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The paper presents an analysis of the effects of lossy compression algorithms applied to images affected by geometrical distortion. It
will be shown that the encoding-decoding process results in a nonhomogeneous image degradation in the geometrically corrected
image, due to the different amount of information associated to each pixel. A distortion measure named quadtree distortion map
(QDM) able to quantify this aspect is proposed. Furthermore, QDM is exploited to achieve adaptive compression of geometrically
distorted pictures, in order to ensure a uniform quality on the final image. Tests are performed using JPEG and JPEG2000 coding
standards in order to quantitatively and qualitatively assess the performance of the proposed method.
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1. INTRODUCTION

Images acquired by optical sensors usually present some kind
of geometrical distortion due to the characteristics of lenses
and sensors adopted in the acquisition system, or to the phys-
ical structure of the object under inspection, such as in the
case of textures projected onto nonplanar surfaces [1]. In
specific applications, such effects may also become more sig-
nificant, due to the specific nature of the acquisition system.
This is the case, for instance, of acquisition systems used
in video surveillance or ambient intelligence applications,
where wide-angle lenses are commonly used to acquire large
areas with a single camera. In particular, fisheye lenses and
panoramic lenses using omnidirectional mirrors are adopted
to grab large portions of narrow indoor environments (a
room, a car inside, etc.) [2, 3, 4, 5, 6]. Another application
that strongly suffers from geometrical distortion is remote
sensing [3].

In the projection of the real-world scene onto the image
plane, the geometrical distortion acts as a nonlinear spatial

compression and expansion of the luminance function in the
pixel plane. This may cause problems in all the successive im-
age treatment stages, from low-level processing to the inter-
pretation of the scene, and can be partially solved by apply-
ing geometrical correction techniques based on sensor mod-
els and calibration processes. Unfortunately, the correction is
only seldom operated at the sensor level, while it usually takes
place at some remotely connected unit, where the application
software is run. The geometrical correction may then happen
to be carried out after the important processing steps have al-
ready been applied: in particular, compression and encoding
of images is often implemented onboard to attain a more ef-
ficient transmission.

Some proposals to exploit the knowledge about the ac-
quisition process to improve image processing have already
been made, with application to specific domains such as
medical teleradiology [7]. In [8], a generic and very simple
acquisition model is studied, where the acquisition sensor
is modelled through a modulation transfer function which
simply introduces blurring. Another related work on the
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Figure 1: Graphical representation of a fisheye distorted image: (a) before and (b) after de-warping.

topic can also be found in [9], where the features of a retina-
like sensor, associated with an omnidirectional mirror, are
exploited for imaging purposes.

In this framework, we aim at investigating the impact of
the geometrical distortion on image compression, and pro-
pose a new approach to improve the compression perfor-
mance when encoding is applied to the geometrically dis-
torted image. In our study, we will analyze both distorted im-
ages produced by real systems and synthetic images achieved
by warping algorithms that simulate common distortion ef-
fects (fisheye and mirrored lenses). For this reason, we will
use in the following the terms warping and distortion, as well
as the opposite terms de-warping and geometric correction,
referring to the same concepts.

The paper is organized as follows. In Section 2, the ef-
fects of nonlinear geometric distortions on co-decoded im-
ages are considered and the concept of quadtree distortion
map (QDM) is introduced. In Section 3, QDM is used to de-
sign an adaptive image compressor able to achieve a uniform
error distribution over the decompressed and de-warped im-
age. It is also shown how this approach can be applied to
the standard JPEG and JPEG2000 image compression algo-
rithms, while maintaining full compliance only in the latter
case. Finally, in Section 4, a selection of quantitative results is
provided to demonstrate the viability and effectiveness of the
proposed approach, and in Section 5, some conclusions are
drawn.

2. EVALUATION OF SPATIAL DISTORTION IMPACT
IN IMAGE COMPRESSION AND QUADTREE
DISTORTION MAP

The first goal of this work is to evaluate the impact deriving
from lossy co-decompression followed by geometric distor-
tion correction on the final image quality.

The underlying assumption is that the image is com-
pressed and decompressed before applying any geometrical
correction. This hypothesis is reasonable in many practical
systems due to several reasons, including necessity of ensur-
ing low complexity of the acquisition system, use of sensors
with embedded compression tools, frequent changes of op-
tical lens or environment preventing the use of an embed-
ded de-warping algorithm, and so forth. On the other hand,

compression is increasingly used in the early stage of the
acquisition, in particular for applications where the sensor
is remotely connected to the processing unit using narrow-
bandwidth channels (e.g., wireless cameras) or is attached to
a limited-capacity local storage device.

A spatial distortion in the acquisition system introduces a
nonuniform distribution of the visual information in the ac-
quired image. As a matter of fact, given two image areas with
equivalent frequency content in the undistorted domain, the
relevant areas in the acquired picture will show a higher
frequency content where spatial compression occurred, and
vice-versa. Conversely, the coding algorithm usually operates
in a homogeneous way over the whole image. To achieve ef-
fective data compression, it must neglect some information,
especially at the higher frequencies, and it has to produce an
information loss as uniform as possible over the whole im-
age, in order to avoid local peaks in the distortion.

Consequently, the error introduced by the encoder in an
image region will be proportional to the local spatial defor-
mation. Where spatial compression is present, the error will
affect a larger zone in the final corrected image and will be
more severe due to the presence of higher frequency contents.
On the other side, in areas with low information density, the
error will be attenuated by the averaging effect introduced
by geometrical correction algorithms. Figure 1 depicts an ex-
ample of this phenomenon related to the use of a fisheye lens,
where the above concepts can easily find clear evidence. It can
be observed that two areas of equal dimension in the undis-
torted (or corrected) domain, represented in dark and light
grey in Figure 1b, are associated, in the distorted domain, to
areas containing more or fewer samples according to their
spatial position and to the geometry of the acquisition sys-
tem.

In order to quantify this effect, the idea is to compare two
schemes (see Figure 2): in the former, labelled as “scheme
A,” the acquired image is compressed and transmitted after
the geometric correction; in the latter, “scheme B,” compres-
sion and transmission are performed prior to the geometric
correction of the image. The distortion is measured in any
case by comparing the final result (decompressed, de-warped
image) with the uncompressed, de-warped image, being the
real-world (undistorted) picture unavailable in real cases.

A commonly accepted metric to estimate the distortion
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Figure 2: The two alternative compression and transmission schemes considered in the estimation of the impact of geometrical distortion
on compression performance: (a) co-decoding is applied after geometrical correction, (b) vice-versa.

introduced by a processing system is the peak signal-to-noise
ratio (PSNR), which treats the distortion as a kind of noise
introduced on the original data, independently of its origin.
The noise power is estimated through the computation of the
mean square error (MSE), and the signal power is computed
on the basis of the maximum excursion of the luminance
function, namely,

PSNR(dB) = 10 log10

22b

MSE
, (1)

where b is the number of bits per pixel (bpp) in the origi-
nal image. Usually, PSNR is calculated on the whole image,
but we are interested mostly in local measures that can high-
light the nonhomogeneous distortion introduced by scheme
B as compared to scheme A. For the purpose of evaluating
the local distortion introduced by the process, we propose a
method, called QDM, which uses a quadtree decomposition
to generate a local map of the distortion effects. It will be
demonstrated that QDM can be useful to evaluate the per-
formance of compression schemes applied to geometrically
distorted images, as well as to design optimized compression
schemes able to improve the overall coding performance. It
is to be pointed out that the concept of QDM is independent
of the use of PSNR as a quality measure: QDM-based ap-
proaches can be implemented also using more sophisticated
perceptual error models at the price of an increased complex-
ity [10].

QDM is based on the application of the well-known
quadtree decomposition algorithm [5]. The quadtree seg-
mentation was demonstrated to efficiently represent simple
image partitions subject to rigid geometric constraints. In
our approach, the quadtree decomposition is applied to the
error image Ierr(x, y), defined as the absolute difference per-
formed on a pixel-by-pixel basis between the reference im-

age Iref (x, y) (i.e., the geometrically corrected uncompressed
image) and the output image (image after co-decompression
and de-warping, in either order) Idist(x, y):

∀(x, y), Ierr(x, y) =
∣

∣Iref (x, y)− Idist(x, y)
∣

∣. (2)

The aim is to obtain a map representing the spatial distri-
bution of the distortion, through local measurements of the
PSNR. The areas where PSNR is considered to be homoge-
neous are those identified by the leaves of the quadtree de-
composition. The QDM algorithm is a recursive process and
proceeds as follows.

(i) Compute the variance σ2 of the error image Ierr(x, y).

(ii) If σ2 is greater than a given threshold Σth:
then→ split the image into four subimages, halving its
size along x and y directions
else→ stop recursion.

(iii) Recursively apply steps (i) and (ii) to each subimage
until each block fulfils the variance condition defined
at point (ii) or reaches a minimum size ∆min.

The stop condition in point (iii) takes into account also a
minimum allowed dimension ∆min for each subimage, to
avoid excessive splitting: in our tests, we used ∆min = 8, cor-
responding to the typical block size used in coding standards.
Σth is set equal to α · σ2

A, where σ2
A is the variance of the error

image in Case A, and α is a parameter in the range 1÷ 2 tak-
ing into account the type of spatial distortion and the char-
acteristics of the compression algorithm. In more detail, the
choice of α is connected to the distortion introduced by the
acquisition device, which largely depends on the viewing an-
gle. For instance, the effect of fisheye lenses can be approx-
imated by a spherical transform, in which the distortion is
distributed over large image areas, while not reaching very
high values. In this case, a low value of α (e.g., 1.2 ÷ 1.5)



1902 EURASIP Journal on Applied Signal Processing

Table 1: QDM statistics for JPEG encoder without adaptation, CR = 10, 20.

CR = 10 CR = 20

PSNRA PSNRB σ2
A σ2

B α

No. of
generated
blocks

PSNRA PSNRB σ2
A σ2

B α

No. of
generated
blocks

Tiled baboon
polar transform

31.72 30.39 18.41 25.94 1.4 127 29.09 27.73 32.37 45.76 1.4 196

Blood
polar transform

33.56 30.60 12.61 29.61 1.4 208 27.17 23.78 62.10 129.16 1.4 184

Tiled baboon
spherical mirror

31.36 30.05 19.67 28.46 1.2 907 28.83 27.61 34.22 46.65 1.2 1483

Blood
spherical mirror

33.21 30.82 13.86 29.70 1.2 1333 29.89 27.34 30.20 66.41 1.2 1348

Tiled baboon
parabolic mirror

32.65 28.10 15.78 48.71 2.0 1396 29.78 26.01 28.75 72.74 2.0 1234

Blood
parabolic mirror

34.22 26.99 11.04 76.21 2.0 1786 30.80 24.68 23.82 122.23 2.0 1639

Table 2: QDM statistics for JPEG2000 encoder without adaptation, CR = 10, 20.

CR = 10 CR = 20

PSNRA PSNRB σ2
A σ2

B α

No. of
generated
blocks

PSNRA PSNRB σ2
A σ2

B α

No. of
generated
blocks

Tiled baboon
polar transform

29.73 27.19 38.32 61.84 1.6 172 27.05 24.50 62.90 103.47 1.6 169

Blood
polar transform

28.87 24.38 57.21 150.07 1.6 433 26.24 21.36 89.13 259.63 1.6 541

Tiled baboon
spherical mirror

29.36 26.74 38.04 69.36 1.5 730 27.47 24.47 53.13 104.35 1.5 1183

Blood
spherical mirror

28.51 25.08 60.95 136.11 1.5 967 26.46 22.57 86.10 207.95 1.5 1399

Tiled baboon
parabolic mirror

30.84 25.59 29.87 88.08 2.0 1330 27.05 24.50 62.90 103.47 1.6 169

Blood
parabolic mirror

30.22 22.98 42.33 207.23 2.0 1549 26.24 21.36 89.13 259.63 1.6 541

is required to achieve a precise QDM map. On the other
side, parabolic or conic projections typical of mirrored lenses
produce heavier distortions, thus requiring higher values of
α(1.6÷2) to focus on greatly distorted areas. Consequently, it
has been found that it is possible to heuristically set α a priori

on the basis of the type of geometrical distortion, indepen-
dently of the image content. Further considerations on the
setting of α are provided in Section 4 (Tables 1 and 2 and rel-
evant discussion), where the impact of the coding algorithm
is also considered.
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Figure 3: Example of application of QDM: (a) original, uncompressed and warped by polar transform, (b) compressed in warped domain,
(c) original, uncompressed de-warped, (d) output of scheme A, (e) output of scheme B, (f) result of split process scheme B, (g) QDM map
scheme B, (h) polar transform of QDM map scheme B. Note that when the split process is applied to scheme A (with the same parameters
used for scheme B), there is no split at all and the QDM map is a constant value image.

As a consequence of the above procedure, the areas are
split where the error is more fluctuant, thus achieving a sub-
division of the error image into areas with nearly constant
distortion. The result of the decomposition is a sparse ma-
trix that indicates the block subdivision of the error image
in blocks of various dimensions, associated to different error
values. In Figure 3, an example of QDM is shown with ap-
plication to the “blood” test image, 256 × 256, 8 bpp. Here,
the distortion introduced by the acquisition system is sim-
ulated by a polar coordinate transform in Figure 3a, which
reproduces the behaviour of a 360◦ mirrored lens. The er-
ror is computed between the reference image (uncompressed
de-warped) in Figure 3c and the outputs of schemes “A” and
“B,” in Figures 3d and 3e, respectively. A standard JPEG en-

coder with compression ratio (CR) = 10 was used in both
cases (the co-decoded images in warped and de-warped do-
mains are shown in Figures 3b and 3d, respectively), while
the parameter α was set to 1.4. The CR is defined as

CR =
Nb,o

Nb,c
, (3)

where Nb,o is the number of bits required for representing the
original image in the canonical form and Nb,c the number of
bits after compression.

Since the variance threshold Σth is higher than the er-
ror variance in scheme A, the relevant output image does
not produce any split. As far as scheme B is concerned, the



1904 EURASIP Journal on Applied Signal Processing

result of the splitting process is represented in Figure 3f.
In Figure 3g, called QDM map, each leaf of the relevant
quadtree is associated to a grey level proportional to the lo-
cal distortion (the higher the distortion, the darker the cor-
responding block). The QDM map of scheme B makes evi-
dent that the compression in the distorted domain generates
an uneven distribution of the error. To better appreciate this
fact, in Figure 3h the QDM map associated to scheme B is
transformed back in polar coordinates, that is, in the origi-
nal acquisition domain. The resulting map provides a con-
vincing confirmation of the above reasoning about the im-
plications of lossy compression applied to geometrically dis-
torted images. As a matter of fact, it can be observed that the
quality degradation progressively increases towards the im-
age centre, where the information density is higher (due to
spatial compression).

It is important to point out that in the compression of
natural images, the distribution of the error can fluctuate also
in the absence of geometrical distortions, due to the nonsta-
tionarity of the input image and the characteristics and pa-
rameters of the encoder. Nevertheless, this effect can be ne-
glected for two reasons.

First, the image content is the same for both scheme A
and B, thus allowing a comparative assessment. The under-
lying assumption is that the effects of nonstationary image
contents and geometrical distortions on the error distribu-
tion are uncorrelated and additive. This is not completely
true in general, due to the fact that a geometrical deforma-
tion can alter not only the magnitude but also the orienta-
tion of spatial frequencies (e.g., straight lines become curves
when acquired by a wide-angle lens). Therefore, due to the
different treatment of the spatial frequencies at the encoder,
the distortion can have some “second-order” effects on the
final result. Nevertheless, these phenomena are related more
to the perceptive quality of the decompressed image than to
its objective assessment, and therefore can be neglected in
QDM, which is simply based on absolute error estimation.

Second and more important, in practical applications
QDM is meant to be performed off-line, by presenting to
the system some predefined calibration images, designed to
match the application to which the acquisition system is tar-
geted. For instance, in a fixed camera surveillance system, the
calibration set could be obtained by selecting some shots ac-
quired in typical operating conditions, thus allowing to take
into account also the local image content. On the contrary,
to achieve a general purpose system, the calibration image
should have a frequency content as uniform as possible, to
ensure a uniform behaviour independently of the applica-
tion. According to this last model, in our tests we used images
containing statistical or structural textures, as in the case of
the blood image, or synthetic patterns obtained by patch rep-
etition.

A further consideration about system calibration con-
cerns the possibility of computing the distortion map a pri-
ori, simply based on the characteristics of the acquisition sys-
tem. For instance, it would be possible to determine the local
compression and expansion due to the geometrical deforma-
tion, and directly estimate the relevant impact on the com-

pression distortion. Unfortunately, this is not a trivial task,
since the deformation produces in general a resampling of
the picture over an irregular sampling grid, which in turn
generates very different spatial frequencies (both in magni-
tude and in orientation). Moreover, such spurious frequen-
cies can be treated differently by different compression tools,
thus having various impacts on the final quality. Therefore,
although a simple “pixel density map” would probably cope
with a local resampling over a regular grid, more complex
deformations would require sophisticated warping models,
as well as a specific customization whenever the acquisition
system and/or the compression tool is changed. On the con-
trary, the proposed method shows the advantage of a very
simple calibration procedure to be performed with a stan-
dard procedure.

3. ADAPTIVE COMPRESSION OF GEOMETRICALLY
DISTORTED IMAGES USING QDM

Previous sections demonstrated that the application of lossy
compression to a geometrically distorted image will produce
areas that are more heavily damaged with respect to others.
The observation of the QDM map well identifies the presence
and the extent of this problem. In this section, we explore the
possibility of exploiting the QDM to perform a nonuniform
compression of the distorted image, in order to compensate
this problem. This will be achieved by allocating the bits in a
more efficient way, thus providing both higher compression
efficiency and better quality of reconstruction. As a rule of
thumb, the aim is to allocate more bits to the areas that are
more sensitive to distortion, in order to represent them with
a quality comparable to other image regions.

The concept of optimal bit allocation is not new in it-
self. Several compression schemes, either based on DCT or
wavelet transforms, adopt bit allocation algorithms that aim
at optimizing the rate-distortion function or some objec-
tive or subjective local quality measures (see [11] and ref-
erences therein). Although these algorithms are able to take
advantage of the local characteristics of the image to be com-
pressed, none of them was explicitly designed to include ex-
ternal factors that may affect the importance of some bits
with respect to others. In the problem under considera-
tion, we determine the influence of geometric distortions
on the coded image and use this information to achieve a
geometric-distortion-driven bit allocation. It is to be pointed
out that such a scheme may be integrated with different rate-
distortion optimization strategies, provided that the QDM
parameters are taken into account as additional input for the
bit allocation process. QDM determines in fact a map that
allows data prioritization to be usable in combination with
other techniques. In this sense, an important advantage of
QDM-based compression is the possibility to comply with
different standard compression algorithms with region of in-
terest (RoI) support for implementing geometric distortion
compensated compression.

A conceptual architecture of the proposed approach is
presented in Figure 4 (scheme “C”). Referring to a such
scheme, the core methodology is in the RoI-based compres-
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Figure 4: Conceptual scheme of the proposed approach.

sion block, which is responsible for the adaptive allocation of
the bits to different image areas. The adaptation process is
driven by the computation of the QDM map, which is per-
formed off-line using a suitable image or set of images to cali-
brate the system. In the following subsections, we will present
two different approaches, in which the scheme “C” is inserted
within JPEG and JPEG2000 standard codecs, respectively. Is
it to be pointed out that only in the case of JPEG2000 is it
possible to ensure full compliance, while JPEG requires the
use of additional information not included in the standard
syntax.

3.1. Adaptive compression using a JPEG-like
scheme and QDM

As a first trial of the above concepts, the adaptive scheme “C”
was applied to a JPEG compression algorithm [4]. In JPEG
compression, the image is divided into 8 × 8 blocks, each
block is DCT-transformed, and the relevant coefficients are
quantized according to a predefined matrix, scanned in zig-
zag order, associated to opportune codewords, and entropy
coded. The key operation to achieve effective compression is
the coefficient quantization, which is also responsible for the
distortion of the reconstructed image.

The degree of compression and the relevant quality are
tuned by a single parameter Q, which determines the quan-
tization step. In standard JPEG, the value of the parameter Q
is kept constant across the whole image, making impossible
a spatial adaptation of the coding scheme. In our analysis, we
modified this aspect by considering the possibility of chang-
ing the parameter Q in different image areas. This generates a
noncompliant compression tool, which was studied only for
the purpose of analysis and comparison.

We suggest using different values of Q that can be alterna-
tively selected in the encoding of each block. By selecting the
appropriate factor, it is possible to assign more bits to blocks
in the areas more sensitive to the coding error by modulating

the quantization step used for the relevant coefficients. The
choice is performed on a block-by-block basis taking into ac-
count the QDM map. For the sake of simplicity, in our tests
we considered a binary classification of the image blocks as-
sociated to two quantization parameters, the lower of which
is associated to a region of interest. In this case, the infor-
mation necessary to the decoder to appropriately set the Q
factor in the de-quantization process can be transmitted as
an additional bit per block, as a map for the whole image, or
should be directly reconstructed at the receiver without any
additional overhead, provided that the QDM map is available
at the decoder. The overhead deriving from the first solutions
is fixed to 0.015 bit per pel (1 bit for each 8× 8 block), while
being much lower in the second approach, which allows one
to exploit the spatial correlation of the QDM and/or efficient
quadtree encoding techniques (see [12] for an example). In
either cases, the overhead is low enough to be considered
negligible.

3.2. Adaptive compression using JPEG2000 and QDM

Far more interesting is the use of QDM as a tool to automat-
ically define an RoI in the framework of the JPEG2000 still
picture coding standard [13]. In fact, although JPEG2000 de-
fines the format and profiles of the compressed bitstream, it
leaves higher freedom on the parameter setting, and includes
a specific syntax to set an RoI within an image, to which a
higher priority and quality can be assigned. A further advan-
tage of JPEG2000 is that the compressed image can be trun-
cated at any point and still be correctly decoded. If the RoI
mechanism is used, the information related to the specified
area will get a higher priority in the bitstream and will be
preserved in the case of transport problems. This character-
istic can be used in conjunction with transmission protocols
such as JPIP [14, 15] to allow progressive transmission and
decoding of the image.

In JPEG2000, the subband information is divided into
several code blocks. The bit allocation associated to each of
these code blocks is determined by a rate-distortion opti-
mization process. In the case of SNR scalable coding, dif-
ferent “quality” layers are created to accommodate different
rates. The different rate-distortion pairs are defined by an al-
gorithm, the postcompression rate-distortion (PCRD), ap-
plied after the compression of the image, and have the prop-
erty of satisfying the optimal rate-distortion curve. Bitstream
truncation at rates in between those indicated leads to a sub-
optimal solution, whose precision depends on the number of
quality layers.

There are two different mechanisms in JPEG2000 for im-
plementing RoI encoding: the max-shift method and the
“implicit” RoI encoding. In implicit RoI encoding, the en-
coder uses RoI information for modulating the distortion
cost function that drives the PCRD algorithm responsible
for the code-block bit allocation. A detailed description of
the implicit RoI encoding is given in [16]. The implicit
RoI encoding was chosen for implementing the nonuniform
compression with QDM since it allows a smooth transition
among regions.
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Figure 5: QDM maps of a test image: (a) original achieved by patch
repetition of baboon image; (b) QDM map for semispherical mir-
ror; (c) parabolic mirror.

According to scheme “C,” the RoI is determined from
the analysis of the QDM map and is directly implemented
within the standard, thus ensuring full compliance. Future
investigations will address the possibility of defining scalabil-
ity at a finer granularity, for example, directly adapting the
distortion cost function with the information derived from
the QDM. With this approach, it is possible to fully to take
advantage of information gathered with the QDM algorithm
instead of using a binary mask for RoI definition.

4. EXPERIMENTAL RESULTS

4.1. Quality measurement

QDM was applied to images distorted by different geometric
transforms. A basic rectangular-to-polar coordinate trans-
form was initially used to assess the sensitivity of the QDM
measure [17]. To create the QDM map for polar distortion,
a test set was built containing images with almost uniform
frequency content (see blood image, Figure 4), as well as im-
ages artificially generated by tiling a patch taken from a nat-
ural image. Additionally, tests were performed on distortions
derived from panoramic mirrors, typical of omnidirectional
vision systems. In Figure 5, the QDM maps are shown, rel-
evant to semispherical mirror and parabolic mirror trans-
forms (Figures 5b and 5c, respectively) of image in Figure 5a
(patch replication of the image baboon).

As far as the compression is concerned, both JPEG and
JPEG2000 profiles at medium to high compression ratios
are used. In Tables 1 and 2, the measures of total PSNRA,B

and σ2
A,B are reported for JPEG and JPEG2000 compression,

respectively, at two different CRs (10 and 20, respectively).
It is to be observed that scheme A always performs better
than scheme B, from the viewpoint of both objective qual-
ity and homogeneous distribution of the distortion (lower
error variance). The tables include also the values assigned to
the α parameter and the relevant number of generated leaves
in the quadtree. From the analysis of these data, it is possible
to note that acquisition systems associated to a higher dis-
tortion (e.g., the parabolic mirror) generate a more complex
quadtree even for higher values of Σth, thus being associated
to higher values of α.

4.2. Nonuniform compression using JPEG

In this case, we based our considerations on a modified JPEG
compression scheme. In particular, a rectangular QDM-
based RoI is identified that encompasses the image area
affected by higher geometrical deformation. For instance,
Figure 6 refers to a polar transformation of the blood image.
The area containing the higher QDM values is bounded by a
white rectangle in the original image domain (Figure 6a) and
in the QDM map (Figure 6b). During compression, a higher
amount of bits is allocated to the blocks falling within the
RoI. This configuration is labelled in the results as case “C.”
In the chart of Figure 7, quality measurements related to this
test are reported and compared. In our tests, the quality pa-
rameters used to encode the background and the RoI were
set to Q and Q + 10, respectively.

4.3. Nonuniform compression using JPEG2000

Finally, we used the QDM to derive a mask for RoI encod-
ing using the JPEG2000 architecture. The images are com-
pressed in a progressive lossy to lossless JPEG2000 code-
stream using the Kakadu JPEG2000 codec software [18], with
the lower layer encoded with a CR equal to 400. In the QDM
compression scheme, an implicit ROI is implemented us-
ing a mask image derived from the QDM map as an in-
put to the JPEG2000 encoder. A reversible compression with
a progressive lossy to lossless code-stream having 3 layers
is applied to the image. The parameter R-weight, that con-
trols transition from background to foreground, is set to 4,
and the parameter R-level is set to 3. Different compres-
sion rates can be achieved decoding only the initial portion
of the code-stream, corresponding to the overall desired bit
rate.

The plot in Figure 8 summarizes the results achieved
in terms of PSNR, which underlines the advantages of the
QDM-driven encoder (scheme “C”). Visual results are pre-
sented in Figures 9 and 10 for an average compression value
(CR = 20).

Finally, some examples of off-line image system calibra-
tion are provided in Figures 11 and 12. Figure 11 reports
the result obtained by compressing a frame of the mobile
and calendar images sequence using a QDM map generated
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(a) (b)

Figure 6: Identification of an RoI from the QDM of a distorted image: (a) image blood distorted by a polar transform; (b) the relevant QDM
map and RoI (in white).
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Figure 7: Comparison between compression schemes “A,” “B,” and
“C,” at increasing CR (blood image, polar transform, JPEG-like en-
coder).

off-line using a calibration pattern (the tiled baboon in
Figure 10a). In Figure 12a, a synthetic scene created with the

ray tracing software PovRay (Persistence of Vision Raytracer,
http://www.povray.org) was used to simulate an omnidirec-

tional vision system based on a spherical mirror. A previ-

ously generated QDM map using a calibration image was
used for compression. Comparing the images generated in

Case B (Figures 12b and 12c) and in Case C (Figures 12d

and 12e), it is possible to appreciate the perceptual qual-

ity improvement introduced by the QDM compression al-
gorithm.
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Figure 8: Comparison between compression schemes “A,” “B,” and
“C,” at increasing CR (blood image, polar transform, JPEG2000 en-
coder).

5. CONCLUSIONS AND FUTURE WORK

A novel method called quadtree distortion map (QDM) for
the measurement of the compression error due to geometri-
cal image distortion is presented. QDM provides a useful tool
to quantitatively assess the effects of spatial deformations in
image coding. Furthermore, it can be used to design adaptive
nonuniform compression schemes based on standard encod-
ing techniques such as JPEG and JPEG2000.

Experimental results underline that the proposed metric
is effective in defining the regions of distorted images that
are more sensitive to loss of information introduced by com-

http://www.povray.org
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(a) (b)

(c) (d)

Figure 9: Performance comparison of schemes “A,” “B”, and “C” on blood image at CR = 20: (a) reference image; (b) JPEG2000 compression
after geometric transform (scheme “A”); (c) JPEG2000 compression before geometric transform (scheme “B”); (d) JPEG2000 QDM-driven
nonuniform compression before geometric transform (scheme “C”).

(a) (b) (c)

Figure 10: Performance comparison of schemes “B” and “C” on tiled baboon image at CR = 20: (a) reference image; (b) JPEG2000
compression before geometric transform (scheme “B”); (c) JPEG2000 QDM-driven nonuniform compression before geometric transform
(scheme “C”).

pression and thus it provides a useful support for encoder
optimization in presence of visual distortions.

Further research will allow extending the model to other

distortions and will test the proposed scheme in the frame-
work of video coding, where estimation of the distortion
should be supported by temporal redundancy of the source.



Nonuniform Compression of Geometrically Distorted Images 1909

(a) (b) (c)

Figure 11: Performance comparison of schemes “B” and “C” on a frame of mobile and calendar sequence (details) at CR = 20, using off-line
QDM calibration: (a) reference image; (b) JPEG2000 compression before geometric transform (scheme “B”); (c) JPEG2000 QDM-driven
nonuniform compression before geometric transform (scheme “C”).

(a)

(b) (c)

(d) (e)

Figure 12: Performance comparison of schemes “B” and “C” on a synthetic image generated by PovRay at CR = 20, using off-line QDM cal-
ibration: (a) original; (b) JPEG2000 compression before geometric transform (scheme “B”); (c) details; (d) JPEG2000 QDM-driven nonuni-
form compression before geometric transform (scheme “C”); (e) details.
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