
Quality-of-Data for Consistency Levels in Geo-replicated Cloud Data Stores

Álvaro García-Recuero
Instituto Superior Técnico (IST)

INESC-ID Lisboa / Royal Institute of Technology (KTH)

Lisbon, Portugal / Stockholm, Sweden

alvaro.recuero@ist.utl.pt

Sérgio Esteves
Instituto Superior Técnico (IST)

INESC-ID Lisboa

Lisbon, Portugal

sesteves@gsd.inesc-id.pt

Luís Veiga
Instituto Superior Técnico (IST)

INESC-ID Lisboa

Lisbon, Portugal

luis.veiga@inesc-id.pt

Abstract—
Cloud computing has recently emerged as a key technology

to provide individuals and companies with access to remote
computing and storage infrastructures. In order to achieve
highly-available yet high-performing services, cloud data stores
rely on data replication. However, providing replication brings
with it the issue of consistency. Given that data are replicated in
multiple geographically distributed data centers, and to meet the
increasing requirements of distributed applications, many cloud
data stores adopt eventual consistency and therefore allow to
run data intensive operations under low latency. This comes
at the cost of data staleness. In this paper, we prioritize data
replication based on a set of flexible data semantics that can
best suit all types of Big Data applications, avoiding overloading
both network and systems during large periods of disconnection
or partitions in the network. Therefore we integrated these data
semantics into the core architecture of a well-known NoSQL
data store (e.g., HBase), which leverages a three-dimensional
vector-field model (i.e., regarding timeliness, number of pending
updates and divergence bounds) to provision data selectively in
an on-demand fashion to applications. This enhances the former
consistency model by providing a number of required levels of
consistency to different applications such as, social networks or e-
commerce sites, where priority of updates also differ. In addition,
our implementation of the model into HBase allows updates to
be tagged and grouped atomically in logical batches, akin to
transactions, ensuring atomic changes and correctness of updates
as they are propagated.

Keywords-Geo-replication; HBase; NoSQL; YCSB;

I. INTRODUCTION

In distributed systems in general and Cloud Computing
specifically, data replication is becoming a major challenge
with large amounts of information requiring consistency and
high availability as well as resilience to failures. There have
been several solutions to that problem, none of them applicable
in every case, as they all depend of the type of system and
its end goals. As the CAP theorem states [1], one can not
ensure the three properties of a distributed system all at once,
therefore applications usually need to compromise and choose
two out of three between consistency, availability and tolerance
to partitions in the network.

Nowadays, in many data center environments is key to
understand how one makes such distributed systems scalable
while still delivering good performance to applications. Data
availability is for instance always a desired property, while a
sufficiently strict level of consistency should be used to handle

data effectively across locations without long network delays
(latency) and optimizing bandwidth usage.

There are a number of existing systems where data seman-
tics are analyzed to provide operations with faster (eventual)
or slower (stronger) consistency without compromising perfor-
mance [2]. In some, causal serialization and therefore commu-
tative updates are provided also based on data semantics, but
require redesigning application data types [3] or intercepting
and reflecting APIs via middleware [4]. Unlike linearizability,
eventual consistency does work well for systems with shared
distributed data to be queried and/or updated, because updates
can be performed on any replicas at any given time [5].
It is then easier to achieve lower latency, so most systems
implement eventual consistency in order to avoid expensive
synchronous operations across wide area networks and still
keeping data consistent through low latency operations in large
geo-located deployments.

HBase is a well-known and deployed open source cloud data
store written and inspired on the idea of BigTable [6] which
targets the management of large amounts of information.
HBase does not provide strong consistency outside of the local
cluster itself. Eventuality is the promise and a write-ahead log
maintained for that.

This work introduces HBase-QoD, a replication module that
integrates into HBase mechanisms targeting applications which
might also require finer-grain levels of consistency. Other
systems use a variant of Snapshot Isolation techniques [7],
which works within, but not across data centers. Others, like
the conit model, are based on generality but not practicality [8].
We find the later to be more rewarding to users in terms
of quality of data within a fully functional and reliable data
storage system, achieving optimization of resources during
geo-replication and consequently significant cost savings. We
propose an architecture with custom levels of consistency,
providing finer-grain replication guarantees through data se-
mantics. Application behavior can be therefore turn into a
key and more efficient shift into the consistency paradigm.
This is reflected in this paper by modifying and extending
eventual consistency, with an innovative approach used to tune
its replication mechanisms, originally developed for treating all
updates equally.

A. Contributions

The main contributions are focused on what other consis-
tency properties HBase can provide between different geo-
located clusters at the replication level, that is, using a flexible
and tunable framework, developed for treating groups of
updates tagged for replication in a self-contained manner. The
work presented includes the design and development of the
model to be applied to non-relational cloud-based data stores.

We take a step forward from the eventual consistency model
at inter-site replication scenarios with HBase deployments to
prove the validity of the model. It is possible to evaluate it by
using an adaptive consistency model that can provide different
levels of consistency depending of the desired Service Level
Objective (SLO) for the Quality-Of-Data (QoD) fulfillment.
The idea of QoD fulfillment is based on the percentage of
updates that need to be replicated within a given period using
a three-dimensional vector model K.

We also propose to extend HBase client libraries in order to
provide grouping of operations during replication, where each
of the groups can provide the level of consistency required:
ANY, IMMEDIATE, or even with a specific custom bound.
To achieve this we modify HBase libraries (Htable). Grouping
of operations occurs from the source location before replica-
tion actually occurs, so apart from the multi-row atomically
defined model in HBase, a more versatile system can also
provide atomically replicated updates beyond the row-level
(e.g., column families or combinations of the fields in a row
in HBase). The work is also an informal contribution that we
aim to turn into a formal one to complete the efforts of a
"pluggable replication framework" as proposed by the Apache
HBase community. 1

B. Roadmap

In the next sections of the paper we have a brief overview
of fundamental consistency models and background work
in this area of distributed systems, having special focus on
the concept of eventual versus strong consistency and what
possible variations of the two can exist in the middle of the
spectrum. As intermediate approach, we devise HBase-QoD,
a HBase extension to apply QoD defined through a three-
dimensional vector-field model inspired on [9]. Data semantics
are defined and enforced with a vector K (θ, σ, ν), representing
Time, Sequence and Value respectively.

The rest of the paper is organized as follows, related work in
Section 2, our HBase extension architecture in Section 3, the
implementation details in Section 4, and evaluation in Section
5. The evaluation results show that from the architectural point
of view our solution integrates well in HBase and provides the
corresponding vector-bounded replication guarantees. Finally,
with Section 6 we conclude this work.

II. BACKGROUND AND RELATED WORK

HBase is open source, and its architecture is based in pre-
vious work at Google, BigTable [10], a distributed, persistent

1Priority queue sorted replication policy, A. Purtell, August, 2011.

and multi-dimensional sorted map. HBase is being used for
instance at Facebook data-centers for structured storage of the
messaging and user data in partial replacement of Cassan-
dra [11]. Cassandra offers replica-set consistency tuning, but
not divergence bounded consistency regarding data semantics.
In geo-located and replicated remote clusters, the system
provides eventual guarantees to data consistency through RPC
(Remote Procedure Call) mechanisms.

Eventual consistency might be sufficient in most cases.
Although, complex applications require stronger consistency
guarantees and can be difficult to manage. Due to that, there
have been recent research efforts to address these shortcomings
in geo-replicated data centers, with Google developing earlier
in 2012 an evolution of BigTable that provides external consis-
tency through atomic clocks for instance, Spanner [12]. This
makes applications highly-available while ensuring as much
synchronicity among distant replicas as possible and more
importantly, atomic schema changes. Data locality is also an
important feature for partitioning of data across multiple sites.
Spanner does use Paxos for strong guarantees on replicas.

Strong consistency does not work well for systems where
we need to achieve low latency. So the reason for most systems
to use eventual consistency is mostly to avoid expensive
synchronous operations across wide area networks. In other
cases such as COPS [13] causality is guaranteed, although it
does not guarantee the quality of data by bounding divergence,
which can still lead to outdated values being read. Previous
inspiring work from [14] also shows divergence bounding
approaches to be feasible in that regard.

Systems such as PNUTS from Yahoo [15], introduced a
novel approach for consistency on a per-record basis. There-
fore, it became possible to provide low latency during heavy
replication operations for large web scale applications. As in
our work, they provide finer-grain guarantees for certain data,
so in other words, new updates are not always seen right
away by the clients (which is the case also with our HBase
extension), but only if strictly necessary. Keeping that in mind,
it is not mandatory for applications to be highly-available
and consistent both at once. That is applicable to our use
case. Yahoo made the case for eventual consistency not being
enough, and as in the case of social networks, stale replicas
can introduce privacy issues if not handled adequately. We
propose using operation grouping to resolve the consistency
issue among blocks of updates more efficiently and in an
straight forward manner by using several QoD levels.

III. HBASE-QOD ARCHITECTURE

HBase-QoD allows for entries to be evaluated prior to
replication, and it is based in the aforementioned vector-
field consistency model, allowing for a combination of one
or several of the parameters in K (θ, σ, ν), corresponding
to Time, Sequence, and Value divergence in this case. Sec-
ondly, updates that collide with previous ones (same keys but
different values) can also be checked for number of pending
updates or value divergence from previously replicated items

and, if required, shipped or kept on hold accordingly. The
time constraint can be always validated every X seconds,
and the other two through Alg. 1 as updates arrive. For
the work presented here we use Sequence (σ) as the main
vector-field constraint to showcase the model in practice. For
this, we define a set of customized data structures, which
hold the values of database row items due to be checked
for replication on a particular data container. Containers are
identified as tableName:columnFamily for us, and can also be a
combination of relevant row-fields from the data store schema
with the purpose of differentiating data and apply semantics
onto it.

In order to track and compare QoD fields (which act as
constraints during replication) against stored updates, data
containers are defined for the purpose, controlling both current
and maximum (then reset) bound values. Therefore, a QoD
percentage is on the updates due to be propagated at once
(e.g., using σ). This process is partly automated at the moment,
with us just defining it at run-time (or by the developer later)
adding a parameter into the HBase console that selects the
desired vector-field bound percentage.

Extensions to the HBase internal mechanisms: A high-
level view of the mechanisms introduced with HBase-QoD is
outlined in Figure 1, and it is based in each case in an specific
QoD bound applied to each defined data container per user.
Replicating when the QoD is reached means in the case of
QoD-1, sending σ updates, 3, from User A (assume is not
same data-container value) and each second for the User D
with QoD-2 of θ (time, reset back to zero if reached) field, in
this case also showing the last-writer wins behavior on the
remote side, user N, for a same propagating remote data-
container value during replication. This overall architecture
layout is presented in order to showcase a scenario where to
rule updates selectively during geo-replication.

The original HBase architecture has built-in properties de-
rived from the underlying HDFS layer. As part of it, the
WALEdit data structure is used to store data temporarily
before being replicated, useful to copy data between several
HBase locations. The QoD algorithm (shown in Algorithm. 1)
uses that data structure, although we extend it to contain
more meaningful information that help us in the management
of the outgoing updates marked for replication. We extend
HBase, handling updates due to be replicated in a priority
queue according to the QoD specified for each of their data
containers. Thereafter once the specified QoD threshold is
reached the working thread in HBase, in the form of Remote
Procedure Call, collects and ships all of them at once.

Typical distributed and replicated deployment: In dis-
tributed clusters Facebook is currently using HBase to manage
the messaging information across data centers. That is because
of the simplicity of consistency model, as well as the ability
of HBase to handle both a short set of volatile data and ever-
growing data, that rarely gets accessed more than once.

With the eventual consistency enforcement provided, up-
dates and insertions are propagated asynchronously between

Site A Site B

Inter-Cluster
Replication

User A

User N

QoD N...QoD 2 updates replicated

Updates Replicated
in HBase

User D

QoD-1. σ=3 for column family c0.

We increase value of σ up to 3 and replicate

all items from c0 at that point.

key: user1221, columnId: c0, ...

QoD-1

key: user1221, columnId: c0 σ=1
σ=2
σ=3
σ=0

key: user1221, columnId: c0, ...
key: user1221, columnId: c0, ...

key: user1221, columnId: c0

key: user9231, columnId: c2, val:1

key: user8911, columnId: c2 θ =1

QoD-2. θ=1 for column family c2.

In this case θ is a time constant, so each

second it replicates all items from c2 .

θ =1
θ =1
θ =0

key: user9231, columnId: c2, val:0

key: user9231, columnId: c2, val:1
key: user8911, columnId: c2, ...

key: user1221, columnId: c0
key: user1221, columnId: c0
key: user1221, columnId: c1

Figure 1: HBase QoD high-level

clusters so Zookeeper is used for storing their positions in
log files that hold the next log entry to be shipped in HBase.
To ensure cyclic replication (master to master) and prevent
from copying same data back to the source, a sink location
with remote procedure calls invoked is already into place with
HBase. Therefore if we can control the edits to be shipped,
we can also decide what is replicated, when or in other words,
how soon or often.

Algorithm 1 QoD algorithm for selecting updates using σ

criteria (with time and value would be the same or similar)
Returns true means replicate.

Require: containerId

Ensure: maxBound 6= 0 and controlBound 6= 0
1: while enforceQoD(containerId) do

2: if getMaxK(containerId) = 0 then

3: return true

4: else {getactualK(containerId)}
5: actualK(σ)← actualK(σ) + 1
6: if actualK(σ) ≥ containerMaxK(σ) then

7: actualK(σ)← 0
8: return true

9: else

10: return false

11: end if

12: end if

13: end while

Operation Grouping: At the application level, it may be
useful for HBase clients to enforce the same consistency level
on groups of operations despite affected data containers having

different QoD bounds associated. In other words, there may be
specific situations where write operations need to be grouped
so that they can be all handled at the same consistency level
and propagated atomically to slave clusters.

For example, publication of user statuses in social networks
is usually handled at eventual consistency, but if they refer to
new friends being added (e.g., an update to the data container
holding the friends of a user), they should be handled at a
stronger consistency level to ensure they are atomically visible
along with the list of friends of the user in respect to the
semantics we describe here.

In order to not violate QoD bounds and maintain consistency
guarantees, all data containers of operations being grouped
must be propagated either immediately after the block exe-
cution, or when any of the QoD bounds associated to the
operations has been reached. When a block is triggered for
replication, all respective QoD bounds are naturally reset.

To enable this behavior we propose extending the HBase
client libraries to provide atomically consistent blocks.
Namely, adding two new methods to HTable class in order
to delimit the consistency blocks: startConsistentBlock and
endConsistentBlock. Each block, through the method startCon-

sistentBlock, can be parameterized with one of the two options:
i) IMMEDIATE, which enforces stronger consistency for the
whole block of operations within itself; and ii) ANY, which
replicates groups of updates as a whole and as soon as the
most stringent (smaller) QoD vector-field bound, associated
with an operation inside the block, is reached.

IV. IMPLEMENTATION DETAILS

HBase replication mechanism is based in a Write Ahead Log
(WAL), which must be enabled in order to be able to replicate
between distant data centers. The process of replication is
currently carried out asynchronously, so there is no introduced
latency in the master server. Although, since that process is not
strongly consistent, in write heavy applications a slave could
still have stale data for an order of more than just seconds,
and just until the last updates commit to local disk.

In our implementation we overcome the pitfalls of such
an approach, and propose a QoD-vector to handle selected
updates, thus lower values of it (e.g maxBound of σ in
the three dimensional vector K) enforce their delivery at the
remote cluster earlier. For write intensive applications, that
can be both beneficial in terms of reducing the maximum
bandwidth peak-usage, while still delivering data according
to application needs and with improved semantics.

The QoD module in Figure 2 shows the implementation
details introduced with HBase-QoD. We observe the module
integrates into the core of the chosen cloud data store (HBase),
intercepting incoming updates, and processing them into a
priority queue named Unified Cache, which is defined to store
those for later replication to a given slave cluster.

Changing the logic of the shipping of edits in the write-
ahead log, this process is therefore performed now according
to the data semantics we define. Several data structures are

HRegionServer

QoD

WALEdit

QoD 1

WALEdit

QoD N

WALEdit

QoD 2
. . .

Unified Cache

HLogs (Write Ahead Logs)

M
e
m
s
t
o
r
e

HMasterServer

Storage Layer (HDFS)

Figure 2: HBase QoD operation

required, some of them existing in HBase, as the WALEdit.
That is in order to access different data containers that we
later query to determine where and how to apply a given QoD
at the row level (e.g. tablename:columnFamily). The data is
replicated once we check the conditions shown in Algorithm
1 are met, and replication is triggered if there is a match for
any of the vector-constraints (e.g σ). The use of the QoD is
also applicable to the selection of those updates to be replicated
according to a combination of any the three-dimensional vector
constraints, not only σ.

V. SIMULATION AND EVALUATION

It has been already verified and presented in other reports
and projects in the area of Hadoop, that a statically defined
replication level is in itself a limitation, which therefore
must be addressed and more efficiently adjusted in order to
keep up with the scheduling of tasks. That is also related
to the work here covered within HBase, as HDFS is its
storage layer. A workaround on static replication constraints
in HDFS and HBase is offering and enforcing on-demand
replication with HBase-QoD and its vector-field model. During
evaluation of the model, a test-bed of several HBase clusters
has been deployed, having some of them using the HBase-QoD
engine enabled for quality of data between replicas, and others
running a regular implementation of HBase 0.94.8. All tests
were conducted using 6 machines with an Intel Core i7-2600K
CPU at 3.40GHz, 11926MB of available RAM memory, and
HDD 7200RPM SATA 6Gb/s 32MB cache, connected by 1
Gigabit LAN.

We confirm the QoD does not hurt performance as we
observe from the throughput achieved for the several levels
of QoD chosen during the evaluation of the benchmark for
our modified version with HBase-QoD enabled, Figure 3. The
differences in throughput are irrelevant and mostly due to noise
in the network, that is the conclusion after obtaining similar

results to that one in several rounds of tests with the same
input workload on the data store.

Next we conducted as shown in Figure 4, and dstat presents,
an experiment to monitor the CPU usage using HBase-QoD.
CPU consumption and performance remains roughly the same
and therefore stable in the cluster machines as can be appre-
ciated.

We have also taken measurements for the following work-
loads obtaining results as follows:

Workloads for YCSB: We have tested our implementa-
tion in HBase with several built-in workloads from YCSB
plus one custom workload with 100% writes to stress the
database intensively, because target updates in social networks
as previously mentioned, are mostly all about changes and new
insertions.

Figure 5 shows three different sets of Qualities of Data for
the same workload (A):

1) YCSB workload A (R/W - 50/50)
• No QoD enforced.
• QoD fulfillment of σ=0.5% of total updates to be

replicated.
• QoD fulfillment of σ=2% of total updates to be

replicated.
During the execution of the workload A, in Figure 5, the
highest peaks in replication traffic are observed without
any type of QoD, i.e. just using plain HBase. This is
due to the nature of eventual consistency itself and the
buffering mechanisms in HBase.
With a QoD enabled as shown in the other two graphs,
we rather control traffic of updates from being un-
bounded to a limited size, and accordingly saving re-
sources’ utilization, while suiting applications that re-
quire smaller amounts of updates as they only propa-
gated as a group, when they are just needed.
We observe that a higher QoD implies replication traffic
less often, although interactions reach high values on
Bytes as they need to send more data. Small QoD

 0

 50000

 100000

 150000

 200000

 250000

No QoD K()=2% K()=4% K()=6% K()=8%

T
h

ro
u

g
h

p
u

t
(o

p
s/

se
c)

QoD => K(, ,)

Figure 3: Throughput for several QoD configurations

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50 60 70 80 90 100

C
P

U
 u

ti
li

z
a
ti

o
n

 (
%

)

Time (seconds)

QoD = K (, 2%,)
QoD = K (, 6%,)
QoD = K (, 8%,)

No QoD

Figure 4: CPU usage over time with QoD enabled

optimizes the usage of resources while sending priority
updates more frequently (this could be the case of wall
posts in a social network).

2) YCSB workload A modified (R/W - 0/100)

• No QoD enforced.
• QoD fulfillment of σ=0.5% of total updates to be

replicated.
• QoD QoD fulfillment of σ=2% of total updates to

be replicated.

In Figure 6 we can see how a write intensive workload
performs using a QoD. Similar results are expected and later
also confirmed in this graph (please note the scale of the Y axis
is modified in order to show the relevant difference in Bytes
more accurately). For smaller QoD (0.5%), overall we see
lower peaks in bandwidth usage than with plain HBase, as well
as in the following measurement used for QoD 2.0% (having
that one higher maximum peak values than the previous
QoD). Finally HBase with no modifications shows a much
larger number of Bytes when coming to maximum bandwidth
consumption. Note we are not measuring, or find relevant, in
any of these scenarios, to realize savings on average bandwidth
usage. The principal source of motivation of the paper is to
find a way of controlling the usage of the resources in a data
center. Also, to be able to leverage the trading of strong for
eventual consistency with a more robust atomic grouping of
operations using vector bounded data semantics.

VI. CONCLUSION

Performance in HBase improves as the number of resources
increases, for instance with more memory available [6], but it
is not always trivial to scale further following that approach.
Therefore, having ways of providing different levels of consis-
tency to users regarding data in cloud environments translates
into substantial traffic savings and potentially associated costs
to service providers. That is a relevant matter already discussed
for consistency cost-efficiency [16].

Bandwidth Usage

 0
 20000
 40000
 60000
 80000

 100000
 120000
 140000

 0 100 200 300 400 500 600 700
B

y
te

s

Time (seconds)

Bps HBase QoD K (, 0.5%,)

 0

 50000

 100000

 150000

 200000

 0 100 200 300 400 500 600 700

B
y
te

s

Time (seconds)

Bps Hbase QoD K (, 2%,)

 0

 50000

 100000

 150000

 200000

 250000

 0 100 200 300 400 500 600 700

B
y
te

s

Time (seconds)

Bps HBase

Figure 5: Bandwidth usage for Workload A with zipfian distribution, using 5M records using QoD bounds of 0.5 and 2% in
the σ of K.

Bandwidth Usage

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 50 100 150 200 250

B
y
te

s

Time (seconds)

Bps HBase QoD K (, 0.5%,)

 0
 20000
 40000
 60000
 80000

 100000
 120000
 140000

 0 50 100 150 200 250

B
y
te

s

Time (seconds)

Bps Hbase QoD K (, 2%,)

 0

 50000

 100000

 150000

 200000

 250000

 0 50 100 150 200 250

B
y
te

s

Time (seconds)

Bps HBase

Figure 6: Bandwidth usage for custom Workload with uniform distribution, using 5M records and QoD bounds of 0.5 and 2%
in the σ of K.

In this paper we presented HBase-QoD, a module that
uses quality-of-data (QoD) to envision the goal of a tunable
consistency model for geo-replication. The framework allows
bounds on data to be used in order to perform selective
replication in a more controlled and timely-fashion than usual

eventually consistent approaches in these sort of data stores.
With the semantics presented we trade-off short timed

consistency with wide area bandwidth cost savings during peak
loads. Achieving the last, can help to significantly reduce repli-
cation overhead between data centers when there are periods

of disconnection or bottlenecks in the network. We evaluated
our implementation on top of HBase clusters distributed across
several locations showing relevant results for that.

In summary, a successful model based on vector-field di-
vergence mechanisms [9] was implemented and shows how
HBase consistency can be tuned at the core-system level,
without requiring intrusion to the data schema and avoiding
more middle-ware overhead such as in [17]. In our case,
experimental results indicate that we are able to maintain
an acceptable throughput, reduce latency peaks, as well as
optimize bandwidth usage. In the future we would like to
conduct more experiments using Amazon EC2 infrastructure
and also several other cluster locations in partner-universities
if there is any chance to do so.

ACKNOWLEDGMENTS

This work was partially supported by national funds through
FCT – Fundação para a Ciência e a Tecnologia, projects
PTDC/EIA-EIA/113613/2009, PTDC/EIA-EIA/108963/2008, PEst-
OE/EEI/LA0021/2013.

REFERENCES

[1] Brewer’s Conjecture and the Feasibility of Consistent Available
Partition-Tolerant Web Services., 2002.

[2] C. Li, D. Porto, A. Clement, J. Gehrke, N. Preguiça,
and R. Rodrigues, “Making geo-replicated systems fast as
possible, consistent when necessary,” in Proceedings of the
10th USENIX conference on Operating Systems Design
and Implementation, ser. OSDI’12. Berkeley, CA, USA:
USENIX Association, 2012, pp. 265–278. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2387880.2387906

[3] N. P. Marc Shapiro and M. Z. Carlos Baquero, “Conflict-
free replicated data types,” INRIA, rocq, rr RR-7687, July
2011. [Online]. Available: http://lip6.fr/Marc.Shapiro/papers/
RR-7687.pdf

[4] S. Esteves, J. a. Silva, and L. Veiga, “Quality-of-service for
consistency of data geo-replication in cloud computing,” pp.
285–297, 2012. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-32820-6_29

[5] S. Burckhardt, D. Leijen, M. Fahndrich, and M. Sagiv,
“Eventually consistent transactions,” in Proceedings of the
21st European conference on Programming Languages and
Systems, ser. ESOP’12. Berlin, Heidelberg: Springer-Verlag,
2012, pp. 67–86. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-28869-2_4

[6] D. Carstoiu, A. Cernian, and A. Olteanu, “Hadoop hbase-0.20.2
performance evaluation,” in New Trends in Information Science
and Service Science (NISS), 2010 4th International Conference
on, May 2010, pp. 84 –87.

[7] Y. Sovran, R. Power, M. K. Aguilera, and J. Li,
“Transactional storage for geo-replicated systems,” in
Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles, ser. SOSP ’11. New York,
NY, USA: ACM, 2011, pp. 385–400. [Online]. Available:
http://doi.acm.org/10.1145/2043556.2043592

[8] “Combining generality and practicality in a conit-based
continuous consistency model for wide-area replication,”
Washington, DC, USA, pp. 429–, 2001. [Online]. Available:
http://dl.acm.org/citation.cfm?id=876878.879318

[9] L. Veiga, A. P. Negrão, N. Santos, and P. Ferreira, “Unifying
divergence bounding and locality awareness in replicated
systems with vector-field consistency,” J. Internet Services
and Applications, vol. 1, no. 2, pp. 95–115, 2010. [Online].
Available: http://dx.doi.org/10.1007/s13174-010-0011-x

[10] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable:
a distributed storage system for structured data,” in Proceedings
of the 7th USENIX Symposium on Operating Systems Design
and Implementation - Volume 7, ser. OSDI ’06. Berkeley,
CA, USA: USENIX Association, 2006, pp. 15–15. [Online].
Available: http://dl.acm.org/citation.cfm?id=1267308.1267323

[11] A. Lakshman and P. Malik, “Cassandra: a decentralized
structured storage system,” SIGOPS Oper. Syst. Rev., vol. 44,
no. 2, pp. 35–40, Apr. 2010. [Online]. Available: http:
//doi.acm.org/10.1145/1773912.1773922

[12] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J.
Furman, S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild,
W. Hsieh, S. Kanthak, E. Kogan, H. Li, A. Lloyd, S. Melnik,
D. Mwaura, D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito,
M. Szymaniak, C. Taylor, R. Wang, and D. Woodford, “Spanner:
Google’s globally-distributed database,” in Proceedings of the
10th USENIX conference on Operating Systems Design
and Implementation, ser. OSDI’12. Berkeley, CA, USA:
USENIX Association, 2012, pp. 251–264. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2387880.2387905

[13] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen,
“Don’t settle for eventual: scalable causal consistency for wide-
area storage with cops,” in Proceedings of the Twenty-Third
ACM Symposium on Operating Systems Principles, ser. SOSP
’11. New York, NY, USA: ACM, 2011, pp. 401–416. [Online].
Available: http://doi.acm.org/10.1145/2043556.2043593

[14] H. Yu and A. Vahdat, “Design and evaluation of a continuous
consistency model for replicated services,” in Proceedings
of the 4th conference on Symposium on Operating System
Design & Implementation - Volume 4, ser. OSDI’00. Berkeley,
CA, USA: USENIX Association, 2000, pp. 21–21. [Online].
Available: http://dl.acm.org/citation.cfm?id=1251229.1251250

[15] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein,
P. Bohannon, H.-A. Jacobsen, N. Puz, D. Weaver, and
R. Yerneni, “Pnuts: Yahoo!’s hosted data serving platform,”
Proc. VLDB Endow., vol. 1, no. 2, pp. 1277–1288, Aug. 2008.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1454159.
1454167

[16] H.-E. Chihoub, S. Ibrahim, G. Antoniu, and M. Pérez,
“Consistency in the Cloud:When Money Does Matter!” in
CCGRID 2013- 13th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing, Delft, Pays-Bas, May
2013. [Online]. Available: http://hal.inria.fr/hal-00789013

[17] S. Das, D. Agrawal, and A. El Abbadi, “G-store: a
scalable data store for transactional multi key access in
the cloud,” in Proceedings of the 1st ACM symposium
on Cloud computing, ser. SoCC ’10. New York, NY,
USA: ACM, 2010, pp. 163–174. [Online]. Available: http:
//doi.acm.org/10.1145/1807128.1807157

http://dl.acm.org/citation.cfm?id=2387880.2387906
http://lip6.fr/Marc.Shapiro/papers/RR-7687.pdf
http://lip6.fr/Marc.Shapiro/papers/RR-7687.pdf
http://dx.doi.org/10.1007/978-3-642-32820-6_29
http://dx.doi.org/10.1007/978-3-642-32820-6_29
http://dx.doi.org/10.1007/978-3-642-28869-2_4
http://dx.doi.org/10.1007/978-3-642-28869-2_4
http://doi.acm.org/10.1145/2043556.2043592
http://dl.acm.org/citation.cfm?id=876878.879318
http://dx.doi.org/10.1007/s13174-010-0011-x
http://dl.acm.org/citation.cfm?id=1267308.1267323
http://doi.acm.org/10.1145/1773912.1773922
http://doi.acm.org/10.1145/1773912.1773922
http://dl.acm.org/citation.cfm?id=2387880.2387905
http://doi.acm.org/10.1145/2043556.2043593
http://dl.acm.org/citation.cfm?id=1251229.1251250
http://dl.acm.org/citation.cfm?id=1454159.1454167
http://dl.acm.org/citation.cfm?id=1454159.1454167
http://hal.inria.fr/hal-00789013
http://doi.acm.org/10.1145/1807128.1807157
http://doi.acm.org/10.1145/1807128.1807157

