
Quality-Driven Resource-Adaptive Data Stream Mining∗

Conny Junghans
Institute of Computer Science

Heidelberg University,
Germany

cj@uni-hd.de

Marcel Karnstedt
DERI - Digital Enterprise

Research Institute
National University of Ireland,

Galway

marcel.karnstedt@deri.org

Michael Gertz
Institute of Computer Science

Heidelberg University,
Germany

gertz@uni-hd.de

ABSTRACT
Data streams have become ubiquitous in recent years and
are handled on a variety of platforms, ranging from dedi-
cated high-end servers to battery-powered mobile sensors.
Data stream processing is therefore required to work under
virtually any dynamic resource constraints. Few approaches
exist for stream mining algorithms that are capable to adapt
to given constraints, and none of them reflects from the re-
source adaptation to the resulting output quality. In this
paper, we propose a general model to achieve resource and
quality awareness for stream mining algorithms in dynamic
setups. The general applicability is granted by classifying
influencing parameters and quality measures as components
of a multiobjective optimization problem. By the use of
CluStream as an example algorithm, we demonstrate the
practicability of the proposed model.

1. INTRODUCTION
A crucial challenge in data stream mining is to cope with the
effects of dynamics [1; 12; 18; 21]. Data stream management
systems (DSMS) [2; 16] run several continuous queries, each
containing various mining operators. With a changing set
of queries, the amount of resources assigned to each of them
has to be adjusted. Consequently, the amount of resources
for each operator contained in the queries should be adapted,
which is the approach that we assume in this work. Stream
mining algorithms running on a dedicated machine have to
cope with variable stream rates. The usually fixed available
resources should be utilized optimally to achieve mining re-
sults of highest possible quality in each situation. In wireless
sensor networks, where sensors usually have some memory
and processing capabilities, local resources are also fixed.
Additional constraints are posed by limited bandwidth and
battery lifetime of wireless devices.

Attempts to deal with this challenge led to the development
of so called resource-adaptive, or resource-aware, stream-
mining algorithms. Such algorithms are aware of the avail-
able resources and the dynamically changing variables, such
as the stream rate and the patterns discovered in the data
stream. Most work in this area has focused solely on min-
imizing resource utilization. A major problem is that the
effect of these techniques on the mining quality is often ig-

∗This work was partly funded by the Science Foundation
Ireland under grant no. SFI/08/CE/I1380 (LION-2).

nored, i.e., no user-defined quality constraints are consid-
ered and the quality of the mining results is often unknown.
Thus, they lack any indication how the adaptation affects
accuracy and reliability of the mining results. Further, most
existing approaches focus on decreasing the algorithm’s re-
source requirements. With a look at the mining quality, it
should be possible to also increase resource utilization when
sufficient resources exist.

Most stream-mining algorithms follow a three layer approach,
as illustrated by the shaded part in Figure 1. The on-
line mining component analyzes the incoming data stream,
which might be a filtered substream of the raw data stream
(obtained by, e.g., sampling or load shedding [6]). The re-
sults of the online mining component are stored in a sum-
mary data structure provided by the second layer, called
synopsis. Examples of synopses are sketches, windows, and
dedicated data structures like the pattern tree used in FP-
Stream [13] and the snapshot pyramid used in CluStream [1].
Finally, the offline mining component answers user queries
by accessing information stored in the synopsis. Thus, the
offline mining component is usually not constrained by the
one pass requirement as the online component is.

Data streamFilter

Online mining

Synopsis

Offline mining

Resource monitoring
+

Observation assessment

Parameter settings

Figure 1: Extended three-layer model

So far, most of the proposals for resource-adaptive stream
mining suggest a specialized solution for particular algo-
rithms, i.e., adding resource awareness to the online or syn-
opsis component in Figure 1. The field lacks a framework
for achieving resource adaptivity for general stream-mining
algorithms. In this work, we suggest such a framework,
which considers quality awareness as a crucial requirement.
The general principle is to identify and appropriately adapt
parameters of stream-mining algorithms that influence re-
source requirements and mining quality. This results in an
extension to the three-layer model as shown on the right
of Figure 1. The resource monitoring and observation as-
sessment component collects information about the current
system state. Based on this, it is decided whether param-
eters have to be adapted (cf. Section 7). The actual pa-

SIGKDD Explorations Volume 13, Issue 1 Page 72



rameter adaptation takes place in the parameter adaptation
component (cf. Sections 5 and 6). The new parameters are
set in the stream-mining algorithm and the stream analysis
continues until the adaptivity component is activated again.

Of course, in addition to the benefits of resource-adaptive
stream mining, automated parameter adaptation also en-
tails additional resource requirements. We believe that this
additional overhead is a very low price for the gained flexibil-
ity. In general, we assume that the additional resources are
available. Alternatively, special resources might be reserved
for this subtask, but an appropriate estimation might pose
a problem again. Especially in situations when the work-
load of the stream-mining algorithm is high, the overhead
imposed by triggering the resource adaptivity component
may sum up to a CPU cycle requirement that exceeds the
constraints. Throughout this work, we will point out spe-
cific issues in this context and briefly discuss methods to
overcome them.

The extended model is resource-aware and quality-driven,
meaning that we aim at maximizing the mining quality while
observing the given resource limits. To this end, the pro-
posed model is based on a multiobjective optimization prob-
lem with two conflicting objectives: (1) maximizing mining
quality, and (2) minimizing resource utilization. The result
of the optimization problem is a set of parameter values. We
present a way to solve this optimization problem at certain
points in time during the stream mining process and exem-
plarily demonstrate how to apply our model to the popular
stream mining algorithm CluStream [1].

The proposed model is designed to extend stream mining
algorithms that are not yet resource-adaptive as well as to
cover existing approaches for resource awareness. The con-
crete contributions of the presented work are:

1. We formalize the data stream mining process, all vari-
ables involved, and the aspects that influence an algo-
rithm’s resource requirements and mining quality.

2. We provide a comprehensive and generally applicable
model that captures all adaptation factors and their
interactions. The model is designed to determine pa-
rameter values that lead to best mining quality with
respect to given resource constraints.

3. We propose to solve the problem of finding parameter
values as a multiobjective optimization problem and
suggest one concrete approach for solving it.

The remainder of this paper is structured as follows. In Sec-
tion 2 we briefly present the CluStream algorithm, which
we use as a running example. Section 3 describes related
work on resource-aware stream mining. Section 4 summa-
rizes commonalities of stream-mining algorithms and dis-
cusses resource requirements and quality measures. In Sec-
tion 5, we present our model for resource-adaptive stream
mining and show that the optimal parameter settings can be
determined by solving a multiobjective optimization prob-
lem. We present an approach to solve such an optimiza-
tion problem in Section 6. Section 7 discusses two different
adaptivity schedules, answering the question when param-
eter adaptation should be conducted. Finally, we conclude
in Section 8 and highlight open issues.

2. RUNNING EXAMPLE
To demonstrate the application of our model, we use the
clustering algorithm CluStream [1] as a running example,

as it has been used previously to demonstrate resource-
adaptive extensions [10; 12]. CluStream is a well-known
and popular algorithm that we expect many readers to be
familiar with. In the following we present a brief summary
of the original algorithm. In previous work [9; 10], we also
present resource-adaptive extensions to algorithms for fre-
quent itemset mining and outlier detection in data streams,
using the model presented here.

The design of CluStream follows the 3-layer model intro-
duced in Section 1. In the online mining component, Clu-
Stream maintains q micro-clusters, which are updated as
new stream objects arrive. q is an input parameter and
should be significantly larger than the number of natural
clusters in the data, but also much smaller than the number
of data points arriving in the data stream [1]. During the
initialization phase, the initial q clusters are created using
a traditional clustering algorithm for static data sets, e.g.,
k-means, on the first points of the stream. After that, ex-
isting clusters are deleted or merged whenever a new cluster
needs to be added.

At certain points in time, snapshots of the current micro-
clusters are stored in a synopsis called pyramidal time frame
(PTF). In the offline mining component, users query the
PTF by requesting k clusters, k < q, in the past time horizon
h before current time tc. A k-means clustering algorithm is
used to determine these clusters based on the available snap-
shots. The PTF uses a tilted time window model. The i-th
level of the PTF contains the αl + 1 most recent snapshots
taken at clock times that are divisible by αi, α ∈ N, α ≥ 1.
As an example, if α = 2 and l = 2, then each level of the
PTF contains at most 22 + 1 = 5 snapshots.

The accuracy of the clustering depends on the order, i.e., the
level in the PTF, of snapshots available for the queried time
interval. The beginning of the queried time interval, i.e.,
tc − h, has to be approximated by the last stored snapshot
ts of any order before time tc − h. The accuracy of this
approximation is bound by the following inequality:

tc − ts ≤ (1 + 1/αl−1) · h

3. RELATED WORK
Resource adaptivity has been proposed in the context of
individual algorithms, e.g., in [10; 17; 18; 20], and as frame-
works that facilitate resource adaptivity in arbitrary stream-
mining algorithms [10; 12; 15] and in DSMSs [3; 4].

Individual resource-adaptive stream-mining algorithms have
been proposed by, e.g., Teng et al. [18] for frequent temporal
patterns, Lee and Lee [17] for frequent itemsets, Vlachos et
al. [20] for periodicity estimation, and Franke et al. [10] for
frequent itemsets and clustering. In these algorithms, the
techniques used to facilitate resource adaptivity are specific
to the proposed algorithm and cannot be directly applied to
other algorithms, i.e., there is no underlying generic model
for resource adaptivity. In addition, all but the algorithm
in [10] lack quality-awareness and therefore no estimation of
the result quality is provided. The emphasis is usually on
handling situations where resources are scarce, e.g., in [17;
20], and often only one resource, usually memory or CPU-
time, is considered. Only in [10] attention has been paid to
facilitate the utilization of excess resources.

Resource-adaptive operator scheduling in DSMSs has been
proposed by, e.g., Babcock et al. [3] and Berthold et al. [4].
In [3] a load-aware operator scheduling strategy is proposed.

SIGKDD Explorations Volume 13, Issue 1 Page 73



Using estimates for the selectivity and per-tuple processing
time of each operator, operators are scheduled such that
the amount of tuples that are present in the DSMS is de-
creased as fast as possible. The approach in [4] has similar
objectives as our research and focuses on meeting Quality of
Service (QoS) requirements for a given query plan. The au-
thors present a model that allows to calculate the resource
requirements of the operators in a fixed query plan and sub-
sequently parameterize the query plan such that QoS re-
quirements are met. However, the paper only considers sim-
ple operators like joins, aggregation, and grouping, and does
not include stream mining techniques.

General frameworks for resource-adaptive stream mining have
been proposed by Jain et al. [14], Karnstedt et al. [15], and
Gaber and Yu [12]. In [14] it is proposed to perceive re-
source management in stream processing as a filtering prob-
lem, and use Kalman Filters to reduce the amount of data
that need to be processed. In previous work [15], Karnst-
edt et al. proposed a preliminary version of the model for
quality-driven resource adaptive stream mining presented
in this paper. This model formalizes the techniques used
in [10] to create a generic framework that can be applied to
a variety of stream mining algorithms. However, the model
proposed in [15] does not yet consider parameter adaptation
as a multiobjective optimization problem. In [12] a model is
proposed that uses algorithm granularity (AG) settings to
adapt an algorithm’s resource consumption to the amount
of available resources. The AG model focuses on situations
where resources are scarce. AG has been classified into three
classes, which we will detail in Section 4.1, where we reuse
the notion of these three classes. The AG model is not
quality-aware. Also, AG does not take the correlations be-
tween variables in stream mining into account. The model
proposed in this paper therefore subsumes the model pro-
posed in [12]. The AG model in [12] was used to develop
a resource-adaptive clustering algorithm, RA-Cluster, which
is an extension of the CluStream algorithm. RA-Cluster uses
randomization to decrease the CPU-time demand. In con-
trast, our approach aims at adapting the existing variables,
thus influencing all resource requirements and enabling us
to not only alleviate critical situations where resources are
scarce, but also to utilize excess resources.

4. CHARACTERISTICS
In the following, we summarize characteristics of data stream-
mining algorithms. First, we discuss aspects that influence
the resource requirements of stream-mining algorithms in
Section 4.1. Then, we introduce quality measures that are
used to assess the quality of stream mining in Section 4.2.

4.1 Resource Requirements
In a data stream mining application several resources are
constrained and thus have to be carefully allocated. The
main resources are:

Main memory The synopsis and all intermediate results
must fit into main memory.

CPU cycles Stream processing must keep up with the pace
of the stream, otherwise uncontrolled data loss occurs
because stream elements cannot be buffered indefi-
nitely. Query answering requires CPU cycles as well.

Bandwidth Bandwidth is limited in wireless sensor net-
works, but also has to be considered in wired networks

when large amounts of data need to be transferred.

Battery power CPU utilization, memory access, and data
transfer consume battery power. Hence, these con-
sumers should be used prudently on mobile devices
like sensors.

We denote the set of all resources by R. If R ∈ R is a
constrained resource, there is an upper limit R� associated
with this resource. Similarly, a lower limit R⊥ may be as-
sociated with each resource R ∈ R. The sets of all upper
and lower limits on resources in R are denoted R� and R⊥

respectively. Accordingly, we use the notation R⊥� to refer
to all given constraints, i.e., both, upper and lower limits,
of R. While a lower limit R⊥ might appear uncommon,
we include it in our model to make it as flexible and gen-
eral as possible. For example, the frequent itemset mining
algorithm proposed in [17] uses a lower bound on the de-
sired memory usage. In general, it is not required that both
constraints R� and R⊥ are defined for each R ∈ R.

Three aspects A1, A2, and A3, which roughly correspond to
the three basic layers introduced in Figure 1, influence the
resource requirements of any data stream-mining algorithm.
They represent classes of “tuning knobs” for the resource
requirements of a stream-mining algorithm.

A1: Stream properties. Properties of the stream include
the stream rate and characteristics of its individual elements,
such as value range, distribution, and size. The effective rate
of a stream to process can be changed using methods like
sampling and load shedding [6]. This reduces the required
CPU resources and in some cases the memory requirements
(e.g., if a time-based sliding window is used). Filtering is
another method that can be used to change aspect A1, for
example, using outlier or burst detection methods. Filtering
may change the range and distribution of values, and thus
may impact the memory requirements of the synopsis.

A2: Input parameters. Most stream-mining algorithms
have input parameters that influence how well their out-
put approximates the actual mining result (cf. Section 4.2).
Consequently, these input parameters are one of the main as-
pects that determine the trade-off between resource require-
ments and output quality. A better approximation of the
mining result implies more runtime per stream element and
more main memory required to store the synopsis. Conse-
quently, changing the input parameters of the online compo-
nent directly influences its CPU and memory requirements.

The CluStream algorithm uses an input parameter q to set
the number of micro-clusters into which the data stream is
partitioned. A higher value of q results in higher memory
requirements, as each micro-cluster needs to be stored along
with its history. Likewise, q influences the CPU require-
ments, because for each new element of the data stream q
different micro-clusters have to be considered to find the
best matching one.

A3: Query parameters. User queries, particularly the query
parameters, and, in the case of continuous queries, the fre-
quency of result updates influence an algorithm’s resource
requirements as well. In particular, the offline mining com-
ponent is affected. The larger the part of the synopsis that
needs to be accessed, the more CPU cycles will be required.
If data mining is conducted directly on the sensors in a wire-
less network, the bandwidth requirements are also influenced

SIGKDD Explorations Volume 13, Issue 1 Page 74



QM Methodical quality QT Temporal quality
QMa Quality of approximation QTr Time retrospect
QMi Qualitiy of interestingness QTg Time granularity

QTc Reaction time

Table 1: Classes of quality measures

by the the size of the mining result (e.g., the number of
output clusters for CluStream) and the frequency of result
transmission. Adapting query parameters should only be
done if other resource adaptation methods are not sufficient
for meeting the given constraints, as it affects the usefulness
and interestingness of results to user queries significantly.

Note that the list of resources affected by the above aspects
is exemplary rather than exhaustive. Changes to any of
them usually influence more than one resource at the same
time and more than one quality measure (cf. Section 4.2).
For example, decreasing q in CluStream will speed up the
clustering algorithm and also decrease its memory require-
ments. As presented in Section 3, the three aspects were
previously identified as algorithm granularity settings [12].
However, this classification is not as general as our frame-
work. For example, algorithm processing granularity (APG)
only refers to adapting the CPU requirements, while the in-
fluence on memory consumption is not considered. Further,
the authors rely on randomization and approximation tech-
niques to adapt the APG and do not consider to adapt the
existing input parameters of the algorithm.

4.2 Quality Measures
The quality of stream mining describes how well the actual
mining results, i.e., results that could be achieved when un-
limited resources were available, are approximated. Aspects
A1 through A3, which were detailed in Section 4.1, impact
the resource requirements and the achieved quality. To as-
sess the mining quality, we use quality measures based on
the described parameters. In previous work [10] we identi-
fied different classes of quality measures, which are summa-
rized in Table 1. This classification is comprehensive, yet
extensible without restricting the proposed model.

The quality Q of stream mining can be classified into me-
thodical quality QM and temporal quality QT . The differ-
ent measures in QT are identical for all mining tasks, while
QM∗ represents classes of quality measures that are specific
to the data-mining task and algorithm. For further details,
we refer the reader to [10].

Similar to constraints on resources, upper and lower bounds
can be defined for all quality measures Q ∈ Q. Specifically,
for a quality measure Q ∈ Q, Q⊥ and Q� denote the min-
imum and maximum quality, respectively, that needs to be
achieved. The desired quality has a strong influence on the
amount of resources the stream-mining algorithm requires.
In general, the higher the quality should be, i.e., the better
the approximation, the more resources are required.

Sometimes, more than one quality measure is influenced at
the same time. In CluStream, different numbers k of out-
put clusters provide different levels of interestingness (i.e.,
different values for QMi) depending on the number of nat-
ural clusters. The value of k also influences QMa, as more
clusters represent a more fine-grained approximation of the
stream.

Example 4.1 Below we list all parameters of CluStream
and which class of quality measures they influence.

q influences QMa A higher number of micro-clusters ap-
proximates the stream elements more accurately.

α influences QTg The more frequently snapshots of the micro-
clusters are stored in the PTF, the better is the tem-
poral granularity at which they can be accessed.

l influences QTg The more snapshots are stored for each
level of the PTF, the higher is the temporal precision
when answering user queries. This is also related to
the effect of parameter α and is discussed in [1] in
more detail.

h influences QTg The queried time horizon h determines
the temporal granularity at which snapshots can be ac-
cessed, as older snapshots are stored at a coarser gran-
ularity.

k influences QMa and QMi See above.

We define two quality measures based on CluStream’s pa-
rameters:

Q1 = q/k and Q2 = αl

Q1 was already used to evaluate the clustering quality of the
original CluStream algorithm in [1]. The authors found that
high-quality clustering results can be achieved for a q/k ratio
of about 10. We select a second quality measure Q2 = αl be-
cause it represents the temporal quality in CluStream. As de-
scribed in Section 2, the number of snapshots that are stored
in each level of the PTF is limited to αl + 1, and the ap-
proximation of the queried time interval also depends on the
value of αl.

5. PARAMETER ADAPTATION
Given the characteristics of stream-mining algorithms intro-
duced in the previous section, the goal of a stream-mining
process can be stated as follows:

Mine the data stream continuously with the maximum possi-
ble quality, such that each quality measure Q ∈ Q is within
its constraints Q⊥�. Input parameters that determine the
quality are subject to dynamic resource constraints and have
to be chosen such that the requirements for each resource
R ∈ R are within its constraints R⊥�.
In this section, we present a framework to model and achieve
this goal. For this, we first introduce adaptation factors, i.e.,
parameters that are used to adapt the resource requirements
of an algorithm as well as the quality in Section 5.1. We then
define a set of functions to model the correlation of param-
eters, quality, resource requirements, and other variables in
the stream-mining process in Section 5.2. In Section 5.3,
we show that the goal stated above can be expressed as an
optimization problem and propose a solution to this prob-
lem. Then, in Section 5.4, we list requirements for algo-
rithms to be used within the proposed framework. Finally,
in Section 5.5, we outline how to apply our framework to a
frequent itemset mining algorithm that fulfills these require-
ments.

5.1 Adaptation Factors
As described in Section 4, a lot of variables, e.g., the stream
rate and input parameters of the mining algorithm, are
present in data-stream mining. Constraints R⊥, R�, Q⊥,
and Q� are also variables, as they are set by users or im-
posed by the stream-mining system (e.g., the maximum amount
of main memory mem� that can be used by an algorithm).

We categorize all variables into parameters P ∈ P and ob-
servations O ∈ O, with P ∩ O = ∅. Parameters P are vari-
ables that can be set dynamically, whereas observations O

SIGKDD Explorations Volume 13, Issue 1 Page 75



are variables that can only be observed. Some observations
can be influenced by changing parameter values. For exam-
ple, one cannot directly influence the stream rate of the raw
data stream (hence, it is an observation), but application of
sampling or load shedding will influence it.

Variables in data stream mining are not independent of each
other. In most cases, a change of one variable’s value causes
other variables to change as well. For example, if q ∈ P,
the number of micro-clusters in CluStream, is changed, the
number of required CPU cycles, main memory requirements,
and methodical quality QM change as well. Thus, parame-
ters are “tuning knobs” for the data stream-mining process,
as they influence resource requirements and quality. In our
model, some or all of the parameters in P are selected as
adaptation factors, i.e., parameters that are automatically
adjusted in order to adapt an algorithm’s resource require-
ments and the achieved quality. Parameters not chosen as
adaptation factors remain constant throughout the lifetime
of the stream-mining process. Thus, in the following we only
denote adaptation factors as parameters. Consequently, if
not all parameters in P are adaptation factors, the remain-
ing ones are in the set O of observations (i.e., they are not
automatically adjusted).

Example 5.1 For the CluStream algorithm, we chose two
adaptation factors q and l, i.e., P = {q, l}. Although α
is a parameter as well, it cannot be changed dynamically
during the stream analysis as most snapshots maintained in
the PTF would become invalid and much of the historical
information about data stream would be lost. Thus, α ∈ O.
In addition, parameters h and k remain constant as well,
as we do not want to adapt the query parameters. Note
that, however, the adaptation of query parameters may be
beneficial for other algorithms and is certainly supported by
our model.

As the PTF increases in size as time progresses, variable t,
the number of elapsed time units, is also an observation. In
summary, CluStream’s parameters and observations are as
follows:

P = {q, l} and O = {α, h, k, t}
5.2 Correlation Model
We published a preliminary version of the model presented
in this section in [15], which did not consider parameter
adaptation as a multiobjective optimization problem. At
any given time t, the system state of a stream mining al-
gorithm is defined as the values of all its parameters and
observations. To indicate values of variables at a specific
point in time, an index is added, e.g., mem�

t denotes the
maximum amount of available memory at time t.

For a given stream mining algorithm, a function ϕ can be
defined that, given the system state at time t, determines
the resource requirements for a resource R ∈ R at that time:

ϕ : Pt ×Ot → Rt

Function ϕ defines how to compute the resource require-
ments of an algorithm based on values for parameters P
and observations O. A separate function is defined for each
resource R ∈ R.

Example 5.2 The signature of ϕ for CluStream’s main mem-
ory requirements mem ∈ R is:

ϕ : {qt, lt} × {αt, t} → memt

0
100

200
300

400
500 1

2
3

4
5

6
7

8
9

10

5M

10M

15M

20M

mem

q
l

Figure 2: Main memory requirements of CluStream

CluStream’s memory requirements are composed of two parts,
the size of the PTF and the amount of memory consumed
by the current q micro-clusters. As we derived in [10], the
overall memory requirement is given by the following equa-
tion and is measured in floating-point numbers:

ϕ : mem(qt, lt, αt, t) = qt(2d + 1 + cLRU )

(qt(2d + 1) + 1) · (αlt
t + 1) · �logαt(t)	

In the above equation, cLRU is a constant and d is the (con-
stant) dimensionality of objects in the data stream.

Figure 2 depicts function ϕ for mem against parameters q
and l in million floating-point numbers (cLRU = 20, d =
2). The figure depicts the memory requirements for t =
1, 000, 000 and α = 2. For the sake of presentation, we limit
the values of q and l in Figure 2 (and also in subsequent
figures) to the intervals q ∈ [1, 500] and l ∈ [1, 10].

Using ϕ, optimal parameter values can be determined to
satisfy resource constraints. Observations O are either taken
from the current system state or represent predictions (see
Section 7). Similar to ϕ, we define a separate function ψ for
each quality measure Q ∈ Q based on the system state at
time t:

ψ : Pt ×Ot → Qt

Example 5.3 We defined two quality measures Q1 and Q2

for CluStream. The corresponding functions ψ are as fol-
lows:

ψ1 : Q1(qt, kt) = qt/kt

ψ2 : Q2(αt, lt) = αlt
t

As Q1 grows linearly with q, and Q2 grows exponentially
with l, each quality measure depends on one variable.

By evaluating ϕ and ψ using the same parameter and obser-
vation values, we obtain a mapping that assigns each set of
quality values to an amount of resources required to achieve
these values. Each of these possible combinations is called a
configuration: a tuple of values for observations, parameters,
qualities, and resource requirements.

Example 5.4 Figure 3 depicts the mapping of Q1 and Q2

(shown on a log-scale) to mem for CluStream. Each point
in Figure 3 corresponds to a configuration.

To keep track of previous values of observations and pa-
rameters, we introduce sets PT and OT , so called timelined
variable values. They are needed to compute the accumu-
lated quality of a user-queried time interval. Distinct time
intervals [ti, ti+i) can be defined during which variable val-
ues did not change. For each variable, the concatenation
of all time intervals represents the complete history of this

SIGKDD Explorations Volume 13, Issue 1 Page 76



0
5

10
15

20
25

q1 =
q

kmax

2345678910

q2 = αl
+ 1

5M

10M

15M

20M

mem

Figure 3: Mapping quality values for Q1 and Q2 to main
memory requirements of the CluStream algorithm.

variable’s values. For each parameter P ∈ P, timelined pa-
rameter values PT are defined as follows:

PT = {Pti |Pti was effective during time interval [ti, ti+i)}
PT contains the timelined variable values for all P ∈ P. Set
OT is defined analogously. PT and OT are input for func-
tion(s) ψ to compute timelined quality values QT . These
values are used to support time sensitivity in situations
where different quality values were effective during the queried
time interval. To determine the quality Q[ti,tj ] for a queried
time interval [ti, tj ], we define a function ξ for each quality
measure Q ∈ Q:

ξ : QT × ti × tj → Q[ti,tj ]

Example 5.5 Consider quality measure Q1 = q/k and a
user query for the clustering results of time interval [ti, tj ].
Within this time interval, several different values of q might
have been used in the online clustering, resulting in quality
values Q1,ti , Q1,ti+1 , etc. To determine the quality of the
mining result, function ξ is defined as the minimum of all
values of Q1,tk that have been effective:

ξ : Q1,[ti,tj ](Q1,T , ti, tj) = minQ1,tk
∈Q1,T :ti≤tk≤tj (Q1,tk )

Storing timelined variable values requires additional mem-
ory. The amount of memory required should be reduced by
merging variable values in the timeline as soon as a quality
measure is decreased at some point in time. In the Clu-
Stream example, as soon as l is decreased, snapshots on
each level are deleted so that only the αl + q most recent
ones are maintained. As the deleted snapshots can never
be recovered, the timeline for parameter l can be deleted
as well. Note that for special adaptivity schedules based on
forecasting resource consumption (cf. Section 7), the whole
timeline of parameter values might be required. However,
usually it is feasible to limit the number of previous variable
values that are stored, e.g., to the n most recent variable
values.

5.3 Optimization Problem
The above stated goal of a stream-mining process is an op-
timization problem, as the objective is to maximize quality
subject to resource and quality constraints. As mentioned,
constraints R⊥� and Q⊥� might not exist for all resources and
quality measures. However, we can assume that at least one
resource R ∈ R has an upper limit R�, since otherwise re-
source awareness would not be necessary. Thus, there are
multiple objectives, namely to keep resource requirements
below R� and to maximize all quality measures. Such an
optimization problem where several (conflicting) objective
functions exist, is called a multiobjective optimization prob-
lem, and has been discussed, e.g., by Ehrgott in [8]. The

Resource constraint

Quality constraints

Pareto-optimal

2

4

8

16

32

64

128

256

512

1024

0 5 10 15 20 25

Q
2

Q1

Figure 4: Possible configurations in the presence of resource
constraint mem� = 4M , or quality constraints Q�

1 = 10
and Q�

2 = 500.

optimization problem in our context contains one objective
function for each quality measure and each resource, defined
by functions ϕ and ψ. It can be decided for each R ∈ R and
Q ∈ Q independently if it should be maximized, minimized,
or if it should be constrained by upper or lower bounds. For
example, on sensor nodes battery usage should usually be
minimized. In contrast, memory consumption should just be
constrained, as there is no benefit from using less memory
than available.

Given a system state at time t, a solution to the multiobjec-
tive optimization problem yields an optimal configuration.
We discuss details of how to solve the multiobjective op-
timization problem in Section 6. The parameter values in
the optimal configuration are immediately used as the new
parameter values of the stream-mining algorithm (cf. Sec-
tion 7). Constraints limit the number of possible configu-
rations. Specifically, if one or more constraint for R⊥, R�,
Q⊥, and Q� is set, some configurations become invalid. Ad-
ditionally, constraints τ can be defined on one or more qual-
ity measures, resources, or a combination of both, to further
limit the set of possible configurations.

Example 5.6 For our running example, we choose to max-
imize Q1 and Q2 and to apply a constraint mem� = 4M ,
i.e., four million floating-point numbers. The resulting pos-
sible configurations are depicted in Figure 4 and are marked
by ′+′. In the figure, only quality measures Q1 and Q2 are
illustrated, as the respective parameter values for each con-
figuration can be obtained from function ψ. Note that Q2 is
again shown on a log-scale. Also note that, for clarity of pre-
sentation, not all possible configurations are shown, but only
those for which Q1 is an integer. For example, q = 50 yields
Q1 = 42/20 = 2.1, but only Q1 = 2 and Q1 = 3 are shown.
Figure 4 also depicts possible configurations (marked by an
’x’) when adding constraints Q� for both quality measures,
namely Q�

1 = 10 and Q�
2 = 500. Further, it may be bene-

ficial to balance both considered quality measures. This can
be achieved by adding a constraint τ , e.g., like the following:

τ : log2(Q2)/Q1 − 1 ≤ 0

Now that we introduced all components, we define the mul-
tiobjective optimization problem that needs to be solved in

SIGKDD Explorations Volume 13, Issue 1 Page 77



order to determine an optimal configuration as follows:

minimize ϕ, − ψ

subject to ϕ−R� ≤ 0

R⊥ − ϕ ≤ 0

ψ −Q� ≤ 0

Q⊥ − ψ ≤ 0

additional constraints τ

Note that objective functions ψ are maximized by minimiz-
ing −ψ. This is a common technique when formulating op-
timization problems.

5.4 Requirements for Algorithms
The proposed model can only be applied to stream-mining
algorithms that fulfill the requirements listed below.

Instantiate functions of correlation model In order to
apply our model for quality-driven resource adaptiv-
ity, functions ϕ, ψ, and ξ need to be devised for the
stream mining algorithm in question. The functions
can be derived either from an analysis of the algo-
rithm, as we did for CluStream, or from a set of test
runs. Obviously, the devised functions have to be de-
fined on compatible domains. An intuitive approach is
to define them on integer or real values, but soft string
values, such as “good” and “poor”, can also be chosen.

Query parameters In order to influence an algorithm’s
resource requirements for the offline mining compo-
nent, the algorithm needs to employ query parameters.

Locality of parameter effects It is desirable that the syn-
opsis is partitioned into temporally independent sec-
tions. This is important to ensure that different values
of parameters only have a “local” effect on the quality.

Example 5.7 To explain the concept of local effects of pa-
rameters, imagine that at some point in time the value of
q in CluStream is increased from q1 to q2. Snapshots taken
when q1 was effective contain exactly q1 micro-clusters, while
snapshots after the parameter adaptation contain q2 micro-
clusters. Thus, when a user-queried time interval only con-
tains snapshots taken after q2 became effective, then the
lower quality that resulted from parameter q1 does not af-
fect the result quality of this user query.

Consequently, it should also be possible to query each of the
independent sections in the synopsis separately. Otherwise,
the lowest quality ever used determines the quality of the
overall mining result. Another way to achieve locality is to
choose a synopsis where information expires after a certain
amount of time (e.g., like in certain window models). Note
that locality of parameter effects is not a strict requirement.
The proposed model can be applied in any case, but the
algorithm will not be able to recover from parameter settings
that cause low quality.

5.5 Application to Frequent Itemset Mining
To demonstrate the broad applicability of our model, we now
outline how it can be applied to another fundamental data
mining problem, the mining of frequent itemsets. A pop-
ular stream-mining algorithm for this problem is proposed
in [13]. The algorithm uses an FP-tree like data structure
called pattern tree as synopsis. A tilted time window table,

similar to CluStream’s PTF, is associated with each node
in the tree. In this table, the frequencies of the itemset in
different time intervals are stored during the online mining
phase. In the offline mining phase, an FP-growth algorithm
is run on this synopsis to extract frequent itemsets accord-
ing to the query parameters (class A3 cf. Section 4), such as
the queried time window. The algorithm from [13] applies
some approximations that are typical for frequent itemset
algorithms on data streams. First, the true support σe of
a mined itemset e is approximated using a user-defined pa-
rameter ε ∈ (0, 1), resulting in an approximate support σ̂e

for which the following inequality holds:

σe − ε ≤ σ̂e ≤ σe (1)

Therefore, ε represents an input parameter from class A2
(cf. Section 4) that influences the quality of approxima-
tion QMa. As the pattern tree holds only itemsets having
a support of at least ε, the value of this parameter directly
affects the number of nodes in the tree, and thus the re-
source requirements. The second aspect concerns the time
granularity for which frequent itemsets are determined. A
user-defined input parameter b determines the size of the
windows to process, and thus the time granularity QTg at
which mining results can be obtained. Note that this is sim-
ilar for algorithms using sliding windows, while the rather
seldomly used landmark windows are not well suited for our
model as the requirement for locality of parameter effects is
not fulfilled. Besides the above mentioned queried time win-
dow, the queried minimal support of an itemset represents
another query parameter from class A3, influencing QMi.

Consequently, ε and b act as adaptation factors for our
model. Both parameters influence the memory and CPU re-
quirements as well as the mining quality. In every iteration,
the algorithm processes a batch of b transactions and finds
itemsets having at least support ε. Only those are stored in
the pattern tree. Thus, the value of b affects the number of
entries in the tilted time window table, because for larger
batches entries are made less frequently. Additionally, item-
sets that appear as frequent only in smaller windows will
not be added with larger values of b.

Necessary observations in the context of frequent itemset
mining include various stream properties (class A1 cf. Sec-
tion 4), such as average length of transactions, total number
of items in the stream, and the distribution of the items in
the stream. Such properties can, for example, be inferred
from a sample of the stream. Note that inaccurate values
for these observations will not invalidate our model but only
lead to less accurate resource adaptation.

Having identified parameters and observations from the dif-
ferent classes, the remaining task is to define the functions
used in the correlation model. This is out of scope for this
paper. [10] provides a basis for this by presenting formulas
for memory consumption and output quality based on the
above discussed parameters.

Note that the frequent itemset stream mining algorithm
in [13], similar to many other such algorithms, provides qual-
ity guarantees, i.e., there are no false negatives and the true
support of itemsets in the result set is at most ε lower than
the reported frequency (cf. inequality 1). A remarkable ben-
efit of our model is that the resource-adaptive algorithm will
still provide guaranteed error bounds in the same way as
the original algorithm did. Our parameter adaptation will
vary the algorithm’s error bound, i.e., parameter ε, accord-

SIGKDD Explorations Volume 13, Issue 1 Page 78



ing to the available resources. However, by monitoring these
changes it will always be possible to compute the exact value
of the error bounds for the computed frequent itemsets.

6. FINDING OPTIMAL PARAMETERS
In this section, we describe an approach to find the solu-
tion for the introduced multiobjective optimization prob-
lem, which corresponds to finding the optimal configura-
tion. First, we discuss how to find possible configurations
in Section 6.1. In Section 6.2, we then use the notion of
Pareto-optimality to determine a set of optimal configura-
tions, where each configuration is optimal with respect to at
least one of the objectives. Finally, in Section 6.3, we discuss
how a single optimal configuration can be determined.

A good overview of methods to solve multiobjective opti-
mization problems, including benefits and drawbacks of each
method, is provided by Freitas in [11]. The work focuses on
the application of multiobjective optimization in data min-
ing. Other survey papers that present different methods are,
e.g., by Coello [7] and Lamont [19].

6.1 Finding Possible Configurations
Recall Example 5.6, where constraints Q� on the quality
measures of CluStream were set in order to limit the num-
ber of possible configurations. Setting constraints Q�

1 = 10
and Q�

2 = 500 results in about 1800 possible configurations
for the parameter settings of CluStream. However, the num-
ber of possible configurations is finite only because parame-
ters q and l are integers. Considering algorithms that have
real-valued parameters, there is an infinite number of possi-
ble configurations, and hence the search space is infinite as
well. In this case, parameter adaptation can be extremely
inefficient, if not impossible at all. We therefore propose to
associate a step size PΔ with each parameter P ∈ P that is
not an integer, to indicate the minimum increment or decre-
ment of this parameter. This limits the number of possi-
ble configurations and ensures that parameter adaptation is
only done when significant improvements can be achieved.
The step size PΔ should be chosen such that the tradeoff be-
tween the accuracy with which parameter P can be adapted
and the computational effort to find the optimal value of
P is acceptable. Naturally, a small step size results in a
high number of possible configurations from which the opti-
mal one will be chosen. But, the given resource and quality
constraints can be met more accurately if a high number of
possible configurations exist. Detailed considerations about
appropriate values for PΔ are not within the scope of this
paper.

As we will describe in Section 7, the resource adaptivity
component itself helps to limit the number of possible con-
figurations further. Specifically, an indicator helps to de-
termine the reason for activating the parameter adaptation,
i.e., if quality measures are not met, resources are underuti-
lized, or resource limits exceeded. This information helps to
limit the range of parameter values to consider.

Example 6.1 Assume that CluStream’s current parameter
values are q = 400 and l = 8. At some point in time, con-
straint mem� is increased, and thus a new optimal configu-
ration is needed. As function ϕ for CluStream is monoton-
ically increasing (cf. Figure 2), configurations with q < 400
and l < 8 are no candidates for the new optimal configura-
tion. Thus, possible configurations are limited to those where

either q > 400 or l > 8 (or both) is true. Of course, config-
urations having q < 400 and l < 8 are technically still in the
set of possible configurations. To formalize this limitation,
we add a constraint τ , which is valid only for the current
cycle of the resource adaptivity component, to prevent con-
figurations having q < 400 and l < 8 from being used during
this particular pass of parameter adaptation.

A naive approach to find the optimal configuration is to first
find all possible configurations and then choose one from this
set. This can be done by enumerating all possible parameter
values until the corresponding resource consumption exceeds
constraints R� or Q� and falls below R⊥ or Q⊥. This is
easy to do, because functions ϕ and ψ usually do not have
local maxima, but are monotonically increasing. However,
depending on the step size, domain of parameter values, and
the values of constraints R� or Q�, the number of possi-
ble configurations may be quite large and thus expensive to
compute. In the next subsections, we describe alternative
methods to find the optimal configuration.

6.2 A Skyline Approach
Many of the possible configurations do not need to be con-
sidered, as other configurations exist that dominate them.
A configuration c1 is not dominated by any other possi-
ble configuration c2 if c1 is better with respect to at least
one objective, e.g., c1 has lower resource requirements or a
higher value for at least one quality measure. Such non-
dominated configurations are called Pareto-optimal and are
contained in the Pareto front of all possible configurations.
In the database community, the Pareto front of a discrete
set is called a skyline [5]. For parameter adaptation, only
Pareto-optimal configurations need to be considered.

Example 6.2 Recall Example 5.6 and the associated Fig-
ure 4. For configurations marked by a ’+’, a resource con-
straint mem� = 4M was applied. Out of these configura-
tions, all Pareto-optimal configurations are highlighted by a
(red) circle in Figure 4. Each Pareto-optimal configuration
maximizes at least one of the quality measures while obey-
ing the resource constraint mem�. Note that for the other
example illustrated in Figure 4, where both quality measures
are constrained, only one configuration is Pareto-optimal,
i.e., the one where Q1 = 10 and W2 = 256.

Different algorithms exist to determine the Pareto front of
a multiobjective optimization problem. A survey of existing
methods was published in, e.g., [7; 19]. A popular approach
is to use evolutionary algorithms. In the context of our
model, the Pareto front can often be determined analyti-
cally. This is because functions ϕ and ψ are monotonically
increasing, and thus it is straightforward to narrow down
the parameter settings for an optimal configuration.

Example 6.3 Finding Pareto-optimal configurations for Clu-
Stream analytically is very efficient. Assume that at a given
point in time, observations are k = 20, α = 2, and t =
1, 000, 000 (again, d = 2 and cLRU = 20). We set a con-
straint mem� = 4M . Our goal is to find the Pareto-optimal
configurations for this setting, specifically parameter values
for q and l such that both quality measures Q1 and Q2 are
optimal with respect to the resource constraint mem�.
We observe that the number of possible values for param-
eter l is very limited, i.e., l = 30 already yields up to 1

SIGKDD Explorations Volume 13, Issue 1 Page 79



billion snapshots per level in the PTF, which (heuristically)
is sufficient in most cases. As there is only one Pareto-
optimal configuration for each value of l, the corresponding
value of q can be computed using a transpose of function
ϕ. Specifically, for each value of l ∈ [1, 30] we compute the
corresponding maximum value of q such that the resource
constraint mem� is obeyed. The Pareto-optimal value of
q, given a value of l as well as observations and constants
mentioned above, is computed as follows:

q =

⌊
4, 000, 000− log t− 2l · log t

30 log t + 5 · 2l · log t
⌋

6.3 Choosing the Optimal Configuration
Each of the configurations in the Pareto front is optimal with
respect to at least one objective. Different approaches can
be used to decide which of these configurations is actually
chosen. In this section, we discuss three such approaches.

Weights for all objectives One common approach is to
assign a weight to each objective and subsequently com-
bine all objectives in one objective function. The sum of
all weights usually equals one. The single objective function
that is created this way yields a unique solution, which can
be computed without determining the Pareto front of all
possible configurations. However, choosing the weights for
all objectives is hard, as pointed out by Freitas in [11]. We
therefore do not recommend to employ this approach unless
it is clear how to weight the objectives.

Least amount of unused resources If R� exists for at
least one resource, we can choose one configuration from the
Pareto front for which the resource requirements computed
using function ϕ are as close to R� as possible. That way,
the optimal configuration is chosen such that the amount of
unused resources is minimized. If constraints exist for more
than one resource, one could aim at minimizing the sum,
or the sum of squares, of unused resources. In case two or
more configurations are equally good in terms of resource
utilization, we either choose one at random or follow the
approach described below.

Fewest parameter changes A third approach to select
the optimal configuration is to choose the one that causes
the least parameter changes. That is, given the current pa-
rameter settings of the stream-mining algorithm, we select
the new configuration such that either as few as possible pa-
rameters change, or that the changes that have to be applied
to all parameters are as small as possible. Fewer changes to
parameters are beneficial for the overall runtime overhead
imposed by parameter adaptation. For example, in Clu-
Stream, decreasing the value of q from q1 to q2 means that
we have to merge q1 − q2 micro-clusters. The overhead de-
creases with a decreasing difference between q1 and q2.

The three approaches above are just examples of methods
to choose an optimal configuration. Of course, other ap-
proaches are conceivable. Typically, the decision how the
optimal configuration should be chosen depends in the spe-
cific application.

Generally, solving a multiobjective optimization problem
can become quite expensive. The runtime of the whole adap-
tation process is dominated by this. However, the properties
of the objective functions, such as their monotonicity, help
to implement efficient approaches. For the example of Clu-
Stream, we can find a solution with only few computations.

As properties of the objective functions may vary for differ-
ent stream-mining algorithms, it is not possible to provide
general rules for the cost associated with this step. As a gen-
eral guideline, objective functions with according properties
and approximating algorithms for solving the optimization
problem should be preferred.

7. TRIGGERING ADAPTATION
The initial parameter values are chosen based on initial ob-
servations, either based on observing the stream for a short
period in the beginning or by assuming values for each of
the observations. They have to be chosen such that the
initial resource requirements do not exceed the constraints
R�. Then, there are two aspects of the actual scheduling
of parameter adaptation: (1) decide whether to trigger the
component, and (2) decide when to evaluate that decision
again. For question (1), we use a function ρ. ρ is used to
decide whether parameters have to be adapted and further
acts as a guideline for the efficient solution of the optimiza-
tion problem. We suggest a simple encoding for ρ:

ρ(PT ,OT ,Q⊥�,R⊥�) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, if no adaptation is required

2, if resources too low

3, if quality too low

4, if resources too high

5, if quality too high

Value ρ = 2 indicates that either the resource requirements
are below R⊥ for at least one resource R ∈ R, or that at
least one R ∈ R is underutilized with respect to R�. The
same applies for 3 and the quality limits, and in analogy for
4 and 5. If quality and resource limits are affected, ρ returns
the product of the according values, e.g., 2 · 3 = 6 if both,
resources and quality, are too low. ρ makes use of functions
ϕ and ψ to compute resource utilization and quality values.

In all cases where ρ > 0, the optimization problem has to be
solved. If a solution cannot be found in the current state,
the failed parameter adaptation is signalized and reaction is
left to the system or user. In most cases this is due to R�

set too low or Q⊥ set too high, which can be indicated by
the adaptivity component. Consequently, the system or user
will likely react by adjusting resource or quality constraints,
or by terminating the stream-mining process.

When new parameter values are set in the stream mining
algorithm, some adjustments may have to be applied to the
synopsis. This is the case if at least one of the new parameter
values decreases the quality or resource requirements of the
stream-mining algorithm. Then, elements in the synopsis
need to be merged or pruned according to the algorithm’s
build-in routines. In CluStream, if the number q of micro-
clusters is decreased, micro-clusters need to be merged until
only q of them are left. The used routine is also frequently
used during regular stream processing. Due to their frequent
use, such merging and pruning techniques are designed to be
very efficient. Thus, adjusting the synopsis to the newly set
parameter values is done very efficiently as well. However,
it is still beneficial to keep the changes of parameters during
parameter adaptation to a minimum.

We assume that the underlying stream system activates the
resource adaptivity component as soon as the resource limits
change. However, exhausted limits may result in a system
failure. Thus, a crucial question is when to trigger the adap-
tivity component while the limits are stable. To prevent a

SIGKDD Explorations Volume 13, Issue 1 Page 80



violation of the limits, the adaptivity component should be
triggered preventively. One can choose to adapt parameters
more prudently, e.g., by setting the effective R� to 80% of
the amount of resources that are actually available. This de-
creases the quality that can be achieved. It is comparable to
the approach chosen in [10]. The authors use a filling factor
f that reflects the percentage of available resources already
consumed. If f is above or below certain thresholds, param-
eter adaptation is triggered. An alternative approach was
proposed in [12], which calculates the number of time steps
remaining until the resources are exhausted. When this is
predicted to happen before the adaptivity component will
be triggered again, it has to be triggered in the current time
step. This relates to the answer for question (2) from above,
which is focus of the following subsection.

7.1 Adaptation Schedules
When the adaptation component was triggered, it has to be
decided when it should be triggered again. There is a trade-
off between the overhead imposed by the additional compu-
tations and the benefits of frequently triggering the resource
adaptivity component (e.g., the ability to quickly react to
changing resource requirements). We propose two differ-
ent approaches. Both approaches cannot guarantee that the
adaptation will prevent the algorithm from failure due to
exhausted resources. Especially in scenarios with frequent
and drastic changes in the observations, appropriate and
timely predictions for the algorithm’s resource consumption
are hard to achieve.

In Situ Adaptivity. We call the first approach in situ adap-
tivity because it acts based on the situation at the current
point in time. The adaptivity component is activated every
δ time units. The value of the variable δ is fixed through-
out the stream mining process. It is therefore an additional
observation, i.e., δ ∈ O.

The advantage of this approach is that there is no need to
predict the future system state. Thus, it is a simple and
easily implemented method to achieve efficient resource uti-
lization in most scenarios. But, in situ adaptivity may not
be flexible enough to suitably react to changes in the ob-
servations. As it does not anticipate future observations,
it might fail to act appropriately in situations where there
are major changes in observations that result in greatly in-
creased or decreased resource requirements. It is therefore
best suited for scenarios where observations have fairly sta-
ble values. Using a filling factor as described above decreases
the risk that resources are exhausted due to unexpected
changes of observations, while preserving the simplicity and
convenience of the in situ adaptivity approach. Besides the
problem of possible failures before δ time steps have passed,
underutilized resources or violated quality constraints might
result in a sub-optimal analysis for up to δ time units.

For our running example, we use an in situ adaptivity sched-
ule to apply resource adaptivity to the CluStream algorithm.
Details about the used schedule as well as an appropriate
function ρ are described in Section 7.2.

Proactive Adaptivity. Alternatively, a prediction for fu-
ture resource requirements can be used to determine for how
long the current parameter values will be valid. The adap-
tivity component is activated after the predicted time span

has expired. We call this approach proactive adaptivity.

Timelined variable values can be used to predict observa-
tions and the parameter adaptation can be based on this
anticipated system state, rather than on the current sys-
tem state. That means, functions ϕ and ψ take predicted
observations Ot+� as input rather than Ot. In addition,
predicted observations can be used to decide about the va-
lidity time span of the current parameter values as described
above. The prediction of observations may reveal changes of
observations that necessitate parameter adaptation, which
is not possible with the in situ approach. Finally, the pre-
diction is used to compute the validity time span δ for the
new parameter values. Unlike in the in situ approach, the
value of δ is not constant. In the most straightforward case,
δ is set to δ = 
. A longer validity time span is possible
if the predicted trend of the observations indicates that all
constraints can be met for a longer time. Such a validity
time span can also be predicted in the in situ approach, but
this would be restricted to using only the current system
state. Because the value of the variable δ changes through-
out the stream mining process, it is treated as an additional
parameter, i.e., δ ∈ P.

Note that it is possible to make parameter values effective
in the future, i.e., t + γ. This can be achieved by setting
δ = γ and ρ = 0, thus omitting parameter adaptation at
the current time. New parameter values are computed at
time t + γ where the predictions are based on more recent
observations. Typically, γ < 
 holds, as observations are
predicted for time t + 
. If parameter adaptation is neces-
sary, the new parameter values need to be effective before
time t+
 in order to meet resource and quality constraints.

A proactive approach is more complex and generates more
runtime overhead than in situ adaptivity. It should therefore
only be used if observations exhibit fairly erratic changes,
which makes in situ adaptivity not appropriate. Proactive
adaptivity can benefit from observing such changes and ac-
cording patterns over time. The critical part is the actual
prediction of observations. If it is inaccurate, the algorithm
might crash in the worst case, because resources are ex-
hausted. Any technique for predicting observations has to
be a fairly lightweight process compared to the actual stream
mining algorithm. The complexity of the computation of the
anticipated system state depends on the employed method
as well as on the number of previous variable values taken
into account. A fairly lightweight but effective prediction
can be done using linear regression. More elaborate predic-
tion schemes may incorporate methods for periodicity esti-
mation or burst detection, which could be especially ben-
eficial to detect trends in the stream rate as it is one of
the most crucial observations. The proactive adaptivity ap-
proach promises to be especially useful with respect to the
additional overhead that the whole resource adaption im-
plies. This is because we may be able to predict when the
number of required CPU cycles will exceed the specified re-
source constraint, and thus appropriate parameter adapta-
tion can take place before the resource becomes exhausted.
Without such a prediction, the parameter adaptation my
have to take place during the time when CPU cycles are
already a scarce resource.

7.2 Adaptivity Schedule for CluStream
For our resource-adaptive version of CluStream, an in situ
adaptivity schedule is used. We omit the algorithm here, as

SIGKDD Explorations Volume 13, Issue 1 Page 81



it implements the function ρ introduced above in a straight-
forward manner. First, the current resource and quality
limits are compared to the limits that have been valid be-
fore. If they differ, according codes for ρ are returned. This
indicates that resource requirements or the mining quality
should be increased or decreased. After that, function ϕ is
used to decide if resources are currently under- or overuti-
lized, or will be in the next δ time units. This is done using
the current parameter values and a filling factor f , e.g., if
the resource requirements at time t+δ are less than f = 70%
of R�, then ρ = 2. The computation of ϕ for time t + δ is
possible, because the size of the PTF is monotonically in-
creasing with time. The computation based on t+ δ ensures
that all constraints will be met until the adaptivity compo-
nent is triggered again at time t + δ. It is not necessary
to check if the quality remains within its limits, as Q1 and
Q2 are constant for fixed parameter values, and thus quality
limits are obeyed.

8. CONCLUSION AND OUTLOOK
In this paper, we presented a model to apply quality-driven
resource adaptivity to stream-mining algorithms. First, we
identified quality measures as well as parameters and obser-
vations of stream-mining algorithms. We then presented a
correlation model that captures the correlations of parame-
ters, observations, resource requirements, and quality mea-
sures. This model is used to formalize the objective func-
tions of a multiobjective optimization problem, which is used
to determine parameter values that maximize quality mea-
sures with respect to given resource and quality constraints.
We presented the notion of Pareto-optimal solutions to the
optimization problem, where each solution refers to parame-
ter values that maximize at least one of the quality measures.
Furthermore, we also presented three different approaches to
determine a unique optimal solution. Finally, we discussed
two approaches for schedules to invoke the resource adaptiv-
ity component. We illustrated the feasibility of the model
on the basis of the CluStream algorithm.

Future work has do be done in applying the model to more
algorithms and evaluating them in real-world scenarios, where
the quality of the mining results can be constrained or judged
by a domain expert. Further focus has to be put on the spe-
cific sub-tasks of the model, such as alternatives for solving
the optimization problem, lightweight prediction approaches
for proactive adaptivity, and the actual resource overhead
of applying the model. Despite the fact that this introduces
another small overhead, we believe that such an approach is
mandatory to make stream mining meaningfully applicable
in current stream-based application domains with evergrow-
ing data volumes and system requirements.

9. REFERENCES

[1] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu.
A framework for clustering evolving data streams. In
VLDB, 2003.

[2] A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito,
R. Motwani, I. Nishizawa, U. Srivastava, D. Thomas,
R. Varma, and J. Widom. STREAM: The Stanford
Stream Data Manager. IEEE Data Engineering Bul-
letin, 26(1), 2003.

[3] B. Babcock, S. Babu, M. Datar, R. Motwani, and
D. Thomas. Operator scheduling in data stream sys-
tems. VLDB Journal, 13(4), 2004.

[4] H. Berthold, S. Schmidt, W. Lehner, and C.-J.
Hamann. Integrated resource management for data
stream systems. In SAC, 2005.

[5] S. Börzsönyi, D. Kossmann, and K. Stocker. The sky-
line operator. In ICDE’01, pages 421–432, 2001.

[6] Y. Chi, H. Wang, and P. S. Yu. Loadstar: load shedding
in data stream mining. In VLDB, 2005.

[7] C. A. C. Coello. A comprehensive survey of
evolutionary-based multiobjective optimization tech-
niques. Knowledge and Information Systems, 1, 1999.

[8] M. Ehrgott.Multicriteria Optimization. Springer Berlin
Heidelberg, 2005.

[9] C. Franke. Adaptivity in Data Stream Mining. PhD the-
sis, University of California at Davis, 2009.

[10] C. Franke, M. Hartung, M. Karnstedt, and K.-U. Sat-
tler. Quality-aware mining of data streams. In Interna-
tional Conference on Information Quality (ICIQ), 2005.

[11] A. A. Freitas. A critical review of multi-objective op-
timization in data mining: a position paper. SIGKDD
Explorations, 6(2), 2004.

[12] M. M. Gaber and P. S. Yu. A holistic approach for
resource-aware adaptive data stream mining. Journal
of New Generation Computing, 25(1), 2007.

[13] C. Giannella, J. Han, J. Pei, X. Yan, and P. S. Yu.
Mining frequent patterns in data streams at multiple
time granularities. Next Generation Data Mining, 2003.

[14] A. Jain, E. Y. Chang, and Y.-F. Wang. Adaptive
stream resource management using kalman filters. In
SIGMOD, 2004.

[15] M. Karnstedt, C. Franke, and M. M. Gaber. A model
for quality guaranteed resource-aware stream mining.
In 5th International Workshop on Knowledge Discovery
from Ubiquitous Data Streams, 2007.

[16] D. Klan, K. Hose, M. Karnstedt, and K. Sattler. Power-
Aware Data Analysis in Sensor Networks. In ICDE
Demonstrations Track, 2010.

[17] D. Lee and W. Lee. Finding maximal frequent itemsets
over online data streams adaptively. In ICDM, 2005.

[18] W.-G. Teng, M.-S. Chen, and P. S. Yu. Using wavelet-
based resource-aware mining to explore temporal and
support count granularities in data streams. In SDM,
2004.

[19] D. A. Van Veldhuizen and G. B. Lamont. Multiobjec-
tive evolutionary algorithms: Analyzing the state-of-
the-art. Evolutionary Computation, 8(2), 2000.

[20] M. Vlachos, D. S. Turaga, and P. S. Yu. Resource adap-
tive periodicity estimation of streaming data. In EDBT,
2006.

[21] P. S. Yu. Data stream mining and resource adaptive
computation. In International Conference on Database
Systems for Advanced Applications (DASFAA), 2005.

SIGKDD Explorations Volume 13, Issue 1 Page 82


