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Abstract

When factorial designs or orthogonal arrays are used in an experiment, the number

of runs required may be larger than that can be accommodated in practice, even

for moderate numbers of factors and levels of factors. In such a case, the choice

of uniform designs is a feasible alternative. A uniform design is a design in which

the design points distribute uniformly over the entire design space. Uniform designs

can be constructed by minimizing a discrepancy over the design space. This paper

reports a successful application of uniform design in the manufacture of liquid crys-

tal displays, in which the information obtained from the experiment resulted in a

significant improvement of the percentage yield of the process.

Key words. Design of experiments, uniform design, discrepancy.

1. Introduction.

Design of experiments is a useful tool which is now widely applied in product

design and process design. When the relationship between the response and the

potential contributing factors is not fully known, experiments may be carried out
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at different combinations of different levels of the factors, in order to identify the

important factors and how they contribute to the response.

Over the last half century, statisticians have suggested a variety of design layouts

that are suitable for different situations. Such design layouts include full factorial

designs, fractional factorial designs, block designs, orthogonal arrays, Latin squares,

supersaturated designs, and so on (Cochran and Cox (1957), John and Quenouille

(1977), Box et al (1978), Montgomery (1991), Dey and Mukerjee (1999)). A relatively

new type of design that provides experimenters with another choice is the uniform

design, which has growing popularity and has been used successfully in various in-

dustries in recent years (Fang (1980), Fang and Wang (1994), Fang (2002), Fang et al

(2000), Li (2002)). A uniform design has the advantage that it allows an experiment

to be performed in a relatively small number of runs when the number of factors

and the numbers of levels of the factors are large, and thus can complement facto-

rial designs and orthogonal arrays when such designs cannot be realized in practice

due to the large number of runs required. Uniform designs are characterized by the

“uniformity” of distribution of design points over the entire design space, which can

be achieved by minimizing a discrepancy. It is known that some commonly used de-

signs such as balanced incomplete block designs have high uniformity (Liu and Chan

(2003)), and uniformity is essentially equivalent to minimum aberration (Fang and

Mukerjee (2000)).

This paper provides a case study to illustrate how uniform design was applied

in an experiment to improve product quality in the manufacture of liquid crystal

displays (LCDs), while other designs such as orthogonal arrays are not suitable be-

cause the number of runs had to be economized. In the Section 2, discrepancies and

uniform designs are briefly introduced. In Section 3, the manufacturing process for

LCDs is briefly described. Section 4 describes how an experiment was conducted
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using uniform design, and how the results obtained helped improve the yield of the

manufacturing process. Section 5 is devoted to discussion and conclusion.

2. Discrepancy and uniform design

A uniform design is a design in which the distribution of design points minimizes

a discrepancy over the entire design space. The uniform design has been used as

a “space filling” technique in numerical computation, computer experiments and

Quasi-Monte Carlo methods (Warnock (1972), Wang and Fang (1981), Niederreiter

(1992)). Intuitively speaking, a uniform design is one whose design points distribute

“very uniformly” over the entire design space. To illustrated what a uniform design

is, consider the s-dimensional unit cube Cs = {(x = (x1, ..., xs)
′ : 0 ≤ xi ≤ 1(i =

1, ..., s)} as the design space. Given any set P = {x1, ...,xn} ⊂ Cs, its empirical

distribution function is defined by

FP(x) = n−1

n
∑

i=1

I(xi ≤ x), (2.1)

where I(·) is the indicator function and the inequalities in (2.1) are with respect to

componentwise order in the s-dimensional Euclidean space. Let F (x) be the uniform

distribution function on Cs. The Lp discrepancy of P is defined by

Dp(P) =

[
∫

Cs

|FP(x) − F (x)|
p
dx

]1/p

. (2.2)

For each fixed n, a “good lattice point set” is a set P0 which minimizes Dp(P) over

all possible P = {x1, ...,xn} ⊂ Cs, and a design with P0 as its design points is called

a “uniform design”. On any compact set other than Cs, uniform designs can be

constructed using the same approach. Usually, p = 2 is chosen for computational

convenience, as some computation formulas are available (Fang et al (2000)). Figure

1 shows examples of good lattice point sets constructed on a square and on a circle

in the 2-dimensional space (Fang and Wang (1994)).
3



For any n, s, and any range of variation of each coordinate in x, a uniform design

of n points can always be constructed. This means that a suitable uniform design

with a relatively small number of runs n can always be provided to the experimenter

when the number of factors and the levels of the factors are large but a large number

of runs is prohibited because of constraints on resources, in which case designs such

as orthogonal arrays are not suitable. Table 1 shows an example of a uniform design

Un(155) with n = 15 runs and r = 5 factors each of which has 15 levels; and a uniform

design U12(4
2×3) with n = 12 runs and two factors each of which has 4 levels, and one

factor which has 3 levels (Fang (1994)). On the other hand, the minimum number of

runs n of the Ln(155) and Ln(42×3) orthogonal arrays are 152 = 225 and 42×3 = 48,

respectively.
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Table 1. Two examples of uniform design.

Run Factor
number I II III IV V

1 1 4 7 11 13
2 2 8 14 7 11
3 3 12 6 3 9
4 4 1 13 14 7
5 5 5 5 10 5
6 6 9 12 6 3
7 7 13 4 2 1
8 8 2 11 13 14
9 9 6 3 9 12

10 10 10 10 5 10
11 11 14 2 1 8
12 12 3 9 12 6
13 13 7 1 8 4
14 14 11 8 4 2
15 15 15 15 15 15

Run Factor
number I II III

1 1 1 1
2 1 2 2
3 1 3 3
4 2 4 1
5 2 1 2
6 2 2 3
7 3 3 1
8 3 4 2
9 3 1 3

10 4 2 1
11 4 3 2
12 4 4 3

A Un(155) uniform design. A U12(4
2×3) uniform design.

To construct a uniform design with n points in a compact set C is to construct

a good lattice point set P ⊂ C of n points which has minimum discrepancy. Since

minimization of D2(P) usually involves heavy computational load, heuristic opti-

mization algorithms such as threshold accepting have to be employed (Winker and

Fang (1997)). In recent years, many uniform designs have been constructed and are

available, for example, from the web site www.math.hkbu.edu.hk/UniformDesign.

In order to improve properties of Dp(P) such as symmetry property and pro-

jection uniformity over all sub dimensions, other discrepancies have been defined.

They include the symmetric Lp discrepancy, centered Lp discrepancy, the modified

Lp discrepancies, and so on. Readers are referred to Hickernell (1998a, 1998b) for

details.
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3. Manufacturer of liquid crystal display (LCD)

LCD is an electronic device that is now widely used in consumer and industrial

products. In a liquid, molecules are completely free to move and rotate, while in a

crystal, molecules are fixed in position and orientation. Liquid crystal (LC) is a liq-

uid that has a partially crystalline structure. An LCD operates by manipulating the

light that passes through the LC. When a voltage is applied to an LCD, molecules in

the LC will align and rotate along the electric field, and when light passes through

the LC, the emerging light will be polarized. This phenomenom allows LCD’s with

specific patterns of display be designed and manufactured. The manufacturing pro-

cess of LCD’s is complicated and has four main steps to be carried out in a sequence,

namely, photolitho, batch formation, semi-finishing and finishing. Photolitho refers

to formation of a litho conductive circuit of a specific pattern on the glass plate. In

batch formation, two glass plates are glued together to form a batch. In the semi-

finishing step, individual small cells are cut from a large batch and filled with LC to

form functional LCDs (semi-finishing products). In finishing, the functional LCDs

are bonded to other electronic components such as printed circuit boards to form

complete LCDs. The flow of the first three steps are shown below. The finishing

step, however, varies from product to product and cannot be represented by a single

flow diagram.

Photolitho: (glass with conducting film) → coated with photoresisting material →

UV exposure → developing → etching → stripping → (glass with circuit)

Batch formation: (glass with circuit) → layer printing → PI printing → rubbing

→ printing → mounting → (batch)

Semi-finishing: (batch) → scribing → breaking → carrier loading → filling →

closing → rough cleaning → final curing → functional quality check → (semi-finished
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product)

In each part of this complicated manufacturing process, design of experiment

can help improve quality and efficiency. This paper is concerned with a project

specifically focused at improvement of the yield in the “filling” process in the semi-

finishing step in an Asian plant of a multinational manufacturer. In order to produce

LCD’s that are suitable for a low voltage operating environment, the plant recently

introduced glass fibre filling rod as a conductor for the filling of glass cells. Since

then, incomplete filling became a great problem in production as it caused a reject

percentage significantly higher then the target of 1%. The objective of this project

was to find out an optimal way of preparing the glass fibre rod and filling the cell

in order to bring the reject percentage down to an acceptable level. A sketch of the

setup for the filling the cell with LC is shown in Figure 2. The detailed procedure of

filling is too technical to be further discussed here. In this process, the values of the

following five factors can be adjusted:

1. Vacuum time, V (inn minute): The duration of time for which the filling cham-

ber is kept vacuum.

2. Flooding time, F (in minute): The duration of time for which the cell (container

of LC in the LCD) is in contact with the filling rod.

3. Thickness of the filling rod, T : The number of pieces of glass fiber clamped to-

gether to form the filling rod.

4. Level of liquid crystal, L (in mm): The height of the LC level in the container

in which the filling rod is to be immersed in.

5. Soaking time before filling, S (in hour): The duration of time for which the fill-

ing rod is to be immersed in the preparation tray containing LC.
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A cell produced will be rejected when filling is incomplete, which means forma-

tion of an air bubble inside the cell; otherwise, it will be accepted. Figure 3 shows the

drawings of a completely filled and an incompletely filled cell. The response function

of the process is the yield, which is the percentage of accepted LCD’s. Before this

yield improvement project, the five factors are set at the following levels by experi-

ence: V = 20, F = 13, T = 5, L = 2, S = 1.5. For such a setting, the yield was far

from being satisfactory, as reject percentage was as high as 20% in the beginning of

the process, and stabilized to only about 4% after a long period of time.

It was decided that an experiment should be conducted to find out the relation-

ship between the five factors, V , F , T , L, S, and the yield. The details are described

in the next section.

4. The experiment.

In actual production, because of various physical constraints, the equipment used

and the production speed required, there are lower and upper limits for the values of

the factors V , F , T , L, S. Experience suggested that under such constraints, good

yield would likely be obtained when the values of these factors are in the following

ranges:

16 ≤ V ≤ 24, 9 ≤ F ≤ 17, 4 ≤ T ≤ 8, 2 ≤ L ≤ 23, 1 ≤ S ≤ 3, (4.1)

although the production team did not exclude the possibility that an optimal setting

will be outside these ranges. Since it was not known whether good yield would be

obtained when values of these factor were at their lower ends, higher ends or in

the middle of their ranges, it was obvious to the production team that two-level

designs were not satisfactory. From a practical consideration based on the available

settings in equipment used and previous experiences about the effect of variations of

the factors on the yield, the following settings for the factors were suggested for the
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experiment:

Factor I, V : 16, 18, 20, 22, 24 (Levels 1, 2, 3, 4, 5);

Factor II, F : 9, 11, 13, 15, 17 (Levels 1, 2, 3, 4, 5);

Factor III, T : 4, 5, 6, 7, 8 (Levels 1, 2, 3, 4, 5);

Factor IV, L: 2 (just immersed), 11 (half-immersed), 23 (fully-immersed)

(Levels 1, 2, 3);

Factor V, S: 1, 1,5, 2, 2.5, 3 (Levels 1, 2, 3, 4, 5).

Because of the limitation in resources, altogether not more than 40 different set-

tings of factors, that is, 40 runs, were available for this experiment, but the materials

available allowed a large number of repeated trials in each run. Since it is unknown

whether the optimal setting would lie outside the ranges specified in (4.1), the pro-

duction team did not want to risk performing 40 runs in one round, but decided to

run several rounds of experiments sequentially, making a total of not more than 40

runs. It was decided to perform 15 runs in the first round, and use the remaining

25 runs for subsequent rounds. There were 4 factors each having 5 levels, and one

factor having 3 levels. Commonly known designs such as factorial designs or orthog-

onal arrays were not suitable for this experiment – since a 54×3 full factorial design

requires 54×3 = 1875 runs, while a 54×3 orthogonal requires a multiple of 52×3 = 75

runs. With the given numbers of factor, levels and runs, a U15(5
4×3) uniform design

was adopted for the first round of experiment.

The 1st round of the experiment.

A U15(5
4×3) uniform design can be formed by minimizing Dp(P). More con-

veniently, a design which is close to a U15(5
4×3) uniform design can be formed by

combining adjacent three levels of the first four columns in Table 1 to form four

5-level columns, and combining adjacent five levels of the fifth columns to form a
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3-level column. This is shown as follows:

Factors I, II, III, V: 1,2,3 → 1; 4,5,6 → 2; 7,8,9 → 3; 10,11,12 → 4; 13,14,15 → 5.

Factor IV: 1,2,3,4,5 → 1; 6,7,8,9,10 → 2; 11,12,13,14,15 → 3.

Table 2. A U15(5
4×3) uniform design generated

from the U15(155) uniform design in Table 1.

Run Factor
number I (V ) II (F ) III (T ) IV (L) V (S)

1 1 (16) 2 (11) 3 (6) 3 (23) 5 (3)
2 1 (16) 3 (13) 5 (8) 2 (11) 4 (2.5)
3 1 (16) 4 (15) 2 (5) 1 (2) 3 (2)
4 2 (18) 1 (9) 5 (8) 3 (23) 3 (2)
5 2 (19) 2 (11) 2 (5) 2 (11) 2 (1.5)
6 2 (18) 3 (13) 4 (7) 2 (11) 1 (1)
7 3 (20) 5 (17) 2 (5) 1 (2) 1 (1)
8 3 (20) 1 (9) 4 (7) 3 (23) 5 (3)
9 3 (20) 2 (11) 1 (4) 2 (11) 4 (2.5)

10 4 (22) 4 (15) 4 (7) 1 (2) 4 (2.5)
11 4 (22) 5 (17) 1 (4) 1 (2) 3 (2)
12 4 (22) 1 (9) 3 (6) 3 (23) 2 (1.5)
13 5 (24) 3 (13) 1 (4) 2 (11) 2 (1.5)
14 5 (24) 4 (15) 3 (6) 1 (2) 1 (1)
15 5 (24) 5 (17) 5 (8) 3 (23) 5 (3)

The design formed is shown in Table 2, and was adopted as the layout for the

first round of the experiment. The numbers in brackets in Table 2 are the actual

values of the factors.

Because of the equipment used, 5 trays each containing 66 experimental units

were available for each run. The numbers of accepted LCD’s (“good cells”) obtained

from each tray in the 15 runs in the first round of the experiment are shown in Table

3, which shows that Run 1 produced perfect result, and Runs 8 and 12 produced

reasonably good result.
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Table 3. Results of the 1st round.

Run Tray
number 1 2 3 4 5 Mean S.D.

1 66 66 66 66 66 66 0
2 33 36 36 36 51 38.4 7.16
3 36 36 45 39 45 40.2 4.55
4 45 54 51 60 54 52.8 5.45
5 45 54 54 51 54 51.6 3.91
6 33 36 33 36 36 34.8 1.64
7 0 6 6 12 9 6.6 4.45
8 54 66 63 66 66 63.0 5.20
9 30 30 54 45 45 40.8 10.52

10 33 45 57 54 57 49.2 10.31
11 21 30 33 36 33 30.6 5.77
12 60 60 66 66 66 63.6 3.29
13 21 45 45 42 45 39.6 10.48
14 18 21 27 27 30 24.6 4.93
15 30 36 33 42 48 37.8 6.50

Figures 4 and 5 show the boxplot and the main effect plot, respectively, of the

outcome of the first round. In the good runs, Runs 1, 8 and 12, L was at the

highest value 23, which agreed with Figure 5 which shows that the yield increased

as L increased. Although Figure 5 shows that the lowest value of F gave the highest

yield, the value of F in the best run, Run 1, was set at 11 which was not the lowest

value. This indicated existence of interactions among factors.

In the best run, Run 1, V was set at the smallest value 16. In production,

the vacuum time V and the flooding time F significantly affect the production rate,

since the smaller V and F , the shorter the cycle time and the higher the production

rate. It was decided that a 2nd round of experiments should be performed to further

investigate whether V and F could be reduced to beyond their lower boundaries (16

and 9, respectively) of their ranges in (4.1) and yet still produced the same high yield.

The 2nd round of experiment.
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Basically, the levels of the best run, Run 1, was used as the centre in setting up

the design for this round of experiment. However, since factor F showed a decreasing

main effect in Figure 5, the level for this factor was set on the low side, hoping to

obtain a good design that has a small value of F . Also, since factor S did not show

a strictly increasing or decreasing effect over the entire range 1 ≤ S ≤ 3 in Figure 5,

this whole range was in this design in order to better investigate the effect of S.

Since factor L shows an increasing main effect on Figure 5, which agrees with

the engineering intuition that a higher level of LC would produce better filling effect,

L was fixed at 23 (which was its value in Run 1) so that this round of experiment

can be performed with a smaller number of runs. Three levels were chosen for each

of V , F , T , and S, as shown below:

Factor I, V : 12, 16, 20 (Levels 1, 2, 3);

Factor II, F : 7, 9, 11 (Levels 1, 2, 3);

Factor III, T : 5, 6, 7 (Levels 1, 2, 3);

Factor IV, L: 23 (fixed);

Factor V, S: 1, 2, 3 (Levels 1, 2, 3).

For such a selection of levels, a 34 orthogonal array (which requires 3×3 = 9

runs) was used. The setup is shown in the first 6 columns of Table 4. The results

are shown in columns 7 to 13 of Table 4. The boxplot and the main effect plot are

shown in Figure 6 and 7, respectively.
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Table 4 shows that the only run with good yield (mean 65.9) was Run 24, which

unfortunately had the largest value V = 20 for vacuum time, although F was in the

middle range.

Both Figure 5 and Figure 7 shows that the main effect of T gave the best yield

at T = 6, which agreed with the fact that T = 6 or 7 in the best three runs in the

1st round (Runs 1, 8, 12) and the best run in the 2nd round (Run 24). Therefore,

T = 6 was fixed in the next round of experiment in order to reduced the number of

runs.

Table 4. Results of the 2nd round.

Run Tray
number V F T L S 1 2 3 4 5 Mean S.D.

16 12 7 5 23 1 51 61 60 56 66 58.8 5.63
17 12 9 6 23 2 56 62 61 63 61 61.0 1.87
18 12 11 7 23 3 57 59 57 62 62 59.4 2.51
19 16 7 6 23 2 61 63 63 66 66 63.8 2.17
20 16 9 7 23 3 57 60 60 66 66 61.8 4.02
21 16 11 5 23 1 46 60 57 63 60 57.2 6.61
22 20 7 7 23 3 57 60 63 60 66 61.2 3.42
23 20 9 5 23 1 66 66 62 57 63 60.0 5.52
24 20 11 6 23 2 65 65 66 56 66 65.9 0.45

The 3rd round of experiment.

In this round of experiment, emphasis was focused on investigating the effects

by varying V and F . The factors T and S were fixed at 6 and 2, respectively. The

levels of factors were set as follows: Factor I, V : 12, 14, 16, 18, 20, 22 (Levels 1, 2,

3, 4, 5);

Factor II, F : 7, 9, 11 (Levels 1, 2, 3);

Factor III, T : 6 (fixed);

Factor IV, L: 23 (fixed);

Factor V, S: 2 (fixed).
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The setup and the observed results are shown in Table 5. The 25th – 32nd runs

form a 3×3 full factorial designs on V and F apart from the missing run (V, F ) =

(20, 11) which was already performed as Run 24 in the 2rd round of experiment.

Runs 33 – 36 were set in an ad hoc manner. Runs 33 and 34 were set for small V ,

while Run 35 was set for large V in order to investigate the effect of large V on the

outcome. Run 36 was intended for investigating whether the total cycle time for the

1st run (the best run obtained) can be reduced by reducing F and S. The boxplot

and the main effect plot are shown in Figures 8 and 9, respectively. Runs 28, 29, 30

and 35 gave good results, while Run 30 was the best in this round. The results of

this round did not provide any clue for reduction of cycle time.
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Table 5. Results of the 3rd round.

Run Tray
number V F T L S 1 2 3 4 5 Mean S.D.

25 14 7 6 23 2 55 57 60 58 59 57.8 1.92
26 14 9 6 23 2 58 62 62 63 63 61.6 2.07
27 14 11 6 23 2 60 61 61 62 63 61.4 1.14
28 18 7 6 23 2 62 62 66 63 66 63.8 2.05
29 18 9 6 23 2 64 63 63 66 66 64.4 1.52
30 18 11 6 23 2 65 66 66 66 65 65.6 0.55
31 20 7 6 23 2 59 62 62 64 66 62.6 2.61
32 20 9 6 23 2 57 61 63 63 66 61.8 3.03
33 12 7 6 23 2 48 51 55 59 61 54.9 5.40
34 12 11 6 23 2 58 58 60 59 60 59.0 1.00
35 22 11 6 23 2 65 66 64 66 66 65.4 0.89
36 16 9 6 23 2 59 61 62 64 64 62.0 2.12

The 4th round of experiment.

In this round, only one run set at (V, F, T, L, S) = (12, 11, 6, 23, 4) was performed.

The purpose was to investigate whether the vacuum time V = 16 in the best run,
18



Run 1, can be reduced to 12 at the expense of increasing the soaking time S. The

result is negative, as shown in Table 6. Due to scarcity of material, only four trays

were used in this round. Since the yield was not high, the result did not provide any

clue for achieving high yield under reduction of cycle time.

Table 6. Results of the 4th round.

Run Tray
number V F T L S 1 2 3 4 Mean S.D.

37 12 11 6 23 4 56 59 58 58 57.3 1.50

The 5th round of experiment.

In this final round, based on the setting of the best run obtained so far (Run 1),

two runs were performed with a low value of V combined with a medium value of

F , and a medium value of V combined with a low value of F in order to investigate

whether good yield could be obtained when either the flooding time or vacuum time

is reduced. Due to scarcity of material, only four trays were used in this experiment.

The results are shown in Table 7. The results again gave no clue to obtaining high

yield under reduction of cycle time.

Table 7. Results of the 5th round.

Run Tray
number V F T L S 1 2 3 4 Mean S.D.

38 14 11 6 23 3 66 62 62 64 62.0 1.63
39 16 9 6 23 3 59 61 63 62 61.3 1.71

Findings of the five rounds of experiment showed that Run 1 (1st round), Run

24 (2nd round) and Run 30 (3rd round) were the best among all. These runs have

the same value of F , the same value of T , and the same value of L, as shown in Table

8. Comparing these three runs, Run 1 has the largest mean, and smallest standard

deviation, and most importantly from production point of view, the smallest value of
19



V which gives the shortest cycle time. Therefore the settings of Run 1 was adopted

in future production. The filling yield (100% minus the reject percentage in %) of

20 production cycles using Run 1 are shown in Figure 10, which indicates that the

target of ≤ 1% reject percentage was achieved, and therefore the problem of high

reject percentage in production was solved.

Table 8. The best three runs.

Run
number V F T L S Mean S.D.

1 16 11 6 23 3 66 0
24 20 11 6 23 2 65.9 0.45
30 18 11 6 23 2 65.6 0.55
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5. Discussion and conclusion.

Design of experiments is a useful tool for exploring the dependence relationship

of the response on various possible contributing factors. When traditional designs

such as factorial designs or orthogonal arrays are used, the total number of runs

required is sometimes larger that can be accommodated in an experiment, even for

a moderate number of factors and a moderate number of levels of the factors. In

such a situation, uniform designs is a possible alternative. The uniform design is a

type of design which has its experimental points scattering uniformly over the entire

design space, and thus is ideal for exploratory prediction of the response when the

form of the response surface is unknown. Using a uniform design, the experiment can

be completed in a much smaller number of runs, even when the number of factors

and the levels of factors are both large. Uniform designs can also be used when the

number of runs available is large. A uniform design is constructed by minimizing a

discrepancy. Different discrepancies have been defined and studied in detail, some

convenient computational formulas are available, and tables for uniform designs are

available on the web site www.math.hkbu.edu.hk/UniformDesign.

In this article, an example is presented to illustrate how a uniform design was

used in an experiment to improve product quality in the manufacture of liquid crystal

displays. The first round of experiment was performed using a uniform design, in

which a combination of levels of factors that produces very good result was obtained

in 15 runs. In order to further improve the result by reducing the cycle time of

production, subsequent runs were performed using factorial designs. After a total of

39 runs, the best combination of levels of factors found was still the one obtained in

the first round using uniform design, and this setting was adopted by the production

term for mass production. Subsequent production data show that with this setting,

the reject percentage stays below the target of 1%, and the high reject percentage
21



problem in production was solved. However, based on the findings so far, it still

unknown whether the reject percentage can be further reduced by adjusting the

present setting of the factors, and whether good results can still be obtained at a

higher production rate by decreasing the “vacuum time” and the “flooding time”.

Nevertheless, in the industry, there is always a trade-off between the amount of

resources invested and the expected results. Although the high reject percentage

problem is now solved, the production team still looks forward to further studying

the process and continuously improving production quality and efficiency, should

resources be available in the future for additional experiments.

Application of design of experiment has been popular in industries, since it was

strongly advocated by G. Taguchi in the 1970’s. In many cases, factorial designs

and orthogonal arrays are used. This article reports an application of uniform de-

sign, as an alternative to factorial design and orthogonal array. Although many new

theoretical results involving uniform design are obtained only recently and uniform

design is still not as widely used as some other designs, the successful example in

this article and many other successful examples obtained elsewhereee indicate that

uniform design is as powerful as traditional designs (such as orthogonal arrays) but

is more flexible in terms of the number of runs, and more wide-spread use of it will

certain benefit industries.
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