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Abstract—In tactical military networks, decisions must often
be made quickly based on information at hand. It is a challenge
to provide decision makers with a notion of the quality of the
information they have, or to provide a method by which decision
makers can specify a required quality of information. It is a
further challenge to honor requests for a required quality of
information when selecting information sources, transporting
information through a highly-dynamic network, and perhaps
performing processing on that information. In this paper we
motivate the need for a general, but formal, definition of quality-
of-information so that this metric may be specified and potentially
optimized by algorithms that operate a tactical network. Further-
more, we define a new notion, the operational information content
capacity, to capture the amount and quality of information that
a network can deliver.

I. I

The objective of a tactical military network is to facilitate
information flow between its nodes in order to support dis-
tributed decision making in the best way possible. Recent
counterinsurgency [9] (COIN) operations have highlighted
the importance of tactical networks and placed increasing
demands on their performance. COIN is an extremely complex
form of warfare that places significant burden on the people
and technologies that are employed during operations. It is an
intelligence-driven endeavor and, unlike conventional warfare,
relies on intelligence flows that are more bottom-up than top-
down.

Conventional metrics to evaluate tactical networks consider
communication quality, irrespective of the content of informa-
tion, for example their throughput or the number of reliably
communicated bits per unit resource. From a tactical perspec-
tive, however, these networks need to be ultimately judged
by the effectiveness of network-centric decision-making they
can facilitate. To this end, the nodes of the tactical network
collectively produce and process information whose content
matters a great deal. As such, it is imperative to revisit what
networking means for tactical networks. Existing approaches
generally assume that networks are designed to transfer bits
without regard to the quality of the information or the context
for its use. These approaches focus on derivative metrics that
do not directly impact sense-making or decision making. In
an information-agnostic manner, they focus on models and
traffic engineering mechanisms that provide service quality by
resource reservation control and developing routing and access
control algorithms. It is becoming increasingly evident that
communications networks are intricately linked to information
and social networks and that treating them independently is
insufficient for tactical settings.

Indeed, our vision is that networks must explicitly recog-
nize, process, and optimize information, and this paper outlines
a novel approach towards this vision: the adoption of Quality
of Information (QoI)-aware networking that seeks to model
the network as an information source and directly supports
the information needs of the users. In addition, the information
must be safe-guarded to retain its quality while it is transferred
via the network.

QoI is a composite, multi-dimensional, metric that captures
the trade-offs of several components to characterize the infor-
mation ultimately delivered to the application. Applications
may specify a desired-QoI in terms of values or value-
ranges for several attributes of information such as the source
of information, its freshness and precision, as well as the
chain of information custody through the network. These
factors determine the eventual value assigned to information
in the decision-making process. The network then attempts
to meet the desired-QoI, perhaps with some probabilistic
guarantees, and deliver information with a certain QoI (called
the delivered-QoI): depending on the type of application, if
it cannot, it may reject the application request or deliver the
information at a lower QoI. For a given network, a measure
of the amount of information that can be delivered at a certain
QoI satisfaction level is termed its Operational Information
Content Capacity (OICC).

In this paper, we first motivate QoI and OICC by example
in the next section. We then formally define QoI and present
open research challenges in realizing a QoI-aware networking
stack for tactical networks. We conclude with a couple of case
studies that illustrate our ongoing research in this area.

II. M E  QI

Consider the case where a military unit is conducting
counterinsurgency operations. Intelligence, surveillance, and
reconnaissance (ISR) operations are used to collect informa-
tion about the enemy, terrain, weather, local populace, and
many other aspects that will affect operations. The commander
will identify and prioritize uncertainties that must be resolved
to accomplish the mission and create priority intelligence re-
quirements that will be used to task ISR assets and soldiers. A
key tenet of COIN doctrine is that control of intelligence assets
is pushed to the lowest possible echelon. This significantly
burdens networking, as the information to be collected and
analyzed far exceeds the ability of networks to deliver and
process this intelligence.

A specific example where the QoI impacts resources and
decision making follows. A commander is faced with a series
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of car-bombings in their area of operation and is employing
a variety of collection assets to develop the intelligence
necessary to mount effective operations to neutralize these
threats. The scenario may unfold as follows: pattern analysis
of wide area (low resolution) surveillance imagery that has
been downloaded from aircraft returning from surveillance
missions identifies routes to the car bombing sites from several
suspicious buildings. A cordon is placed around the area where
these buildings are located. Reports from interviews conducted
by the patrol with locals and from informants identify an IED
cell leader that has been seen in the area. Sensors are cross-
cued to search and track based on information from sensors
and reports. When the cell leader is detected arriving at the
building a squad enters the building where they find vehicles
rigged as car bombs and detain several insurgents. The squad
questions the detainees and explores the building, which leads
to other targets and car bomb staging areas.

Focusing on the simple case where the commander seeks to
locate the cell leader, the QoI that is needed varies depending
on the kind of decision that will be made and the risk inherent
in that decision. For example retasking a sensor has less risk
than sending troops into a dangerous area or calling in an
airstrike. If the commander decides to detain and question the
cell leader it may be done with less certain or lower quality of
information than if the commander calls in an airstrike. Less
credible sources or those that have weaker authentication may
be acceptable to detain a suspect, although the commander
may require corroboration from multiple sources. To call in
an airstrike however, the commander may demand strong
authentication of the sources with information that has high
precision and delivered over secure communications links.
These risk assessments are fluid and thus QoI requirements
are dynamic which significantly complicates attempts to adjust
the network to best meet these needs.

Consider three modalities of information that could be
used to locate the cell leader: photo images, full motion
video, and text messages from informants or from soldiers
on patrol. It is easy to realize that all three such sources
can provide the same information, albeit with different quality
and with differing amounts of network resources required for
delivery of the information. In this simple example, video
requires more resources than images than do text messages.
For any modality of information, however, there are several
factors that determine QoI: the credibility of the information
source, freshness/timeliness, correctness, precision/accuracy,
and security. Some of these are intrinsic metrics of QoI: for
example, precision, which relates to the resolution of the
camera and frame rate of the video. The age (freshness),
security, and correctness of the information are also intrinsic
metrics as they are independent of the situation. Some metrics
are contextual measures as they depend on the situation and
the decision at hand. These include timeliness, which measures
the availability of information relative to the time it is needed,
and completeness which gauges the relevance of information
for a particular use.

In this example, timeliness and completeness requirements

are much more stringent if the commander wishes to call in
an airstrike than if a squad is to be sent to detain and question
the suspect. The required QoI of a piece of information may
also depend on what other information is available. If a low
resolution video is coupled with a simple report from an
authenticated reliable source that the cell leader is present at
a location, the composite QoI will be much higher than each
individual piece of information.

III. QI  OICC

QoI is a composite multi-dimensional metric that can be
represented intuitively as:

QoI = f (I,D, P, S ) (1)

where I captures the attributes of the information source, D
captures the characteristics of the network delivery, P repre-
sents the transformations of data by in-network processing,
for example fusion or compression, and S accounts for the
security properties present in the network.

QoI is a measure of the instantaneous quality of a piece of
information. A photo delivered by the network has a certain
freshness, resolution, etc. Similarly, a video stream has a rate,
resolution, the field of vision, a loss rate, etc. The individual
attributes define a vector which we call delivered-QoI. As
network and source conditions change, subsequently delivered
photos and videos may have different QoI. Finally, the ability
to meet a desired-QoI may be stochastic, i.e., specified as a
probability distribution.

As discussed above, certain attributes of QoI, such as video
frame rate or photo resolution, are intrinsic to an information
source. These attributes are independent of the situation for
which the information will be used [1]. Other attributes of
QoI, called contextual attributes, may depend on the situation
for which the information is being used [1]. A good example
is the timeliness of data. In some cases, an application requires
data with very low latency as in the example above. In others,
latency may not be as important, for example, for missions
based on long-term planning.

Several attributes of QoI are listed in Figure 1, along
with general definitions and characteristics of specific types
of information sources that map to these attributes. These
attributes are clearly specified in DoD documentation as the
basis for evaluating information [10], [11], but prior work has
not considered any systematic way of processing information
based on QoI, and networking research has not accounted for
information or its quality. Also, individual attributes of QoI,
such as those listed in Figure 1, interact which each other,
often depending on their intended use, to form a composite
QoI.

The information source dictates a fundamental limit of the
QoI of the raw information. For example, the resolution of a
photo has a maximum value dictated by the camera. If the
information from the source was instantaneously delivered to
its consumer without any loss or processing, the QoI at the
receiver will be the same as at the sender. More generally,
however, the QoI at the receiver may be different than that at
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Fig. 1. Intrinsic and Contextual QoI metrics

the source because of the impact of the network, in-network
processing and security properties. In this section we briefly
discuss the impact of data delivery and in-network processing
on QoI. In later sections, we explore other QoI attributes like
provenance or credibility.

The data delivery characteristics of the network cannot
improve the QoI, but can degrade it. Typical metrics of interest
for data delivery are data loss, latency, rate, and jitter. While
these are traditional quality of service metrics, each metric will
have a different impact on QoI depending on the information
source (intrinsic QoI) and the information use (contextual
QoI).

In-network processing of information may either degrade
or improve QoI. For example, lossy compression may reduce
the resolution of an image, thus lowering its QoI. Conversely,
software in a node that can perform feature extraction and
identify individuals may increase the QoI delivered to a
consumer.

Some of the relationships between network delivery and
in-network processing, and the delivered-QoI are shown in
Figure 2 for a video stream. For example, consider the impact
of compression on the QoI of a video stream. If lossy,
compression may reduce video resolution, frame rate and field
of view, thus decreasing QoI because of the negative impact
on precision, accuracy and completeness. On the other hand,
because compression reduces the amount of information to
be transferred over the network, it will reduce the age of
the images in the video, and will improve the timeliness of
the video. Likewise, losses in QoI caused by compression
may be recovered or surpassed by fusing multiple information
sources (and modalities) in the network. For example, the
annotation of video with a textual description of an event
from an independent source may provide additional details,
improving precision, and corroborating what is in the video,
thus improving accuracy.

Thus, there is a trade-off between the various metrics when
determining the ultimate QoI of the video stream. It is also
apparent that the selection and configuration of an information
source has a large bearing on QoI. A camera, for instance, may
adjust its zoom which will reduce is field of view. Depending
on the context, the decreased field of view may not degrade
completeness but may increase precision.

Fig. 2. Factors affecting the QoI of video streams

If an application has a minimum desired-QoI, in general that
desired-QoI may be represented as a multidimensional surface
that captures the trade-offs of different attributes of QoI.

Not all QoI attributes will be threshold-based. There may
be values of attributes above which there is no gain in QoI.
Contextual attributes may vary depending on the presence of
other information.

IV. C  QI- N
There are several challenges in realizing our vision of char-

acterizing networks on their achievable QoI, and ultimately
their OICC. These include defining QoI functions, transform-
ing QoI into OICC, and linking the communications and
information networks. We summarize some of these challenges
in this section.

Appropriate QoI functions for specific applications within
the context of tactical missions must be defined. While several
studies have defined attributes which impact QoI, some of
which are summarized in Table 1, a model in which the
tradeoffs of these attributes are quantified has been elusive. It is
difficult to define these relationships for different applications,
in context.

Furthermore, a transformation from QoI to achievable OICC
must be undertaken. This transformation must take into ac-
count the time dimension, thus quantifying the amount and
quality of information that can be transferred across a network
in the presence of multiple information flows and end nodes.
In essence, OICC is related to “how many correct decisions
are enabled by information obtained by the network per unit
time.” Depending on how QoI is specified, there are several
ways in which this formulation can transpire.

If QoI is represented as a surface of the minimal QoI
requirements of a mission then we can define OICC as the
number of information requirements that can be accommo-
dated concurrently in a network so that the achievable QoI
of all required information is above the minimum surface.
Of course, specifying only a minimum QoI surface may not
allow a true optimization of QoI. In many cases in addition
to a minimum QoI, decision making will be improved by
increasing QoI up to a point. To capture these situations, a
measure of the derived decision making ability as a function
of QoI must be developed.
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The optimization of achievable QoI and OICC itself is
challenging on two fronts. First, mathematical models must
be developed followed by optimization over the variables of
the model. Furthermore, functions to accurately represent QoI
and OICC may not turn out to be non-convex, complicating the
optimization task at best and often making global optimality
guarantees impossible. In these cases, we may have to resort
to approximation algorithms.

Second, realizing a mobile tactical network which provides
optimal QoI will be challenging as it is difficult for nodes
to obtain global knowledge of a network. Without global
knowledge of network conditions, resource allocation within
the network would be done based on locally available informa-
tion. Any practical realization of such algorithms must be dis-
tributed, executing within network nodes that have knowledge
of QoI requirements, network conditions, and context. While
the network nodes may be able to accurately estimate and
control their impact on intrinsic QoI attributes, to do the same
for contextual QoI attributes will require intelligence within
nodes to interpret information use. Furthermore, because QoI
may also depend on what information has already been re-
ceived by an information recipient, contextual QoI attributes
will be especially problematic for network nodes to determine.
Thus it is likely that QoI may only be ultimately determined
at the information consumer.

Given the need for network nodes to understand contextual
QoI requirements, and the strong dependency of QoI and
OICC on the selection of information sources, information
recipients will play a large role in achieving optimal OICC.
The information recipients will influence source selection, set
the contextual QoI attributes and provide QoI functions to
network nodes.

To realize QoI-aware networking, methods must be devel-
oped to measure, estimate, or infer the QoI of information; and
to pass information between nodes to learn QoI requirements
and to understand how other nodes on a path in the network are
impacting QoI. This information will be transported in meta-
data attached to packets carrying data. Meta-data processing
techniques are important because the size of this meta-data
can become prohibitively large depending on the amount of
attributes feeding QoI and the number of information sources
and nodes involved in information transfer and processing.
Thus, there will be a tradeoff between how precisely QoI
information is passed between nodes and specified to the
information consumers, and how much overhead QoI-aware
networking will incur. Sensitivity analysis of which attributes
have the largest impact on QoI is necessary so that these trade-
offs may be made efficiently.

Moreover, to fully realize our vision the techniques used
in the communications network to recognize, process, and
optimize information should be applied to information search,
querying, and knowledge discovery operations in the informa-
tion network. An important joint communications/information
network challenge is understanding how QoI evolves as it is
filtered, aggregated, and fused throughout the network.

V. C S  QI T

Although optimizing the QoI extracted from the network is a
challenging topic, we have initial forays in two directions that
illustrate how to make QoI tradeoffs, and the network costs
associated with making these tradeoffs, in the context of two
important attributes of the quality of information, provenance
and credibility.

Provenance and QoI. An important attribute of QoI is prove-
nance, the chain of custody and the transformations performed
on a piece of data. Provenance can be used for forensics,
to establish security properties, or to assess the credibility of
information. However, gathering provenance information can
impact the network throughput and its ability to delivery high
QoI, a tradeoff that we briefly analyze in this case study.

Fig. 3. Hop level provenance availability in a wireless network of 10 nodes.

To simplify matters, we consider what we call operational
provenance or OP for short; OP refers to the procurement
and maintenance of a history of transmissions that occur in
the network. Provenance subsumes the desirable attribute of
non-repudiation wherein a node cannot lie about performing
a transmission in a network. In essence, a functional module
that provides OP becomes a key part of a network forensic
system. One might expect that providing OP impacts the data
delivery functionalities of the network and thus influences the
QoI in a complex way: this case study illustrates this tradeoff.

Let us consider a simple case wherein nodes are expected
to digitally sign the packets they forward; this would verify
that a node that claims to have performed a transmission did
indeed do so. However, digital signatures incur both processing
overhead and increase the size of the packets. The first factor
limits the rates at which individual nodes can inject traffic into
the network; the second factor limits the quantum of traffic
that can be injected. If a PKI infrastructure is used for signing
packets, nodes may have to have their keys certified by an
authority; this would incur additional overhead that further
affects the achievable rates.

Alternatively, consider the “overhearing packet transmis-
sions by third-party” nodes as our verification process for
collecting OP. In order to ensure that the packets being
exchanged by a pair of nodes are overheard by other nodes for
verification purposes, there may be a constraint imposed on the
transmission rate. A lower transmission rate will decrease the
likelihood that a packet is lost due to wireless channel induced
effects; on the other hand it increases the packet air-time and
is more likely to be subject to interference and collisions. One
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can consider the following question for a given a packet length:
What is the highest usable bit rate with (1) all hops using the
same rate or (2) different hops using different rates – so as to
fulfill a provenance requirement? In case (1), we can simply
try each rate in descending order and find the maximum rate
that satisfies the provenance requirement. Note that since the
number of usable rates is finite, this operation can be done in
a small finite time. Case (2) is more complicated. If we aim
for using the highest rates possible, the problem can be posed
as:

Minimize
H∑

i=1

1
r(i)

Subject to
H∏

i=1

Prhop OP(r(i)) ≥ β,

r(i) ∈ [r0, ..., rM−1],∀i ∈ [1,H],

0 < β ≤ 1,

H ∈ N.

(2)

where, H is the number of hops on the considered path and is
a positive integer. r(i) is the rate used on hop i. Prhop OP

(
r(i)
)

is the OP availability probability for hop i when rate r(i) is
used; this probability represents the likelihood that one can
effectively verify a transmission on the ith hop of the path. β
is the desired threshold on OP and is a real number between
[0, 1]. The objective is to minimize the total transmission time
along the path. This in turn results in the use of the highest
rates on each link of the path. The constraint imposes that the
path level provenance should be no less than β. r(i) can be any
rate from among M available rates. Note here that computing
Prhop OP

(
r(i)
)

is non-trivial; depending on the verification
process, one may have to perform a set of complex analytical
computations to derive this probability. If this probability
was found, the above optimization problem can be solved
by dynamic programming. Other network attributes such as
packet size, network load and node density all influence the
ability of nodes to overhear transmissions towards gathering
OP. Accounting for these factors will make the problem multi-
dimensional and more complex.

To illustrate these tradeoffs, we have chosen the above func-
tions for providing OP (digital signing and overhearing) and
have performed simulations using the OPNET 2.0 modeler.
We consider a network of 10 nodes in one of our simulation
runs and vary both the packet size and the data rates used for
transmissions. We estimate the throughputs and the OP along
various paths. The results are shown in Figure 3. We observe
that at very low data rates, the OP on each hop is fairly low;
this is because while such low rates help cope with wireless
channel induced effects, they also increase the packet air-time
thereby making overhearing more susceptible to interference
related failures. As we increase the transmission rate, the like-
lihood of obtaining OP increases. However, at extremely high
rates, channel induced failures dominate and the likelihood of
obtaining OP drops. To our suprise we observed a similar trend
in throughput. Upon careful examination, we determined that
the very same factors affect the throughput in similar ways.

Lower rates are not conducive to high throughputs due to
interference and collision related effects; extremely high rates
are again detrimental to throughput due to excessive channel
induced losses.

Clearly, we are but scratching the surface. The impact
of the choice of route has to be considered. More realistic
and complex verification procedures are necessary. Finally,
in our simulations we only consider performance in terms of
throughput. The quality of information is more complex and
may be affected by the type of media being transmitted (video
versus text). Considering provenance (or security in general)
with different types of information is to our best knowledge
an open challenge.

Optimizing Credibility of Information. Another important
factor that impacts QoI is credibility, defined as the objective
believability of information [13]. Intuitively, credibility cap-
tures a notion we all use regularly in our daily lives: a piece
of information from the New York Times is generally assessed
to be more credible than hearsay from a stranger on the
street. The credibility of information generated by a network
depends upon many factors: the source of information, the
circumstances under which information was gathered, and the
provenance of the information.

In this case-study, we illustrate how to optimize a simplified
form of credibility. Consider a field operation consisting of
N participants, whom we call reporters. Each reporter is
equipped with a wireless communications device and directly
reports to a commander. Each reporter reports on an event;
for example, sighting of an enemy combatant, or suspicious
movements of insurgents. Events occur at a particular location,
and multiple events may occur concurrently either at the same
location or at different locations.

Reporters can transmit reports of an event using one of
several formats: such as a video clip, an audio clip, or a
text message describing what the report sees. Each report
is a form of evidence for the existence of the event. In
general, we assume that each reporter is capable of generating
R different report formats, denoted by f j, for 1 ≤ j ≤ R.
However, different formats have different costs to the network:
for example, video or audio could consume significantly higher
transmission resources than, say, text. We denote by e j the cost
of a report f j.

Now, suppose that the commander has heard, through out
of band channels or from a single reporter, of the existence
of an event E at location L. To verify this report, the
commander would like to request corroborating reports from
other reporters in the vicinity of L. Which reporters should
he get corroborating reports from? What formats should those
reporters use?

To understand this, we need to define the credibility of
a report. We can model the credibility using two common
intuitions about credibility. The first intuition is based on the
maxim “seeing is believing”: a video report is more credible
than a text report. We extend this maxim in our model to
incorporate other formats, like audio: audio is generally less
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credible than video (because, while it gives some context about
an event, video contains more context), but more credible than
text (for a similar reason).

Our second intuition is based on the often heard statement
“I’ll believe someone who was there”, suggesting that prox-
imity of the reporter to an event increases the credibility of
the report. More precisely, a report A generated by a reporter
at distance da from an event has a higher credibility than a
report B generated by a reporter at a distance db, if da < db.

Formally, let S i be the position of reporter i, L be the
position of event E and ci, j(S i, L) be the credibility of the
report generated by reporter i when report format f j is used.
We define ci, j(S i, L) as:

ci, j(S i, L) =

 γ j/d(S i, L)δ j , if h0 < d(S i, L)

γ j/h
δ j
0 , if d(S i, L) ≤ h0

(3)

with 1 ≤ j ≤ R, γ1 ≤ γ2 ≤ · · · ≤ γR, and δ1 > δ2 > · · · > δR.
Here, d(.) is the Euclidean distance between points, h0 is a
certain minimum distance to avoid division by zero as well as
to bound the maximum credibility to a certain level, γ j is a
constant of proportionality implying the maximum achievable
credibility of report format f j, and the credibility decays
according to a power-law with exponent δ j when format f j

is used.
Our credibility model incorporates the two intuitions de-

scribed above: the dependence on proximity is captured by
the power-law decay with distance, and the higher credibility
of the video compared to text is captured by having a larger
γ and a smaller exponent for video.

We can then formulate the following optimization problem,
called MC, which attempts to maximize information
credibility, while keeping network cost to within a specified
budget:

Maximize :
N∑

i=1

R∑
j=1

xi, jci, j (4)

Subject to:
N∑

i=1

R∑
j=1

xi, je j ≤ B

xi, j ∈ {0, 1},∀i ∈ {1, ...,N},∀ j ∈ {1, ...,R}
R∑

j=1

xi, j ≤ 1,∀i ∈ {1, ...,N}

where xi, j is a binary variable that is 1 if reporter i uses
format f j, and 0 otherwise, and B is the desired cost budget
(with credibility values being additive).

We briefly summarize our results in exploring this optimiza-
tion [6]. This one-shot corroboration-pull problem can be cast
a discrete optimization problem and we show that it reduces to
a multiple-choice knapsack problem with weakly-polynomial
optimal solutions. We develop strongly-polynomial, but inef-
ficient, solutions for the case when the number of formats is
fixed, and an optimal algorithm for the case of two formats.
Finally, we derive an approximation algorithm for the general
case that leverages the structure of our credibility model. On
a realistic dataset of events obtained from Google news, this

approximation algorithm is about 20% off the optimal, but its
running time is 2-3 orders of magnitude faster than the optimal
algorithm, which can make the difference between success and
failure in COIN operations, and enables a tradeoff between the
level of credibility and the timeliness of the information.

VI. RW  C

In this paper, we have introduced a vision for QoI-aware
networking for tactical military settings, described some chal-
lenges in achieving this vision, and presented two concrete
challenges that arise in ensuring QoI-aware tactical networks.

To date, QoI has been used to characterize data extracted
using a sensor network [2], [3], and methods have been
developed for admission control for multiple QoI tasks in
sensor networks [7]. More generally, QoI has been used to
assist in data retrieval [4] or to facilitate sharing stored data [8].
Unlike these approaches, ours incorporates information quality
directly into the design of a tactical network, borrowing from
military doctrine that specifies information quality criteria
to be used during operations [10]. To our knowledge, prior
work has not explicitly explored provenance tracking within
a communications network, although limited forms of prove-
nance tracking may be found in monitoring and forensics
systems like [12]. Similarly, we are not aware of prior work on
extracting credible information from within a communications
network; credibility has mostly been explored in sociological
research [5], [13].
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