
JOURNAL OF OBJECT TECHNOLOGY
Online at www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2002

Vol. 1, no. 4, September-October 2002

Cite this article as follows: Francisca Losavio. Standard quality model to design software
architecture, in Journal of Object Technology, vol. 1, no. 4 September-October 2002, pages 165-
178. http://www.jot.fm/issues/issue_2002_09/article4.

Quality Models to Design Software
Architecture*

Francisca Losavio, Central University of Venezuela, Caracas, Venezuela

Abstract
Quality requirements, captured in general as nonfunctional requirements in the early
steps of software development, influence greatly the software system’s architecture.
However, also the system’s core abstractions which are functional requirements, play
an important role in the definition of the initial architecture. The importance of
architectural design has grown rapidly in the last few years, since the need for reliable
evolutionary systems and component-based development has increased. The goals of
this work are to briefly discuss several architectural design approaches and to propose
a systematic way of specifying the relevant quality attributes involved in the
architectural design process. The evaluation of these attributes is the base of the
architectural transformation process, allowing the incremental adaptation of the initial
candidate architecture. This initial candidate, selected on some key functional
requirements of the system, is adapted (transformed or refined) in the design process
to fulfill the established quality goals. The SQUID (Software QUality In the
Development process) approach, based on the standards ISO 9126-1 and ISO 14598-
3, is used to define the quality model corresponding to the architecture and the
development process model. These models will be constructed for Bosch architectural
design method, which has been selected has a case study for offering very precise
guidelines on the architecture transformation process. However, our approach could be
easily integrated in other development process frameworks, like for example the
Rational Unified Process, customizing the architectural construction process. We feel
that the application of this approach is a step forward towards the systematization and
improvement of the architectural design process, with built-in quality issues.

*This work has been developed as a result of the European Community INCO SQUAD Project EP 962019 and the Consejo de
Desarrollo Científico y Humanístico (CDCH) of the Central University of Venezuela, ARCAS project 03.13.4584.00

1 INTRODUCTION

The main goal of this work is to propose an improvement of the architectural design
process by applying an ISO-based approach to quality, the SQUID approach [Bøegh et

http://www.jot.fm
http://www.jot.fm/issues/issue_2002_09/article4

STANDARD QUALITY MODEL TO DESIGN SOFTWARE ARCHITECTURE

166 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 4

al.99] for quality specification, planning, control and evaluation, and the modeling of the
software measurement supporting the activities to ensure software quality. In this work
we use SQUID mostly for quality specification. In order to apply our approach, we will
discuss several methods for architectural design and use one of them as a case study.

An important aspect of architectural design is that, on one hand quality
requirements influence greatly the software architecture. On the other hand, the different
requirements have to be “balanced” during the design process. Only recently the
importance of an explicit design of software architecture has grown up considerably
[Shaw,Garlan96], [Bosch00], [Jacobson et al.99] for the construction of reliable
evolutionary systems. Modern applications involving distribution, portability,
interoperability, component reusability and real-time approaches require an early
definition of the system architecture in order to fulfill nonfunctional requirements, such
as maintainability and reliability, which are crucial for the achievement of the overall
functional purpose of the software system under construction. Nonfunctional
requirements may appear during the functional requirements elicitation, but there are no
explicit guidelines on how to capture them in standard object-oriented methods. Software
architecture design should not be considered as an independent activity, but a step further
in the development and evolutionary process of software products.

The Rational Unified Process (Inception and Elaboration phases)

General frameworks for software process development, such as the Unified Process (UP)
[Jacobson et al.99] defined by Rational Software (RUP) [Krutchen00] presents general
guidelines in this sense. The architecture is developed over iterations during the inception
and the elaboration phases. The UP models can be modified in each iteration and the
architecture is incrementally constructed. The architectural description contains views of
the different models of the system, use case, analysis, design, implementation and
deployment models. These different views of the models are organized in five main
views [Krutchen00]. The central view is the Use case view, containing the key use cases
constituting the core abstractions of the system, which are used in the Inception phase to
select a candidate architecture. The Use case Model offers this view. The Logical view
addressing the functional requirements, is an abstraction of the Design Model for
identifying subsystems, classes, major packages. The Process view addresses concurrent
aspects of the system at runtime, threads or processes, fault tolerance, response time and
distribution issues. It is concerned with scalability. The Design Model is also used to
describe these nonfunctional aspects. The Implementation View describes the components
(source code) and other artifacts of the development environment. Finally the
Deployment view describes how the various executable and other runtime components are
mapped to the underlying platforms or composing physical nodes. The Deployment
Model offers this view. The basic guidelines for constructing the architecture do not go
deep into the details of how to select the core abstractions or how to specify the
nonfunctional requirements. Since one of the main features of UP is to be use case
centered, use cases are used to define the system’s main components at a high level of
abstraction, constituting the initial system’s architecture, based on these main system’s
functionality or core abstractions. However, how to specify these nonfunctional

Introduction

VOL. 1, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 167

requirements by means of the use cases, which are intended for capturing functional
requirements, is not explained in details. A bad selection of the key use cases at this stage
could compromise the whole software project. The Test Model is used to evaluate the
architecture, but how to design the part of the Test model corresponding to check the
architectural behavior against the established quality goals is left to the software engineer
team customizing the UP.

Few traditional software development methods deal explicitly with quality
architectural design. Few object-oriented methods propose to use explicitly the use case
for nonfunctional requirements specification, such as Larman’s method [Larman99] and
Whitten’s adaptation of Jacobson’s approach [Whitten,Bentley01]. The approaches that
will be discussed below are specific for architectural design, and could be included in
general process frameworks.

The Bosch Method

Jan Bosch method [Bosch00] considers the design of software architectures taking
account of the quality requirements from the early stages of development. The
architectural design process, seen as an optimization problem, is viewed as a function
taking as input the functional requirements specification and generating as output the
architectural design. In the first step, a first version of the architecture is produced, not
accounting for the quality requirements. Then, this design is evaluated with respect to the
quality requirements. Each quality attribute is given an estimated value. These values are
compared with the values of the quality requirement specification. If all the values are as
good or better than required, the architectural design process is finished. Otherwise, a
second step transforms the initial architecture, during which, quality values for some
attribute improve. This design is again evaluated and the same process is repeated, if
necessary, until all quality requirements are fulfilled or until the software engineer
decides that there is no feasible solution. In this case the software architect needs to
renegotiate the requirements with the customer. Each transformation (quality attribute-
optimizing solution), generally improves one or some quality attributes, affecting others
negatively. This method requires a formal or semi-formal specification of the
architecture, for example using an ADL (Architecture Definition Language)
[Shaw,Garlan96]. In this case a simulation of the runtime behavior of the architecture is
possible.

The ABD method

ABD (Architecture Based Design) method [Bachmann et al.00] provides a structure to
produce the conceptual architecture of a system. The conceptual architecture describes
the system being designed in terms of the major design elements and the relationships
among them [Hofmeister et al.00]. It represents the first design choices made during the
development process, crucial to provide a basis for the achievement of the desired
functionality. ABD determines the architectural drivers for a system. They are the
combination of business, quality and functional requirements that influence the

STANDARD QUALITY MODEL TO DESIGN SOFTWARE ARCHITECTURE

168 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 4

architecture. The ABD design activities begin as soon as the architectural drivers are set.
This does not mean that the requirements elicitation, specification and analysis do not
have to be completed, only that they can go in parallel with design activities. There are
applications where it is not possible to determine in advance all the requirements, such as
long-lived systems or product lines, hence the possibility of quickly start to design is
important. ABD is founded on the following elements:

1. Functional decomposition using coupling and cohesion.
2. Realization of quality and business requirements through the choice of an

architectural style.
3. Use of software templates to describe a software system of a particular type. It

describes how all the elements of the type must interact with shared services and
infrastructure. It describes responsibilities that pertain to all elements of that type.

For the second element, the realization of quality and business requirements, the ATAM
(Attribute Tradeoffs Analysis Method) [Kazman et al.98] could be used. In this point, it is
similar to the Bosch method, and it is proposed as a technique for understanding the
tradeoffs points or dependencies among the attributes, inherent to architecture evaluation.
It provides a way to evaluate software architecture’s fitness with respect to multiple
competing quality attributes. Since these attributes interact, the method helps to reason
about architectural decisions that affect quality attribute interactions. ATAM follows a
spiral model of design, postulating candidate architectures followed by analysis and risk
mitigation, leading to refined architectures. The structure used for helping the reasoning
is based on the ABAS (Attribute-Based Architectural Style) [Klein,Kazman99], which
considers only one relevant attribute at a time. A quality model for the attribute is
constructed. The reason claimed for using separate or concurrent analysis, is to allow
individual attribute experts to bring their expertise independently. We differ from this
point of view and we think that a global quality attribute model will facilitate a better
picture of the quality model and corresponding measures of the attributes [Losavio et
al.02]. This aspect will be discussed further in the subsequent section.

Discussion on the architectural design methods

It can be appreciated that Bosch and ABD method are similar in the early steps (ATAM
nearly corresponds to step 2 of Bosch method [Bosch00], [Losavio,Chirinos99].
However, one of the major differences between these approaches is that Bosch method
includes concrete guidelines on how to transform or refine the architecture in order to
meet the quality requirements. ABD uses functional decomposition to arrive to the
software templates. Quality (and also functional and business) requirements are used to
verify the decisions taken during the decomposition Nevertheless neither ABD nor Bosch
method propose a particular approach to construct a global quality model in order to
arrive to the precise measurements of the quality attributes [Losavio et al.02]. The RUP
approach to architectural design is embedded in a generic process framework that can be
easily customized to any of Bosch or the ABD methods [Losavio,Chirinos00]. On the
other hand, RUP and Bosch method coincide on the fact that the initial architecture must

Introduction

VOL. 1, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 169

be selected on functionality basis, i.e. the core abstractions of the system. This initial
rough architecture is then transformed in the architectural design process. Moreover, RUP
considers the tradeoffs that are ATAM’s main points, in the Test Model.

The following general principles of architectural design are proposed [Losavio et
al.00] to synthesize the main activities of the architectural design methods discussed
above.

1. Start with functional requirements
2. The nonfunctional (quality and business) requirements are captured
3. The design strategies can be based on reusable architectural styles or patterns
4. The architecture is designed by successive transformations

This work proposes an improvement of the architectural design process by applying an
ISO-based approach to quality, the SQUID approach [Bøegh et al.99] for quality
specification. We have had a nice experience in applying SQUID to an object-oriented
method for interactive systems development [Losavio,Chirinos99], OOMGRIN (Object-
Oriented Method for GRaphical user-INterface development) [Losavio,Matteo97]. After
having applied directly ATAM’s ABAS structure, we have proposed and used an
extension of the structure, defining ISO 9126 [ISO98] quality models customized to
interactive systems and to real-time applications [Losavio et al.00], respectively. This
approach offers a better global picture of the quality attributes enriching the quality
analysis step, allowing defining quantitatively the quality attributes. In this paper we will
apply the SQUID approach to Bosch architectural design method, in order to specify the
quality requirements, since it offers more precise guidelines for the architectural
transformation process.

The structure of the paper, besides this introduction containing a survey on several
known architectural design approaches, is the following: the second section describes
briefly the SQUID approach. The third section discusses as a case study the use of the
SQUID method for modeling Bosch’s architectural design process. A quality model
based on ISO 9126 is defined for software architecture, focused as a sub product of the
design in the development process. Finally, in the conclusion the future work will be
explored.

2 THE SQUID APPROACH

SQUID (Software Quality in the Development Process) [Bøegh et al.99] allows the
specification, planning, evaluation and control of software quality through the software
development process. Quality is defined as the operational behavior of a product required
by its users. It offers a method and a tool supporting the method, both called SQUID. It
uses external and internal quality measures defined in ISO 9126. External measures
measure the quality characteristics in terms of the product’s operational behavior. Internal
measures can be collected during the product development process, to monitor and

STANDARD QUALITY MODEL TO DESIGN SOFTWARE ARCHITECTURE

170 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 4

control the final product quality. Characteristic is a term used to define abstract properties
that cannot be directly measured. Attributes instead, refer to directly measured properties.
SQUID allows the organization to customize the quality model, based on the ISO 9126
and ISO 14598 [ISO98a], to the particular domain of the software applications to be
constructed. The organization must define precisely the development process that has to
be used in order to achieve the established quality requirements for the particular
applications, contributing to the process improvement. In our case, this aspect is crucial,
because we want to define a quality design process to build a solid baseline for the
software architecture. SQUID supports the activities for quality specification, planning,
control and evaluation and the modeling the software measurement that support these
activities. This measurement approach is called configuration and is the SQUID step that
will be used in this work.

Configuration step

1. Model the development process
• The product portions or components are identified, establishing the

requirements for each portion, until the attributes level.
• Specification of the development model in terms of the project objects types:

deliverables, development activities, review points
2. Specify the ISO 9126 quality model

• Specification of the quality model in terms of the model elements: quality
characteristics, external or internal quality sub-characteristics, quality
attributes (directly measurable). The hierarchical link between characteristics
and sub-characteristics is automatically established by the SQUID tool

3. Specify the measures
• Specification of the units or data elements used to measure quantifiable

attributes (not all the attributes are quantifiable)
• Specification of the attribute values. These can be obtained by direct

measurement, or defined as targets or estimates
4. Collate the models

• Specification of the counting rules defining the condition under which a
measure is obtained

• Link the project objects quantified by a measurable attribute
• Assignment of each internal attribute of the quality model to an appropriate

project object type of the development model, associating a unit and counting
rules to each attribute.

Case Study: Squid Configuration Applied to Bosch Method

VOL. 1, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 171

3 CASE STUDY: SQUID CONFIGURATION APPLIED TO BOSCH
METHOD

In the architectural design process, the architecture will be considered the product to be
constructed. Hence, the quality requirements for the architecture (product) must be
established. Since the architecture depends greatly on the problem or application domain,
the quality model can be established accordingly, customizing the ISO 9126 model. For
example, a quality model for constructing soft real-time applications, like stock exchange
monitoring, is shown in Figure 1 [Losavio et al.00]. Bosch method will be considered for
the development process.

where I/E mean internal/external characteristics respectively
Fig. 1: Quality Model for Real-time Monitoring Systems

Definition of the objects of the development process

According to the SQUID approach, in order to define the conceptual model of software
quality, customized to the development process, the development objects have to de
identified. Measures can then be associated with the development objects and quality
characteristics. As it has been pointed out, quality, according to ISO 8402 [ISO94], is
expressed as the set of characteristics and properties of an item that affect its ability to
satisfy established or implicit needs. Three types of objects are identified in the SQUID
approach: revision points or milestones which are the control points for monitoring the
process and activities that produce the deliverables which have to be inspected. An
activity is a specific time period that has “begin” and “end” point in time; a revision
point, instead is the end of an activity. These objects can be repeatable or not. We
consider that each deliverable must be submitted to an inspection or a test, according to

Reliability (E)

Availability (E)

Complexity (I)

Reusability (I)

Instanciability (I)

Abstraction (I) Coupling (I)

STANDARD QUALITY MODEL TO DESIGN SOFTWARE ARCHITECTURE

172 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 4

the kind of deliverable. The revision points, in our case correspond to the main steps of
the development process and are illustrated in Table 1.

The model of Bosch development process

Revision points Type Description
1. Initial architecture Non repeatable Functionality-based architectural

design. The archetypes are based on
the designer’s perception of the domain
(domain analysis)

2. Evaluation of quality
attributes

Non repeatable Evaluate the potential of the
architecture to reach the required levels
for its quality requirements. The
evaluation is with respect to a specific
context or domain (Ex. GUI or real-
time systems)

3. Transformation of the
architecture

Repeatable The estimated values of the quality
attributes are compared to the
requirements specification

Table 1. Revision points in the development model

Now, the activities for each revision point are specified in Table 2. The step of the
process is used as the first number to identify the corresponding activity or deliverable or
for each step. Notice that an activity can be a simple one or a complex one, requiring the
application of a specific method or technique such as, for example the design of the
scenarios. Actually, each activity could be decomposed into sub-activities. The activities
shown here are the main ones. Notice also that the elaboration and delivery of inspection
reports and tests are activities and deliverables that can be provided in each step, and they
are omitted here in order to abridge this presentation.

Case Study: Squid Configuration Applied to Bosch Method

VOL. 1, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 173

Activities Type Description

1.1 Define the problem domain or
context

Non repeatable Define the characteristics of the
domain according to the
experience of the designer

1.2 Identify the archetypes Repeatable Identification of main
components (core abstractions)
of the system based on the
functional requirements

1.3 Identify the structure Non repeatable Give the topology of the initial
architecture

2.1Design the scenarios profile
for a scenario-based evaluation

Repeatable Design of the set of scenarios for
the quality attributes (Ex. Change
scenarios)

2.2 Define the Quality attribute
profile

Non repeatable Design of the quality model.

2.3 Establish the result of the
evaluation

Non repeatable Determine the potential of the
candidate architecture to satisfy
its quality requirements

3.1 Define the design decisions Repeatable Establish rules, constraints

Table 2. Activities identified in the development process

The deliverables produced by each activity are listed in Table 3.

Deliverables Type Description
1.1 Context of the system Non repeatable The problem domain category
1.2 Archetype Repeatable Core abstractions (Components)
1.3 Structure Non repeatable Topology
2.1 Scenario profile Repeatable A set of scenarios for the quality

attributes (Ex. Change scenarios)
2.2 Quality attribute profile Non repeatable The quality model.
2.3 Result of the evaluation Non repeatable Potential of the candidate

architecture to satisfy its quality
requirements

3.1 Design decisions Repeatable Rules, constraints

Table 3. Deliverables in the development model

STANDARD QUALITY MODEL TO DESIGN SOFTWARE ARCHITECTURE

174 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 4

The quality model

The ISO 9126 standard for software quality measurement and the guidelines provided by
ISO 14598 (Part 1, 2, 3) will be followed. The main quality characteristics are shown in
Table 4.

Characteristic Description
Functionality The capability of the software product to provide functions

which meet stated and implied needs when the software is
 used under specified conditions (what the software
does to fulfil needs)

Reliability The capability of the software product to maintain its
level of performance under stated conditions for a stated
period of time

Usability

The capability of the software product to be
understood, learned, used and attractive to the user, when
used under specified conditions (the effort needed for use)

Efficiency The capability of the software product to provide
appropriate performance, relative to the amount of
resources used, under stated conditions

Maintainability The capability of the software product to be modified.
Modifications may include corrections,
improvements or adaptations of the software to changes
in the environment and in the requirements and
functional specifications (the effort needed to be modified)

Portability The capability of the software product to be transferred
 from one environment to another. The environment
 may include organizational, hardware or software
 environment

Table 4. Generic Quality Model, according to ISO 9126

It is clear that the ISO 9126 model is product-oriented, focusing the product external quality
characteristics that must be accomplished when the product is in operation. However, the
internal characteristics, which influence the external ones are taken into account. These
internal characteristics arise during the development process and can be used to evaluate the
architecture, which is a sub-product of the development process [Dromey86]. Moreover,
SQUID is used here as a tool to model the development process according to the quality
requirements defined in the quality model. At this point, two different approaches can be
followed:

1. The generic model will be instantiated, like the example shown in Figure 1, according to

the particular domain. External end internal characteristics will be defined accordingly,
with the corresponding attributes. It corresponds to activity 2.2 (see Table 2). The SQUID
configuration step could be completed for evaluating the particular architecture for the
specific domain.

Case Study: Squid Configuration Applied to Bosch Method

VOL. 1, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 175

2. The generic model can be instantiated considering the general characteristic required in the
architecture as a product itself. In this case, a general framework for determining the
quality attributes for software architecture is obtained, taking into account of all the main
characteristics of the ISO model. The sub-characteristics are refined into attributes, or
measurable entities, which are adapted to software architecture [Losavio et al.03]. For
example for Reliability we have:

• Maturity: the capability of the software product to avoid failures, as a result
of faults in the software. It is refined into an attribute Mean Time To Failure
(MTTF) measured on the source code.
At architectural level:

1. The attribute is computed by the following metric:
Σi Maturity (Component i) + Σj Maturity (Connector j).

Notice that the Maturity attribute of the COTS components is known or
should be.

• Fault tolerance: the ability to maintain a specified level of performance in

case of software fault or of infringement of its specified interface.
At architectural level:

1. It means to have a mechanism or software device. It may be a
component or integrated into a component, for example exception
handling or redundancy.

2. It is refined into an attribute whose value is yes or not, depending on
the presence or not of the mechanism or device.

3. It can be refined into an attribute whose value is associated to the
mechanism or device.

• Recoverability: It is expressed by: 1. Capability to re-establish the level of

performance. 2. Capability to recover the data. 3. Time and effort needed for
it.
At architectural level:

1. It means the existence of a mechanism or software device, which may
be a component or integrated into a component, to re-establish the
level of performance or to recover the data, for example redundancy.

2. If the mechanism exists, recoverability is refined into the attribute
performance computed by metrics involving time and effort. It must be
computed for each component holding the mechanism.

Remarks:
1. availability depends on the above three sub-characteristics of

reliability. Even if this property is not directly specified in ISO 9126-1,
it is defined as the capability of the software product to be in a state to
perform a required function in a given period of time. It must be

STANDARD QUALITY MODEL TO DESIGN SOFTWARE ARCHITECTURE

176 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 4

considered for its importance in commonly used distributed and real-
time application. It is like a fault tolerance attribute, measuring
switching time.

2. compliance means in general to adhere to standards or regulations.
Adheering to compliance would mean that the other sub-characteristics
are not taken into account.

For further details on the attributes for the remaining sub-characteristics, the reader is
referred to [Losavio et al.03].

According to SQUID, now the measures and model collation should be performed,
after having defined the quality model. These activities are performed to accomplish
activity 2.2 of Bosch’s development model, to obtain the quality attribute profile as a
deliverable. In this way, Bosch method is complemented by a more systematic and
precise way to obtain all the measures, according to more quantitative reasoning.
However, it should be noticed that the quality model is still greatly influenced by the
architect expertise, according to a quite subjective approach.

4 CONCLUSION

In this work, after having reviewed the general aspects of several software architecture
design methods, we have used a quantitative approach to complement the Bosch
architectural design method for constructing the quality model to evaluate the quality
attributes. Bosch method has been selected as a good candidate for this study, since it
offers more precise guidelines on the architectural transformation process. The SQUID
approach to control and monitor software quality in the development process has been
used to define an ISO 9126-based quality model, considering software architecture as a
sub-product of the design phase of the development process. An improved model of
Bosch’s development method has been defined in terms of the development objects, the
revision points, activities and deliverables. In this sense, SQUID has been used for
process improvement. We think that this work is a step forward towards the
systematization of architectural design methods. We are now working on the precise
definition of the measures and counting rules, in order to complete the SQUID
configuration step in all its details. Another important aspect that will be explored in the
near future, is the customization of the Unified Process, with respect to the inception and
elaboration phases, to the ABD or Bosch methods.

This study is a step forward towards the definition of a method for architectural
design that could be easily used as a customization of the RUP architectural design
process or in any other general process framework. We feel that every method or process
concerning modern applications involving, for example component-based development,
should be provided with a solid architectural design method with built-in quality issues.

Conclusion

VOL. 1, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 177

REFERENCES

[Bachmann et al.00] Bachmann F., Bass L., Chastek G., Donohoe P., Peruzzi F. “The
Architecture Based Desing Method”. TR CMU/SEI-2000-TR-001
ESC-TR-2000-001, January 2000

[Bøegh et al.99] Bøegh J., DePanfilis S., Kitchenham B., Pasquini A. “A Method
for Software Quality Planning, Control and Evaluation”. IEEE
Software, 69-77, March/April 1999

[Bosch00] Bosch J. “Design and Use of Software Architecture”, Addison
Wesley, Harlow, England, 2000

[Dromey96] Dromey, R., “Cornering the Chimera”, 33-43, IEEE Software Vol.
13, No.1, January 1996

[Hofmeister et al.00] Hofmeister, C., Nord R., Sony P. “Applied Software Architecture”,
Reading MA, Addison Wesley, 2000

[ISO94] ISO/IEC 8402, “Quality Vocabulary”, 1994

[ISO98] ISO/IEC FCD 9126-1.2: Information Technology - Software
Product Quality. Part 1: Quality Model, draft 1998.

[ISO98a] ISO/IEC 14598-3. Information Technology - Software Product
Evaluation - Part 3: Process for Developers. Software Engineering.
June, draft 1998

[Jacobson et al.99] Jacobson I, Booch G., Rumbaugh J. “The Unified Software
Development Process”, Addison Wesley, Harlow, England, 1999

[Kazman et al.98] Kazman R., Klein M., Barbacci M., Longstaff T., Lipson H.,
Carriere J., “The Architecture Tradeoff Analysis
Method”,CMU/SEI-98-TR-008, ESC-TR-98-008, July 1998

[Klein,Kazman99] Klein M., Kazman R., “Attribute-Based Architectural Styles”,
CMU/SEI-99-TR-022, ESC-TR-99-022, October 1999.

[Krutchen00] Krutchen P. “The Rational Unified Process. An Introduction”,
Second Edition, Addison-Wesley, Readings, Massachusetts, 2000

[Larman99] Larman C. “UML y Patrones”, Prentice Hall. Mexico 1999

STANDARD QUALITY MODEL TO DESIGN SOFTWARE ARCHITECTURE

178 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 4

[Losavio,Chirinos00] Losavio F., Chirinos L. “Enfoques de Calidad en el Desarrollo de
Software”, L Convención Annual de ASOVAC, (363), Caracas,
Noviembre 2000

[Losavio,Chirinos99] Losavio F., Chirinos L., “Evaluación de la calidad en el desarrollo
de sistemas interactivos”, (92-108) Proceedings X CITS, Curitiba,
Brazil, 17-21, May 1999.

[Losavio,Matteo97] Losavio F, Matteo A., “A Method for User-Interface
Development", Journal of Object- Oriented Programming, 10, 2,
(22-27), Sept. 1997.

[Losavio et al.00] Losavio F., Matteo A., Ordaz Jr. O., Levy N., Marcano-Kamenoff
R. “Quality Characteristics to select an Architecture for Real-time
Internet Applications”, 4th Quality Week Europe, Brussels,
November 2000

[Losavio et al.02] Losavio F., Chirinos L., Perez M. “Attribute-Based Techniques to
Evaluate Architectural Styles for Interactive Systems”, to appear in
Acta Científica Venezolana, Vol. 53, no. 2, 2002

[Losavio et al.03] Losavio F., Chirinos L., Lévy N., Ramdane-Cherif A. “Quality
Characteristics for Software Architecture”, to appear in JOT 2003

[Shaw,Garlan96] Show G., Garlan D. "Software Architecture. Perspectives on an
Emerging Discipline", Prentice Hall, New Jersey, 1996

[Whitten,Bentley01] Whitten J. L., Bentley L. D., Dittman K., C. “Systems Analysis
and Design Methods”, 5th. Edition, McGraw-Hill Irwin, 2001

About the author

Francisca Losavio received doctoral degrees in France, University of
Paris-Sud, Orsay. She is head of the research Laboratory of Software
Technology (LaTecS), Central University of Venezuela, Caracas, where
she works at the Software Engineering post graduated studies of the
Faculty of Science. Her research topics are software architecture and
software quality. She can be reached at flosav@cantv.net

mailto:flosav@cantv.net

