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Abstract. This paper presents a method for automatically estimating
the quality of Parasternal Long AXis (PLAX) B-mode echocardiograms.
The purpose of the algorithm is to provide live feedback to the user on
the quality of the acquired image. The proposed approach uses Gen-
eralized Hough Transform to compare the structures derived from the
incoming image to a representative atlas, thereby providing a quality
metric (PQM). On 133 PLAX images from 35 patients, we show: 1)
PQM has high correlation with manual ratings from an expert echocar-
diographer 2) PQM has high correlation with contrast-to-noise ratio, a
traditional indicator of image quality 3) on images with high PQM, error
in automatic septal wall thickness measurement is low, and vice versa.

1 Introduction

Standard views in transthoracic echo are well established. But, quality of images
and correct tomographic planes for accurate clinical interpretation and measure-
ments are dependent on operator skills. Algorithms that can automatically detect
quality of ultrasound images have tremendous potential to 1) standardize imag-
ing 2) reduce scan time for users by providing real-time feedback, and 3) provide
automatic mechanism to reject data of poor quality.

Assessment of image quality prior to complex post-processing is common in
the field of human identification using biometric data [1]. Our contribution ex-
tends this philosophy to medical ultrasound images. Note that our work is dif-
ferent from image quality testing of imaging systems [2] in that we propose an
approach to compute image quality during live imaging rather than on phan-
toms.

We propose an algorithm to automatically determine the quality of Paraster-
nal Long AXis (PLAX) B-mode echocardiograms. At the right scan plane, and
with optimal instrument settings, the long axis of the left ventricle is oriented
horizontally in a standard PLAX view (See Fig. 1(a)). The posterior wall, the
pericardium and the septum are approximately parallel to each other. Any devi-
ation from this is a result of an incorrect acquisition or sub-optimal instrument
settings. For example, the poor quality image shown in Fig. 1(b) could be due
to sub-optimal instrument settings such as gain, dynamic range, or time-gain
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Fig. 1. Examples of good (a) and bad (b,c,d) quality Parasternal Long Axis (PLAX)
images. Key: LV - left ventricle, MV - mitral valve, PW - posterior wall.
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Fig. 2. Flow chart illustrating the proposed methodology to compute the quality metric

compensation. The non-parallel septum and pericardium in Fig. 1(c) tells us
that the imaging plane did not pass through the center of left ventricle. In Fig.
1(d), the pericardium is missing, thereby, complicating the measurement of the
thickness of posterior wall and diagnosis of pericardial effusion.

The intuition behind our algorithm is to check for the presence of three promi-
nent tube-like structures corresponding to septum, mitral valve and pericardium.
As visualized in Fig. 2, the proposed approach comprises of the following three
steps. 1) A pre-processing step that enhances the contrast of thick tube-like
structures. 2) A global thresholding step, that outputs a binary image which
includes the three structures of interest: septum, mitral valve and pericardium.
3) A search algorithm based on Generalized Hough Transform (GHT) [3] [4],
that best matches a pre-defined atlas with the binary image. The GHT outputs
an accumulator image, whose maximum value is output as the PLAX Quality
Metric (PQM).

2 Methodology

In the following, we present an algorithm that searches for septum, mitral valve,
and the pericardium, and outputs PQM, which is indicative of how prominently
these structures appear in the image.

Contrast Enhancement and Segmentation: As noted by Boukerroui et
al. [5], segmentation algorithms based only on global information such as thresh-
olding techniques, intensity dependent clustering and edge detection schemes
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give poor results on ultrasound images. The reason being, the echo amplitude
varies according to the orientation of the reflected structure and the image set-
tings such as gain, dynamic range, or time-gain compensation. This is commonly
referred to as the intensity inhomogeneity problem.

To mitigate intensity inhomogeneity, we filter the input echo image using
Frangi vesselness filter [6] to obtain an intermediate image as shown in Fig.
2(b). The filtered image has less intensity inhomogeneity, and we have observed
that global thresholding schemes are more successful on this intermediate rep-
resentation.

Frangi’s vessel enhancement filter is based on the eigen analysis of the Hessian
matrix of image intensity at each pixel location of the image. The eigen analysis
of the Hessian directly gives the direction of smallest curvature (along the tubular
structure). The mutual magnitude of eigenvalues is indicative of the shape of
the underlying object. Frangi et al. noted that if a pixel were to lie on a tubular
structure, then, one of the eigenvalues has much higher magnitude than the
other. If the pixel was from a background region, then both eigenvalues will
have low magnitudes.

Let λ1 and λ2 denote the two eigenvalues the Hessian Ho,s, computed at scale
s at pixel xo. Frangi et al. propose the following equation to obtain a vesselness
image (V).

Vo =

{

0 if λ2 > 0
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Here RB = λ1/λ2, S =
√

λ2
1 + λ2

2, β and c are constants which we set to 1 and
0.5, respectively. We experimentally observed that by thresholding V at 0.02,
one obtains a binary image as illustrated in Fig. 2(c).

Commonly, depth parameter of the echocardiogram is set such that the peri-
cardium is at the bottom of the image for PLAX images. We resized all PLAX
images to 50 × 50 pixels, and we noted that the thickness of pericardium, mi-
tral value, septum does not vary much. Therefore, we chose to detect vessels at
one scale (s = 6 pixels). Although vascular enhancement at multi-scales might
produce better images, we chose a single scale to reduce the processing time.

Note that the underlying theory behind this preprocessing step is not specific
to vessels. A popular extension of Frangi’s technique by Antiga [7] is capable of
enhancing contrast of blob-like and plate-like structures.

Generalized Hough Transform (GHT): It is essentially a method to detect
the presence of an arbitrary object (described with its model/atlas) in a binary
image [3] [4]. In our case, the atlas is illustrated in Fig. 3(b), and the image
to be searched for is the binary image obtained after thresholding the Frangi
vesselness image (Fig. 2(c)).

The GHT uses a lookup table that encodes the relationship between the atlas
and the Hough parameters. This lookup table is called the R-Table, and the
Hough parameters, r, and α are computed during the training phase. See Algo-
rithm 1 for details. The parameter r encodes the distance between a pixel and
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Algorithm 1. GHT-based training

Input: Binary training image (atlas) of size m× n: I
Input: Reference point {(xc, yc) | 1 < xc < m, 1 < yc < n}
Output: R-table: R
foreach x = {(x, y) | I(x) = 1} do

Compute following parameters:
r =

√

(xc − x)2 + (yc − y)2

α = atan2 (yc − y, xc − x).
gradient direction φ

φ = arctangent

(

∂It/∂y

∂It/∂x

)

R(φ) ← (r, α)
end

the reference point (which is chosen arbitrarily within the image). The parame-
ter α encodes the angle, in radians, between the positive x-axis and the vector
spanning a pixel and the reference point. During the matching phase, as shown
in Algorithm 2, one attempts to find the most probable location of the atlas on
a test image. The accumulator A is a 2D array that holds the votes received for
the most probable location of the reference point. The pixel with the maximum
intensity in A is the most probable location of the reference point. The maximum
value of A is output as PLAX Quality Metric (PQM).

Although correlation based techniques [8] are a viable alternative to GHT-
based matching, the choice of GHT was based on the interest in speeding up
the search procedure. If the atlas and the segmented image have n pixels, then
the correlation based procedure, in spatial domain, has the complexity O(n2).
In contrast, the GHT-based procedure has the complexity O(m2) (m << n),
where m is the number of white pixels in atlas and the segmented image.

PLAX Atlas: As mentioned above, GHT matching procedure (Algorithm 2)
uses an atlas that defines the structures of interest in PLAX images. The atlas
was generated via the following steps.

1. Manual segmentation of the regions of interest in PLAX images. An example
is shown in Fig. 3(a).

2. Average representation of the structures of interest was obtained using
Shape-Based Averaging (SBA) algorithm [9].

Several independent binary images result from the manual segmentation process,
which must be somehow combined into a single final segmentation. Majority
voting is the generally used rule to fuse the segmentations, but better methods,
such as SBA, have been proposed. SBA consists of averaging Euclidean distance
maps computed for all structures for each candidate manual segmentation. The
method was shown to keep structure regularity and contiguity better than ma-
jority voting. From 89 manually segmented frames, we obtain a PLAX atlas as
illustrated in Fig. 3(b).
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Algorithm 2. GHT-based matching

Input: Binary test image of size k × l: It

Input: R-table (output of Algorithm 1): R
Output: PLAX quality metric: PQM
A(xc, yc) ← 0:∀xc ∈ {1. . . k}, ∀yc ∈ {1. . . l}
foreach x = {(x, y) | It(x, y) = 1} do

Compute gradient direction φ

φ = arctangent

(

∂It/∂y

∂It/∂x

)

Using φ, retrieve corresponding (r, α) values from R
foreach (r, α) do

Compute candidate reference points:
xc = x+ rcos(α)
yc = y + rsin(α)
Increment accumulator (voting):
A(xc, yc) = A(xc, yc) + 1

end

end

PQM = max
xc∈[1. . . k],yc∈[1. . . l]

A

SBA 

(a) 

(b) 

Fig. 3. A total of 89 manually segmented images (a) belonging to distinct patients
were used to obtain the PLAX atlas (b)

3 Results

A total of 35 subjects with varied clinical background, normal chamber dimen-
sions and normal systolic function underwent routine echocardiography (com-
mercially available Vivid 7, GE) with electrocardiogram gating. The patient
data used in our validation included normal and hypertrophic patients. The
data was acquired by both echo-cardiologist and an echo-technician at a clinical
site. PLAX images with 3 cardiac cycles were analyzed by an expert sonographer
for grading image quality.

Comparison with Manual Ratings: The purpose of this experiment was to
verify whether PQM correlates with an expert echocardiographist’s ratings. The
expert manually rated the quality of septum, mitral valve and pericardium on 133
PLAX echocardiograms belonging to 35 patients. Each of these components was
given a rating between 0 and 3, with 0 signifying poor visibility and 3 signifying
good visibility. The final manual score for an image was obtained as the average
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Fig. 4. Comparison with Contrast-to-Noise ratio. Scatter plot between Contrast-to-
Noise (CNR) ratio and PQM. Scatter plot between error in septum thickness measure-
ment and PQM.

of the individual scores. Thus, the manual score for an image varies between
0 and 3. To facilitate comparison with automatic ratings, we applied min-max
normalization to the automatic ratings such that the value of PQM is between
0 and 3. Fig. 4(a) shows a plot between manual rating and PQM. As observed,
PQM seems to correlate well (Pearson’s correlation coefficient, ρ = 0.84) with
an echocardiographist’s manual ratings.

Comparison with Contrast-to-Noise Ratio: Contrast-to-noise ratio (CNR)
has been traditionally used in medical imaging community to quantify the quality
of acquired images. This metric removes the subjectivity factor from the manual
ratings. CNR measures the ability to distinguish between an object of interest

and its surroundings. The CNR can be defined as: CNR = |µo−µs|
σ

. Here, µo

and µs are the mean pixel intensities in the object and surrounding regions,
respectively. The quantity σ is the standard deviation of the intrinsic noise of
the imaging system.

Using manual segmentations of septum, mitral valve and pericardium (See
Fig. 3(a) for an illustration), we obtained masks over the regions of interest, and
thus, we could compute µo for each image. The immediate surrounding areas of
the mask were used to compute µs. The noise parameter, σ, can be effectively
ignored for our experiments because all the images were acquired using the same
ultrasound machine.

On 133 PLAX echocardiograms, the CNR metric and the PQM were com-
puted. The results are shown as a scatter plot between the two quantities in Fig.
4(b). We observed a Pearson’s correlation coefficient, ρ, of 0.83.

Comparison with Error in Septum Thickness Measurement: Subrama-
nian et al. [10] proposed a snakes-based approach that automatically measures
septal wall thickness according the existing clinical guidelines [11]. In an at-
tempt to verify if PQM can be used to predict accuracy of septal wall thickness
measurement algorithm, we visualized the error in thickness measure and PQM
as a scatter plot in Fig. 4(c). We observed that on images with low PQM, the
probability of error in septum thickness measurement will be high and vice versa.
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Fig. 5. PQM, illustrated as vertical bars, computed on few test images. The height of
the bar is proportional to PQM. Note that PQM is low for (a), (b), and (c), which repre-
sent the bad quality PLAX images illustrated in Fig. 1. As the anatomical components
of the heart become progressively more visible, PQM increases.

Thus, one could deploy automatic segmentation algorithms only when PQM
is greater than a preset threshold, thereby, providing an upper bound on the
segmentation error.

Visual Assessment of PQM: Fig. 5 visualizes PQM as vertical bars. The
height of the bar is proportional to the PQM computed for an image. Typical
poor quality PLAX echocardiograms are shown in sub-figures (a), (b) and (c).
The contrast between the blood pool and the structures of interest is low in (a).
Pericardium is not visualized in (b). Sub-figure (c) illustrates the case where
septum and pericardium are not parallel to each other, and this signifies an
incorrect scan plane. Note that PQM is low for all three cases. For images with
better quality, one sees an increase in PQM.

4 Conclusions and Discussion

In this paper, we proposed a solution to the previously unstudied problem of
computing a quality metric for Parasternal Long AXis (PLAX) view echocardio-
grams. Our algorithm checks for the presence of expected anatomical structures
in a PLAX image (Septum, mitral valve and pericardium) using Generalized
Hough Transform (GHT). Based on the evidence GHT accumulates during the
search, we output PQM that seems to correlate well with an expert’s rating and
CNR metric. We also observe that for images with high PQM, error in septum
thickness measurement algorithm decreases.

Because the expected structures in a PLAX image are relatively large, we
observed that we could subsample the image to 50× 50 pixels, and still see the
structures of interest. At this resolution, we could obtain a processing speed of
35 frames a second in a Intel i7 2.67 GHz processor. The implementation was
done in C++ using the Insight Segmentation and Registration Toolkit [12]. The
results illustrated in this paper have been performed by resizing images to 50×50
pixels.
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The proposed quality metric is the first step in guiding the user into acquiring
the right scan plane. The user will receive real-time feedback to the acquired
image, thereby, motivating the user to acquire a better quality image. Although,
the proposed method is specific for PLAX images, we perceive easy extension to
other anatomies using an appropriate atlas and a suitable contrast enhancement
technique.
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