is maximized (equivalently minimize the schedule
length for the allocated resources), then the necessary data transfer bandwidth
must be guaranteed at any cost of memory and communication. Importantly, in
the tight schedules, there is no further possibility of the operation rescheduling
to the processors that can be used for the reduction of memory and communi-
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Figure 5.3: Performance/Frequency tradeoffs for fixed microparallelism and vari

ous macroparallelism for the rate1/2 672bit IEEE 802.15.3c LDPC code

cation complexity. For LDPC decoding, the tight scheduling corresponds to the
overlapping of the check node computations with the variable node computations
(this maximizes the CN and VN processors utilization), while the relax schedul-
ing corresponds to the processing of CNs computations without overlapping with
VNs computations.

As concerned the area, the total processors’ area for each architecture instance
is calculated using simple addition of the area of individual processors. For in-
stance, for the tuple P(1, 84), i.e. 84 serial processors, the total processors’ area
is 0.508116 mm2 (=84×Acnp + 84×Avnp), where Acnp and Avnp represents the
area of CNP and VNP processors each with the micro-architecture parallelism of
1 (e.g. see Figure 5.4). Similarly, the area for a particular memory and communi-
cation architecture for an architecture instance is computed using the number and
types of various memory elements (e.g. single/multi-port memories, etc) and the
number and types of various communication elements (e.g. switches and cyclic
shifters, etc), respectively.

As concerned the power consumption estimation, for both types of proces-
sors, the total power PWtotal was calculated the same way by summing up their
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corresponding static PWstatic and dynamic PWdynamic power:

PWtotal = PWstatic + PWdynamic (5.2)

The processors modules were characterized for the TSMC 90nm LPHP standard
cell library using the back-end Cadence CAD tool flow. The dynamic power was
computed using the following formula:

PWdynamic = αCV 2f (5.3)

where α is the signal activity factor of the circuit, C the total switching capaci-
tance, V the supply voltage and f the frequency. α = 0.5 was assumed.
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Figure 5.4: Area/performance tradeoffs for fixed microparallelism and various

macroparallelism for the rate1/2 672bit IEEE 802.15.3c LDPC code

In the following, the experimental results are discussed from the viewpoint
of the above-mentioned design quality metrics. For each combination of fixed
micro-parallelism in the set {1, 2, 4, 8} and increasing macro-parallelism {21,
42, 84, 168, 336}, the throughput scales linearly, as shown in Figure 5.3. The
area and also power consumption increase linearly, as shown in Figure 5.4 and
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5.5, respectively1. However, the ranges of these parameters are influenced to a
large degree by the corresponding micro-architectures. A lot of published work
on accelerators for LDPC decoding only consider the two extremes of the micro-
parallelism, i.e. fully-serial and fully-parallel architectures.
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Figure 5.5: Power/Performance tradeoffs for fixed microparallelism and various

macroparallelism for the rate1/2 672bit IEEE 802.15.3c LDPC code

However, the serial and parallel micro-architectures combined with only in-
creasing macro-parallelism to achieve a certain performance in many cases do not
result in optimal solutions regarding area or power consumption. Moreover, for
the high-end applications, it may be difficult or even impossible to achieve the
required performance by only considering one or another extreme of the micro-
parallelism and exclusively increasing the macro-parallelism to the maximum pos-
sible value. For the lowest micro-parallelism, it is due to the upper limit on the
macro-parallelism that can be exploited in the application and the large number
of computation clock cycles required to compute a single check or variable node.
However, for the highest possible micro-parallelism levels, it is due to the huge
drop in the frequency of the fully-parallel micro-architectures with the parallelism

1Without considering the memory and communication influence
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increase (specifically for the high rate codes, e.g. rate-7/8 code).
The impact of frequency on the performance and the related tradeoffs for

different micro-/macro-architecture combinations for the rate-1/2 672-bit IEEE
802.15.3c LDPC code are shown in Figure 5.3. The results show a drop of almost
5-times in the frequency of accelerator for the fully-parallel architecture compared
to the fully-serial architecture, what negatively influences the performance gain
expected from the increased micro-parallelism. Therefore, the exploration of the
partially-parallel architectures at both levels has to be performed in order to
construct an architecture that adequately satisfies the high-performance demands
and other design objectives, as e.g. related to area or energy consumption. The
above considered tradeoffs and limitations will be further explained using the
following example.

Example 1: Performance/Power/Area (PPA) tradeoffs analysis for fixed micro-
parallelism and various macro-parallelism

Let’s assume a throughput constraint Tcstr ≥ 2.0 Gbps. Several architectures sat-
isfy this throughput constraint, however, with different resources/power tradeoffs,
as shown in Figure 5.3. Among all the architectures that satisfy this throughput
constraint, P(1, 168) is the most efficient regarding area (lowest area), however,
the worst regarding power (17.95-times higher power consumption than P(8, 84)).
On the other hand, the architecture P(8, 84) is the most efficient regarding power
(lowest power), while worst regarding area (2.48-times higher area than P(1,
168)), as shown in Table 5.6. It is worth to note these huge relative differences
are among those architecture that are optimal for at least one design objective,
while meeting the performance constraint. It is interesting to note that P(1,
168) is the fully-serial micro-architecture, while the P(8, 84) is a fully-parallel
micro-architecture, each with different macro-architecture level parallelism. The
partially-parallel architecture P(4, 84) architecture provides the best tradeoff re-
garding all design parameters with 1.40-times larger area and 4.51-times higher
power consumption in comparison to the lowest-area and lowest-power architec-
tures, respectively (see Table 5.6).

This analysis leads to an interesting conclusion that if the goal is to achieve
a moderate level of performance with the area minimization as the main design
objective, then the serial micro-architecture with an adequate macro-parallelism
have to be explored first. However, for the same moderate level of performance
with power as the main design objective, the fully-parallel micro-architectures
with an adequate macro-parallelism has to be explored first.

These observations can be used in the form of design rules to efficiently search
the design space for a low-area or low-power LDPC decoder architectures while
meeting the performance constraint. These observations are incorporated in de-
sign rules of the proposed architecture DSE framework to quickly search and
evaluate the most promising architectures and this way too much accelerate the
overall design process.
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Table 5.6: Performance/Power/Areatradeoffs for different micro/macroarchitecture

combinations satisfying the performance constraints (Tcstr ≥ 2.0 Gbps); the area

and performance penalty are computed with respect to the optimal architecture

regarding a single design objective among the group.

Combined Performance Area Power

Parallelism (% of max) (x-times of min) (x-times of max)

P(1, 168) 40.00 min 17.95

P(2, 168) 80.00 1.45 17.97

P(4, 84) 64.34 1.40 4.51

P(8, 84) max 2.48 min

5.3.2 Fixed Macro-parallelism and Various Micro-parallelism

Another interesting consideration is to explore the impact of increasing the micro-
parallelism on the performance and other design parameters by a fixed macro-
parallelism. For this analysis, the experimental results regarding performance are
reorganized as shown in Figure 5.6. From the results, it can be concluded that for a
fixed macro-parallelism and with increasing micro-parallelism the throughput does
not scale linearly, unlike was the case of fixed micro-parallelism and increasing
macro-parallelism. This is due to the longer critical path delays (DPmic

) of a
processing element with the increase in micro-parallelism (Pmic). On one hand,
increasing the micro-parallelism reduces the processing time by the reduction
of the number of clock cycles (Tcc) required for a given computation. On the
other hand, the expected performance from increasing the micro-parallelism will
be limited by the clock speed (1/DPmic

) of the processing element. It is very
probable that at some point there is no further improvement in performance due
to the dominating influence of processing elements critical path delays, i.e.,

T ′
cc × 1/DP ′

mic
< Tcc × 1/DPmic

, where P ′
mic > Pmic, (5.4)

Hence, in such cases the partially-parallel micro-architectures have to be con-
sidered with adequate macro-parallelism levels to satisfy the demands of high-
performance. Also, the area does not grow linearly like in the previous case, be-
cause by increase of the micro-parallelism with fixed macro-parallelism the area
increases proportionally to the complexity of the micro-architecture, as shown in
Figure 5.7.

The non-linearity both in performance and area are interesting from the view-
point of performance optimization. In the traditional multi-processor architecture
design, if the required performance Tcstr is marginally higher than what can be
delivered Tdel with a given number of processors, i.e. Tcstr > Tdel, then one more
processor is added. This may unnecessarily over dimension the system in terms
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Figure 5.6: Performance/Frequency tradeoffs for fixed macroparallelism and vari

ous microparallelism for the rate1/2 672bit IEEE 802.15.3c LDPC code

of performance, power consumption and area. Hence, only increasing the micro-
parallelism with a fixed macro-parallelism may fill the performance gap in a much
better way, and may reduce to a larger degree this over dimensioning. This way
the performance constraint would be satisfied in an optimal way with minimum
resources overhead.

Moreover, a decreasing trend in power consumption is observed with increase
in the micro-parallelism and a fixed macro-parallelism, as shown in Figure 5.8.
Consequently, the combined micro-/macro-architecture exploration provides a
substantially better power optimization. In this respect, the proposed power
optimization and tradeoff approach is quite novel and unique comparing to the
more traditional approaches. In the traditional approaches, power reduction (op-
timization) is usually achieved by doubling the resources to keep up with the
performance constraint while reducing the frequency by half. This way the dy-
namic power is reduced without any loss in performance. As it is well known that
the dynamic power is estimated using the following power model:

PWdynamic = αCV 2f (5.5)

where PWdynamic represents the dynamic power, α the activity factor of the cir-
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Figure 5.7: Area/performance tradeoffs for fixed macroparallelism and various

microparallelism for the rate1/2 672bit IEEE 802.15.3c LDPC code

cuit, C the total switching capacitance, V the supply voltage and f the frequency.
Moreover, the static power PWstatic increases proportionally with the increase of
resources (area), therefore PWstatic becomes 2-times if resources get doubled.
However, through the joint consideration of the micro- and macro-architecture,
this can be performed in a much better way just by changing only the micro-
architecture parallelism, while keeping the macro-architecture the same, as dis-
cussed above (assuming that the performance constraint is met). This approach
has mainly two benefits compared to the traditional approach.

• lower area overhead

• lower power consumption achieved.

The low area overhead also reduces the total static power PWstatic. Although
the accelerator is clocked at a somewhat higher frequency in our approach, still
a lower power consumption is achieved, as the resources are not doubled nor the
frequency is halved. This is mainly due to the micro-parallelism exploitation,
which is not possible in the traditional approaches. Thus, the proposed combined
micro-/macro-architecture exploration provides a novel better way of power opti-
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Figure 5.8: Power/Performance tradeoffs for fixed macroparallelism and various

microparallelism for the rate1/2 672bit IEEE 802.15.3c LDPC code

mization. The following example is provided to further illustrate these tradeoffs.
Moreover, the architecture P(1, 168) and P(2, 168) has almost the same power
consumption despite of the twice the resources at the micro-architecture level.
This is mainly due to the lower operating frequency of P(2, 168) (see Figure 5.6).

Another important observation is that even exploiting the full micro-parallelism
with a low macro-parallelism does not guarantee a high performance. Hence, the
application-specific instruction-set processor (ASIP) that implement the micro-
parallelism in the form of a functional unit inside of ASIPs data-paths are not
able to satisfy such stringent requirements. From this, it can be concluded that
it is impossible to implement the ultra-high performance applications, while only
using an ASIP with the computational kernels implemented in the form of an
instruction hardware. Consequently, for the ultra-high performance applications,
the hardware architectures that adequately combining the micro- and macro-
parallelism should be used. This conclusion also supplements the growing trends
in the industry of shifting from homogenous system architectures towards more
and more heterogeneous system architectures to overcome the performance and
energy crises.
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Example 2: Performance/Power/Area (PPA) tradeoffs analysis for fixed macro-
parallelism and various micro-parallelism

This example demonstrates the design tradeoffs optimization regarding perfor-
mance, power and area using various micro-parallelism while keeping the macro-
parallelism at a fixed level. The non-linear trends in performance, power con-
sumption and area are quite clear from the results. The reasons are well described
earlier in this section. This example will further highlight the performance and
power tradeoffs and optimizations. Let’s assume a throughput constraint Tcstr

≥ 1.5 Gbps and a serial micro-architecture (Pmic=1). Then, the architectures
with the macro-parallelism Pmac ≤ 84 or lower do not satisfy this throughput,
while the architectures with Pmac ≥ 168 over dimension the system both from the
point of view of cost and performance. Consequently, an increase in the micro-
parallelism satisfies the demanded throughput in a better way without increasing
the macro-architecture parallelism. This is only possible through the combined
consideration of the micro- and macro-architectures. For example, the architec-
ture P(2, 84) provides an area saving of 1.32-times and power saving 1.98-times
compared to P(1, 168), while satisfying the throughput constraint. From this
it is clear that the combined micro- and macro-architecture exploration are ex-
tremely important to satisfy the various design constraints and objectives in the
best possible way.

To demonstrate the power/area tradeoffs and optimizations, the example given
above is continued. From the performance point of view, P(2, 84) seems to be the
optimal architecture. Now, suppose the goal is to reduce the power by half, then
by the traditional power/frequency tradeoff the resources are increased by 2-times
and the frequency is reduced by half. Applying our power reduction, another
design point can be selected just by increasing the micro-parallelism (Pmic = 2),
while keeping the same macro-parallelism (Pmac = 84). This way a larger power
reduction and lower area overhead is achieved. For this example, a relatively
high power saving of almost 2-times is achieved, even ignoring the static power
PWstatic, and the area saving of 1.02-times compared to the traditional approach.
This is only possible through the combined consideration of the micro- and macro-
architectures.

5.3.3 Similar Parallelism Strengths

The last direction in which the result will be analyzed is to see the impact of
similar parallelism strength on the performance and other design parameters.
The results are organized for similar parallelism strengths, as shown in Figure 5.9.
The performance results show a trend of relatively higher performance for those
architectures having relatively lower micro-parallelism. Although, increasing the
micro-parallelism reduces the processing time in terms of clock cycles, it causes
an increase of the critical path delays (DPmic

). The results show that the critical
path delays of the processing elements have more influence on the throughput
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Figure 5.9: Performance/Frequency tradeoffs for similar parallelism strengths for

the rate1/2 672bit IEEE 802.15.3c LDPC code

than the gain in clock cycles obtain by exploiting more micro-parallelism. This is
the main reason for the difference in performances (see Figure 5.9).

Concerning the area, the architectures with relatively lower micro-parallelism
have a relatively larger area compared to those exploiting more micro-parallelism,
as shown in Figure 5.10. It is the same kind of trend as for the performance, but
for power it is completely the other way round, i.e. the architectures having a
relatively lower micro-parallelism are the least power efficient (see Figure 5.11).
The following example illustrates further these tradeoffs.

Example 3: Performance/Power/Area (PPA) tradeoffs analysis for similar par-
allelism strengths

Consider the architectures with the equivalent combined parallelism strength 336,
i.e. {P(8, 42), P(4, 84), P(2, 168), P(1, 336)}, as pointed out in Figure 5.10. The
architecture instance P(1, 336) is the best regarding performance. It provides
as high as 2.67-times gain in performance compared to the lowest performance
architecture in the group, as shown in Table 5.7. However, this is accompanied
by a substantial area and power overhead. The area overhead is 1.50-times and



5. MICRO-/MACRO-ARCHITECTURE EXPLORATION 147

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 7000

 7500

 8000

 8500

 9000

 9500

 10000

P(1,21)

P(2,21)

P(1,42)

P(4,21)

P(2,42)

P(1,84)

P(8,21)

P(4,42)

P(2,84)

P(1,168)

P(8,42)

P(4,84)

P(2,168)

P(1,336)

P(8,84)

P(4,168)

P(2,336)

P(8,168)

P(4,336)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

T
hr

ou
gh

pu
t (

M
bp

s)

A
re

a 
(m

m
2 )

Combined Processing Parallelism (Micro-architecture, Macro-architecture)

Similar Parallelism Strengths

Total Processors Area (mm2)
Throughput (Mbps)

Figure 5.10: Area/Performance tradeoffs for similar parallelism strengths for the

rate1/2 672bit IEEE 802.15.3c LDPC code

an extremely high power overhead of 71.13-times in comparison to the least per-
formance, power and area architecture in the group. The architecture P(4, 84)
exploiting the partial parallelism at both architecture levels provides the best
tradeoffs in relation to all the design quality metrics (performance, power con-
sumption and area, etc).

Summing up, when designing accelerators for highly-demanding applications
both the micro- and macro-architecture have to be considered in combination.
The micro- or macro-architecture design in isolation would not only make it diffi-
cult to realize the high-performance, but would also seriously degrade the quality
of the resultant accelerator in other design dimensions such as power and area, as
discussed in relation to the experiments for the LDPC decoder applications. From
this it is clear, that without an adequate DSE considering the micro- and macro-
architecture in combination, it would be impossible to find an accelerator archi-
tecture satisfying the diverse quality constraints and objectives. Furthermore,
based on the design exploration experiments and their analysis, some techniques
and design rules are proposed to quickly search the design space for an adequate
architecture, while taking into the diverse design constraints and optimization
objectives.
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Figure 5.11: Power/Performance tradeoffs for similar parallelism strengths for the

rate1/2 672bit IEEE 802.15.3c LDPC code

5.4 Processing Parallelism Influence on Communica-

tion and Memory

In the previous section, the micro-/macro-architecture exploration and the related
tradeoffs are discussed in isolation, i.e. without considering the micro- and macro-
architecture decisions on the memory and communication structure. Also, the
memory and communication structures influence on the system performance, area,
and power consumption are not considered. In this section, the memory and
communication influence are taken into account on the performance and area
with increase of the processing parallelism at both architecture levels.

First of all, from the experiments it is very clear that the memory and com-
munication structures drastically influence the performance (see Figure 5.12). It
is evident, for instance, from a simple comparison of a case in which the memory
and communication structures influence on the throughput is taken into account
to the case earlier discussed where the memory and communication are not con-
sidered (see Figure 5.3). In this set of experiments, the communication between
the memories and processors is realized using the traditional flat communica-
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Table 5.7: Performance/Area/Power tradeoffs for similar parallelism strength; area

penalty and performance loss with respect to the optimal architecture regarding a

single design objective among the group.

Combined Performance Area Power

Parallelism (% of max) (x-times of min) (x-times of min)

P(8, 42) 37.5 min min

P(4, 84) 47.5 1.11 9.01

P(2, 168) 72.0 1.13 35.95

P(1, 336) max 1.50 71.13

tion scheme. The performance saturates quite quickly with increase in either the
micro- or macro-architecture parallelism. This is due to the dominating effect of
the memory and communication structures delays that limits the performance to
only approximately 450 Mbps. Similarly, the communication network dominates
the other architecture elements in area with the increase in the micro- and macro-
parallelism, as shown in Figure 5.13, except for very low parallelism levels. To
enhance the performance with the increase of parallelism, several memory and
communication architectures are proposed that are discussed in Chapter 6 of this
thesis.

From the above, it is clear that there exist strong interrelationship between
the amount of processing resources at the micro-/macro-architecture level and the
corresponding memory and communication architecture. One cannot be designed
adequately without the consideration of the other.

5.5 Operation Scheduling Influence on Performance
and Communication and Memory

In order to explore the tradeoffs between the processors and the memory and com-
munication architectures complexity in relation to the operation scheduling, the
tight schedules (TS) and relaxed schedules (RS) are investigated during the DSE.
They are introduced earlier in general and in relation to the LDPC decoders. The
realization of the two schedules for the LDPC decoding and their influences on the
performance and the complexity of the memory and communication architectures
will be further explained as follows.

The aim of the tight scheduling is to maximize the processor utilization,
thereby decreasing the schedule length and increasing the performance. Equiva-
lently, it causes a decrease in the number of required processing resources for the
same performance level. However, it is very probable for this kind of designs that
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Figure 5.12: Throughput tradeoffs for different combined processing parallelism

combinations taking into account the memory and communication structures de

lays for the rate1/2 672bit IEEE 802.15.3c LDPC code

the costs of memory and communication structures may surpass the cost savings
due to the decreased processing resources. The tight scheduling strategy is ap-
plied only in the cases where the processors dominate in influence the memory
and communication architectures in all or some important design aspects. On
the other hand, the relaxed scheduling strategy is applied in the cases where the
memory and communication architectures dominate the processors influence in
all or some important design aspects. In the relaxed scheduling, the processor
utilization is kept relatively lower (this way preserving some scheduling freedom),
if it helps in reducing the memory and communication costs and delays. This way
the operation scheduling freedom can be traded for further reduction of the mem-
ory and communication influence on the overall performance, power consumption
and area.

The above discussed schedules will be further described for the LDPC decod-
ing applications. In the relaxed scheduling approach, during the processing of
check nodes (CNs), all the VNPs waits on the data till all the CNs are processed
by the allocated CNPs. Similarly, during the processing of variable nodes (VNs),
all the CNPs waits on the data till all the VNs are processed by the allocated
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into account the memory and communication delays for the rate1/2 IEEE 802.15.3c

LDPC code

VNPs. However, in the tight scheduling approach, the VNPs do not wait until all
the CNs are processed by the allocated CNPs, but start processing earlier (Wvnp)
if all the data for some VNs are available, as shown in Figure 5.14. Similarly,
the CNPs do not wait until all the VNs are processed by the allocated VNPs,
but start processing earlier (Wcnp) if all the data for some CNs are available, as
shown in Figure 5.14. Wvnp and Wcnp represents the waiting times for VNP and
CNP processors. The tight scheduling for the LDPC decoding turns out to be a
very complex scheduling problem due to the complex data dependencies among
the CNs and VNs. For instance, one CN and the related CNP is responsible for
producing partial data not only for a single VN and the related VNP, but for
many dependent VNs and the related VNPs. Therefore, for this kind of schedul-
ing, some scheduling algorithms are developed based on the PCM permutation2

to compute the order of processing and the waiting times Wvnp and Wcnp for
CNs and VNs, respectively. Table 5.8 shows the results of the application of the
tight scheduling algorithm to the rate-1/2 672-bit IEEE 802.15.3c codes, and the

2The details of these algorithms are given in the Appendix-A
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Figure 5.14: Example of relax vs tight operation scheduling for LDPC codes

order of processing of check and variable nodes, as well as, their waiting times.
The imposed random order of CNs and VNs further complicates the memory
and communications. Moreover, the tight scheduling freezes the rescheduling of
CNs and VNs to the corresponding CNPs and VNPs, respectively. This limits
any further rescheduling opportunity for the memory and communication com-
plexity reduction. To get a clear picture of the tradeoffs of the two schedules
on the performance and the memory and communication architectures, both of
them are discussed with respect to the rate-1/2 672-bit IEEE 802.15.3c LDPC
code decoders. Assume processing parallelism with Pcnp(8, 21) and Pvnp(4, 21)
for the CNP and VNP processors, respectively. The performance improvement is
calculated based on the assumption of a fully-parallel micro-architecture for both
CNP (Pmic = 8) and VNP (Pmic = 4) and a macro-parallelism (Pmac = 21) for
each kind of processor, as shown in Table 5.9. This is the maximum limit on the
best utilization of CNP and VNP processors and the performance gain. With
increase in the processing parallelism, the processor utilization decreases due to
the relatively longer waiting times of the short schedules. For example for the
processing parallelism of Pcnp(8, 21) and Pvnp(4, 42), the total schedule length is
32 (clock cycles) in the case of relaxed scheduling, while for the tight schedule,
the total schedule length is 23, computed using the following equation:

TSlength = RSlength − Wvnp − Wcnp. (5.6)

This results in 28% performance improvement compared to the previous case
(33%), as shown in Table 5.9.
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Table 5.8: Blockstructured PCM of the rate1/2 672bit IEEE 802.15.3c LDPC code

with the reordered 32 macrocolumns and 16 macrorows for the overlap execution

of CNs and VNs. The waiting times are shown by the grey regions of the PCM, size

of each submatrix is 21x21, ‘’ represents zero matrices

30 32 4 6 11 16 29 31 20 3 5 10 27 13 28 26 15 17 19 1 7 12 18 25 21 2 8 9 14 22 23 24

1 7 - 5 18 3 - - - 5 - - - - 10 5 - - - - - - - - - - - - - - - - -

8 - 17 - - - - - - 9 18 0 10 - - - - 16 - - - - - - - - - - - - - - -

7 10 - 6 7 2 9 - - - - - - - - - - - - - - - - 20 - - - - - - - - -

2 - 19 - - - 0 - - - - - - - - - 10 - - - 0 16 6 7 - - - - - - - - -

13 - - - - - 10 - - - 5 18 3 5 - - - - - 5 - - - - - - - - - - - - -

3 - - - - - - 10 - - 6 7 2 19 - - - 9 20 - - - - - - - - - - - - - -

14 - - 0 16 6 - - - - - - - - - - - 0 7 - - - - - 10 - - - - - - - -

9 - 7 - - - - - - - - - - - - - 5 10 - - - - - 5 - 4 5 18 3 - - - -

10 19 - - - - - - - 7 0 16 6 - - 10 - - - - - - - - - - - - - 0 4 - -

12 - - 18 0 10 16 17 - - - - - 4 - - - - 9 - - - - - - - - - - - - - 12

6 - - - - - - 19 - - - - - - 0 - - - - 7 - - - - - - 0 16 6 - - - -

4 - - - - - - - 17 - - - - - - - - - - 9 - - - - 4 - 18 0 10 16 - - -

5 - - - - - - - 7 - - - - - - - - - 5 - 5 18 3 - - - - - - 10 - - -

16 - - - - - - - - - - - - - 16 4 - - - - 18 0 10 9 - - - - - - - - -

15 - - - - - - - - 20 - - - - - - 19 - - - - - - - - - 6 7 2 9 - - -

11 - - - - - - - 10 - - - - - 9 - - - - 20 6 7 2 - 19 - - - - - - 4 -

Table 5.9: Performance gain using the tight scheduling algorithm compared to the

relaxed scheduling for LDPC decoders

Code Code Relax Schedule Tight Schedule Performance Performance

Rate Length Clock Cycles Clock Cycles Gain Improvement

(Wcnp + Wvnp)

1/2 (672,336) 48 32 (7+9) 1.5 33.33 %

5/8 (672,420) 44 30 (6+8) 1.46 31.81 %

3/4 (672,504) 40 31 (4+3) 1.21 17.50 %

Even for this low processing parallelism case, the influence of the operation
scheduling on the memory and communication architecture complexity and the
related tradeoffs cannot be ignored. To clarify the matter, the performance gains
that are obtained using the tight schedule are compared to the relaxed schedule for
an architecture with Pcnp(8, 21) and Pvnp(4, 42). Although the tight scheduling
approach delivers 28% higher performance than the relaxed scheduling approach.
However, even for this low parallelism, the memory and communication structures
dominate the processors in cost, as shown in Table 5.10.

With growing parallelism, this cost increase is relatively higher than the cost
increase of the processors. Therefore, the performance can be better optimized
through utilizing more processors due to their relative low impact on the overall
cost of the system than through the tight scheduling. This preserves the reschedul-
ing opportunity during the memory and communication architecture exploration.
Therefore, the relaxed scheduling is a better choice in this case to effectively uti-
lize the scheduling freedom in reducing the cost of memory and communication
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Table 5.10: Influence of the processor scheduling on the performance and on the

memory and communication for the rate1/2 672bit IEEE 802.15.3c LDPC code

Schedule Area (mm2) Throughput

Type Processor Memory Switch Total (Mbps)

Tight Schedule 0.673 2.134 7.810 10.617 329

Relax Schedule 0.673 1.472 7.810 9.955 257

Relax Schedule* 0.673 1.472 0.417 2.562 632

*After application of memory and communication design strategies

structures using the memory and communication architectures design strategies,
which are discussed in the next chapter. The application of the memory and
communication design strategies results in the reduction of both the memory and
communication structures complexities and delays, thereby backing up again the
performance (initially an apparent disadvantage of the relaxed schedule), as shown
in Table 5.10.

5.6 Conclusions

In this chapter, it is clearly demonstrated that without considering the micro-
and macro-architecture design in combination, it is impossible to arrive at an ad-
equate quality accelerator. These considerations were supported by experiments
and case studies with the LDPC decoder design for the IEEE 802.15.3c LDPC
codes for the future highly-demanding communication systems. The experiments
were focused on exploration of the micro-/macro-architecture tradeoffs regarding
the performance, power consumption and area. The experiments clearly demon-
strate that there exist various complex tradeoffs at the micro-/macro-architecture
level that could only be resolved through an adequate DSE involving a combined
micro- and macro-architecture exploration. In particular, it is shown that neither
the fully-serial nor the fully-parallel micro-architectures are adequate to satisfy
the ultra-high performance requirements. To satisfy the ultra-high performance
requirements, the combined micro-/macro-architecture exploration are necessary,
which explores and exploits various partially-parallel architecture combinations.

Moreover, two optimization approaches are proposed: one for performance
and the other for power. Both of the proposed approaches are based on the con-
sideration of micro-/macro-architecture level parallelism in combination. These
approaches are much better than the traditional performance and power opti-
mization approaches. With the proposed performance optimization approach,
the performance requirements are satisfied in the best possible way without over-
dimensioning of the system, through taking into account the influence of paral-
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lelism at both architecture levels on the overall system costs. Similarly, unlike
the traditional power/area tradeoffs under a certain throughput constraint, the
proposed approach provides much better power optimization, and additionally
with a very low area overhead, through the combined micro-/macro-architecture
parallelism exploration.

Also, the combined micro-/macro-architecture exploration provides an ade-
quate balance between the various design objectives through the orchestrated par-
tial parallelism exploitation at both architecture levels. If area is the main design
objective then the serial micro-architectures with an adequate macro-architecture
perform the best, provided the performance constraint is satisfied. However, if
power consumption minimization is the design objective, then the fully-parallel
micro-architecture performs the best, provided the performance constraint is sat-
isfied. Adequate partial parallelism exploitation at both architecture levels for a
given application delivers the best tradeoff among all the design objectives.

Furthermore, it is demonstrated that the memory and communication influ-
ence dominate the processor’s influence on all the design dimensions for moderate
and high parallelism levels. Finally, the two proposed operation scheduling ap-
proaches are implemented and compared for LDPC decoding. It is shown that the
tight schedules provides performance enhancements compared to relaxed schedule
of approximately 28% for a certain combined processing parallelism levels. The
performance can be traded off against the memory and communication cost by
an increase in the number of processors, as the increase in the processor cost is
relatively lower than the memory and communication cost increase, using the re-
laxed scheduling. Moreover, the rescheduling opportunity in the case of relaxed
scheduling can be exploited for the memory and communication cost reduction,
as the memory and communication have a dominating influence on the overall
system cost with increase in the processing parallelism.
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CHAPTER 6

Communication and Memory Architecture

Exploration

In the previous chapter, the micro- and macro-architecture parallelism explo-
ration and the related tradeoffs are discussed. Also, the strong interrelationships
among the processor micro- and macro-architectures and the corresponding mem-
ory and communication architectures are highlighted. This chapter covers the de-
sign of communication and memory architectures of massively parallel hardware
multi-processors, which are necessary for the implementation of highly-demanding
applications. In this chapter, it is demonstrated that for the massively parallel
hardware multi-processors the traditionally used flat communication architectures
and multi-port memories do not scale well, and the memory and communication
network influence on both the throughput and circuit area dominates the pro-
cessors influence. To resolve the problems, we proposed to design highly opti-
mized application specific hierarchical communication and memory architectures
through exploring and exploiting the regularity and hierarchy of the actual data
flows of a given application. Furthermore, we proposed some data distribution
and related data mapping schemes in the shared (global) partitioned memories
with the aim to eliminate the memory access conflicts, as well as, to ensure that
the proposed communication design strategies will be applicable. These archi-
tecture synthesis strategies are incorporated into the quality-driven model-based
multi-processor design method and related automated architecture exploration
framework. Using this framework, a large series of experiments is performed that
demonstrate many various important features of the synthesized memory and

157
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communication architectures. They also demonstrate that the proposed method
and its DSE framework are able to efficiently synthesize well scalable memory and
communication architectures even for the high-end multi-processors. Moreover,
architectures for the LDPC decoder constructed by our method are compared to
the state-of-the-art LDPC architectures from the related research literature.

The rest of this chapter is organized as follow. Section 6.1 discusses the mem-
ory and communications issues of massively parallel hardware multi-processors.
Section 6.2 discusses the proposed memory and communication architecture explo-
ration and synthesis approach. Section 6.3 covers the application of the proposed
memory and communication architecture synthesis techniques to the design of
LDPC decoders for the latest communication system standards. A comprehensive
discussion on the experimental results closes this section. Section 6.4 discusses the
architectures constructed for LDPC decoders by our method to the architectures
proposed in the literature. Finally, Section 6.5 concludes this chapter.

6.1 Issues of Communication and Memory Architec-
ture Design for Massively Parallel Hardware Multi-

processors

Hardware acceleration of critical computations has been intensively researched
during the last decade, mainly for signal, video and image processing applications,
for efficiently implementing transforms, filters and similar complex operations.
This research was, however focused on the monolithic processing unit synthesis
with the so called “high-level synthesis” (HLS) methods [11–19], and not on the
massively parallel hardware multi-processor accelerators required for the high-
end applications. Specifically, this research did not address the memory and
communication architecture design of the multi-processor accelerators.

Although some research results related to the memory and communication ar-
chitectures can be found in the literature [27–33] in the context of programmable
on-chip multi-processor systems, the memory and communication architectures
were proposed there for the much larger and much slower programmable proces-
sors. They are not adequate for the small and ultra-fast hardware processors of
the massively parallel multi-processor accelerators due to a much too low band-
width and scalability issues. The approaches proposed in the context of the
programmable on-chip multi-processors utilize the time-shared communication
resources, such as shared buses or Network-on-Chip (NoC). Such communication
resources are however not adequate to deliver the data transfer bandwidth re-
quired for the massively parallel multi-processor accelerators. In case of the high-
end multi-processor accelerators, the application-specific processors and the cor-
responding memory and communication architectures must be compatible (match
each other) with respect to bandwidth (parallelism). Therefore, the communica-
tion architectures cannot be realized using the traditional NoC or bus communica-
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tion to connect the processing and storage resources, but requires point-to-point
(P2P) communication architectures compatible with the parallel processing and
memory resources. The traditional NoC-based communication architectures uti-
lize a network of switches, as for instance, each switch connected to one resource
(processor, memory, etc) and four interconnected neighboring switches forming a
mesh [32]. This way a large number of resources can be connected without using
long global wires and thus reducing the wire delays (scalability). However, the
time-shared links introduce extra communication cycles, which negatively impact
the communication and overall performance. The performance degradation grows
with the increase of the number of processing elements and more global or irregu-
lar application communication patterns, and grows especially fast for applications
that require a large number of processors and massive global or irregular com-
munication. Our approach to communication architecture is somewhat similar to
the approaches proposed in [27, 28], but only in relation to the concept of hier-
archical organization of the computation and communication resources, while the
implementation of this concept is different.

Since LDPC decoding is used as a representative application in the evaluation
of the design method, as well as the memory and communication architectures,
the processor, memory and communication architectures proposed for the LDPC
decoding are briefly discussed. In the past, several partially-parallel architectures
have been proposed for the LDPC decoding [56–58, 61, 62, 72, 82]. However,
they only deliver a throughput of a few hundreds of Mbps. For such low through-
put, a very limited processing parallelism is exploited, and in consequence, simple
communication architectures are needed in the form of simple shifters. The pro-
posed partial parallel architectures are not adequate for the high-end applications
that require throughputs in the ranges of multi-Gbps. To achieve such ultra-high
throughput, massive parallelism has to be exploited. This makes the memory and
communication architecture design a very challenging task.

From the above discussion of the related research, it follows that the mem-
ory and communication architecture design being of crucial importance for the
high-end hardware multi-processors is not adequately addressed by the related
research. In this section, the issues of the memory and communication architec-
ture design for massively parallel multi-processor accelerators will be discussed in
more details, as sketched in Chapter 2.

Many modern applications (e.g. various communication, multimedia, network-
ing or encryption applications, etc) involve sets of heterogeneous data-parallel
tasks with complex inter-task data dependencies and interrelationships between
the data and computing operations at the task level. Often the tasks iteratively
operate on each other’s data. One task consumes and produces data in one partic-
ular order, while another consumes and produces data in a different order. Addi-
tionally, in the high performance multi-processor accelerators, parallelism has to
be exploited on a massive scale. However, due to area, energy consumption and
cost minimization requirements, partially parallel architectures are often used,
which are more difficult to design than fully parallel ones. Moreover, many of
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the modern demanding applications involve algorithms with massive data paral-
lelism or task-level functional parallelism. To adequately serve these applications,
hardware accelerators with parallel multi-processor macro-architectures have to
be considered. These macro-architectures have to involve several identical or dif-
ferent concurrently working hardware processors, each operating on a (partly)
different data sub-set. All this results in complex memory accesses and complex
communication between the memories and processing elements. For applications
of this kind, the main design problems are related to an adequate resolution of
memory and communication bottlenecks and to decreasing the memory and com-
munication hardware complexity.

Moreover, each of the processors of the multi-processor can be more or less
parallel, what results in the necessity to explore the various possible tradeoffs
between the parallelism at the micro- and macro-architecture level. The two ar-
chitecture levels are strongly interwoven also through their relationships with the
memory and communication structures. Each micro-/macro-architecture combi-
nation affects the memory and communication architectures in a different way.
For example, exploitation of more data parallelism in a computing unit micro-
architecture usually demands getting the data in parallel for processing. This
requires simultaneous access to memories in which the data reside (this results in
e.g. vector, multi-bank or multi-port memories) and simultaneous transmission
of the data (this results e.g. in multiple interconnects), or pre-fetching the data
in parallel to other computations. This substantially increases the memory and
communication hardware. From the above, it should be clear that for applications
of this kind complex interrelationships exist between the computing unit design
and corresponding memory and communication structure design. Also, complex
tradeoffs have to be resolved between the accelerator effectiveness (e.g. compu-
tation speed or throughput) and efficiency (e.g. hardware complexity, power and
energy consumption etc.).

The traditionally used simple flat communication scheme, independent of its
specific implementation, does not scale well with the increase in the number of
processing elements and/or memories. For instance, in switch-based architectures,
both the switch complexity and the number of switches grow with the increase
of the number of processing elements and/or memories. In the traditional flat in-
terconnection scheme, for n processing elements that have to communicate with
m memories, an mxn (input ports x output ports) crossbar switch is required, as
shown in Figure 6.1. In result, when used for a massively parallel hardware multi-
processors the communication network influence usually dominates the processing
elements influence on the throughput, circuit area and energy consumption. Fi-
nally, the large flat switch that would be necessary for such a massively parallel
multi-processor can be difficult to place and route, even with the most advanced
hardware synthesis tools. The place and route may use a long time or in some
cases not finish their work at all. This represents an actual practical limitation
on the interconnect design.

Regarding the memory issues, the memory bandwidth (number of ports)
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should be compatible with the processing bandwidth. Thus, a multi-port mem-
ory with as many memory ports as required by the processing elements (aggre-
gate bandwidth) seems to be the most natural and straightforward approach (see
Figure 6.1). However, with increase in the processing parallelism, the required
memory bandwidth (number of ports) increases. The situation quickly deterio-
rates with parallelism increase resulting in an excessively high complexity due to
high memory bandwidth (number of ports) required in the massive parallelism
range. For the massively parallel multi-processors, the single multi-port memory
would have a prohibitively large area and long delay, when satisfying the required
memory bandwidth (see Figure 6.2). Therefore, the data have to be organized
in multiple multi-bank or vector memories to satisfy the required memory band-
width, while keeping the delay and area of the memory architecture substantially
lower. Consequently, the most important issues of the memory architecture design
are the following:

• the organization of data in vectors (tiles) and the data tiles into multiple
memory tiles (partitions) to satisfy the required bandwidth,

• the data distribution and related data mapping into the memory tiles en-
suring the conflict-free memory accesses and reducing the memory-processor
communication complexity.

It is possible that a data distribution scheme would be conflict free, but data
might be distributed very randomly in the memory partitions. This would increase
the communication complexity. Therefore, a memory exploration and synthesis
method should adequately addresses the issues of memory partitioning and data
distribution.
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Also, with increase of the processing parallelism, data have to be partitioned
and stored in more and more distributed parallel memories for more parallel ac-
cess. This causes the memory block sizes to shrink. At some point, it becomes not
to be any more efficient to store the data in embedded SRAM memories, but the
register-based (Flip-Flop) memories have to be used, which are more efficient for
small memory sizes. This issue is taken into account during the memory architec-
ture design. The experiments with different memory configurations demonstrated
that for sizes lower than (Height × Width=32×168), the SRAM memories are less
efficient than the FF-based memories. For example, a memory of size (16 × 168)
when implemented as embedded SRAM is almost 1.6-times larger than when im-
plemented as FF-based1 memory, and the area proportion grows fast with further
decrease in memory sizes. Therefore, for the case of IEEE 802.15.3c LDPC de-
coders the SRAM based memories are only efficient (and considered in our DSE
and experimental designs) for a combined processing parallelism of up to 84 only.

Additionally, the memory and communication issues are not orthogonal in
nature, resolving and optimizing one issue in separation heavily influences the
other. Thus, the memory and communication architecture synthesis has to be
realized as one coherent synthesis process accounting for the mutual influences
and tradeoffs. Moreover, in such applications, the task mapping to the related
hardware processors, data mapping to memories and communication between

1TSMC 90nm LPHP Standard Cell Library
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processors and memories represent so strongly interrelated design decisions that
they cannot be performed independently. In particular, decreasing the memory
system complexity may heavily increase the communication complexity or vice
versa.

Summing up, the massive data, operation-level and task-level parallelism to be
exploited to achieve the ultra-high throughput required by the highly-demanding
modern applications, the complex interrelationships between the data and com-
puting operations, and the combined massive-parallelism exploitation at the two
architecture levels, make the design of an effective and efficient communication
and memory architecture a very challenging task. To effectively perform this
task, the (heterogeneous) massive parallelism available in a given application has
to be explored and exploited in an adequate manner to satisfactorily fulfill the de-
sign requirements through constructing an architecture that satisfies the required
performance, area and power tradeoffs.

To illustrate the requirements and issues of memory and communication ar-
chitecture design, as well as, to introduce and illustrate the proposed design ap-
proach, LDPC decoding is used as a representative application.

Usually, iterative Message Passing algorithms (MAP) are used for decoding
of the LDPC codes [39]. The algorithm starts with the so-called intrinsic log-
likelihood ratios (LLRs) of the received symbols based on the channel observa-
tions. During decoding specific messages (extrinsic) are exchanged among the
check nodes and variable nodes along the edges of the corresponding Tanner
graph for a number of iterations. The variable and check node processors (VNP,
CNP) corresponding to the VN and CN computations, iteratively update each
other data, until all the parity checks are satisfied or the maximum number of
iterations is reached. The data related to the check and variable node computa-
tions are stored in the corresponding shared check and variable nodes memories
(Mcv, Mvc), respectively. The CNPs read data from Mvc in their required order
and after processing write back in Mcv in the order required by VNPs, and vice
versa for VNPs. The complicated inter-task data dependencies result in complex
memory accesses and difficult-to-resolve memory conflicts in the corresponding
partially-parallel architectures.

The Tanner graphs corresponding to practical LDPC codes of the newest com-
munication system standards involve hundreds of variables and check nodes, and
even more edges. Thus, the LDPC decoding for these standards represents a mas-
sive computation, as well as, complex storage and communication task. Moreover,
the modern communication system standards require a very high throughput
in the range of Gbps and above, for applications like digital TV broadcasting,
mmWave WPAN, etc. For realization of the multi-Gbps throughput required by
these standards massively parallel hardware multi-processors are necessary. For
such multi-processors, the memory and communication architecture design play
a decisive role.
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6.2 Communication and Memory Architecture De-
sign for High-end Multi-processors

In the previous section, the issues and requirements of memory and communi-
cation architectures design for high-end hardware multi-processors are discussed.
An important part of the proposed design methodology addresses the issues of
communication and memory architectures design for massively parallel hardware
multi-processors, and specifically, the memory and communication architectures
scalability for the high-end applications. In this section, some communication
and memory design strategies are proposed that enable to construct effective and
efficient architectures for the high-end multi-processors. It is also discussed that
how these strategies are incorporated into the proposed architecture exploration
framework, and how they are used to quickly explore the various tradeoffs among
the different architecture options and to select the most promising architecture.

Our approach is based on the exploration of computation and communication
hierarchies and flows present in a given application, and on using the knowledge
from this exploration for the automatic design of communication and memory
architectures. Based on the analysis of the communication hierarchies and data
flows, the processing elements are organized in a corresponding hierarchical way
into several tiles (groups). The tiles are then structured into one global cluster or
several global communication-free smaller clusters (if possible), and their respec-
tive data in memory tiles. The tiles and clusters replace a fully-flat communication
network (that otherwise would be required and would result in a high intercon-
nect complexity), with several much smaller hierarchically organized autonomous
communication networks (what results in a substantially smaller interconnect
complexity and improved scalability).

Since the global communication complexity and delays grow drastically with
the increase of parallelism, some strategies are developed to decompose the global
cluster into multiple much smaller communication-free clusters. For a particular
application, this partitioning is performed by taking into account the application
parallelism and by adequate mapping of computation tasks and their data to the
processors and memories, respectively. This localization of communication involv-
ing several small size clusters eliminates the global inter-tile communication, and
results in a substantial improvement of the communication architecture scalability
for the high-end applications.

Secondly, in the cases where the inter-tile global communication is unavoid-
able, a decomposition strategy is used in which one global cluster (global-switch)
is decomposed into multiple smaller clusters (switches) again by exploiting a care-
ful analysis of data in memories. Finally, we also exploit several different kinds
of switches (e.g. single-stage switches or multi-stage switches), each appropri-
ate to be used in a different context. All these strategies combined in a proper
way result in resolution of the communication bottlenecks and related physical
interconnect issues in the architecture. This way an optimized well-scalable com-
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munication architecture is designed, while at the same time realizing an effective
and efficient application-specific memory-processor communication, as well as an
adequate task and data mapping to particular processing elements and memories,
respectively. The above-introduced strategies can be applied in different possible
combinations. For example, a two-level hierarchical organization may be followed
by partitioning or realized as the two-level network with different single-/multi-
stage switch configurations. Different strategy combinations result in different
tradeoffs. The above strategies and the order in which they can be applied is
represented in the form of a flow diagram in Figure 6.3.

Due to the complex interrelationships between the data and computing oper-
ations at the task level and complex inter-task data dependencies, an adequate
customization of memory architecture is one of the major design tasks for the
massively parallel hardware multi-processors. For a given application, all data
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(input and intermediate) specified in the form of single and multi-dimensional
arrays have to be stored in multiple shared memories. Different tasks and their
corresponding processors impose different access requirements (read/write orders)
on the shared memories. Taking into account the single task access requirements
on the shared memories would certainly paralyze the other tasks that access the
same shared memories for other computations. To ensure the required memory
bandwidth and conflict-free data access, data have to be partitioned, distributed
and mapped in multiple vector or multi-bank memories, as discussed in the pre-
vious section. This way the overall complexity of the memory architecture will be
lower and at the same time would satisfy the required memory bandwidth. The
problems of data organization into vectors and the required number of shared
vector memory tiles (partitions) are resolved together with the communication
architecture design, when the flat communication network is transformed into the
hierarchical network. However, providing as many shared vector memory tiles
(partitions) as the processing tiles would only partially solve the problem due to
the possible memory access conflicts. Therefore, the data distribution and data
mapping in the partitioned memories are performed with the aim to eliminate the
memory access conflicts, as well as, to ensure that the proposed communication
strategies would be applicable. It is worth to be noted that the proposed memory
partitioning and data distribution approach avoids data duplication. The data
distribution and data mapping approach is described below, using an example of
two heterogeneous data-parallel tasks sharing multiple memories.

Let us assume a set of m data-parallel tasks Ti={T1........Tm}, and another set
of n data-parallel tasks Tj={T1.....Tn}. Let |Pi(Pmic, Pmac)| and |Pj(Pmic, Pmac)|
be the number of processing tiles allocated to the tasks Ti and Tj , respectively,
where Pmic represents the micro-architecture parallelism and Pmac represents the
macro-architecture parallelism of each processing tile. Let |Mi,j | = Pi(Pmic) ×
Pi(Pmac) and |Mj,i| = Pj(Pmic)×Pj(Pmac) be the number of memory tiles shared
among the processing tiles |Pi| and |Pj |. Further, it is assumed that |Pi| reads
data from |Mi,j | and writes to |Mj,i| and vice versa for |Pj |.

For data distribution, an interleaved (cyclic) data distribution scheme is pro-
posed. This approach regularly and uniformly distributes data in memories, which
enables us to use the proposed communication strategies. Further, this approach
has the additional benefit that it minimizes the complexity of the addressing logic.
The data distribution is performed in two stages based on interleaving to resolve
the read and write access conflicts, respectively. Depending on the number of
shared memory tiles (partitions), the data distribution is performed as given by
the equation below:

Mi,j(x) = Si,j % |Mi,j |, where 0 ≤ x ≤ |Mi,j |, i=1.....m, j=1.....n (6.1)

where Mi,j(x) represents the specific shared vector memory tile to which a par-
ticular data tile Si,j is mapped, where the subscripts i and j in Si,j represents
the data dependence between the task Ti and Tj, and |Mi,j | represents the total
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number of shared memory tiles from which processors |Pi| read and |Pj | write
their data. All the data tiles Si,j are organized as two dimensional arrays that
facilitate the automatic data distribution in the shared memory tiles |Mi,j | using
equation 6.1.

Figure 6.4 shows our data distribution approaches in the shared partition
memories with 4 memory partitions. This data distribution (represented by
distribution-L1) will resolve all the memory read conflicts for processors |Pi| that
will be in the case if no memory partitioning is done and all data is stored in a
single memory (single port), as shown in Figure 6.4. On the other hand, when
the processor tiles |Pj | write to the share memory tiles |Mi,j |, it might result in
write conflicts because of the order imposed by the |Pi| processor tiles for conflict
free read on the data tiles, as given in equation 6.1. Therefore, another level of
data interleaving is used so that the processor tiles |Pj | write their data without
any conflict, while ensuring that |Pi| read accesses will not be effected. Unlike
the interleaving which is at the level of a data tile, this is rather performed at the
block level. All the data tiles distributed in the partitioned memories |Mi,j | for
the task |Ti| are first divided into sets of equal size blocks (each block consist of
a set of data tiles), then the data tiles of each block are skewed (interleaved) by a
certain value. The data blocks are formed by taking into account the information
about the set of tasks Tj and their relevant data tiles Si,j that are scheduled
simultaneously on the processor tiles Pj . The block are formed in such a way that
each block contain a single data tile Si,j from the scheduled sub-sets of tasks Tj,
and to avoid the conflicts, data tiles are then interleaved (skewed) in each block
by some value. This way the processor tiles |Pj | can write to the shared memory
tiles |Mi,j | without any conflict, when ensuring that the corresponding read will
not be effected. The block-level data distribution can be determined using the
equation below:

Bn(x) = n, where 0 ≤ n ≤ |Bn| (6.2)

where B(x) represents the block index number, n represents the value of the
interleaving (skew factor) and |Bn| represents the total number of blocks. The
same conflict-free read/write access order is valid for |Mj,i| shared memory tiles
except that the read/write access order is just reversed. It is equally possible
that during data distribution for resolving the read conflicts, it might also resolve
the write conflicts. In such scenario, the second level data distribution would
not be needed. Further, the shared partitioned memories can be implemented
using Flip-Flop (FF) based registers or embedded SRAM memories. The HP
CACTI, a cache and SRAM compiler, is integrated into the DSE framework for
memory characterization with different configurations required during DSE. The
above strategies and the order in which they can be applied is represented in the
form of a flow diagram in Figure 6.3. The above-discussed communication and
memory design approach and its strategies will be further explained using as a
representative test case the design of LDPC decoders for the future demanding
communication system standards.
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Figure 6.4: Data distribution strategies in multiple shared memories for conflictfree

accesses

6.3 Case Study: Communication and Memory Archi-

tectures of LDPC Decoders

Practical LDPC codes, such as those adopted in the IEEE 802.15.3c standards for
future demanding communication systems, exhibit a very complicated, but not
fully random, information flow structure, in which certain regularity and hierar-
chies are present [3]. According to the communication and memory architecture
synthesis method introduced in the previous section, the information flow struc-
ture of such an application has to be carefully analyzed. The aim of this analysis is
to discover the application regularities and hierarchies in order to exploit them for
the design of an effective and efficient communication architecture with (possibly
several levels) of hierarchical localized communication clusters. For instance, the
practical LDPC codes are defined by block-structured PCMs. A block-structured
PCM groups a certain number of rows (CNs) of PCM into a macro-row and the
same number of columns (VNs) into a macro-column, creating this way the cor-
responding macro-entries of the block matrix. For example, 21 rows and columns
form a macro-row and macro-column, respectively, for the PCM shown in Table
6.1. The particular macro-entries of this table represent particular sub-matrices
corresponding to the particular 21 rows and 21 columns.

The interconnections among particular macro-rows and macro-columns of the
block-structured PCM are defined by the non-zero entries (sub-matrices), zero
entry ’-’ means no interconnection. Every macro-row is connected to a differ-
ent sub-set of macro-columns in a complex pseudo-random way and vice versa.
For example, the macro-row {1} is connected to the macro-columns {4, 6, 11,
13, 20, 28, 30} and the macro-column {1} is connected to the macro-rows {2,



6. COMMUNICATION AND MEMORY ARCHITECTURE EXPLORATION 169

Table 6.1: blockstructuredPCM, Hbase, of 1/2 rate IEEE 802.15.3c LDPC code with 32

macrocolumns and 16 macrorows, size of each submatrix is 21x21 and codelength

is 672, ‘’ represents zero matrices
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

1 - - - 5 - 18 - - - - 3 - 10 - - - - - - 5 - - - - - - - 5 - 7 - -

2 0 - - - - - 16 - - - - 6 - - - 0 - 7 - - - - - - - 10 - - - - - 19

3 - - 6 - 7 - - - - 2 - - - - 9 - 20 - - - - - - - - - 19 - 10 - - -

4 - 18 - - - - - 0 10 - - - - 16 - - - - 9 - - - - - 4 - - - - - 17 -

5 5 - - - - - 18 - - - - 3 - 10 - - 5 - - - - - - - - - - - - - 7 -

6 - 0 - - - - - 16 6 - - - 0 - - - - - 7 - - - - - - - - - 19 - - -

7 - - - 6 - 7 - - - - 2 - - - - 9 - 20 - - - - - - - - - - - 10 - -

8 - - 18 - 0 - - - - 10 - - - - 16 - - - - 9 - - - - - - - - - - - 17

9 - 5 - - - - - 18 3 - - - - - 10 - - 5 - - 4 - - - - 5 - - - - - 7

10 - - 0 - 16 - - - - 6 - - - 0 - - - - - 7 - 4 - - - - - 10 - 19 - -

11 6 - - - - - 7 - - - - 2 9 - - - - - 20 - - - 4 - 19 - - - - - 10 -

12 - - - 18 - 0 - - - - 10 - - - - 16 9 - - - - - - 12 - - 4 - 17 - - -

13 - - 5 - 18 - - - - 3 - - - - - 10 - - 5 - - - - - - - 5 - - - - -

14 - - - 0 - 16 - - - - 6 - - - 0 - 7 - - - - - - - 10 - - - - - - -

15 - 6 - - - - - 7 2 - - - - 9 - - - - - 20 - - - - - 19 - - - - - -

16 18 - - - - - 0 - - - - 10 16 - - - - 9 - - - - - - - - - 4 - - - -

5, 11, 16}. However, the interconnections within each sub-matrix of the block-
structured PCM are defined by regular circularly shifted identity matrices with
shift values represented by the non-zero entry in the matrix. Hence, in the corre-
sponding hardware multi-processor, the communication within a single non-zero
sub-matrix can be realized locally using a quite regular local communication net-
work, while the communication among the macro-rows and macro-columns is
irregular and can be realized using a global communication network, as shown in
Figure 6.5. This way, through exploitation of the knowledge of the information
flows within the application, the complex irregular fully-flat communication net-
work can be replaced with a much simpler and more regular hierarchical two-level
communication network. This substantially decreases the communication network
complexity (see Figure 6.7) compared to the case of the fully-flat communication
scheme (see Figure 6.6) for different micro-/macro-parallelism combinations. In
these and following figures presenting experimental results, P(a, b) denotes a com-
bined micro- and macro-architecture parallelism. In tuple P(a, b), ‘a’ represents
the micro-architecture parallelism of a processor (i.e. the number of processor
inputs/outputs), and ‘b’ represents the macro-architecture parallelism (i.e. the
number of processors). The tuple P(a, b) represents a certain micro- and macro-
architecture combination with the combined micro- and macro-parallelism (a, b)
of the CNP processors, correspondingly (shown on the x-axis in the figures pre-
senting the results). Similar notation for the combined processing parallelism is
used for the VNP processors (although, not shown on the x-axis of the resulting
figures). As shown in Figure 6.8, the area saving is as high as 25-times for the
architecture instance P(4,336).

The area estimates are very accurate as we perform a prior floorplanning of
the top-level design (macro-architecture) and the actual design and physical char-
acterization of various instances of the generic architecture modules (processors,
memories and communication resources), when accounting for the interconnect
effects during the module characterization. Since the macro-architecture design
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Local Switch (LS−4)

1 21.................... 1 21.................... 1 21.................... 1 21....................

PE[1−21] PE[22−42] PE[43−64] PE[65−84]

Tile−1 Tile−2 Tile−3 Tile−4

MEM−1 MEM−2 MEM−3 MEM−4

Global−Switch (GS)

Local Switch (LS−1) Local Switch (LS−2) Local Switch (LS−3)

Figure 6.5: Example of the hierarchical communication network of LDPC decoders

for IEEE 802.15.3c LDPC code decoder of 1/2 rate (R), code length 672 (L) and (micro,

macro) parallelism of (1,84)

(composition of architecture modules to form the accelerator) is very regular and
follows the same general structure for all architecture instances, the correspond-
ing floorplan and actual layout are very regular and have almost the same general
form for all architecture instances. Therefore, the parameter predictions based
on the parameter values for the individual blocks and the floorplan do not much
differ from the actual values from the layout both regarding the area and perfor-
mance estimates. The blocks and the top-level design are modeled in Verilog HDL
that can be targeted to various implementation technologies. For performing the
experiments reported in this thesis, it has been targeted at CMOS 90nm technol-
ogy2. For blocks characterization (parameters estimations), Cadence Encounter
RTL compiler was used for synthesis and Cadence Encounter RTL-to-GDSII sys-
tem 9.12 for physical place & route.

Moreover, the communication network and memory dominate the processors
in area, as shown in Figure 6.7. In particular, for higher processing parallelism,
the communication network influence on the area much dominates the processor
influence. The processor’s contribution to the total area is shown in the dark blue,
communication network’s contribution in light blue and memory’s contribution
in magenta in Figure 6.7.

Regarding the performance, except for the low parallelism levels for which the
flat scheme performs well, for the moderate and high-level of parallelism the hier-
archical two-level interconnect approach provides superior performance. The per-
formance gain is as high as 12-times for architecture instance P(2,336), as shown

2TSMC 90nm LPHP standard Cell Library
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Figure 6.6: Area/Performance tradeoffs for the flat communication network

in Figure 6.9. Moreover, the performance saturates at a certain higher parallelism
level for the flat communication scheme, and a drop in performance can be ob-
served by further increase in parallelism, because the switch delays dominate the
processor delays. The same trend can be observed for the two-level communica-
tion network, but at a different parallelism level (e.g. P(4,336),P(8,84)), as shown
in Figure 6.7.

The hierarchical communication network is also very efficient from the view-
point of power consumption (see Figure 6.10). The power scales well in the
massive parallelism regions. For instance, by the 4-times increase of the micro-
architecture parallelism from P(2,168) to P(8, 168), there is only approximately
5-times increase of power consumption. Similarly, by the 4-times increase of the
macro-architecture parallelism from P(8, 42) to P(8, 168) there is only approx-
imately 5-times increase of power consumption. As shown in Figure 6.10, the
hierarchical communication network delivers savings in power as high as 3-times
compared to the flat communication network.

For both types of communication network, the total power PWtotal was cal-
culated the same way by summing up their corresponding static PWstatic and
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Figure 6.7: Area/Performance tradeoffs for the twolevel hierarchical

dynamic PWdynamic power:

PWtotal = PWstatic + PWdynamic (6.3)

The dynamic power was computed using the following formula:

PWdynamic = αCV 2f (6.4)

where α is the signal activity factor of the circuit, C the total switching capaci-
tance, V the supply voltage and f the frequency. α = 0.5 was assumed.

To be able to obtain the experimental results presented in this section, a large
set of most promising hardware multi-processor architectures were synthesized
and analyzed. The synthesis and evaluation of such a large set of architecture
instances in a reasonably short time was only possible through usage of the au-
tomated DSE framework, supported by the accelerator architecture template(s)
and a parameterizable generic component library for each component type, such
as memories, processors and interconnect networks (switches).

The following four types of memories are involved in the decoding of LDPC
codes:

1. Mcv to store the CN messages,
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Figure 6.8: Area tradeoffs for the flat vs hierarchical communication network

2. Mvc to store the VN messages,

3. Mch to store the channel messages Ich, and

4. MHD to store the hard decision messages VHD.

The check node memories (Mcv) and variable node memories (Mvc) are shared
between the CNP and VNP processors. However, the Mch and MHD are used
by the VNP processors for reading of channel data and writing of decoded mes-
sages, respectively. The CNP reads the check node data from the Mcv and after
processing writes the result data to the Mvc memories. Similarly, the VNP reads
the variable node data from the Mvc and after processing writes the result data
to the Mcv. This represents back-to-back (cyclic) data dependencies between the
the CNPs and VNPs. The total amount of data required to be store in Mcv and
Mvc memory is equal to the number of non-zero (NZsm) elements (sub-matrices)
of the block-structured PCM. Since the total number of non-zero elements in
the rate-1/2 672-bit IEEE 802.15.3c LDPC code is 108, 108 elements have to be
stored in each of the Mcv and Mvc memories. Please note that a sub-matrix in
the block-structured PCM represents the interconnections between the CNs and
VNs, and should not be considered as the actual data processed by the CNPs and
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Figure 6.9: Throughput tradeoffs for the flat vs hierarchical communication network

VNPs.
Moreover, for each type of task the data related to each of the non-zero ele-

ment (sub-matrix) of the block-structured PCM can be stored in a single vector
location of a single vector memory, because the sub-matrices actually represent
the identity shifted matrices. In the identity matrices, there is only a single non-
zero element in each row or column. The width, depth and number (partitions) of
each type of memory (Mvc or Mcv) depend on the processing parallelism exploited
for each kind of processors (CNPs and VNPs). For instance, consider the case of
the micro-architecture parallelism of four and the macro-architecture parallelism
equal to the total sub-matrix parallelism (21 for rate-1/2 672-bit code). In this
case, all the data for the CNPs and VNPs can be stored in four vector memories
of each kind Mcv and Mvc. As the macro-architecture parallelism is equal to
the total sub-matrix parallelism, and for each sub-matrix the related data can be
stored in a single location of a single vector memory, a single vector memory is suf-
ficient to provide the necessary bandwidth for each kind of processors (CNPs and
VNPs). Four memory partitions are required as the assumed micro-architecture
parallelism is four. This way the aggregate memory bandwidth is satisfied by four
partitioned vector memories Mcv and Mvc for the CNP and VNP, respectively.
Concerning the size of the memory partitions, each of the memory partition is of
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Figure 6.10: Power tradeoffs for the flat vs hierarchical communication networks

depth ⌈NZsm/(4×1)⌉ and width of sub-matrix × b (=21×b), where b represents
the data width of CN and VN messages.

The problem yet to be solved is the data distribution and data mapping in
the so constructed partitioned shared memories (Mcv and Mvc) located between
the CNPs and VNPs. An adequate resolution of this problem is necessary due to
different data access patterns of CNPs and VNPs to the shared memories. The
data can be accessed element by element in case of the fully-serial processors or
at once in case of the fully-parallel processors. A CNP requires to access the data
from the same (macro-)row at the non-zero locations (row-major order), while a
VNP requires to access the data from the same (macro-)column (column-major
order). For instance, the CNPs of macro-row {1} need to access the data from the
non-zero locations {4, 6, 11, 13, 20, 28, 30} of macro-row {1} stored in Mcv (see
Table 6.1). While the VNPs of macro-column {1} require to access the data from
the non-zero locations {2, 5, 11, 16} of macro-column {1} stored in Mvc. Both in
the case of CNP and VNP, the processed data have to be stored back in Mvc and
Mcv in the same access order as for read, respectively. Thus, the CNPs and VNPs
share the Mcv and Mvc for read and write, but with a different access order. The
CNP accesses the shared Mcv row-wise for read, while the VNP accesses the same
shared memory column-wise for write. On the other hand, the VNP accesses the
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shared Mvc column-wise for read and the CNP accesses the same shared memory
row-wise for write. Thus, in order to ensure that both the read and write accesses
for both kinds of processors (CNPs, VNPs) would be conflict-free, data have to be
appropriately distributed and mapped in the shared Mvc and Mcv memories. It
is not possible to access the shared memories row-wise and column-wise without
any access conflict.

Some approaches have been proposed in the literature to overcome the mem-
ory access conflicts for LDPC decoding [66, 70, 71]. These approaches use as
many vector memories as the number of non-zero (NZsm) elements in the block-
structured PCM for each task. However, this causes a huge increase in the number
of memories, even for the proposed architectures which exploit a low processing
parallelism. For the case of IEEE 802.15.3c codes, it would result in as high as
216 memories with a depth of one and width of (21×b). Also, 32 memories for
each of the Mch and MHD messages would be required.

In the proposed method, the memory partitioning is performed depending on
the processor parallelism for each architecture instance, as discussed earlier. The
data distribution and related data mapping is performed using the approach de-
scribed in the previous section. The data distribution and related mapping into
the shared memories Mcv and Mvc and among the CNP and VNP tiles are per-
formed taking into account the processing parallelism and the related task map-
ping. The data partitioning, data distribution and mapping approach provides
as many memory partitions as the number of processing tiles. This enormously
reduces the number of shared vector memories compared to the proposed ap-
proaches [66, 70, 71]. Since the Mch and MHD memories are only accessed by the
VNPs, their memory partitioning, data distribution and data mapping are trivial,
as these memories are not shared among the different tasks. Due to small sizes
of data involved in the decoding of IEEE 802.15.3c LDPC codes, the influence of
memories on the overall area and delay remains low in the whole range from cen-
tralized and relatively larger sizes to extremely distributed and very small sizes,
as shown in Figure 6.7. Nevertheless, adequate memory design, as well as, data
distribution and mapping to distributed memories are of primary importance for
an effective and efficient communication design. In consequence, even for appli-
cations with small data sizes, the memory architecture design remains one of the
major design issues.

Recently, several papers on architectures for processing a single sub-matrix of
a single macro-row (serial CNP) and a single sub-matrix of a single macro-column
(serial VNP) are published. However, processing of a single sub-matrix in isolation
only requires a simple local communication network (switch) and a simple memory
structure [52, 56, 57, 62]. It does not solve the problem of an effective and efficient
processing of the whole PCM matrix and related communication architecture for
this aim. Some architectures for processing only a single macro-row and a single
macro-column were also proposed that required multiple local communication
networks but no global communication network [58, 61, 82]. However, for the
demanding accelerator cases, multiple macro-rows and macro-columns have to be
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processed in parallel, and this requires the solution of a much more complex system
of global and local communication problems. Our solution to these problems
represents a generic hierarchical communication network and distributed memory
architecture, as shown in Figure 6.5. We propose solutions for the actual total
memory and communication problem, and not only for some of its isolated parts,
as considered by the published research.

Despite of the local regularity at the level of a single sub-matrix, the global
communication network complexity quite quickly increases with the increase of
the micro-/macro-parallelism (see Figure 6.7). Therefore, to improve the scalabil-
ity of the communication architectures for the high-end applications, we proposed
partitioning techniques which reduce the complexity of the global inter-tile com-
munication. These techniques are discussed in the following sections.

Tile−2

1 21.................... 1 21.................... 1 21....................1 21....................

LS−2LS−1

Global−Switch Global−Switch

LS−4LS−3

PE[1−21] PE[22−42]

Cluster−1 Cluster−2

Tile−1

Figure 6.11: Data distribution based communication partitioning

6.3.1 Data Distribution Based Communication Partitioning

The basic idea of this technique is to reduce the data distribution related to a
sub-set of node tiles from all memory tiles to a minimum possible number of
shared memory tiles. This way, the corresponding sub-set of the processing tiles
to which the node tiles are mapped would not be required to communicate with all
the shared memory tiles. In consequence, a simpler communication network will
be sufficient to communicate a specific sub-set of node tiles to a specific sub-set
of shared memories tiles. This way, the single global switch can be partitioned
into several smaller switches. A necessary and sufficient condition to be satisfied
for those sub-set of node tiles sharing a sub-set of memory tiles is that those
sub-set of nodes cannot be scheduled together (although, they can be processed
in parallel) due to the memory access conflict.

The above sketched proposed approach will be further explained with respect
to a particular accelerator instance with 2 tiles, each with a micro-parallelism of



178 6.3. CASE STUDY: COMMUNICATION AND MEMORY ARCHITECTURES

2, and a particular memory organization with each node tile data is stored in a
vector word of a single-port vector memory or a bank of a multi-bank memory, as
shown in Figure 6.11. According to the memory partitioning, data distribution
and mapping methodology presented in Section 6.2, the data-distribution and
assignment to different shared memories is performed in the way to store all the
related data in a minimum number of shared memory tiles, while ensuring that
the data will be accessed without conflict. The corresponding memory assignment
and data mapping for accelerator instance with 2 tiles each with micro-parallelism
of 2 is shown in Table 6.2. The subscripts a and b in sa,b represent the data
related to a particular check node a and variable node b tiles, respectively. The
data related to variable node tiles {1, 2, 3, 4} and {5, 6, 7, 8} are stored in the
same memories namely {M0, M2} and {M1, M3}, respectively, and the micro-
parallelism of each tile (2 tiles in total) is 2. Therefore, any two node tiles among
the group {1, 2, 3, 4} and {5, 6, 7, 8} cannot be scheduled together, as each
tile requires two data elements from the same memory, which is not possible.
However, the node pairs {1,5}, {2,6}, {3,7}, {4,8} can be scheduled together (one
possible way) as the required data is located in separate memories. Moreover, all
data related to variable nodes {1} and {5} are stored respectively in memories
{M0, M3} and {M1, M2}. This way both tiles have to communicate with a sub-
set of shared memories (only 2 in this case) and the corresponding inter-tile global
communication network is partitioned into two smaller communication network.

Unfortunately, this approach can not be applied to the case of high parallelism
levels. With the parallelism increase, data have to be distributed into several
memory banks for parallel access. In such a scenario, the inter-tile communication
will become unavoidable. In the next section, we introduce the second partitioning
technique to reduce the global communication network complexity and to explore
the tradeoffs among the different schemes.

6.3.2 Data Identification Based Communication Partitioning

With increase of the number of tiles, it becomes impossible to avoid the inter-tile
communication using the technique presented in the previous section. Data have
to be distributed into multiple vector or multi-bank memories for conflict-free
parallel access, and in consequence, a global interconnect network is required.
However, the global switch complexity increases drastically with the parallelism
increase from moderate to high (see Figure 6.7). Moreover, the physical synthesis
tools cannot even place and route such a huge single global switch. Therefore,
rather than using a single global switch to provide the inter-tile communication,
different combinations of several switches and associated switch sizes should be
used to reduce the complexity of the inter-tile communication. This decomposi-
tion of a huge single global-switch into several much smaller ones can be achieved
by taking advantage of the communication and computation hierarchy present in
the application, while considering the individual memory and processor tiles. To
partition the single global switch, our technique exploit the two-level communica-
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Table 6.2: Data distribution and assignment in the partitioned memory (Mcv) for an

architecture instance with the combined processing parallelism P(2, 42) both for

the CNP and VNP processors.

Check Node Memory Banks (Mcv)

Word M0 M1 M2 M3

w0 s1,4 s1,6 s2,1 s2,7

w1 s3,3 s3,5 s4,2 s4,8

- - - - -

w8 s5,1 s5,7 s6,2 s6,8

w9 s7,4 s7,6 s8,3 s8,5

- - - - -

w16 s9,2 s9,8 s10,3 s10,5

w17 s11,1 s11,7 s12,4 s12,6

- - - - -

w24 s13,3 s13,5 s14,4 s14,6

w25 s15,2 s15,8 s16,1 s16,7

- - - - -

tion network hierarchy. As in the two-level hierarchical communication network,
each one of the memory tiles communicates with one of the processor tiles at a
time through a single global switch. Therefore, the communication hierarchies
and data flows are further explored at the level of memory banks of a memory
tile and at the level of processor of a processor tile, while keeping the two-level
hierarchy.

More specifically, by analysis of the specific characteristic of the memory-
processor communication patterns, specific sub-sets of banks are identified in
different memory tiles that simultaneously communicate with only specific corre-
sponding sub-sets of processors in different processor tiles. In case of the LDPC
codes from the case study, the memory banks {M1,1, M2,1, M3,1, M4,1} in differ-
ent memory tiles communicate with a subset of processors {P1,1, P2,1, P3,1, P4,1}
in different processor tiles, for the architecture instance shown in Figure 6.5. In
Ma,b, a represents a memory number and b bank number, the same way in Pa,b, a
represents a tile number and b processor number. Based on the identified patterns
a corresponding application-specific communication among the memories and pro-
cessing tiles is then realized using several switches of much smaller sizes compared
to the huge size of the single global switch. Both the number of switches and the
size of each switch are decided by the processing parallelism, i.e. the number
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Figure 6.12: Data identification based communication partitioning

of processing elements, parallelism of each processing element (micro-parallelism)
and their organization into tiles. For the architecture instance shown in Figure
6.5, the required switch size is 4 (subset of 4 elements), while the required number
of switches is 21 (21 subsets of 4 elements), as shown in Figure 6.12. It is worth
to note that this approach is only applicable if the processors are organized in
tiles and the associated data in the corresponding parallel multi-bank or vector
memories. As a general rule for LDPC codes and for a particular micro-/macro-
parallelism combination, the number of smaller switches are equal to the tile size
(processing elements/tile) and switch size equal to the total number of processing
tiles, as shown in Figure 6.12, for the architecture instance of Figure 6.5.

Through this partitioning the complexity of the single inter-tile global switch
is much reduced, and the exploitation of the massive-parallelism present in the
application is possible at a reasonable cost. The partitioning of the global switches
also eliminates the physical synthesis problems. As it can be seen from the results
in Figure 6.13, for the high parallelism levels the interconnect complexity remains
at a comparable level as for the case of a single global switch (see Figure 6.7).
However, much higher gain in performance can be obtained due to the lower in-
terconnect delays of the much smaller switches compared to the non-partitioned
global switch. This way a throughput as high as 5 Gbps can be achieved satis-
fying the peak throughput requirements of example IEEE 802.15.3c codes. After
applying the same partitioning technique to the smaller global switch of the data
distribution based technique, the required switch size would be half of the orig-
inal switch size and the number of switches doubles compared to the case when
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Figure 6.13: Area/Performance tradeoffs for the data identification based commu

nication partitioning

the data identification based partitioning is applied in isolation. This results in
different tradeoff regarding area and switch delay. The gains as high as 5-times
in performance can be achieved using the partitioned network compared to the
non-partitioned two-level hierarchical communication network, however, with an
area penalty of less than 1%. Nevertheless, the communication network area still
dominates the area of processing elements and memories. Therefore, one more
technique is introduced below to further reduce the communication network area,
while preserving the performance.

6.3.3 Single-stage versus Multi-stage Switches for Communica-
tion Network

For each approach discussed so far, ranging from a flat to a hierarchical partitioned
two-level communication network, the design tradeoffs can be further explored
regarding communication architecture by using different kinds of physical switch
networks (e.g. single-stage or multi-stage switches). Moreover, for the two-level
hierarchical communication network, the single-stage and multi-stage switches can
also be used in combination. For example, single-stage switches can be utilized
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for global interconnects and multi-stage switches for local interconnects or vice
versa, etc. Furthermore, this approach can be applied to the already partitioned
single global switch using one of the earlier introduced partitioning approaches
or to a non-partitioned two-level hierarchical single global switch based network.
This enable us to explore different design tradeoffs regarding performance, area
and power consumption and ultimately ensure the scalability. For this specific
kind of exploration, different kinds of switches with diverse parameter ranges
(input width and number of input/output ports) are modeled and characterized
in TSMC 90nm LPHP Standard Cell Library using the Cadence CAD tool flow.
Cadence RTL compiler was used for synthesis and Cadence Encounter for floor
planning, placement and routing. All these configuration and characterization is
done automatically by a configuration and characterization tool, which is a part
of the proposed DSE framework.
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Figure 6.14: Area/Performance tradeoffs for the data identification based commu

nication partitioning when realized using multistage switches

The single-stage and multi-stage switches are differently organized in terms
of stages, which in turn results in different values for physical switch parameters,
such as area and delay, etc. For example, the local intra-tile communication
network of LDPC decoders, which is defined by a certain circular shifts matrix,
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can be realized using a single-stage multi-input multiplexer (MUX) based shifters
or by multiple simple 2×1 multiplexers cascaded in multiple stages (log-shifters).

As concerned resources, the direct implementation of an N×N shifter would
require N multiplexers each of size N×1. However, the same N×N shifter, when
implemented as a multi-stage shifter, would require N log2N multiplexers each of
size 2×1. The critical path delay in case of direct implementation is the delay
of a single N×1 input multiplexers, while for the multi-stage shifter, the delay
would be log2N, i.e. the number of stages. Similarly, a global switch that provides
all permutations can be realized with a Benes network of N/2 (2N log2-1 ) 2×2
crossbar switches or a direct implementation with N N×1 multiplexers. The
critical path delay in case of the direct implementation is the delay of a single
N×1 multiplexers, while for the multi-stage shifter the delay would be 2log2N-1
2×2 crossbar switches, i.e. the number of stages. This simple delay evaluation
holds for small switch sizes, but shows a huge deviation for large switches after
they are physically placed and routed.

Based on the switch characterization regarding delay, power consumption and
area, a set of experiments is conducted for different switch combinations. The re-
sults are presented only for the most promising combinations regarding area and
performance, i.e. a partitioned two-level communication network. Figure 6.14
shows the results for the area and performance of a partitioned two-level com-
munication network. The local and global switches are realized using multi-stage
switches. The partitioned two-level multi-stage (both local and global) commu-
nication network outperforms in area the single-stage (both local and global)
realization. There is a performance penalty of less than 1% at most, while a
significant area saving as high as 4-times compared to the case of a partitioned
global communication network with single-stage switches. The communication
network complexity is much reduced, which in turn ensures a better scalability
for massively parallel multi-processor accelerators.

6.3.4 Experimental Results Discussion

A series of experiments is conducted for IEEE 802.15.3c LDPC codes with differ-
ent micro-/macro-architecture parallelism combinations to explore the numerous
complex design tradeoffs, specifically, in relation to the memory and communica-
tion architecture. The experiments are performed for the rate-1/2 672-bit IEEE
802.15.3c LDPC code, assuming a high data-precision of 8-bits for communication
and 10 iterations per frame. Most of the more specific results of the experiments
are discussed in the previous sections to illustrate the memory and communica-
tion design approaches. However, the overall view and general conclusions are
not less important.

The flat communication scheme can only be used for the low-end applications,
because its complexity explodes for the moderate and high parallelism levels, as
shown in Figure 6.15. For the moderate parallelism levels, the two-level hier-
archical communication network performs well. Compared to the flat network,
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it delivers large area and power savings, and performance gains for all the ac-
celerator instances. They can be as high as 25-times in area, 3-times in power
consumption, and 12-times in performance. Unfortunately, it shows non-scalable
behavior for the massively parallel multi-processor cases, represented in green in
Figure 6.15.
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Figure 6.15: Combined results representing interconnect parameters for various

processing parallelism

To ensure a much better scalability of the communication architectures for the
massively parallel multi-processors, all the partitioning techniques are required to
be used in combination. By the combined use of all the partitioning techniques,
there is a performance gain for all the accelerator instances as high as 5-times
on the cost of a very small area penalty of less than 1% compared to the non-
partitioned two-level hierarchical communication network (represented in blue in
Figure 6.15). Despite the high gains in performance, the communication network
area still dominates the area of processing elements for the high parallelism cases.
Therefore, multi-stage and single-stage switch combinations should be adequately
used in the implementation of the communication architectures to preserve the
performance level while reducing the area. The multi-stage/single-stage switch
combination approach results in a low performance penalty of less than 1% at
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most, while offering a significant area savings as high as 4-times.

An interesting observation is that independent of whether the two-level hier-
archical communication network is partitioned or not, the application of different
combinations of the single-stage and multi-stage realization to local and global
switches always results in a superior scalability in one design dimension or in the
other design dimension. The experiments on different switch combinations show
that the highest performance is achieved for the single-stage global switch and the
multi-stage local switches, while for the lowest area the multi-stage realizations
are required for both the global and local switches. The same sort of behavior
can be observed for the two-level non-partitioned communication network, when
the single and multi-stage switch combinations are applied. The results of the ex-
periments show that a partitioned two-level communication network is the most
promising one. It improves the scalability of communication architecture in all
design dimensions with excellent tradeoffs.

In general, for all the architectures having a low parallelism at both levels and
for all communication architectures, both the performance and area scale linearly.
This trend is clearly visible (see Figure 6.15) for the combined parallelism of up
to 84 for architecture instances such as {P(1, 84), P(2, 42), P(4, 21)}. For the
higher parallelism levels beyond these points the flat networks do not scale, but the
simple hierarchical communication networks scale to some extent for the moderate
parallelism levels, but much worse for slightly higher parallelism levels, and they
saturate at the massively parallel micro-/macro-architectures such as P(4, 168).

The partitioning techniques with multi-stage and single-stage switch combina-
tions are necessary to ensure the scalability for high-parallelism levels with many
complex design tradeoffs that have to be taken into account depending on the
actual requirements of the application. For example, the hierarchical data iden-
tification based partitioning with single/multi-stage switch combination provides
almost as high as 5 Gbps of throughput with much smaller area compared to the
other two-level partitioned single-/multi-stage switch combinations.

Summing up, the above discussed memory and communication architecture
design approaches, when applied in combination, ensure a good scalability of
the memory and communication architecture for the massively parallel multi-
processor hardware accelerators, as well as, enable exploration and exploration of
the complex design tradeoffs for the memory and communication architecture in
the context of various micro-/macro-architecture combinations. This reconfirms
the fact that without having a quality-driven model-based accelerator design ap-
proach equipped with such techniques, such complex design tradeoffs for massively
parallel multi-processors cannot be explored adequately, and high-quality archi-
tectures cannot be designed in a reasonable time.
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6.4 Comparison of LDPC Decoder Architectures from
Related Research and our Method

In this section, a comparison is performed of the LDPC decoder architectures from
related research to architectures constructed by our method MPA-Explorer tool.
A meaningful comparison of architectures for the LDPC decoding is a complicated
task due to the multi-dimensional space of the characteristic features of LDPC
decoders. The major LDPC decoder features include: LDPC code types (e.g.
regular or irregular; and random or block codes), rate (R) and code length (L);
LDPC decoding algorithm and related error-correcting performance and complex-
ity; number of decoding iterations and the data quantization to achieve a certain
Bit-Error-Rate (BER) and Frame-Error-Rate (FER); earlier decoding termination
strategies to speed up the decoding process; decoder implementation technology
(e.g. various CMOS ASIC and FPGA technologies with different characteristics);
processing and data parallelism exploitation scheme; performance required and/or
performance, area and power consumption tradeoff targeted.

Each of the above LDPC decoder characteristics can take from several to very
many different values, correspondingly. From the above, it should be clear that
a given decoder architecture may perform differently and require different area
and power when used for codes with different characteristics, different decoding
algorithms or implemented with different technologies. Usually, the published
state-of-the-art research works [52–82] related to the LDPC decoder architectures
compare and evaluate the architecture proposals in relation to the performance,
and less often to power consumption and area (PPA). Unfortunately, while evalu-
ating and comparing the architecture proposals based on PPA, the related research
works usually do it without paying enough attention to many important aspects
of the LDPC decoding. In result, the architecture comparisons are often meaning-
less. For instance, some of the related research works compare performance of one
architecture with another one applied to decoding with a very different number
of decoding iterations/frame [52–82]. This does not make much sense, because
a lower number of iterations results in a shorter decoding time. Similarly, some
of the related research works compare architectures on different types of LDPC
codes or for different data quantizations (while the decoder using less number of
data bits will have lower area). Also, a direct comparison of architectures imple-
mented with different technologies is questionable. This makes many comparisons
presented in the literature to a large degree unfair and of low value. Moreover, the
focus of the published research on the LDPC decoders [52–82] is mainly limited
to performance, while usually ignoring the other design dimensions (e.g. area and
power consumption). This all makes it difficult to evaluate and compare various
LDPC architectures.

This section aims at comparing several most advanced LDPC decoding ar-
chitectures proposed in the published state-of-the-art research to architectures
that can be constructed using our multi-processor accelerator architecture explo-
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ration and synthesis method and related MPA-Explorer tool. It will compare
the architectures in relation to the performance, power and area (PPA) values.
To make the comparison more fair and meaningful, it will compare the archi-
tectures in relation to some LDPC codes, decoding algorithms, implementation
technologies, etc. The architecture exploration and synthesis tool MPA-Explorer
is capable to construct different architectures for LDPC decoders with different
types of micro- and macro-architecture combinations. In particular, using the
MPA-Explorer the architectures proposed by the related state-of-the-art research
can be constructed. Therefore, the LDPC decoder architectures proposed in the
related LDPC literature are first constructed to find their PPA values. Moreover,
to make the comparison more fair and meaningful, instead of comparing architec-
tures for different codes, decoding algorithms and implementation technologies a
standard set of parameters is assumed. All architectures are then compared in
relation to this standard set. The standard set of parameters used in the compar-
ison is the following: code type (IEEE 802.15.3c), code rate (R=1/2, 7/8), code
length (L=672-bit), number of iteration (10), data quantization (8-bit), imple-
mentation technology (CMOS 90nm LPHP). After constructing each particular
architecture from the related LDPC literature and computing its PPA values, the
accelerator design space with the MPA-Explorer tool is initiated with the same
throughput required as for this particular architecture from the related literature
to explore the different micro- and macro-architecture combinations, and finally
to construct the most promising architectures. Afterwards, the results obtained
using the DSE are compared to the ones obtained for a particular architecture
from the related literature. This enables us to demonstrate the significance of the
architecture DSE and show the high-quality of the architectures from our method.
The architectures presented in the literature exploit the two extremes of micro-
architectures (fully-serial and fully-parallel) with different macro-architectures to
satisfy certain throughput requirements. Therefore, the architectures are first
sub-divided based on the type of processing parallelism exploited by each of the
proposed in the literature architectures and construct the architecture with this
particular micro- and macro-architecture as in the architecture from the litera-
ture. Then, the DSE tool constructs the most promising architectures for the
same level of performance.

Let us now go into details. Several partially parallel architectures have been
proposed in the past for the LDPC decoding [53, 55, 56, 58, 61, 62, 72, 81,
82]. However, they deliver a throughput of only a few hundreds of Mbps. The
proposed architectures are not adequate for the high-end applications that require
throughputs in the ranges of multi-Gbps (4∼6 Gbps). They employ the fully-
serial micro-architectures for both the VNPs and CNPs with macro-architecture
parallelism limited to the size of the single sub-matrix of the PCM. Moreover,
they use a simple communication and memory architectures in the form of simple
shifters and vector memories, correspondingly. With the MPA-Explorer tool, the
most advanced of these architectures are implemented, namely, the one presented
in [55]. However, it delivers a throughput of only 141 Mbps, as shown in Table
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6.3. An extension of the architecture approach from [55] is presented in [52].
It is the so-called vectorized LDPC decoder, that exploits the fully-serial micro-
architectures for both the CNP and VNP, while the macro-architecture can be
as parallel as the maximum parallelism available in the code. In the case of
IEEE 802.15.3c code, the macro-architecture parallelism is 672 for VNP and 84,
168 and 336 for CNP of code rates 7/8, 3/4 and 1/2, respectively. However,
also the enhanced architecture from [52] is not able to deliver the ultra-high
throughput of (4∼6 Gbps) required for the IEEE 802.15.3c code, as shown in
Table 6.3. It is mainly due to the large number of computation cycles required
to perform the check and variable nodes computations. The second reason is
the drop in the accelerator frequency due to the long critical path delay of the
large multiplexers used for selecting the particular message memories. The best
architecture constructed for this case by our DSE tool provides almost the same
performance of 1 Gbps, but with a 1.94-times lower area and 3.87-times lower
power consumption than the architecture from [52]. Our architecture exploits a
micro-architecture parallelism of 2 and macro-architecture parallelism of 84.

Table 6.3: Implementation results and comparison of the existing LDPC decoder

architectures with the architectures constructed by our multiprocessor accelerator

synthesis tool (MPAExplorer)

Architecture Code Spec Frequency Throughput Area Power

(672, k) (MHz) (Mbps) (mm2) (mW)

Brack [55] k = 336 537 141 1.57 411

Rovini [52] k = 336 223 938 4.92 5860

Proposed k = 336 440 924 2.53 1512

Tong [69] k = 336 369 590 1.86 115

k = 588 207 332 1.88 95

Zhong [74] k = 336 305 2926 8.38 298

k = 588 168 1887 8.42 254

Proposed k = 336 239 4027 12.84 301

k = 558 159 2676 12.81 569

Liu [78] k = 588 119 1001 10.10 1300

Sha [79] k = 588 475 1995 4.53+168R∗ 2826

Proposed k = 558 231 1943 6.86 1326

Proposed k = 336 280 4709 13.25 3160

Proposed k = 588 184 3091 13.04 3091

*Pipeline registers for clock speed improvement

Architectures exploiting the fully parallel micro-architectures for both the
CNP and VNP have been proposed [66, 69, 73]. The macro-architecture par-
allelism, i.e. number of CNP and VNP processors, is determined there based
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on the number of macro-rows and macro-columns in the block-structured PCM.
They consider as many CNPs as the number of macro-rows in the block-structured
PCM and as many VNPs as the number of macro-columns. In order to avoid the
memory conflicts and to reduce the communication network complexity, they uti-
lize the fully distributed memory structure with as many memories as the number
of non-zero entries (NZsm) in the block-structured PCM. Each of the memories
stores the data related to a single sub-matrix. For IEEE 802.15.3c code rate-1/2
LDPC code, it would result 216 single-port memories in total or 108 double-port
memories plus 32 memories for channel messages. The architecture proposed in
[69] is implemented with our DSE tool. It provides a low throughput of 590 Mbps
for rate-1/2 code and 332 Mbps for rate-7/8 code, as can be seen in Table 6.3.
An extension of this approach has been proposed in [74–76] that allocate q num-
ber of CNPs and VNPs for each of the macro-rows and macro-columns such that
p%q=0, where p represents the sub-matrix size and % represents the modulus
operator. For IEEE 802.15.3c LDPC code q can be equal to 3 or 7, as the sub-
matrix size is 21. The memory architecture is the same as in the previous case,
but vector memories are used instead of scalar memories, with vector size equal
to q. One of enhanced architectures proposed in [74] is implemented with the
MPA-Explorer tool. The architecture proposed in [74] provides a high through-
put as high as 3 Gbps compared to the case of architectures exploiting the serial
micro-architectures, but has larger area. Nevertheless, this architecture does not
satisfy the ultra-high performance of 4 Gbps, while one of our architectures pro-
vides a throughput of 4 Gbps at almost the same power consumption, but at a
larger area. The main feature of the architecture in [74] is that the global com-
munication network is transformed into point-to-point (P2P) links by the highly
fragmented memory structure. However, the distributed memory approach in [74]
is only adequate for the short length codes, because the distributed memory ar-
chitecture of the short length codes have low influence on the total area compared
to the global communication network. However, the same architecture from [74]
realized for the 4608-bit rate-8/9 code results in the area of 49 mm2 due to the
higher impact of the fragmented memories (320 in number) [74]. Our proposed
architecture employ a micro-architecture parallelism of 8 and macro-architecture
parallelism of 84, and provides an adequate balance between the complexities of
the memory and the communication structures.

Several architecture based on the partially-parallel micro-architecture for CNPs
and fully-parallel for VNPs have been proposed in [77–79] for the high rate codes.
The architectures in this category are somewhat similar to architectures proposed
by us, just due to utilization of partially-parallel micro-architectures. The archi-
tecture proposed in [78] employs a partially-parallel micro-architecture for CNP
with the micro-parallelism of 8 (in total 32 inputs), and a fully-parallel micro-
architecture for VNP, with the macro-architecture parallelism of 84 for each kind
of processors (CNP and VNP). However, the throughput achieved is limited to
only 1 Gbps, due to the interconnect scheme based on the flat multiplexers and
de-multiplexers. The same architecture implemented using our tool exploiting a
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hierarchical partitioned network achieves 1.94-times higher throughput, by 1.43-
times lower area and almost the same power consumption. The architecture pro-
posed in [79] exploits the micro-architecture parallelism of 4 for both CNP and
VNP, and the macro-architecture parallelism of 84. The higher throughput of this
architecture being 2 Gbps is achieved due to the higher clock speed. However, the
architecture requires 672 × 2 (= 84 × 4 × 2) 8-bit registers for pipelining3, what
in turn much adds to the total area and further increases power consumption.
The high clock speed also results in a higher power consumption. None of the
architecture supports the ultra-high (4∼6 Gbps) throughputs. Compared to the
last architecture, our architecture provides almost the same performance by 2.13-
times lower power consumption, due to exploitation of a higher micro-architecture
parallelism of 8 for CNP compared to the micro-architecture parallelism of 4 in
[79], and with some area overhead. However, the small area overhead of our ar-
chitecture is fully compensated, as the substantial pipeline register contribution
is not added to the overall area for the architecture proposed in [79].

From the above comparison, it is clear that our DSE tool MPA-Explorer is able
to construct better LDPC decoder architectures than the considered advanced
LDPC decoder architectures proposed by the related state-of-the-art research.
Moreover, the proposed DSE approach selects the most promising architecture
taking into account various application specific design constraints and objectives
and realizing required tradeoffs among the objectives. Also, unlike the architec-
tures that utilize the highly distributed memory structures to avoid the memory
conflicts, our approach takes into account the processing parallelism, and only
then decides the adequate memory and communication structures that provide
the necessary bandwidth, as well as, avoid the conflicts with minimum overhead.
Furthermore, one of our proposed architectures provides the required ultra-high
throughput of 5 Gbps for the rate-1/2 LDPC decoder, and 3 Gbps for the rate-7/8
LDPC code, as shown in Table 6.3. Additionally, our approach is well scalable
and enables the construction of various partially-parallel architectures for diverse
LDPC codes employed in different standards, with diverse performance, power
consumption and area requirements.

6.5 Conclusions

In the former sections, the communication and memory architecture design is-
sues of the massively parallel multi-processor accelerators were discussed that are
necessary to realize the required ultra-high throughput of the highly-demanding
modern applications. The discussion was focused on the communication and mem-
ory bandwidth and scalability issues. It was demonstrated that in the massively
parallel hardware multi-processors the memory and communication influence on
both the throughput and circuit area dominates the processors influence and the

3Two pipeline stages
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communication and memory design are strictly interrelated. Therefore, commu-
nication and memory architecture design is one of the major aspects of our new
accelerator design methodology.

It was demonstrated that the traditionally used simple flat communication
architectures and multi-port memories do not scale well with increase of the ac-
celerator parallelism. In consequence, they are not adequate for the massively
parallel accelerators. We proposed to design the application-specific hierarchi-
cal partitioned organizations of the communication architectures and vectorized
memories exploiting the regularity and hierarchy of the actual information flows
of a given application. This drastically improves the scalability.

In particular, it was demonstrated that for the moderate parallelism levels the
two-level architectures with several local communication-free clusters or a single
global cluster perform well, with performance gains as high as 12-times and area
savings as high as 25-times compared to the flat communication scheme. How-
ever, for the high parallelism levels only the partitioned hierarchical approach
ensures the high scalability regarding performance with gains as high as 5-times
and a small area penalty of less than 1% compared to the non-partitioned two-
level hierarchical communication network. To further increase the performance
or eliminate the area penalty, the multi-stage and single-stage switch combina-
tions can be employed for local and global switches of the two-level partitioned
communication network, resulting in area saving as high as 4-times.

Regarding the memory design, the partitioned vectorized shared (single port)
memories seem to be the most promising for the massively parallel hardware
multi-processors.

To guarantee the required memory and communication bandwidth, and achieve
the communication and memory scalability in the whole considered performance
range, all the strategies of communication architecture synthesis, as well as, of
memory partitioning, data distribution and related data mapping were incorpo-
rated into the multi-processor accelerator design method and related automated
architecture exploration framework.

Using this framework a large set of experiments were performed including all
the experiments referred to in this thesis. The experiments demonstrated that
the proposed quality-driven model-based accelerator design method, and specifi-
cally, its memory and communication synthesis techniques, are adequate for the
hardware multi-processor design for the modern highly-demanding applications.

Finally, in the last section of this chapter, the LDPC decoder architectures
from related research were compared to architectures constructed by our method
and MPA-Explorer tool. This comparison shows that the proposed DSE tool
MPA-Explorer is able to construct better LDPC decoder architectures than the
considered advanced LDPC decoder architectures proposed by the related state-
of-the-art research. This reconfirms once more that the proposed quality-driven
model-based accelerator design method is adequate for the multi-processor accel-
erators design for the modern highly-demanding applications.
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CHAPTER 7

Conclusions and Future Work

In this chapter, the major conclusions of the research reported in this thesis are
presented. Moreover, several promising directions are proposed for future research
work.

7.1 Conclusions

The main aim of the research reported in this thesis was to analyze the issues and
requirements of hardware accelerator design for the modern highly-demanding ap-
plications, as well as, to propose, implement, analyze and evaluate an adequate
semi-automatic design method addressing the issues and satisfying the require-
ments. Below, the major novel contributions to realize the main aim of this
research project are presented.

First of all, we thoroughly analyzed several modern highly-demanding applica-
tions, and discovered and analyzed the main issues and challenges of architecture
design for these applications, and specifically the issues that can not be resolved
using the traditional architecture design methodologies for hardware accelerators.
The analysis showed that many of the modern highly-demanding applications
involve algorithms: with complex interrelationships among the data and com-
puting operations at the task level and complex inter-task data dependencies;
complex multi-input multi-output (MIMO) operations; massive data parallelism
or task-level functional parallelism; and impose ultra-high performance demands,
as well as, different requirements in relation to energy, area and other parameters.
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Moreover, they often require an adaptable accelerator design accounting for the
design-time or field-use adaptation.

Based on the results of this analysis, the requirements were formulated that
have to be satisfied by an adequate design methodology for such applications. In
brief, the accelerator design for such kind of applications has to involve both the
micro- and macro-architecture design for the processors, and the corresponding
adequate memory and communication architectures design. Moreover, the pro-
cessors micro-/macro-architecture and the memory and communication architec-
tures are strongly interrelated and their design cannot be performed in separation.
Complex mutual tradeoffs have to be resolved among the processor parallelism
at the two levels, i.e. between the micro- and macro-architecture, and the cor-
responding memory and communication architectures, as well as, between the
performance, power consumption and area. However, the earlier proposed and
used for accelerator design HLS methods and related EDA tools only support
the micro-architecture synthesis of a single processing unit, while not taking into
account the macro-architecture, memory and communication synthesis and not
accounting for the relationships and tradeoffs among these design aspects, which
is necessary in the design of hardware accelerators for highly-demanding appli-
cations. Without considering in combination the micro- and macro-architectures
for processors, and the corresponding memories and communication architectures,
as well as, the mutual tradeoffs among these design dimensions, and among the
performance, power consumption and area, it would be impossible to guarantee
a high-quality accelerator architecture. No adequate design methodology was in
place for such kind of complex multi-processor accelerators required for the highly-
demanding applications. The lack of an adequate design methodology resulted in
a large number of ad-hoc proposed solutions in the form of various particular ad-
hoc point architectures for various problem instances with different throughput
requirements.

The major contribution of the research reported in this thesis is a novel quality-
driven model-based multi-processor accelerator design methodology supported by
a novel multi-objective and multi-dimensional design space exploration (DSE)
framework, that addresses the issues and satisfies the requirements of the hardware
multi-processor accelerators for highly-demanding applications. To our knowledge,
despite a more than a decade of research on the hardware accelerators no similar
holistic quality-driven design approach has been proposed. The methodology is
quality-driven and model-based. It exploits the concept of a generic architecture
platform, modeled using generic architecture templates, and is supported by a
novel multi-objective and multi-dimensional DSE framework.

The proposed multi-objective and multi-dimensional design space exploration
framework performs an effective and efficient exploration and exploitation of vari-
ous tradeoffs between the processing parallelism at the micro- and macro-architecture
level, and the corresponding memory and communication architectures, as well as,
among the performance, power consumption and area, to arrive at high-quality
accelerator architectures. The DSE framework is multi-dimensional in the sense
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that it considers jointly the processor, memory and communication sub-systems,
as well as, the mutual complex tradeoffs among them. It is multi-objective in
the sense that it can target various performance, power consumption and area
constraints/objectives and tradeoffs among them through controlling the basic
parameters that influence them. To enable this, the proposed DSE framework
is equipped with several novel scheduling, processing parallelism exploration, and
memory and communication architecture exploration strategies. They make it pos-
sible to explore effectively and efficiently the numerous complex mutual tradeoffs
between the micro- and macro-architecture, and the corresponding memory and
communication architectures, as well as, among the performance, power consump-
tion and area. The DSE algorithm performs the exploration and decision-making
for each of the architecture design aspect in a parallel constructive way, while
taking into account the design constraints and optimization objectives. This way,
it ensures not only the high-quality of the constructed architectures, but also
reduces the complexity of the design decision search.

Using the generic processor architecture templates, which constitute a part of
the proposed design methodology, numerous architectures involving different com-
binations of processing parallelism at the micro- and macro-architecture level can
be instantiated. This enables to explore the numerous mutual complex tradeoffs
between the micro- and macro-architecture levels and their influence on design
parameters like, performance, power consumption, area, etc, to make adequate
decisions on the number and type of processors. Moreover, it enables to tradeoff
one design objective against the others, while meeting the design constraints.

Two novel operation scheduling techniques, tight scheduling (TS) and relaxed
scheduling (RS), are proposed to tradeoff the processors cost against the mem-
ory and communication structures costs, dependent of whether the processors cost
dominates or the memory and communication structures costs, respectively. This
is different than the traditional scheduling techniques that mainly aim at the pro-
cessor sub-system optimization as the overall design objective. Moreover, several
novel memory and communication architectures are proposed that ensure the scal-
ability of the memory and communication architectures for the massively parallel
multiprocessor accelerators required for the highly-demanding applications.

The design and implementation of the generic template and its modules is one
of the most difficult and time-consuming process of the proposed design method-
ology, as it involves the design of optimized parameterizable processing units,
communication and memory elements and their implementation in Verilog HDL,
which corresponds to the generic structure models for an application class. The
generic models can then be synthesized for different set of parameters deliver-
ing various possible solutions with different qualities, which enables an adequate
DSE. Physical characterization of the generic models enables quick and quite ac-
curate evaluation and selection of the constructed architectures. To analyze and
evaluate the proposed design methodology and its related DSE framework, a se-
ries of extensive case studies are performed through implementing and applying
the methodology to an industrial-strength application of LDPC decoding. The
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performed analysis and evaluation clearly confirmed that the methodology ad-
equately supports the design of complex multi-processor hardware accelerators.
To enable experimental research, the top-level generic architecture and the novel
generic check node processor (CNP) and variable node processor (VNP) micro-
architectures are proposed that span the full range of micro-architectures from
the fully-serial to the fully-parallel, with in between a large number of partially-
parallel architectures. This is different than in the state-of-the-art published re-
search that only considers the trivial cases of the fully-serial or the fully-parallel
micro-architectures.

Through the problem and experimental result analysis, it is clearly demon-
strated that without considering the micro- and macro-architecture design in
combination, it would be very difficult to arrive at an adequate high-quality accel-
erator. These considerations were supported by experiments and case studies with
the LDPC decoder design for IEEE 802.15.3c LDPC codes for the future highly-
demanding communication systems. The experiments were focused on exploration
of the micro-/macro-architecture tradeoffs regarding the performance, power con-
sumption and area. They clearly demonstrated that there exist various com-
plex tradeoffs at the micro-/macro-architecture level that could only be resolved
through an adequate DSE involving a combined micro- and macro-architecture
exploration. In particular, it is demonstrated that neither the fully-serial nor
the fully-parallel micro-architectures are adequate to satisfy the ultra-high per-
formance requirements. To satisfy the ultra-high performance requirements, the
combined micro-/macro-architecture exploration is necessary which explores and
exploits various partially-parallel architecture combinations. Usually, pipelining
is employed to improve the clock speed and this way enhance the performance.
Surprisingly, it is not adequate in many cases. Specifically, for the architectures
exploiting massive parallelism at both architecture levels. It is not adequate
due to the excessively high cost and power penalty. Hence, pipelining should
be exploited in only some cases when it delivers substantial improvement on ac-
ceptable costs. This kind of tradeoffs are also discussed and highlighted in the
micro-/macro-architecture parallelism exploration experiments.

Moreover, two novel performance and power optimization approaches are pro-
posed based on the combined consideration of the micro-/macro-architecture level
parallelism. The proposed approaches are much better than the traditional macro-
architecture level power and performance optimization approach. With the pro-
posed approach the performance requirements are satisfied without overdimen-
sioning of the system, through taking into account the influence of parallelism
at both architecture levels on the overall system costs. Considering the macro-
architecture or micro-architecture independently under a performance constraint
may unnecessarily increase the system cost, because it is possible that the per-
formance might be marginally not met. Increasing the macro-architecture par-
allelism in this situation would be a costly decision. As the micro-architecture
design also influences both the performance and cost, but it does it with different
tradeoffs between the two aspects than at the macro-architecture level, this can be



7. CONCLUSIONS AND FUTURE WORK 197

resolved in a much better way when performing an adequate micro-architecture
enhancement. This may restrain the system from over-dimensioning, while meet-
ing the performance constraint with no or relatively lower increase in costs. This
way the costs would be adequately tuned to the performance, which is only pos-
sible through the joint micro-/macro-architecture parallelism consideration.

Through the combined micro-/macro-architecture parallelism exploration, the
proposed approach provides much better power optimization and power/area trade-
offs under a certain throughput constraint than the traditional approach, and ad-
ditionally with a very low area overhead. Unlike the traditional power (optimiza-
tion) reduction technique just by increasing the number of processors, the power/
area tradeoff optimization under a certain performance constraint can also be
achieved by exploiting processors with different micro-parallelism. In particu-
lar, one can consider processors with different micro-parallelism, while keeping
the macro-parallelism the same, but in general, various micro-/macro-parallelism
combinations should be explored for this aim. This way, substantially higher
power reduction can be obtained at a lower area cost than what offered by the
traditional parallelism/power tradeoff approach. Please observe that high macro-
parallelism is accompanied by a high increase in the static power, that for the
latest nano-meter technologies has a growing contribution compared to the dy-
namic power. This conclusion also supplements the current trends in the industry
of migrating from the homogeneous system architectures towards more and more
heterogeneous architectures to overcome the performance and energy crises.

Moreover, the combined micro-/macro-architecture exploration provides an
adequate balance between the various design objectives through the orchestrated
partial parallelism exploitation at both architecture levels. In particular, if area
is the main design objective then the serial micro-architectures combined with
adequate macro-architectures perform the best, provided the performance con-
straint is satisfied. However, if power consumption minimization is the design
objective, then the fully-parallel micro-architecture performs the best, provided
the performance constraint is meet. An adequate partial parallelism exploitation
at both architecture levels for a given application requirements delivers the best
tradeoff among all the design objectives.

One of the major challenges addressed in this thesis is the bandwidth and
scalability issues of the communication and memory architectures of the mas-
sively parallel hardware multi-processors that are necessary for the implementa-
tion of highly-demanding applications. For the massively parallel hardware multi-
processors, the traditionally used flat communication architectures and multi-port
memories do not scale well, and the memory and communication network influ-
ence on both the throughput and circuit area dominates the processors influence.
To resolve the problems and ensure scalability, we proposed to design highly op-
timized application-specific hierarchical and/or partitioned communication and
memory architectures through exploring and exploiting the regularity and hier-
archy of the actual data flows of a given application. The experimental results
demonstrate that the proposed method and its DSE framework are able to effi-
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ciently synthesize well scalable memory and communication architectures even for
the high-end multi-processors. The gains as high as 12-times in performance and
25-times in area can be obtained when using the hierarchical communication net-
works instead of the flat networks. However, for the high parallelism levels only
the partitioned approach ensures the scalability in performance. By the combined
use of all the partitioning techniques there is a performance gain for all the accel-
erator instances as high as 5-times on the cost of a very small area penalty of less
than 1% compared to the non-partitioned two-level hierarchical communication
network. The multi-stage/single-stage switch combination approach results in a
low performance penalty of less than 1% at most, while offering a significant area
savings as high as 4-times.

Altogether, the proposed quality-driven model-based design methodology and
its multi-objective and multi-dimensional design space exploration pave a novel
and adequate way to the design of hardware multi-processor accelerators for
highly-demanding applications. According to our knowledge, the so formulated
accelerator design problem and its proposed above solution are not yet consid-
ered in any of the previous works related to hardware accelerator design. The
research work reported in this thesis will provide adequate means for the design of
high-quality hardware accelerators for the next generations of highly-demanding
complex embedded applications. Many of the proposed concepts and techniques
of the combined micro-/macro-architecture exploration, scheduling, optimization
and tradeoff exploration, as well as, the memory and communication architec-
tures design strategies, can also be used directly or after some modifications for
the design, exploration and synthesis of application-specific programmable multi-
processor systems, as for instance MPSoCs based on ASIPs.

7.2 Future Work

In this thesis, a novel design methodology is presented for the hardware multi-
processor accelerators for highly-demanding applications. The experimental re-
sults show the adequacy of the design methodology, what opens some new research
directions and opportunities for the design of application-specific systems. Below,
some of the new promising research direction are briefly discussed, as well as, some
of the new issues and challenges that have to be addressed to forward with the
research on massively parallel multi-processor accelerators based on the proposed
novel architecture design methodology.

Applying the proposed Design Methodology to other Application Domains

The proposed design methodology is implemented, analyzed and evaluated for the
multi-processor accelerators design for the LDPC decoder applications. In a sim-
ilar way, it can be applied to many other highly-demanding applications fields,
e.g. different kinds of encoding/decoding in image processing and multimedia,
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medical image processing, 3D graphics, UHDTV, encryption applications, etc,
that require massively parallel hardware accelerators to satisfy their performance
demands. Application of the methodology to another domain only requires devel-
opment and characterization of domain-specific generic templates for this domain.

Evaluation of Run-time (Re-)configurable Hardware Accelerators

A part of the proposed design methodology is related to the run-time reconfig-
urable multi-processor accelerators. A design method was proposed for the run-
time reconfigurable hardware accelerators, but the actual implementation and
evaluation of this part of the method is not yet performed.

High-Level-Synthesis Tools Integration

Since the micro-architecture synthesis for hardware processors is one of the main
part of the proposed multi-processor accelerator design methodology, HLS tools
could be integrated into the architecture exploration and synthesis framework
for the micro-architecture synthesis of individual processing elements. However,
the proposed architecture design flow is based on the concept of scalable generic
micro-architectures. Therefore, the actual integration requires to extend the ex-
isting HLS methods and tools to support the design of scalable generic micro-
architectures.

Three-dimensional Technology for Massively Parallel Multi-processors

Three-dimensional (3D) stacking of chips not only offers a smaller physical pack-
age but also shortens wires in the stacked dies using through-silicon vias (TSVs),
which can allow higher performance. Therefore, the future 3D chip technology
may be beneficial to overcome the long interconnect delays of the massively par-
allel hardware multi-processors for highly-demanding applications involving hun-
dreds of processors and the related memory and communication structures. The
proposed methodology can be easily adopted for the 3D systems. To take the
full-benefit of the upcoming 3D technology an adequate architecture floorplan-
ning is mandatory to decide the processor, memory and communication stacks,
as well as, the processor, memory and communication elements placements on
each stack. The 3D technology seems to be one of the most promising technolo-
gies to address and realize complex communication structures among the proces-
sors and processors and/or processors and memories at the physical level of the
design for the applications involving complex information flows. For example,
for LDPC decoders the placement of the two kinds of processors, each type on
one stack, sandwiched by a pair of memory and communication stacks, can be
used as one floorplan proposal to overcome the long interconnects and associated
delays among the various processors and memories when realized in a 3D chip
technology.
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In the above, some directions are suggested for further investigation or ex-
ploration of the proposed design methodology, together with some of the upfront
known issues that have to be addressed in the architecture exploration and syn-
thesis of the massively parallel hardware multi-processors for the future highly-
demanding applications.
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The algorithms given below describe the tight (overlap) scheduling of the check
nodes (CN) and variable node (VN) computations for the LDPC decoding ap-
plication. The proposed algorithms are based on the idea of the permutation of
rows and columns of the parity check matrix (PCM) of a given LDPC code to
find an overlapped schedule of the check and variable node computations. These
algorithms permute the rows and columns of the given PCM in such a way as
to create the empty spaces (zero-entries) in the bottom-left and top-right corner
of the PCM. The zero-entries at the top-right corner of the permuted PCM for
the check nodes and at the bottom-left for the variable nodes means that all the
required data for a single or a set of check/variable nodes is available, and their
processing can be stared earlier than waiting for the remaining nodes of other type
to finish their execution. Table 1 shows the result of the row/column permutation
for the rate-1/2 672-bit IEEE 802.15.3c LDPC code, which create zero-entries at
the top-right and bottom-left of the PCM. The rows and columns can be per-
muted in different orders, i.e. first permuting the rows and then the columns or
vice versa. These different orders can result in different ratios of overlapping. The
algorithm 1 is the main algorithm that applies in different orders the algorithms
2 and 3 for rows and columns permutation of the parity check matrix. Algorithm
2 performs the rows permutation, while the algorithm 3 performs the columns
permutation. Algorithms 2 and 3 are illustrated in more detail in algorithms
4 and 5, respectively. Since practical LDPC codes consist of huge sparse parity
check matrices, therefore these algorithms are implemented in MATLAB (Release
R2010b) due to the efficient processing of matrix data structures in MATLAB.
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Algorithm 1: Tight scheduling Algorithm for LDPC Decoding
1: Input → H(r, v)
2: Output ← cnodeseq, vnodeseq , Overlap, Hp

3: Initialize cnodeseq = ∅, vnodeseq = ∅
4: Select processing rows first (RF) or columns first (CF)
5: if (RF ) then

6: compute RPM from H // see algorithm 2 for details
7: compute CPM from RPM // see algorithm 3 for details
8: assign CPM to HRF

9: end if

10: if (CF ) then

11: compute CPM from H // see algorithm 3 for details
12: compute RPM from CPM // see algorithm 2 for details
13: assign RPM to HCF

14: end if

15: computediag(HRF , Olap(H), Olap(V)) // zero entries for HRF diagonally from top right
(Olap(H)) and bottom left (Olap(V)) corner

16: Overlap(RF ) = Olap(H) + Olap(V )
17: computediag (HCF , Olap(H), Olap(V)) // zero entries for HCF diagonally from top right

(Olap(H)) and bottom left (Olap(V)) corner
18: Overlap(CF ) = Olap(H) + Olap(V )
19: if (Overlap(RF ) > Overlap(CF )) then

20: Overlap = Overlap(RF) // maximum value
21: Hp = HCF // Hp represents the permuted H(r,v) matrix
22: else

23: Overlap = Overlap(CF) // maximum value
24: Hp = HV F // Hp represents the permuted H(r,v) matrix
25: end if

Table 1: Blockstructured PCM of the rate1/2 672bit IEEE 802.15.3c LDPC code

with the reordered 32 macrocolumns and 16 macrorows for the overlap execution

of CNs and VNs. The waiting times are shown by the grey regions of the PCM, size

of each submatrix is 21x21, ‘’ represents zero matrices

30 32 4 6 11 16 29 31 20 3 5 10 27 13 28 26 15 17 19 1 7 12 18 25 21 2 8 9 14 22 23 24

1 7 - 5 18 3 - - - 5 - - - - 10 5 - - - - - - - - - - - - - - - - -

8 - 17 - - - - - - 9 18 0 10 - - - - 16 - - - - - - - - - - - - - - -

7 10 - 6 7 2 9 - - - - - - - - - - - - - - - - 20 - - - - - - - - -

2 - 19 - - - 0 - - - - - - - - - 10 - - - 0 16 6 7 - - - - - - - - -

13 - - - - - 10 - - - 5 18 3 5 - - - - - 5 - - - - - - - - - - - - -

3 - - - - - - 10 - - 6 7 2 19 - - - 9 20 - - - - - - - - - - - - - -

14 - - 0 16 6 - - - - - - - - - - - 0 7 - - - - - 10 - - - - - - - -

9 - 7 - - - - - - - - - - - - - 5 10 - - - - - 5 - 4 5 18 3 - - - -

10 19 - - - - - - - 7 0 16 6 - - 10 - - - - - - - - - - - - - 0 4 - -

12 - - 18 0 10 16 17 - - - - - 4 - - - - 9 - - - - - - - - - - - - - 12

6 - - - - - - 19 - - - - - - 0 - - - - 7 - - - - - - 0 16 6 - - - -

4 - - - - - - - 17 - - - - - - - - - - 9 - - - - 4 - 18 0 10 16 - - -

5 - - - - - - - 7 - - - - - - - - - 5 - 5 18 3 - - - - - - 10 - - -

16 - - - - - - - - - - - - - 16 4 - - - - 18 0 10 9 - - - - - - - - -

15 - - - - - - - - 20 - - - - - - 19 - - - - - - - - - 6 7 2 9 - - -

11 - - - - - - - 10 - - - - - 9 - - - - 20 6 7 2 - 19 - - - - - - 4 -



Appendix-A 203

Algorithm 2: Tight scheduling Algorithm for LDPC Decoding (PCM Row-
based Permutation)

1: Input → matrix(r, v)
2: Output ← cnodeseq, RPM

3: Initialize cnodeseq = ∅
4: for all i such that 1 ≤ i ≤ r do

5: compute LZrow // represents consecutive zeros to the most left of a row i of H/CPM
6: compute RZrow // represents consecutive zeros to the most right of a row i of H/CPM
7: Drow(i) := LZrow(i) − RZrow(i)
8: m := i− 1

9: for all m such that m ≥ 1 do

10: if (Drow(i) < Drow(m)) then

11: Insert i into cnodeseq before m
12: else if (Drow(i) = Drow(m)) then

13: insertrow(Insert i cnodeseq before/after m) // insertrow represent a function that
computes whether i should be inserted before or after m

14: else

15: Insert i into cnodeseq after m
16: go to step 4
17: end if

18: end for

19: end for

20: RPM = permute(matrix(r, v), cnodeseq) // permute the matrix(r, v) rows according to the
cnodeseq and passed to the main algorithm (1)

Algorithm 3: Tight scheduling Algorithm for LDPC Decoding (PCM Column-
based Permutation)

1: Input → matrix(r, v)
2: Output ← vnodeseq , CPM

3: Initialize vnodeseq = ∅
4: for all j such that 1 ≤ j ≤ v do

5: compute LZcol // represents consecutive zeros from the top of a column j of RPM/H
6: compute RZcol // represents consecutive zeros from the bottom of a column j of RPM/H
7: Dcol(j) := LZcol(j)− CZcol(j)
8: k := j − 1
9: for all k such that k ≥ 1 do

10: if (Dcol(j) < Dcol(k)) then

11: Insert j into vnodeseq before k
12: else if (Dcol(j) = Dcol(k)) then

13: insertcol(Insert j vnodeseq before/after k)
14: else

15: Insert j into vnodeseq after k
16: go to step 4
17: end if

18: end for

19: end for

20: CPM = permute(matrix(r, v), vnodeseq) // permute the matrix(r, v) columns according to
the vnodeseq and passed to the main algorithm (1)
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Algorithm 4: Tight scheduling Algorithm for LDPC Decoding (Details of Al-
gorithm 2)

1: Input → matrix(r, v)
2: Output ← cnodeseq, RPM

3: Initialize cnodeseq = ∅
4: for all i such that 1 ≤ i ≤ r do

5: compute LZrow // represents consecutive zeros to the most left of a row i

6: compute RZrow // represents consecutive zeros to the most right of a row i

7: Drow(i) := LZrow(i)− RZrow(i)
8: j := i− 1
9: for all j such that j ≥ 1 do

10: if (Drow(i) < Drow(j)) then

11: Insert i into cnodeseq before j
12: else if (Drow(i) = Drow(j)) then

13: if (Drow(i) < 0) then

14: if (LZrow(i) < LZrow(j)) then

15: Insert i into cnodeseq before/after j
16: else if (LZrow(i) = LZrow(j)) then

17: Insert i into cnodeseq before/after j
18: else

19: Insert i into cnodeseq before/after j
20: end if

21: else if (Drow(i) = 0) then

22: if (LZrow(i) < LZrow(j)) then

23: Insert i into cnodeseq before/after j
24: else if (LZrow(i) = LZrow(j)) then

25: Insert i into cnodeseq befor/after j
26: else

27: Insert i into cnodeseq before/after j
28: end if

29: else

30: if (LZrow(i) < LZrow(j)) then

31: Insert i into cnodeseq before/after j
32: else if (LZrow(i) = LZrow(j)) then

33: Insert i into cnodeseq before/after j
34: else

35: Insert i into cnodeseq before/after j
36: end if

37: end if

38: else

39: Insert i into cnodeseq after j
40: go to step 4
41: end if

42: end for

43: end for

44: RPM = permute(matrix(r,v), cnodeseq) // permute the matrix(r,v) rows according to the
cnodeseq
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Algorithm 5: Tight scheduling Algorithm for LDPC Decoding (Details of Al-
gorithm 3))

1: Input → matrix(r, v)
2: Output ← cnodeseq, vnodeseq

3: for all i such that 1 ≤ i ≤ n do

4: compute LZcol // represents consecutive zeros from the top of a column j

5: compute RZcol // represents consecutive zeros from the bottom of a column j

6: Dcol(j) := LZcol(j)− CZcol(j)
7: k := k − 1
8: for all k such that k ≥ 1 do

9: if (Dcol(j) < Dcol(k)) then

10: Insert j into vnodeseq before k
11: else if (Dcol(j) = Dcol(k)) then

12: if (Dcol(j) < 0) then

13: if (LZcol(j) < LZcol(j)) then

14: Insert j into vnodeseq before/after k
15: else if (LZcol(j) = LZcol(k)) then

16: Insert j into vnodeseq before/after k
17: else

18: Insert j into vnodeseq before/after k
19: end if

20: else if (Dcol(j) = 0) then

21: if (LZcol(j) < LZcol(k)) then

22: Insert j into vnodeseq before/after k
23: else if (LZcol(j) = LZcol(k)) then

24: Insert j into vnodeseq befor/after k
25: else

26: Insert j into vnodeseq before/after k
27: end if

28: else

29: if (LZcol(j) < LZcol(k)) then

30: Insert j into vnodeseq before/after k
31: else if (LZcol(j) = LZcol(k)) then

32: Insert j into vnodeseq before/after k
33: else

34: Insert j into vnodeseq before/after k
35: end if

36: end if

37: else

38: Insert j into vnodeseq after k
39: go to step 4
40: end if

41: end for

42: end for

43: CPM = permute(matrix(r,v), vnodeseq) // permute the matrix(r,v) rows according to the
vnodeseq
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Figure 1: Check Node ProcessorSchematic after Synthesis in Cadence RC Compiler
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Figure 2: Variable Node Processor Schematic after Synthesis in Cadence RC Com

piler
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Figure 3: Multistage Cyclic Shifter Schematic after Synthesis in Cadence RC Com

piler
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Figure 6: Multistage Permuter Schematic after Synthesis in Cadence RC Compiler
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Figure 7: 2Read and 2Write Port Register File Schematic after Synthesis in Ca

dence RC Compiler
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Figure 8: Sequencer/Controller Schematic after Synthesis in Cadence RC Compiler
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Figure 9: Functional Simulation of 8input 8output CNP in Cadence SimVision
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Table 2: Signals and their description related to the simulation waveform of the

CNP88328 block as given in Figure 9.

Signals Description

clk The clock signal controls the Check Node Processor (CNP)
timing behavior

reset The reset signal initializes the VNP

ctrl load enable Controls the loading of processed data from the temporary
registers to the output buffer

shenable Controls the shifting of the input sign data in the FIFO
inside the CNP

enable CNP processor global control

o min index[4:0] Index of the minimum value among all the inputs

sgn acc Signal represents the xor of all the signs of inputs

i0[7:0], i1[7:0], ..., i7[7:0] CNP processor data input ports each of 8-bit data width

o0[7:0], o1[7:0], ..., o7[7:0] CNP processor data output ports each of 8-bit data width
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Figure 10: Functional Simulation of 2input 2output VNP in Cadence SimVision
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Table 3: Signals and their description related to the simulation waveform of the

VNP2248 block as given in Figure 10.

Signals Description

clk The clock signal controls the Variable Node Processor
(VNP) timing behavior

reset The reset signal initializes the VNP

ch in ctrl Controls the channel input data to be processed by the VNP

ctrl load enable Controls the loading of processed data from the accumulator
to the output buffer inside the VNP

shenable Controls the shifting of the input data in the FIFO inside
the VNP

enable VNP processor global control

i0[7:0], i1[7:0] VNP processor data input ports each of 8-bit data width

ch in[7:0] VNP processor channel data input port of 8-bit data width

o0[7:0], o1[7:0] VNP processor data output ports each of 8-bit data width

ch out VNP processor output port that represents the value of the
decoded bit
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Figure 11: Functional Simulation of 4x4 MultiStage Permuter in Cadence SimVision



Appendix-B 221

Table 4: Signals and their description related to the simulation waveform of the

SingleStagePermuter4x4 block as given in Figure 11.

Signals Description

dwidth The parameter represents the size of the data

shift sel[7:0] Switch control bus to control the multiplexers with 2-bits
for each one of the 4-input multiplexer

in vec[31:0] Input Data bus comprised of 4 individual inputs each of
8-bit data width to form a 32-bit data bus

out vec[31:0] Output Data bus comprised of 4 individual outputs each of
8-bit data width to form a 32-bit data bus

switch size The parameter represents the size of the switch
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Figure 12: Functional Simulation of 4x4 MultiStage Permuter in Cadence SimVision
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Table 5: Signals and their description related to the simulation waveform of Multi

StagePermuter block as given in Figure 12.

Signals Description

shift sel[7:0] Switch control bus to control the multiplexers with 2-bits
for each one of the 4-input multiplexer

i0[7:0],...,i3[7:0] Individual data input ports of multi-stage switch each of
8-bit data width

o0[7:0],...,o3[7:0] Individual data output ports of multi-stage switch each of
8-bit data width

sel 00 Controls the first crossbar switch of the first level switches
of the multi-stage switch

sel 01 Controls the second crossbar switch of the first level switches
of the multi-stage switch

sel 10 Controls the first crossbar switch of the middle level switches
of the multi-stage switch

sel 11 Controls the second crossbar switch of the middle level
switches of the multi-stage switch

sel 20 Controls the first crossbar switch of the last level switches
of the multi-stage switch

sel 21 Controls the second crossbar switch of the last level switches
of the multi-stage switch
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Figure 13: Functional Simulation of Toplevel LDPC Decoder of a single frame in

Cadence SimVision
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Table 6: Signals and their description related to the simulation waveform of

TOP LDPC CMPT block as given in Figure 13.

Signals Description

clk The clock signal controls the decoder timing behavior

reset The reset signal initializes the decoder

ch data i0[167:0] Decoder input data bus that represents the received channel
data (code word)

ch data o0[20:0] Decoder output data bus that represents the decoded code
word

ascii[255:0] The parameter is the ASCII representation of the state reg-
ister of the FSM of the decoder (4-bit state register)

ctrl xxx mode The memory mode (read/write) control signals for different
memories

proc cnp xxx xxx All the signals represent the CNP processor control signals
as described for CNP waveform

proc vnp xxx xxx All the signals represent the VNP processor control signals
as described for VNP waveform

ov mc00 iv GS0[167:0] The data bus connects the outputs of the Mcv memories to
the inputs of global switch 0

ov GS0 iv cp00[167:0] The data bus connects the outputs of the global switch 0 to
the inputs of CNP processors cluster

ov cp00 iv GS1[167:0] The data bus connects the outputs of the CNP cluster to
the inputs of global switch 1

ov GS1 iv mv00[167:0] The data bus connects the outputs of the global switch 1 to
the inputs of Mvc memories

ov mv00 iv GS2[167:0] The data bus connects the outputs of the Mcv memories to
the inputs of global switch 2

ov GS3 iv mc00[167:0] The data bus connects the outputs of the global switch 3 to
the inputs of Mcv memories

ov LS iv xxx[167:0] The data bus connects the outputs of local switches to the
inputs of a processor cluster or global switch

ov xxx iv LS[167:0] The data bus connects the outputs of a processor cluster or
global switch to the inputs of local switches

ov mch0 iv vp0[167:0] The data bus connects the outputs of Mch memories to the
inputs VNP processor clusters

ov hd iv mhd0[20:0] The data bus connects the decoded outputs of VNP proces-
sor clusters to the inputs of MHD memories
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Figure 14: Functional Simulation of Toplevel LDPC Decoder of a single iteration of

a single frame in Cadence SimVision
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Figure 15: Snapshots of floorplan of an instance of LDPC decoder taken from

Cadence Encounter(R) RTLtoGDSII System 9.12
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Figure 16: Snapshots of placed and routed instance of an LDPC decoder taken from

Cadence Encounter(R) RTLtoGDSII System 9.12
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Glossary

Acronyms and abbreviations

APP Application analysis and parallelization

ASIC Application-specific integrated circuit

ASIP Application-specific instruction-set processor

BER Bit-error-rate

BFS Breadth-first-search

CN Check node

CNP Check node processor

DFS Depth-first-search

DSE Design space exploration

DSP Digital signal processing

EDA Electronic design automation

FER Frame-error-rate

FPGA Field-programmable gate array

Gbps Gigabits per second

GPGPU General purpose computation on graphics processing units

GPP General purpose processor

HLS High-level-synthesis
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LDPC Low density parity check codes

Mbps Megabits per second

MIMO Multi-input multi-output operations

MODM Multi-objective decision making

MPA Multi-processor accelerator

MPSoC Multi-processor system-on-chip

NOC Network-on-chip

PCM Parity check matrix

QoR Quality-of-results

RISC Reduced instruction set computing

RS Relaxed scheduling

RTL Register-transfer-level

SoC System-on-chip

SRAM Static random access memory

TS Tight scheduling

UHDTV Ultra-high-definition digital television

VN Variable node

VNP Variable node processor
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