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Quality Image Metrics for Synthetic Images Based on
Perceptual Color Differences

Stephane Albin, Gilles Rougeron, Bernard Péroche, and Alain Trémeau

Abstract—Due to the improvement of image rendering pro-
cesses, and the increasing importance of quantitative comparisons
among synthetic color images, it is essential to define perceptually
based metrics which enable to objectively assess the visual quality
of digital simulations. In response to this need, this paper proposes
a new methodology for the determination of an objective image
quality metric, and gives an answer to this problem through three
metrics. This methodology is based on the LLAB color space for
perception of color in complex images, a recent modification of
the CIELab1976 color space. The first metric proposed is a pixel
by pixel metric which introduces a local distance map between
two images. The second metric associates, to a pair of images, a
global value. Finally, the third metric uses a recursive subdivision
of the images to obtain an adaptative distance map, rougher but
less expensive to compute than the first method.

Index Terms—Colorimetry, difference metric, image quality,
rendering, synthetic images, visual perception.

I. INTRODUCTION

T HE computation of realistic images is composed of two
main steps. The first one consists of physically based cal-

culations, where the flow of energy is modeled as accurately as
possible. This step gives the distribution of light at each point in
the scene. The second step is a display process, where the results
of the previous computation are transformed to be presented on
a display device. This is a perceptually based step, where the
objective is to satisfy the observer.

It is clear that the final stage of the rendering process is
reached when the image is viewed and judged for suitability by
a human observer. Thus, there is a great need to evaluate visual
simulations, in particular for the following problems [1].

To validate simulations against measurements. This
problem appears, for example, in domains such as lighting
calculations for indoor or outdoor architecture, street lamps
design, vehicle lights design, etc.
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To compare the results of simulation methods. This happens,
for example, if different rendering algorithms are used with the
same scene (cf. [2]). It may also be to evaluate the importance
of the various parameters of one such rendering algorithm and
to facilitate the choice of its parameters.

To guide progressive image synthesis calculations more ef-
ficiently, for example with a radiosity algorithm [3] or with a
ray tracing one [4]. In this case, the idea is to accurately com-
pute the features of the rendering solution that are perceptually
important. A first step in this direction appeared in [5] or in [6].

In all the cases briefly described just above, perceptually
based image metrics are needed. Any error metric based on ra-
diometric comparisons cannot guarantee that additional errors
will not be introduced during the display process. Differences
in luminance values may in fact be undetectable after the
display transform has been performed. This fact is all the more
important because display devices currently in use such as
monitors or head-mounted displays are far from perfect, with a
reduced color gamut, and a limited dynamic range.

Tools coming from digital image processing are not neces-
sarily well adapted, because they only deal with RGB pictures
whose origin is always unknown. In particular, the mean squared
error or the root mean squared error, often used in this domain,
are not adequate measures. Comparisons are only based on cor-
responding pixels and do not include any knowledge about the
visual human system and the underlying features in the picture.

In this paper, we have investigated three ways to define
perceptually based metrics in computer graphics by using the
LLAB color space. The first way is a local pixel by pixel metric
between images which allows to define a distance map. The
second way associates with a pair of images a global distance
value whose purpose is to define a kind of metric between the
two images. The last way uses a recursive subdivision of the
images related to the value defined in the second way to define
a distance map which is rougher than in the first way, but less
computationally expensive.

The objective of this study is not to suggest a new metric
which would take a maximum of visual characteristics into
account, but to develop a metric which enables to assess the
accuracy (and if possible the efficiency) of the result of a
rendering algorithm in terms of visual aspect. The usefulness
of such an approach, rather than another one more commonly
used, is linked to the images studied. In our case, images
can be described as a set of shiny or matte surfaces, smooth
or slightly rough surfaces, interacting with light, shape and
shadow. For example, whereas most of image quality models
take into account the contrast sensitivity function (CSF) of
the visual human system to adjust contrast values according
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to spatial frequency, our metrics does not: in our study, only
contours generate high spatial frequencies, and these contours
are useless in our image quality metric as they do not vary from
one rendering process to another one. One of the assumptions
used in this paper is that color contrast attributes between
objects in a scene play an important role in image quality
visual assessment, because the visual appearance of an object
depends, not only of its own characteristics, but also of the
characteristics of objects surrounding it [7]–[9].

The remainder of the paper is organized as follows. In
Section II, we remind some previous works on the problem of
the evaluation of a metric between images. In Section III, we
describe structures which allow to compute the color contrast of
an object from its surrounding elements. Section IV introduces
some tools which will be fundamental for our algorithm. The
algorithm is described in Section V, and some results are
discussed in Section VI. Finally, a conclusion and some further
developments are given in Section VII.

II. PREVIOUS WORK

In the domain of digital image processing, a numerous lit-
erature deals with the problem of the evaluation of a metric
between images ([10] and [11] for still monochrome pictures,
[12]). Several techniques have been developed to give a quan-
tified answer to themes standard in this field, like image com-
pression, color quantization or search in image databases, for
example [13]–[16].

In computer graphics, only few works deal with this problem,
even if the definition of a metric turned out to be very useful. In
[17], the authors conducted experimental verification between
the simulation of a scene by a rendering algorithm such as ra-
diosity and a model of the same scene. In a first step, a radio-
metric comparison is presented. A radiosity algorithm is used to
generate synthetic computer images. An experimental apparatus
allows to make measurements of radiant energy flux density.
These measures are then compared with the predictions of the
radiosity method. In a second step, perceptual comparisons are
made. Color science methods are used to create a color televi-
sion image from the output of the radiosity method. This picture
is then compared by a group of experimental subjects against
a real model as seen through the back of a view camera. This
allowed to check the psycho-visual validity of the simulation.

Paper [18] is the first one which tried to introduce a metric
between images in computer graphics. The authors used three
algorithms stemming from digital image coding literature, and
which are based on Fourier transform and filtering. Rushmeier
et al.made comparisons on luminance images, not on displayed
ones. These images were coming, on one hand, from a CCD
based system put in front of a given scene, and, on the other
hand, from simulations of the same scene obtained by several
rendering algorithms (flat shading, Radiance ray tracing with
varying levels of quality specified). For appreciating the perfor-
mance of a metric algorithm, Rushmeieret al. introduced five
rather pragmatic evaluation criteria.

In [19], a wavelet based perceptual metric is proposed,
whose purpose is very similar to ours. The proposed metric has
the ability to measure variations in images at specific locations,

orientations and scales. It has also the ability to discern intensity
functions of varying degree of smoothness in the image. The
method begins by an orthogonal wavelet transform. A detection
of coherent structures follows that allows to detect significant
structures in an image. Then, the coefficients of the wavelet
transform are modulated with a contrast sensitivity function
which measures the response of the human vision system to
different frequencies. Finally, the images are compared in the
mean square sense.

In [6], the perceptually based visual differences predictor
developed by Daly [20] is used to monitor the perceived
quality of two rendering algorithms used in computer graphics:
progressive radiosity and a Monte Carlo algorithm.

More recently, a number of accurate and efficient metrics
based on human perception have been developed for realistic
image synthesis [21], [22], such as the visual difference metric
proposed by Bolinet al.[23], or the visual discrimination metric
proposed by Lubinet al. [24].

As the visual human system has a varying sensitivity to error
that is based upon the viewing context, these metrics used
quality descriptors that take into account high background illu-
mination levels, luminance and chrominance of objects, high
spatial frequency, and high contrast features (visual masking).
An important feature of some of these metrics is that they
handle luminance-dependent features and spatially-dependent
features independently, such as in [21]. The metric proposed by
Bolin et al. in [23] is simpler than those introduced by Lubinet
al. [24]; moreover, it uses a Haar wavelet basis for the cortical
transform and a less severe spatial pooling operation. One
advantage of these metrics is that they deal with color images.

Other works of general purpose, concerning image quality
metrics based on visual models, have also been published in
recent years [25], [26]. We must also mention some work done
by Watson who has taken into account viewing distance effects,
contrast masking effects, and other cognitive effects linked to
early stages of the human visual system [27], [28].

III. PRINCIPLESSUBJACENT TO A LOCAL ANALYSIS

Perceived differences between synthetic images are due to
highlight smoothing effects, jaggedness effects on illuminated
surfaces, ghost figures from object shadows, and other effects
less emphasized. They reflect the degree of correspondence of
images displayed tomemorized reality(see experiments done
in [29]). That is to say the perceptual quality of an image
depends closely to its naturalness. This basic assumption may
be followed by a second one according to which background
illumination level, and luminance and chrominance contrast
attributes between objects in a scene, play an important role
in image quality visual assessment: the visual appearance of
an object depends not only of its own characteristics, but also
of the characteristics of objects surrounding it [7]–[9]. It is
therefore essential to

• isolate each object of the scene from elements which
surround it;

• evaluate the color contrast between any object to elements
which surround it.
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In order to reach this objective, we have to use

• an initial segmentation step, which can be easily performed
when geometrical features are available to strengthen
color features; otherwise it is necessary to use more
sophisticated segmentation process [30];

• an adjacency graph construction step, which can be easily
achieved when adjacency relationships are described by
a linear model [31], [32].

In order to record all adjacency relationships between all the
objects in a scene, i.e., all color contrasts between regions, we
have considered two similar structures: the region adjacency
graph (RAG) and its line-graph, which can be illustrated by
Fig. 1 and defined by the following principle (cf. Fig. 2 for
an example).

The RAG associates a vertex with each region and an edge
with each pair of adjacent regions. At each vertexcorresponds
therefore a region and two color values and represen-
tative of the color distribution of this region. At each edge
corresponds a pair of adjacent regions (, ) and a color dis-
tance which differentiates colorimetrically these two
regions. The associated line-graph (LG) is defined as follows: its
vertices are the edges of the RAG and its edges the adjacency
relations between the edges of the RAG (i.e., two verticesand

of LG are connected if the edges of the RAG, represented by
and in LG, are adjacent).
Thanks to these structures, it will be possible, from a theoret-

ical point of view, to compute the color contrast of each object
from its surrounding elements. Nevertheless, as there is no order
relation between colors (from a colorimetric point of view), we
are limited to compute only color contrasts between pairs of
adjacent objects.

Let us recall that our purpose is to quantify perceived differ-
ences between color images computed by a rendering algorithm.
Consequently, for these images, it is more accurate, in terms
of perceived quality, to use local color attributes than color at-
tributes between neighbor regions, because the observer is more
sensible to color contrasts inside objects than to color contrasts
between objects. That is to say, the local rendering of objects
is the main perceived attribute of quality of synthetic images.
In order to analyze the local rendering of each image area, we
will propose in Section IV-A to use a neighborhood operator
based on the principle of focus of attention. Then, to analyze
the difference of local rendering between two images, we will
propose in Section IV-B to use the LLAB color distance based
on the principle of color appearance measurement.

IV. SOME TOOLS

In this section, we shall present three concepts used by our
algorithm: the visual field, theLLAB color space, and a refine-
ment process of computation of image differences.

A. Visual Field

The visual field is subdivided into two areas (see Fig. 3):

• thefocus,which is a visual field of 2 associated with the
foveal vision [33];

Fig. 1. (a) Region adjacency graph and (b) line-graph associated. Adjacency
relationships between regions. For example, if we consider adjacent regions (R

andR ) and (R andR ), we can see than the edgee relies effectively the
two verticesv andv , meanwhile than the edgee relies two verticesv and
v . Consequently, these two edge are adjacent relatively to the vertexv .

(a) (b)

Fig. 2. Color contrasts between pairs of adjacent objects of the “Cornell-box.”
(a) Image Cornell-box segmented and (b) adjacency relationships between
regions.

Fig. 3. Subdivision of the visual field in two rectangular masks centered on
the(i; j) pixel location.

• the background, which corresponds to a field of view of
20 [34].

Two masks are associated with each pixel of the picture
[35].

A rectangular area , of aperture 2, located around
pixel , with pixels on the left, pixels on the right,

pixels on the top and pixels on the bottom. This area
corresponds to the focus.

A rectangular area , of aperture 20, located around
pixel , with, respectively, , , , and pixels
on the left, on the right, on the top, and on the bottom. This area
corresponds to the background.
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To compute these masks, the following formulas are used:

(1)

where

• and are the coordinates of the pixel in relation to the
center of the screen;

• is the field of view of the area to be computed (
or 20 );

• and are the horizontal and vertical apertures;
• and are the number of pixels per row or per

column.
Visual acuity is roughly decreasing in [10], [36], where
is the angle in relation to the visual axis. This relation is esti-

mated by the following weight distribution (cf. Fig. 4):

• a constant weight equal to one is given to each pixel
belonging to the focus area;

• a weight linearly decreasing from 1 to 0 is given to pixels
located respectively at the center of the background and at
its boundary.

We shall denote by the sum of the weights associated to
the focus, and by the sum of the weights associated to the
background. On the borders of the picture, the masks are clipped
and the values of and are updated accordingly.

B. A Color Distance Computed From the LLAB Space

TheLLAB space [37], [38], derived from theCIE Lab1976
color space, has been settled [39]:

• to give a precise prediction of color appearance between a
pair of complex images under different viewing conditions
[9], [40];

• to provide a uniform color space for color gamut mapping
and color difference evaluation;

• to include single mathematical equations and to easily
derive its reverse model.

The use of theLLAB space needs two steps. The first one is
a BFD chromatic adaptation transform [41]. It is used to con-
vert tristimulus values of the surface under any source
illuminant to tristimulus values under the reference
illuminant 6500.

The second step is a computation, modified with regard to
the color spaceCIELab1976color space, of the following per-
ceived attributes: lightness ( ), redness–greenness (), yel-
lowness–blueness ( ), colorfulness ( ), hue angle ( ) and
hue composition ( ).

Let us remind that the computation of these attributes is
related to the following experiment: a colored surface with
a vision angle of 2 is surrounded by a uniform achromatic

Fig. 4. Weight distributionw(i; j) associated with pixel(i; j) location.

background. Let us denote by the luminance (expressed in
) of the reference source (here6500), and by

the lightness of the achromatic background surrounding the
colored surface.

Three parameters: , , and are used to perform the
computations. Their values, given in Table I, are dependent upon
the ratio . Let , and

be the tristimulus values of reference white6500. The
various appearance attributes are obtained by the following for-
mulas:

where .
If , or ,

If , or ,

where

where is the function which returns an angle between
0 and 360

where and are the hue angles having nearest lower and
higher values of respectively.
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TABLE I
VALUES OF PARAMETERSF , F , AND F

A notion of colorimetric distance is defined as follows. Let
us suppose we deal with two colored surfaces, each one being
surrounded by an achromatic background, and hit by any two
illuminants. Tristimulus values are first computed, in
order to adapt the lighting conditions to what should be given
under reference illuminant 6500. Then, for each surface, light-
ness ( ), chromaticity ( ) and hue angle ( ) are computed.
The color difference is then:

(2)

where:

C. Refinement of the Study Area by Segmentation

As explained in the previous section, the computation of the
various appearance attributes associated with theLLAB color
space corresponds to a situation where a uniform target placed
in front of a uniform achromatic background is shown to an
observer. But, study areas defined in Section IV-A contain a
part of the scene where it is possible to find some objects with
various appearances (for example, cf. Fig. 5). In order to get
closer to the experimental situation, we shall suppose that, in
the focus area, the visual attention of the observer leads him to
bring out the object aimed at the direction of the pixel from the
rest of the scene, which then makes up the background.

It is thus necessary that the rendering algorithm used to pro-
duce the picture gives to the metric algorithm a segmentation of
the image. In our case, the ray tracing algorithm used generates,
besides a computed image, a file containing for each pixel the
number of the object and/or the number of the face hit by the
primary ray (but such a result can also be obtained with the item
buffer technique).

With this information, we may refine the study area. For that
purpose, we subdivide it into two areas (for example, cf. Fig. 6):

• the target, composed of all the pixels belonging to the
focus and having the same object or face number than the
central pixel;

• thesurround,composed of all the pixels belonging to the
background plus all the pixels from the focus which have
not been put in the target.

At the end of this segmentation step, the values ofand
are updated in order to represent, respectively, the sum of the
weights of the target and the sum of the weights of the surround.

Fig. 5. Example of study areas partly intersected by a focus area or by its
background.

Fig. 6. Example of a study area defined from a focus area subdivised into a
target area and its surround.

V. OUR METHOD

The metric computation programs that we propose take as
input two computed images, represented by two files img1.lum
and img2.lum. In these files, each pixel is associated to three
floating numbers. These numbers are supposed to be CIE 1931
RGB tristimulus values. This last color space has been defined
at the end of an equalization experiment brought with the fol-
lowing monochromatic primaries: 700.0, 546.1, and 435.8 nm
[42].

Thus, there is a preprocessing step to first obtain XYZ
tristimulus values.

A. RGB to XYZ Conversion

The matrix transformation used is

(3)

Let us note that the rendering computation, leading to the im-
ages that are going to be compared, assigns to the light source
tristimulus values , and . Obviously, after
transformation, we also have , and . We
shall suppose, to avoid a chromatic adaptation computation, that
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the source located in the scene is of type6500. By the in-
verse transform, the tristimulus values of this source must be:

, and . As this source is the
only one present in our test scenes, it is sufficient to respectively
multiply tristimulus values coming from files by
these last three numbers, and then to apply them the transform
matrix.

So, the light source supposed to send out a power of 100 W
is given a luminous power .

B. Computation of a Distance Map Based on Visual
Characteristics

The purpose of our method is to compare the sensations of
two virtual observers supposed to be present in the scene. We
make the hypothesis that their visual attention is equally at-
tracted in all directions.

We proceed as follows, for each pixel of images 1 and 2.

1) The sizes of the study areas associated with vision angles
of 2 and 20 are computed with equation (1).

2) Weights are attached to each pixel according they belong
to the focus or to the background.

3) The sum of weights and are computed.
4) The focus is refined by separating the target from the

surround.
5) Values of and are updated.

We may notice that the results coming from these first
five steps are identical for the two images. Then, for each
pixel of each image:

6) is computed as the weighted average of coordinates
of pixels belonging to the background area

7) Depending on the value of ratio , values of ,
, and are computed.

8) For each pixel of the target area, coordinates, and
are computed.

9) The pixel by pixel error between images 1 and 2
can therefore been computed, for each pixel of the target,
by formula (2);1

10) The mean error is then given to the central pixel of the
target, i.e.,

As output, our program provides an image of distances,
as a file which contains, for each pixel, a real number
corresponding to the computed distance. To allow the visual-
ization of areas with low or high errors, we define a displayable
image of distances. From files , false grayscale images
are built. With two thresholds defined by the user and called

and ,
gray levels are assigned as follows:

1Whatever the value of these errors, these will be all the more perceptible
to the observer that they appear in the focus area, as the acuity is maximal in
the focus area unlike to the background area; that is the reason why errors are
computed only in the target area.

• If , then Red
Green Blue 0;

• If
, then 0 Red Green

Blue 255, with a linear interpolation;
• If , Red Green

Blue 255.

C. Computation of a Distance Map Based on a Color
Dispersion Measure

Different descriptors can be used to measure the degree of
homogeneity of an image area [7], [9]:

• either to measure its spatiocolor dispersion (i.e., the local
color contrast). To measure locally this dispersion, we pro-
pose to compute thestandard deviation of colors ,
of each image area centered around pixel ,
defined by (see [43])

where is the color components vector of pixel
and

• either to measure its color dispersion according to its
principal component, especially the standard deviation of
the most representative color gamut of the area under study
(cf. [44]). To locally measure this dispersion, we propose
first to compute the KARHUNEN LŒVE transformation
corresponding to the image area considered [45], [46],
then to select the “most significant” color feature among
features given by this transformation, i.e., the feature
which gives the highest eigenvalue of the covariance
matrix of colors distributions in this area, and lastly to
compute the standard deviation of this feature.

Two measures can be used to measure, locally, the difference
of homogeneity between image areas in relation to the principal
color feature. They are

• the FISHER distance, defined locally by

if and

otherwise

where and are respectively the mean and the
standard deviation of the most significant color feature of
image area centered around pixel , computed
for image 1. Likewise, and are computed for the
second image to be compared to the first one.
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• the normalized mean squared error measure [47], defined
locally by

where is the color coordinate of pixel
defined, for image 1, according to the most signif-

icant color feature of image area centered around
pixel . Likewise, for image 2.

D. Computation of a Global Distance

Of course, we may compute the mean distance from the file
computed in Section V-B. But, as we shall see in the

results, the computation time is then very high.
Thus, we propose another solution, based on a Monte Carlo

process. The method is as follows: we randomly choosepixels
and for each such pixel, we compute as defined

in Section V-B. Finally, the global distancebetween the two
images is defined as .

From our experience, a value about 1000 or 2000 gives
a global distance with an error less than 2% in relation to a
complete computation.

E. Adaptive Computation of a Distance Map

The purpose of this method is to obtain a distance map
showing more or less rough areas of the pictures with low or
high errors.

Let be a real number in [0, 100] andbe a real number. We
suppose that the pictures have a pixels size to make the
calculations easier:

1) by the method explained in Section V-D, a valueis
computed for the pair of pictures;

2) if at most percent values do not belong to
interval , then subdivide the pictures in four
equal subimages and go to 1;

3) otherwise, assign valueto the area.

At the end of this algorithm, a quadtree data structure has
been defined, where each leaf is assigned a value. We may
use exactly the same process than in Section V-B to obtain a
displayable image of distances. Of course, the obtained distance
map is rougher than that obtained in Section V-B. But, as we
shall see in the Section VI, this method is less computationally
expensive, without degradation of the computation of the global
distance.

VI. RESULTS

A. Data Base

For our tests, we use a lot of 512 512 pixels size pic-
tures showing a standard scene in computer graphics: the
“Cornell_box.” In Fig. 9, three of them are shown:

• Cornell_amb,computed with a standard ray tracer with an
ambient term (computation time: 3 min, 27 s);

• Cornell_diff, computed with a ray tracer taking global
illumination into account with an evaluation of the diffuse
component [48] (computation time: 4 min 9 s);

• Cornell_mc,computed with a Monte Carlo method with
256 samples per hemisphere (computation time: 14 h,
5 min, 13 s).

The last picture will be considered as our reference. Thus, we
shall compute an image of distances between Cornell_amb and
Cornell_mc, and then between Cornell_diff and Cornell_mc.

Whatever the ray tracer method used, we can consider that
it is computationally intensive in regards to computations re-
quired by image quality metrics. Whatever the image quality
metrics used, we can consider that they have more or less the
same efficiency in terms of computing time. On the other hand,
they have not the same efficiency to quantify such or such vi-
sual characteristic. That is the reason why the features used in
this study have been selected according to their ability to assess
the accuracy of the result of a rendering algorithm in terms of
visual aspect.

B. Analysis of Results

We shall give some results on the computation of distance
maps (cf. Sections V-B and V-C), of global distances (cf. Sec-
tion V-D), and of adaptive distance maps (cf. Section V-E).

1) Distance Maps:The computation time to obtain the dis-
tance file is about 35 min, on a 200 Mhz MIPS R10 K processor.
This computation time is very high because the algorithm is in-
herently sequential and for a 512512 pixels size picture, the
size of the background mask is around 100100 pixels near
the center of the picture. Consequently, the first distance map
(see Section V-B) is quite more computationally intensive than
the second one (see Section V-C).

The two distance maps, associated with the two couples of
images of Fig. 7, have been first computed from the distance
map presented in Section V-B, and next displayed, on Fig. 8,
with the following parameters: imperceptibility_threshold2.5
and acceptability_threshold 6.

Let us notice that these thresholds have been chosen at the
end of an experimental study conducted in our laboratory by
around 20 people [35]. Let us also notice that in order to obtain
smoother images

1) A linear interpolation has been applied tobetween 4.2
and 3.0, for .

2) Instead of assigning to the central pixel the mean of the
errors, we took the median value. This has the effect of
erasing the residual noise coming from antialiasing.

The four distance maps (cf. Figs. 9 and 10), associated with
the two couples of images of Fig. 7, have been first computed
from the distance map presented in Section V-C.

For each image of Fig. 7, we have displayed [cf. Fig. 9(c),
(e), and (g)], its standard deviation, computed locally. This dis-
play uses a black and white scale from the smallest value to the
highest one.2

For each image of Fig. 7, we have displayed [cf. Fig. 9(d), (f)
and (h)], the projection on its principal axis, computed locally.

2A gamma correction has been applied to local variances values to enhance
the most noticeable local contrasts.
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(a) (b)

(c)

Fig. 7. Test images. (a) cornell_amb, (b) cornell_diff, and (c) cornell_mc.

(a) (b)

Fig. 8. Images of distances. (a) Amb/MC and (b) Diff/MC.

This display uses a RGB color scale, such as each pixel is as-
sociated with a color which represents the axis direction of the
most significant color feature computed in the area centered at
this pixel.

In regards to these images, we may notice the following.

• All the images studied (cf. Fig. 7) seem to have, locally,
the same color dispersion. Let us notice nevertheless some
differences at the top of the walls, due to highlight effects,
and some differences at the bottom of the boxes, due to
shadows effects.

• All the images studied (cf. Fig. 7) present, in fact, locally,
a color rendering slightly different. For example, look
at the wall located at the left side of the scene. The
change of direction, computed from the principal color
feature, underlies a jaggedness effect which differs from
one image to the other. This effect is due to a local
illumination effect which modifies linearly the lightness
of the surface under consideration (eventually its color

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 9. For each image, we have at left: its standard deviation computed from
local areas of size 10� 10 and at right: its projection on its principal axis
computed from local areas of size 10� 10. (a) Cornell segmented, (b) Cornell
segmented, (c) cornell_amb, (d) cornell_amb, (e) cornell_diff, (f) cornell_diff,
(g) cornell_mc, and (h) cornell_mc.

also). It is important to notice that it is the discretization
of this highlight effect which introduces this jaggedness
effect. This effect modifies only the color rendering of
the main color attribute of the surface under study; that
is the reason why it appears only on this component and
not on the set of color components.
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Next, for each couple of images of Fig. 7, the locally com-
puted FISHER distance has been displayed [cf. Fig. 10(a) and
(c)]. This display uses a black and white scale for which black
pixels (value near zero) represent image elements for which the
difference is maximal and white pixels (value near 1) represent
image elements for which the difference is minimal.

Let us notice that, for most of surface areas, the FISHER dis-
tance corresponds in fact to the color distance because these
areas are quite homogeneous. The smaller the parameter value
is, the more the distance takes into account the color dispersion
of study areas, to weight the color distance compared to stan-
dard deviations computed for each area according to the main
color feature. As we may see on Fig. 10, this measure is relevant
of perceived differences between images (look after highlight
effects on walls and shadow effects linked to boxes); neverthe-
less, it induces a noisy effect which is difficult to isolate from
significant elements.

For each couple of images of Fig. 7, the locally computed
NMSE distance has been displayed [cf. Fig. 10(b) and (d)], with
the same grayscale than in the previous figures.

Let us notice that the second measure is less sensitive to
high color contrasts than those defined by edge elements, and
more sensitive to sloped color contrasts than those obtained
from jaggedness illumination effects on homogeneous surfaces.
As for the FISHER distance, this measure induces a noisy
effect which is difficult to isolate from significant elements.
Consequently, even though these measures seem to reflect
closely perceived differences between images, we are faced
to the problem of dissociating elements linked to perceptible
differences from noisy elements, in order to compute a global
value really significant of noticeable differences. This problem
can be overcame by masking the most homogeneous areas
before computing images differences. Nevertheless, let us
notice that, in our study, the noisy effect which has been noticed
in our measures comes, in part, from imagecornell_mcitself,
as we can see in Fig. 9(h).

These latter measures do not require to establish a segmenta-
tion between image areas because their field of interest is limited
by definition to the internal part of the surfaces of the scene, so
theses measures are useless to describe the edges of adjacent
surfaces. They are therefore complementary to the color dis-
tance previously introduced in Section IV-B for which the field
of analysis covers both the internal part of surfaces and the edges
of adjacent surfaces. That is the reason why it is sometimes in-
tersecting to prevail this latter measure over the two other ones,
even if these former measures are more widely known and used.

2) Global Distance: The distance between pictures Cor-
nell_diff and Cornell_mc computed with our Monte Carlo
method is 3.40. The true distance computed with all the pixels
is 3.37. The computation time needed by the Monte Carlo
method is around 16 s.

3) Adaptive Distance Maps:We may see on Fig. 11 the
adaptive distance map associated with two images of Fig. 9,
with the same parameters than in Section VI-B-1. In this case,
the computation time is around 8 min (to be compared to
the 35 min needed to compute a distance map). The global
distance computed pixel by pixel is the same (3.37) than the
one computed with the help of the distance map.

(a) (b)

(c) (d)

Fig. 10. (a) MC/Amb, (b) MC/Diff, (c) MC/Amb, and (d) MC/Diff. For each
of the images, we have at left: the Fischer distance computed locally according
to a mask of size 10� 10 and to a" = 10� 4 and at right: the NMSE measure
computed locally according to a mask of size 10� 10.

Fig. 11. An image of adaptive distance.

VII. CONCLUSION AND FURTHER DEVELOPMENTS

In this paper, we have proposed three algorithms to compute a
perceptual metric between colored images, specific to computer
graphics. The tests made show the relevance of this tool. For all
the scenes computed with rendering algorithms with increasing
quality, the algorithms provide sound results in relation with our
expectations.

However, this work is only a first attempt on the way to define
a perceptual metric for computer graphics. In particular, nothing
proves that the only mean distance computed on the whole set
of pixels defines a mathematical distance. A new parameter (or
perhaps several), more judicious, could be developed by using
spatial and statistical distributions of the distances. By way of
validation, we shall attempt to satisfy the five criteria of [18]
or at least the three criteria given in [19]. Finally, it could be
particularly useful to apply this kind of tool during a rendering
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computation, in order to dynamically and efficiently guide the
running of the algorithm (cf. [5] and [6]).

For the future, we could set up to a finer segmentation of the
study area, by taking shadows and highlights into account, for
example.

Some psycho-visual experiments should be driven near both
a group of experimental subjects and a set of images, in order
to help us to measure the quality of the metric and that of the
computed images. In particular, we should like to be able to
quantify the five-grade quality scale (excellent, good, fair, poor,
bad) and impairment scale (imperceptible, perceptible but not
annoying, slightly annoying, annoying, very annoying) quoted
in [11] with respect to the above thresholds. The experimental
procedure that could be used would be based on the objective
picture quality scale (PQS) proposed by Miyaharaet al. in [49].
It would also use some principles of the experimental procedure
we have developed in [40].
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