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Abstract

Image degradations can affect the different processing
steps of iris recognition systems. With several quality fac-
tors proposed for iris images, its specific effect in the seg-
mentation accuracy is often obviated, with most of the ef-
forts focused on its impact in the recognition accuracy. Ac-
cordingly, we evaluate the impact of 8 quality measures in
the performance of iris segmentation. We use a database
acquired with a close-up iris sensor and built-in quality
checking process. Despite the latter, we report differences
in behavior, with some measures clearly predicting the seg-
mentation performance, while others giving inconclusive
results. Recognition experiments with two matchers also
show that segmentation and matching performance are not
necessarily affected by the same factors. The resilience of
one matcher to segmentation inaccuracies also suggest that
segmentation errors due to low image quality are not neces-
sarily revealed by the matcher, pointing out the importance
of separate evaluation of the segmentation accuracy.

1. Introduction

Iris is rapidly gaining acceptance and support as a viable
biometric [17]. In this context, iris image quality assess-
ment is an important trend in the field [17, 12, 5]. Sev-
eral quality factors can degrade iris images [12]. However,
evaluation in the segmentation performance is quite limited
[21], with most of the works focused on its impact in the
recognition accuracy [12, 17]. Here, we evaluate the impact
of 8 quality measures in the performance of iris segmen-
tation. All measures are computed locally (across the iris
boundaries) and some of them also globally (in the whole
image). We use a segmentation algorithm based on the Gen-
eralized Structure Tensor (GST) [1] and the BioSec baseline
database (3,200 iris images from 200 contributors in 2 ses-
sions) [8]. Reported results show that in general, local mea-
sures are better predictors of the segmentation performance.
Different behavior among measures is also observed, with
some giving very good discriminative capabilities.

We also evaluate the impact of quality components in

the performance of two iris matchers based on Log-Gabor
wavelets [16] and SIFT keypoints [3]. The matchers are also
observed to be sensitive to quality variations, but not nec-
essarily in the same way than the segmentation algorithm.
For instance, with global quality measures, no correlation
is found between segmentation and matching performance.
Also, the SIFT matcher shows some resilience to segmen-
tation inaccuracies, meaning that errors in the segmentation
due to degraded quality may be hidden by the matcher.

The rest of the paper is organized as follows. Sect. 2 de-
scribes image properties considered to potentially influence
iris recognition accuracy. Section 3 presents the quality
measures used. Sect. 4 and 5 describe our experiments and
results, respectively, and conclusions are drawn in Sect. 6.

2. Iris image quality

The work [17] defines several image properties consid-
ered to potentially influence iris recognition accuracy, in
support of development of the standard [4]. This is the
first public challenge aimed at identifying algorithm- or
camera-agnostic iris image quality components. They in-
clude: Gray scale spread, with better recognition perfor-
mance reported with images of high contrast and large dy-
namic range [17]. Iris size (number of pixels across the
iris radius, when boundaries are modeled by a circle). Di-
lation (ratio of the pupil to iris radius), with less iris area
visible in case of high pupil dilation and higher dissimilar-
ity scores reported in genuine (same person) comparisons
between images with different degree of dilation [10]. Us-
able iris area (percentage of non-occluded iris, either by
eyelashes, eyelids or reflections). Contrast of pupil and
sclera boundaries, with sources of variation due to intrin-
sic (subject character) or extrinsic (illumination or capture
device). Shape (irregularity) of pupil and sclera bound-
aries. They are not circular, and not even elliptical, com-
plicating iris segmentation. This irregularity can be natural
(anatomical) or due to non-frontal gaze. Margin (distance
between the iris boundary and the closest image edge).
Sharpness (absence of defocus blur, which mostly occurs
when the focal point is outside the depth of field of the ob-
ject to be captured). Motion blur, caused by the relative

1

__________________________________________________
ICB-2013, 6th International Conference on Biometrics 

________________________________________________________ _________________________________________________

ICB-2013 June 4-7, 2013         Madrid, Spain



movement of the object and the camera. Signal to noise ra-
tio, with the major source believed to be sensor noise. Gaze
angle (deviation of the optical axis of the eye from the op-
tical axis of the camera, which happens when the subject is
not looking directly to the camera). And interlace of the ac-
quisition device, caused by two-field CCD sensors. Among
these quality components, usable iris area is reported to
have the greatest influence on recognition performance, fol-
lowed by pupil contrast, pupil shape, sclera contrast, gaze
angle and sharpness. On the other hand, results for motion
blur and signal to noise ratio are inconclusive in [17].

Sharpness (IES)
Orienta�on Certainty 

Level (OCL)
Pupil: 0.57, Sclera: 0.90Pupil: 40.17, Sclera: 99.77

Iris Edge

Figure 1. Iris boundary contrast (IES and OCL). Second column
shows the points where IES is computed. Third column shows
OCL block-wise values across the iris boundaries (brighter color
indicate higher quality). Local IES and OCL scores are also given.

3. Computation of iris quality components

In the following, we give details about the quality mea-
sures used in this paper. They comprise 8 measures adapted
from different algorithms of the literature, or proposed here.
We aim to quantify several properties of Section 2. All
measures are computed locally (around the pupil or sclera
boundaries) and some are also computed in the whole im-
age. Some sample images with different qualities as quan-
tified by the measures used here are shown in Figures 1-3.

(1) Sharpness (defocus blur). This is measured with the
iris focus assessment method of [13], which computes the
amount of high frequency components. By using a 5×5
convolution kernel, the summated 2-D spectral power is
used as focus score. To allow comparison between images
or regions of different size, the score is normalized by the
actual number of image pixels used.

Image gradient (pupil area)
Green: circular boundary 

Red: fi�ed (irregular) boundary 

Circularity (pupil: 5.14)

Figure 2. Iris circularity (irregularity). Left: image gradient (the
hue encodes the direction and the saturation represents the magni-
tude). The circle used for boundary modeling is superimposed in
white. Right: correspondence in the original image. The circular-
ity score is also given.

-2.04 0.02
SKEWNESS

high (0.78) low (0.29)
SIGMA/MEAN

Figure 3. Skewness and standard deviation. First image: nega-
tive skewness, most pixels have high gray values. Second image:
skewness close to zero, symmetric histogram, no predominance of
high or low gray values. Third/fourth images: high/low variability
of gray values across the image, respectively.

(2) Motion blur and interlace. These perturbations have
the effect of “smearing” the image in the direction of move-
ment. Here, we consider motion blur and interlace to have
a similar effect on the image, and we will call it collec-
tively “motion blur”. It can be quantified with two pa-
rameters [12]: direction (angle) and amount of pixel-smear
(strength). As the adjacent rows are quite different in mo-
tion blurred images, the difference between every two rows
is used as motion blur measurement [19]. A 2×n vertical
high-pass spatial filter is used, with the first row with am-
plitude -1, and the second with 1. We extend this method to
account for the direction of motion by rotating the filter with
angle increments Δ𝜃 and looking for the direction whose
filter response has the maximum summated 2-D spectral
power. Finally, for size invariance, the score is normalized
by the actual number of image pixels used.

(3) Contrast of iris boundaries. This component is quan-
tified with two measures (Figure 1). One is the iris edge
sharpness (IES) described in [18]:

𝐼𝐸𝑆 =
∑

𝜃𝑏∈𝜁

(𝐼 (𝑟𝑏+𝜀, 𝜃𝑏)− 𝐼 (𝑟𝑏−𝜀, 𝜃𝑏)) (1)

where 𝐼 (𝑟, 𝜃) is the image intensity in polar coordinates, 𝑟𝑏
is the radius of the circle that models the boundary, and 𝜃𝑏
is the angle to move across the circle. IES is computed from
two points equidistant to each side of the circle at a distance
𝜀, as can be seen in Figure 1. 𝜁 represents the angles where
the boundary is visible. The second measure is based on the
Orientation Certainty Level (OCL) proposed in [14] for fin-
gerprints. It measures the energy concentration among the
dominant direction of local blocks 𝑊×𝑊 , computed as the
ratio between the two eigenvalues of the covariance matrix
of the gradient vector. We use this measure to quantify the
strength of the pupil-to-iris and iris-to-sclera boundary tran-
sitions. A block of size 𝑊×𝑊 is centered at the boundary
circle and moved with angle increments Δ𝜃. The OCL of
all blocks across the boundary is finally averaged.

(4) Circularity of iris boundaries (irregularity). This is
computed as follows (Figure 2). We first regularize the iris
contours by using radial gradients and active contours (in
terms of Fourier series) as in [7]. Given a point (𝑟𝑏, 𝜃𝑏) of
the circle that models the boundary and the corresponding
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Figure 4. Example of images of the BioSec database with the an-
notated circles modeling iris boundaries and eyelids.

regularized point (𝑟𝑚, 𝜃𝑏), the radial distance ∣𝑟𝑚 − 𝑟𝑏∣ is
used as circularity measure. This is done for every 𝜃𝑏 ∈ 𝜁,
with 𝜁 representing the angles where the boundary is visi-
ble. All the distances ∣𝑟𝑚−𝑟𝑏∣ across 𝜁 are finally averaged.
If the boundary is fully circular, the score equals to 0, oth-
erwise it will be higher than 0.

(5) Gray scale spread. This is quantified with two mea-
sures: image skewness and standard deviation of gray val-
ues (the latter normalized by the mean image gray value, for
luminosity independence). The skewness measures the his-
togram asymmetry. Zero skewness means symmetric his-
togram. Negative skewness means histogram concentrated
to the right (predominance of high gray values), and pos-
itive skewness represents the opposite. Examples of these
two measures are shown in Figure 3.

(6) Usable boundary (occlusion). This is defined in Sec-
tion 2 as the percentage of non-occluded iris. For segmenta-
tion purposes, we rather use the percentage of non-occluded
boundary, when it is modeled by a circle.

4. Iris processing algorithms and databases

We use the iris segmentation algorithm based on the
Generalized Structure Tensor (GST) proposed in [1]. The
beauty of this method is that, apart from a correlation of
edge magnitudes, it takes into account the direction of
edges. By using complex filters encoding local orientations
of the sought (circular) pattern, its response is penalized
if there is disagreement of local orientations of the image
with those of the filter. This is not exploited by other edge-
based detection methods such as the Circular Hough trans-
form [20] or the Integro-Differential [6] operator, where all
boundary pixels contribute equally to (do not penalize) the
circle detection. Accordingly, the GST has shown supe-
rior performance [1]. This system approximates iris bound-
aries as circles. Therefore, it outputs the centre/radius of
the two boundary circles. Circular detection is the core of
most of the literature in iris segmentation [5, 6, 20]. Newer
approaches relax the circularity assumption, but many start
with a detector of circular edges which are further deformed
into non-round boundaries [7, 9, 11].

For recognition experiments, we use two matching algo-
rithms. The first one is the freely available recognition sys-
tem developed by Libor Masek1, based on transformation to
polar coordinates (using the Daugman’s rubber sheet model

1www.csse.uwa.edu.au/ pk/studentprojects/libor/sourcecode.html
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Figure 5. Left: Performance of the automatic segmentation. Top
right: relative distance in terms of the radius of the circle. Bot-
tom right: detection accuracy in terms of maximum offset 𝜖 with
respect to the annotated circle. The offset 𝜖 is normalized by the
radius 𝑅 of the annotated circle for size and dilation invariance.

[6]) and Log-Gabor wavelets plus binary phase quantization
[16]. The Hamming distance is used as recognition metric.
The second matcher is based on the SIFT operator [15]. We
use a free implementation of the SIFT algorithm2, with the
adaptations described in [3]. SIFT keypoints are extracted
and matched directly in the original image, without polar
coordinates transformation. The recognition metric is the
number of matched keypoints between two iris images.

As experimental dataset, we use the BioSec baseline
database [8], with 3,200 iris images of 480×640 pixels
(height×width) from 200 individuals acquired in 2 sessions
with a LG IrisAccess EOU3000 close-up iris camera. Each
person contributes with 4 images of the two eyes per ses-
sion. The EOU3000 sensor has a built-in quality check-
ing process (the best image of a 20 frames video sequence
is selected with a proprietary procedure, not disclosed by
the manufacturer). Before this sequence acquisition, the
camera automatically checks subject’ positioning and dis-
tance to ensure adequate focus. A set of LED light sources
properly positioned ensures that specular reflections fall in-
side the pupil (Figure 4). We have manually annotated all
the images, computing the radius and center of the iris and
sclera circles. Similarly, we have also modeled eyelids as
circles. Thus, we have also computed the radius and center
of those circles. An example of annotated images is shown
in Figure 4. In addition, local quality measures are com-
puted around the manually annotated iris boundaries.

5. Results

In Figure 5 (left), we give the segmentation performance
of the GST algorithm. We also provide results using the Cir-
cular Hough transform (also available in the Libor Masek
code) and the Integro-Differential operator (using a public
source code3). Segmentation accuracy is evaluated in terms
of the maximum offset 𝜖 of the detected circle w.r.t. the an-
notated one [21]. The offset is normalized by the radius of

2http://vision.ucla.edu/ vedaldi/code/sift/assets/sift/index.html
3http://web.mit.edu/anirudh/www/
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Figure 6. Boxplots of quality measures.
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(b) Local quality measures

Figure 7. Performance of the GST segmentation system for quality groups based on the different quality measures used. Performance over
the whole database is also given for comparison.

the annotated circle for size and dilation invariance, as il-
lustrated in Figure 5 (right). We observe that the GST algo-
rithm works better than the two other systems, with detected
pupil and sclera circles closer to the annotated circles. This
superiority has been also observed in previous studies with
a different database [1]. For this reason, in the rest of this
paper, we only provide results with the GST system.

Figure 6 depicts the distribution of the 8 quality mea-
sures used in this paper. To make the defocus blur box-
plot more readable, the 𝑦-axis is shown in logarithmic scale.
Measures defocus blur, motion blur, sigma/mean and skew-
ness are computed both locally and globally. An interesting

observation is that global and local qualities are not always
in the same range. It is worth noting from Figure 6 that the
pupil or sclera boundaries exhibit more defocus blur than
the whole image, or that the pupil boundary has slightly
more motion than the whole image or than the sclera bound-
ary. The latter also happens with the gray scale variability
measure (sigma/mean). Also interesting, the gray scale his-
togram in the pupil and sclera boundaries is highly symmet-
ric (skewness around zero) but in the whole image, it tends
to concentrate to higher gray values (negative skewness).

To evaluate the impact of each quality component on the
segmentation, we separate all the images of the database
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Figure 8. EER of the two matchers (Log-Gabor and SIFT) for quality groups based on the different quality measures used. Results are
given both with the manual annotation and with the automatic segmentation using the GST. EER over the whole database is also given for
comparison (dashed lines).

into three equal-sized quality groups based on each qual-
ity measure. Segmentation performance of the GST algo-
rithm for each quality group is then reported (Figure 7). It
should be noted that since global and local quality mea-
sures are not in the same range, quality groups with the
same label (e.g. ‘low’) do not have to the same range of
values. The same applies to the pupil and sclera qualities.
For the skewness measure, we use its absolute value, so we
compare the effect of using samples with zero skewness
(symmetric histogram) vs. high absolute skewness (non-
symmetric histogram). It can be observed that in general,
local quality metrics are better predictors of the segmen-
tation performance than global metrics, which means than
better performance can be achieved (compare 𝑦-axis ranges
of the boxplots). Unfortunately, local quality measures have
the obvious limitation of requiring segmentation [12]. Al-
though manual annotation is unfeasible in operational envi-
ronments, our purpose however is to reveal the sources of
error with the aim of guiding subsequent developments and
improvements of iris algorithms. It is also worth noting the
different behavior of global and local quality measures in

some cases (compare the different tendencies of motion blur
or skewness). If we focus only on the local measures, the
best predictors of pupil segmentation accuracy are (in this
order): 𝑖) skewness, sigma/mean and circularity; 𝑖𝑖) edge
contrast (IES); 𝑖𝑖𝑖) edge contrast (OCL); and 𝑖𝑣) defocus.
As for the sclera, we have: 𝑖) occlusion; 𝑖𝑖) sigma/mean,
circularity and edge contrast (OCL); and 𝑖𝑖𝑖) edge contrast
(IES). Both pupil and sclera are sensitive to the (low) cir-
cularity and (low) edge contrast. This is obvious, since the
GST segmentation algorithm is a circular detector and it is
based in edge analysis. On the other hand, measures such
as defocus blur, motion blur or sigma/mean do not affect
equally to the pupil and to the sclera.

Lastly, we evaluate the performance of the two matchers
of Section 4 also by partitioning the data into equal-sized
quality groups. In this case, the quality of a score is defined
as (𝑄𝑒+𝑄𝑡)/2, where 𝑄𝑒 and 𝑄𝑡 are the image qualities of
the enrolled and input iris respectively corresponding to the
matching. When quality is computed locally, 𝑄𝑒, 𝑄𝑡 are
computed as the average of the pupil and sclera qualities.
Results of this procedure are given in Figure 8. We include
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performance curves both with the manual annotation and
with the automatic segmentation using the GST. An impor-
tant observation is that the EER using manual annotation
(solid gray curves) varies among the quality groups. As-
suming that manual segmentation is of high accuracy, this
indicates that the matchers are also sensitive to variations in
quality. This variability with manual annotation is more ev-
ident with the Log-Gabor matcher. In other words, the SIFT
matcher is not so sensitive to the quality factors studied.

No correlation is observed between segmentation per-
formance and EER values when quality groups are gener-
ated with the global quality measures (compare tendencies
between Figures 7 and 8). This suggests that the match-
ers are affected in the opposite way than the segmentation
algorithm. On the contrary, the tendency observed in the
segmentation performance of local quality measures is mir-
rored in the EER nearly in all cases. However, it is worth
noting that the SIFT matcher is less sensitive to variations in
local quality. This has one positive effect: when segmenta-
tion accuracy is bad, the matching performance is not wors-
ened as much as than with the Log-Gabor matcher. But the
opposite also occurs: when segmentation accuracy is good,
matching accuracy does not improve too much either. An
exception is the occlusion measure. It is expected that as
the amount of iris texture information is reduced, the per-
formance of the two matchers worsen accordingly, as well
as the opposite.

6. Conclusions

The impact of several image quality components in the
performance of iris segmentation is evaluated. Quality mea-
sures are computed locally (around the iris boundaries) and
some of them are also computed globally (in the whole im-
age). It has been found that local quality metrics are better
predictors of the segmentation accuracy than global met-
rics, despite the obvious limitation of requiring segmenta-
tion. Some measures also behave differently when they are
computed locally or globally.

We also evaluate the impact of quality components in
the performance of two iris matchers based on Log-Gabor
wavelets and SIFT keypoints. We observe that the matchers
are also sensitive to quality variations, but not necessarily
in the same way than the segmentation algorithm. Also, the
SIFT matcher is observed to be more resilient to segmenta-
tion inaccuracies. In this sense, errors in the segmentation
may be hidden by the matcher, pointing out the importance
of evaluating also the precision of iris segmentation, rather
than focusing on recognition accuracy only [21].

Some other preliminary experiments (not given) show
that quality measures are not necessarily correlated. Quality
is intrinsically multi-dimensional and it is affected by fac-
tors of very different nature [2]. Future work includes fus-
ing the estimated quality measures to obtain a single mea-

sure with higher prediction capability of the segmentation
and matching accuracy [12]. Another source of work will
be the different sensitivity observed in the two matchers.
By using adaptive quality fusion schemes, we will seek to
obtain better performance over a wide range of qualities [2].
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