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Abstract—In an intermittent-connectivity network, there rarely exists a connected path between a source node and its destination.

These networks arise frequently when each node has a limited transmission range, such as a communication network between

separated villages or a surveillance network with a large geographical span. One method of addressing the low connectivity of the

network uses redundancy. A node generates and stores data; upon reaching the communication range of another node, it replicates

the data to it. Multiple copies of the packet decrease the time to offload the data to the destination, but increase the energy and storage

used in the system. In this paper, we quantify the resource-delay trade-off and the throughput capacity for intermittent-connectivity

networks with Quality of Service restrictions such as limited communication bandwidth. Many routing protocols have been proposed for

these intermittent-connectivity networks. Using the Shared Wireless Infostation Model as an example strategy, we mathematically

represent the intermittent-connectivity network and adjust the model to include a Quality of Service constraint. By completely defining a

mathematical model, we allow network designers control over system performance through the adjustment of allocated resources such

as communication bandwidth, fraction of time a node spends in sleep mode, or required reliability of packet offloading.

Index Terms—Markov processes, stochastic processes, wireless sensor networks.

Ç

1 INTRODUCTION

INTERMITTENT-CONNECTIVITY mobile wireless networks are
collections of a relatively small number of wireless and

possibly mobile hosts distributed over a large coverage area.
Nodes have a small average number of neighbors (typically
less than one) and suffer from frequent, often chronic,
partitions. A randomly selected pair of nodes is often unable
to communicate directly due to large separation between
the nodes, power constraints, and signal propagation
impairments (such as line-of-sight limitations or propaga-
tion obstacles). Almost all traditional routing protocols,
wired and wireless [12], assume the existence of connected
paths between the message sources and their destinations
during the transmission and forwarding1 of data. We
analyze protocols that alleviate the problem of frequently
disconnected paths by having a node store the packet, carry
it until meeting another relay node (or the destination
node), and forward the packet to the other relay node. We
term this type of routing the store-carry-and-forward para-
digm. A packet is considered successfully delivered if a
node carrying the packet encounters the destination node
and offloads the packet to the destination node. Thus, using
the mobility of the nodes themselves, the network success-
fully delivers packets by forwarding them along virtual
links, which are created by the movement of network nodes.

The store-carry-and-forward networking paradigm and the

associated virtual links are quite useful in establishing

communication in intermittent-connectivity networks. Un-

fortunately, it is also a fact that this strategy often leads to

high latency since nodes can carry the packets for a long

time while disconnected from the network. Of course, when

network latency is not critical, such as is the case in delay-

tolerant networks, the store-carry-and-forward paradigm can

prove to be adequate. For example, this is the case when the

delivery of the messages is more important than its delay.

With the store-carry-and-forward communication paradigm,

the delays of packets depend on the rate at which virtual

links are created in the network, as well as the availability of

network resources, such as storage space and energy.
In our model of an intermittent-connectivity network,

each node generates information at some rate � (in units of

[packets/time-step]) to be transmitted to the appropriate

destination. In a sensor network, these destinations are

designated sinks called collection stations and we assume

that they do not change. Examples of intermittent-con-

nectivity networks include:

. networks of animal tags, where the nodes have only
limited communication range compared to the
distances over which they travel,

. sensor networks that collect statistical information
using low-power devices,

. networks of people from separated villages wishing
to communicate, and

. hikers in a national park who carry devices to collect
information about the trail conditions to be shared
with other hikers.

In this work, we derive a model of intermittent-

connectivity networks and relate the model’s parameters

to practical applications. We first introduce a mathematical
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1. Thus, the name store-and-forward routing
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Markov chain model for a sparse intermittent-connectivity
network and describe the way in which a mobility pattern
of the nodes can be expressed as parameters of the model.
We then explain the manner in which the model can be
used to calculate network performance metrics such as
packet delays and the impact of changing parameters of the
model.

We then precisely relate parameters of the mathematical
model to practical quantities like the communication
bandwidth. By using this relationship, a network designer
can analytically study the way in which performance
metrics change when the physical network resources vary.
Furthermore, we extend the above model to include
antipackets, a mechanism to reduce storage in the system,
and we relate physical quantities to network parameters in
this more complex model. To culminate the paper, the
relationship between theoretical parameters and physical
resources assists us in the calculation of the throughput
capacity of an intermittent-connectivity network.

2 RELATED WORK

Grossglauser and Tse [5] showed that the long-term
throughput for a source-destination pair can remain
constant as the density of nodes increases. In order to
provide this constant throughput, messages travel at most
two hops: Either the source node reaches the destination
directly or the source broadcasts to relay nodes and at least
one of these relay nodes reaches the destination. This
algorithm is based on the idea that maximizing throughput
involves scheduling transmissions over sufficiently short
paths at any given time. Since information is not passed
until the nodes are sufficiently close to one another, the
resource utilization is small. The authors also prove that the
message is guaranteed to be delivered in some finite
average time (given infinite storage capacity at the nodes),
although this time may be very long. This may be a
reasonable assumption since intermittent-connectivity net-
works must inherently tolerate large delays.

An intermittent-connectivity network is an example of a
delay-tolerant network, an important type of networks that
is gaining interest in the networking community. The Delay
Tolerant Networking Research Group (DTNRG) focuses
primarily on data delivery in frequently partitioned net-
works with predictable movement of nodes [2]. The
semantics of the US Postal Service provide a basis for the
data delivery. Packets attain relative priorities, including
custodial delivery (where a message is passed between
custodians that become responsible for the reliable trans-
mission of the packet) and return receipts. The authors of
[2] define an expiration time for the delivery of a packet as
the time at which the message is no longer useful; this
functionality is accomplished using local clocks with the
current time-of-day. Certain considerations are included,
such as security and the ability to save state when a session
terminates. Since a node may often reboot or undergo long
delays with intermittent connectivity, the ability to begin
again in the same state is valuable.

Outside the DTNRG, there have been numerous other
works on intermittent-connectivity networking. Proactive
approaches for routing in intermittent-connectivity networks

involve nodes thatmodify their trajectories for the purpose of
improving communication. Li and Rus [8] proposed an
optimal algorithm to compute the trajectories of these nodes
so that the message transmission delay is minimized. We do
not consider proactive methods in this paper, although we
assume that timely delivery is desired and we rely on the
natural mobility of the nodes.

Shah et al. [15], [7] introduced a three-tiered architecture
to reduce the power requirements of mobile sensors. The
work establishes a collection of mobile entities called
dataMULEs (Mobile Ubiquitous LAN Extensions), placed
on creatures or devices that are already present in the
environment. Their scheme uses the natural motion of the
nodes and devices to create virtual links in which the
dataMULEs approach the sensors, retrieve data, travel, and
eventually deliver the data to the collection stations. This
scheme provides a low-power transport medium to recover
sensor data. Hence, this model is well-suited to sensor
networks, where power budgets at the nodes is the biggest
constraint, but the sensors’ data do not have severe latency
restrictions. Shah et al. reduced the space of mobility
patterns to a random walk and used stochastic models to
examine the success rate of packet delivery and the buffer
capacity requirements on sensors and MULEs.

Zhao et al. [21] used special mobile nodes, called
“message ferries,” to aid communication services, similarly
to dataMULEs. However, the ferries follow a nonrandom
predetermined route (known by the nodes), rather than
relying on their own trajectories. This significantly improves
the latency over the dataMULE case. Whenever a source
node generates a packet to be delivered to an out-of-range
destination node, the source transmits the message to a ferry
and the ferry delivers the message. In this way, messages
need to travel only two hops, reducing the bandwidth
utilization, the contention in the system, and the energy
expenditure at the nodes, much like in Grossglauser and Tse
[5]. Indeed, performance of the system is considerably
improved over other intermittent-connectivity ad hoc
networking methods. However, the message delay can still
be considerable because the ferry travels primarily on its
predetermined route, which passes by nearly all nodes once
before returning to any of them.

Epidemic routing [20] involves replication and propaga-
tion of copies of a message to many mobile nodes. In
epidemic routing algorithms, mobile hosts forward their
packets to randomly chosen relay nodes, as well as
retaining a copy of the packet. The name stems from the
behavior of a message, which is similar to an infectious
disease. A node carrying a packet is like a carrier of an
infectious disease; we deem such a node both infected and
infective. A susceptible node does not carry the packet, but
has the potential to carry it. An infective node replicates and
forwards a message to a susceptible one once they come
into communication range due to their mobility. A basic
result of the epidemic theory states that this entire
population will be infected in finite average time. Starting
from a single infective individual, this is achieved in
expected time proportional to the logarithm of the popula-
tion size [4].

Unfortunately, epidemic routing can introduce a lot of
redundant packets, so packets are often dropped due to
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limitations of local buffer space. In addition, the scheme
drains considerable energy to “infect” all of the nodes with
the packets. Introducing a maximum hop count partially
relieves this inefficient use of resources. For example, a
forwarded message with a reduced hop count of 1 can only
be offloaded to the destination. Given adequate buffer sizes,
this strategy obtains nearly 100 percent message delivery
since the packets remain in the system a very long time
before they are eventually overwritten by newer packets.
Limiting this hop count balances the heavy resource
consumption since the message is now copied to fewer
nodes, thus exploiting the inherent trade-off between
resource consumption and delivery rate/latency.

Davis et al. [3] extended the epidemic routing concept by
exploiting nodal movement patterns to forward packets
strategically in intermittent-connectivity networks. Using
their scheme, nodes learn about the movement patterns of
the network nodes when forwarding messages. Addition-
ally, nodes drop packets cleverly when local buffers are full
by calculating the probabilities of message delivery based
on movement. Lindgren et al. [9] also calculated probabil-
ities of delivery to forward packets, assuming that two
nodes are more likely to meet again if they have met
recently.

Haas and Small [6] developed the Shared Wireless
Infostation Model (SWIM) to extend the epidemic routing
concept in a different way. Based on the epidemic theory,
the Markov models of SWIM are refined to better and more
flexibly represent the networking scenarios. These models
include a Time-To-Live ðTTLÞ field that limits resource
consumption instead of a maximum hop count. This means
that all copies of a packet are erased from the system after
TTL time-steps from the time of creation of the original
packet (much like in the DTNRG draft [2]). SWIM allows
the network designer to choose what fraction of packets to
offload by properly setting the value of TTL. For example,
the network designer may set the TTL to offload 95 percent
of the generated packets (which we label TTL0:95). By
requiring a smaller fraction of packets to be offloaded, the
designer would trade reliability for storage space since
TTLx < TTLx0 for x < x0. As shown later, the packets
remain in the system a much shorter time if they only need
to be offloaded with, say, probability of 0.9, rather than a
probability closer to 1. Usually, in these types of networks,
100 percent reliability of offloading is unnecessary.

Mobile sensor networks provide an appropriate applica-
tion for SWIM. Sensor nodes periodically generate data in
the network. Then, these nodes function cooperatively to
offload the data to collection stations, in fact creating a
sensor network [1], [16], [6]. Feedback mechanisms reduce
the storage at the nodes by eliminating packets whose copy
has already been offloaded and which are no longer
necessary. Upon offloading of a packet, a collection station
leaves a small identifier at the offloading node, indicating
packet delivery. The identifier is spread through the net-
work, so any node carrying a copy of a packet with that
identifier can erase the packet, knowing that it is no longer
needed in the system.

In this paper, we study the mathematical representation
of intermittent-connectivity networks with different types

of Quality of Service constraints. Using the analytical results
obtainable using this model, a network designer is able to
precisely control the cost-benefit ratio, that is, the network
resource cost compared to the benefits of system perfor-
mance. Section 3 defines our model for an intermittent-
connectivity network with resource constraints. The model
is defined generally enough that many different mobility
patterns can be represented by simply recalculating the
mobility parameters. The packet delay (latency) is derived
for this general model and the implications of more and less
severe resource restrictions are discussed in terms of the
delay. Section 4 focuses on one particular resource con-
straint, the communication bandwidth, as a concrete
example that limits the intermittent-connectivity system.
Simulation results show that we are able to represent the
resource constraint in our model well and evaluate the
impact of the constraints on the system performance.
Section 5 calculates the capacity and utilization of a
constrained network. Section 6 concludes the paper.

3 MODELING SYSTEMS WITH INTERMITTENT

CONNECTIVITY

Consider an intermittent-connectivity network where nodes
generate information packets with a Poisson arrival process.
In an effort to deliver the packets to their destinations more
quickly, nodes copy packets to their in-range neighbors
(possibly only to one neighbor, ferry, or dataMULE). This
means that multiple copies of each unique packet exist in the
system and the packet is offloaded once any of the nodes
carrying a copy comes into contact with a collection station.
Given a certain mobility pattern, a node may be within
communication range of a relay or its destination for a short
time only. An interaction between two nodes is defined as the
time period in which the two nodes are in communication
range. Let us assume for simplicity that our network is a
sensor network and that the destinations for all of the
packets are fixed nodes that we call collection stations. Let
Ln be a random variable representing the length of an
interaction time between two nodes and Ls be a random
variable representing be the length of an interaction between
a node and a collection station.

During each interaction between two nodes, each node
replicates all of the packets in its queue at the other
interacting node. The modeling of a system with multiple
different packets is complicated, so we choose to model the
replication of one packet at a time. If an unlimited number
of packets can be sent in any interaction between two
nodes, then this method is clearly acceptable, since the
replication of one unique packet will not affect the
replication of another packet in any way. However, to
represent practical situations, we need to limit the number
of packets that can be sent in interactions between nodes.
In particular, if we choose a bandwidth constraint bn (in
packets per time-step), then only bnln packets can be sent in
a node-to-node interaction of duration ln, so sending one
packet could affect another. As we will soon see, it is still
sufficient to model one unique packet and its copies at a
time in this case.

In our system, each node has a list of packets, ordered by
packet identifiers. At the beginning of an interaction, the
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node chooses a location in the list uniformly and at random.
The node sends bnln packets of the queued packets
beginning at the random location, possibly starting from
the top of the list if the end is reached.2 By this definition, all
of the packets are treated the same way. If bnln of the
packets are sent from a queue with length q, then this can be
modeled as sending any individual packet with probability
pn ¼ bnln

q . In the same way, the bandwidth is limited
between a node and a collection station by some different
constraint bs (in packets per time-step). This models an
individual packet being offloaded in an interaction of
duration ls with probability ps ¼

bsls
q . We assume that there

are no transmission losses in this system; the only loss is
due to the expiration of the Time-To-Live of packets.

3.1 Setting Up the Model

Since nodes in intermittent-connectivity networks have less
than one neighbor on average and it is sufficient to consider
the replications of one unique packet, we can construct a
relatively simple mathematical model, the Shared Wireless
Infostation Model [6]. Note that interference is not a serious
issue in these networks due to the scarcity of neighbors. We
also assume that the MAC layer is able to schedule packet
transmissions such that no collisions occur.

The Markov chain shown in Fig. 1 models the replication
in the system for one individual packet. Since it is easier to
model a discrete-time system, time is quantized into very
small intervals of length �t which we call “time-steps,”
allowing only one forwarding event in a single �t. Each
state i represents the number of copies of the packet in the
system. R represents the system state in which at least one
of the copies has been offloaded to a collection station. ps� is
the rate of offloading from one node to any collection
station; this parameter appears in the transitions from
nonoffloaded states i to the offloaded state R. If the system
is in state i, then i nodes carry copies of the packet so that
the rate of offloading is psi�.

The �ti variables represent the average time that the
system remains in the state i (i.e., that there are i copies of the
packet) before one of the data-carrying nodes is within range
of another non-data-carrying node. The packet is replicated

with probability pn so that the transition probability from
state i to state iþ 1 is pn�t

�ti
. Since the size of �t is assumed to

be very small, only a single node-to-node forwarding event
can occur per time-step; however, during that time-step, it is
possible for a copy to be offloaded. The offloading event is
given priority in the model since offloading is our primary
goal. Therefore, the overall transition probability from state i
to state iþ 1 is the conditional probability that the packet is
shared between nodes and is not offloaded. This results in
the ð1� psi��tÞ factor. For reference, all of the notations
used in this paper are compiled in a table in Appendix A.

The N þ 1 parameters in our model, �ti ¼ �tiðNÞ,
1 � i � N , and �, are defined by the mobility pattern. To
calculate these parameters, we begin by considering two
quantities, the distribution of times until two nodes meet fX
and the distribution of times until one node meets any
collection station fW . If the mobility pattern of the nodes is
very complicated, we may need to empirically measure
these distributions. However, with reasonably simple
mobility patterns, they can be calculated analytically, as
shown in Appendix B. We wish to extrapolate what would
happen when we add more nodes to the system. Although
many different mobility patterns could be used, in this
paper, we chose to use a random directional mobility
pattern [11] as an example, where the direction is chosen
uniformly at random every 15 time-steps and the nodes
move linearly.

�t1ðiþ 1Þ is the time that it takes one packet-carrying
node to reach one of i non-packet-carrying nodes. More
precisely, it is the minimum time it takes for the packet-
carrying node to reach any of the i non-packet-carrying
nodes, where the time to meet any particular non-packet-
carrying node has distribution fX . Therefore, this random
variable is �t1ðiþ 1Þ ¼ minðX1; . . . ; XiÞ, where Xj � fX are
i.i.d. 81 � j � i, with the following distribution:

P ð�t1ðiþ 1Þ � tÞ ¼ 1� P ðno interaction by time tÞ

¼ 1� ½1� P ðX � tÞ�i:
ð1Þ

Using the same ideas, we state that

�tiðNÞ ¼ minðY1; . . . ; YiÞ;

where Yj � f�tiðN�iþ1Þ are i.i.d. 81 � j � i, because we have
i packet-carrying nodes that could each potentially interact
with N � i non-packet-carrying nodes. So, �tiðNÞ are the
�ti variables used in the model of Fig. 1.

These models have been shown to work well by taking
1
� as the mean of the fW distribution and using the �tiðNÞ
calculated above [17]. The probability of one node offloading
a packet is ps��t, and the probability of one of the i nodes
offloading a packet is psi��t. However, further calculations
may be needed if more complicated mobility pattern
examples are used. Using the same technique as above, we
would let 1

�i
be the time that is takes i packet-carrying

nodes to reach a stationary collection station. That is,
1
�i
¼ minðW1; . . . ;WiÞ, where Wj � fW are i.i.d., 81 � j � i.
Note that one of the greatest advantages of this model is

the generalization of the mobility pattern used. By perform-
ing the above calculations on the contact rates to find the
model parameters, we can use realistic and potentially
complicated mobility patterns that are applicable in
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transmission is a simplification. In a practical scenario, other scheduling
methods, such as first-come-first-serve, could be used.

Fig. 1. Markov model for a single packet and its copies.



practical settings. The model of Fig. 1 assumes that all nodes
use the same mobility pattern; however, our work can be
extended in a straightforward manner to situations where
sets of nodes use different movement.

3.2 Calculating the Packet Delay

Using the model in Fig. 1 and appropriate initial conditions,
we are able to find the probability distribution, as a function
of time, of the different states of the system. We define the
random variable T as the delay of a packet, the time from
the packet creation (time t ¼ 0) until any copy is offloaded
to a collection station (i.e., when the system enters state R).
Therefore, finding the probability of the system in state R as
a function of time provides us with the cumulative
distribution function for the delays of the packets, F ðT Þ.

Using the cumulative distribution of the delay, we are
able to determine the threshold probability Pthresh that
represents the confidence with which we desire each packet
to be successfully offloaded to a collection station. For
example, if Pthresh ¼ 0:5 and F�1ð0:5Þ ¼ 200, then the
packets need to remain in the system for 200 time-steps,
after which time they are successfully offloaded with
probability 0.5 and all of the copies may be removed from
the system. This is accomplished by adding a Time-To-Live
ðTTLÞ field (of 200, in the above example) to each packet,
which is decreased at each time-step. When the TTL ¼ 0,
the packet is erased. Note that only the remaining TTL time
is passed when the packet is shared between nodes; i.e.,
there is no need for clock synchronization among the nodes.
We assume in this section that the expiration of the TTL is
the only method by which packets are erased.

Let us assume that the initial probability of state i is ai
and that the initial probability of state R is aR. Clearly,
a1 þ a2 þ . . .þ aN þ aR ¼ 1. Let us consider probabilities
P ðstate; timeÞ.

In the following calculations, let

di ¼
pn�t

�ti
ð1� ips��tÞ:

First, we calculate the probability of state 1 at any time-
step j.

P ð1; j�tÞ ¼ a1ð1� d1 � ps��tÞj: ð2Þ

With P ð1; j�tÞ known, we calculate the probabilities of
state 2 as

P ð2; 0Þ ¼ a2;

P ð2; j�tÞ ¼P ð2; ðj� 1Þ�tÞð1� d2 � 2ps��tÞ

þ d1P ð1; ðj� 1Þ�tÞ:

ð3Þ

Similarly, we find the probabilities of states i up to N � 1,

P ði; 0Þ ¼ ai;

P ði; j�tÞ ¼P ði; ðj� 1Þ�tÞð1� di � ips��tÞ

þ di�1P ði� 1; ðj� 1Þ�tÞ;

ð4Þ

and, for i ¼ N ,

P ðN; 0Þ ¼ aN ;

P ðN; j�tÞ ¼P ðN; ðj� 1Þ�tÞð1�Nps��tÞ

þ dN�1P ðN � 1; ðj� 1Þ�tÞ:

ð5Þ

Finally, we find the cumulative distribution of the off-
loading times, F ðj�tÞ ¼ P ðR; j�tÞ,

P ðR; 0Þ ¼ aR;

P ðR; j�tÞ ¼P ðR; ðj� 1Þ�tÞ

þ
X

N

i¼1

ðips��tÞP ði; ðj� 1Þ�tÞ:

ð6Þ

3.3 Effect of pn on Performance

Estimation of energy consumption in the network depends
considerably on the energy model used. We assume that
each node can have two energy states, active (either
transmitting a packet, receiving a packet, or sensing the
channel in idle mode while waiting for the arrival of new
data) or sleep (conserving power and unable to transmit or
receive any information). Pearlman et al. [13] observed that
the transceiver consumes the most energy when transmit-
ting. Receiving and idly listening to the channel both
consume less, but comparable power. The power consump-
tion of a node in the idle state is often more than half the
power consumed when it is actively transmitting packets.
Only the sleep state conserves significant energy at the nodes.
Stemm and Katz [19] showed through measurements that
most of the power drawn from the batteries in a CSMA/CA
scheme is due to the sensing mechanism in the idle mode.

If the nodes need to continually sense the channel to
determine whether other nodes or collection stations are
within range, then the energy dissipation will be similar,
regardless of the number of transmissions from the nodes.
Let us consider the ideal case where the nodes are able to
enter the sleep mode most of the time, but are able to
transmit/receive at every possible interaction opportu-
nities; the packet transmissions and receptions are the
primary source of energy consumption. Our energy metric
is the number of times that copies of the packet are
transmitted between nodes or from a node to a collection
station. Suppose that nodes are put into sleep mode ð1� pnÞ
fraction of the time and can therefore receive pn fraction of
the time. The collection stations have a renewable energy
source so that they can receive at any time and ps ¼ 1. Note
that choosing pn < 1 reduces the energy, but does not
bound the energy spent per packet. We further investigate
bounded energy per packet in [18].

Taking parameter pn ¼ 0 corresponds to the case where
no node-to-node copying occurs. This leads to low storage
and low energy usage for each unique packet. However,
since the single copy of each packet must be transmitted
directly to the destination, the delays of packets can be quite
long. When pn increases, packets are copied to other nodes
in interactions. More copies of each unique packet lead to a
greater chance of offloading one of them, resulting in
smaller delays, but more storage space and energy is
required per packet.

We exhibit the energy-delay trade-off for a unique
packet in Fig. 2 for a system with 40 nodes and one
collection station moving in a 150 units by 150 units
network area. The communication radii of the nodes and
stations are 7 units. This example uses the SWIM strategy
to forward and offload packets with a feedback mechanism
called VACCINE (Section 4.2). VACCINE reduces the
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storage requirement at nodes by eliminating offloaded
packets from the system. Fig. 2 shows large reductions in
the delays of the packets for smaller increases in energy for
small pn values, such as pn ¼ 0:1 or pn ¼ 0:2. An energy-
conscious network designer may choose to operate the
network in this range.

Another important resource is the total storage in the
system. By Little’s Formula, the expected number of packets
in the system is EðNÞ ¼ � � TTL �(average copies of each
unique packet in ½0; TTL�), where � is the generation rate of
the packets. Since � is constant as we vary pn, we can
consider the product TTL � (copies of each unique packet)
for different levels of confidence as a normalized expected
number of packets in the system. Recall that, as pn increases,
TTL decreases and the number of copies of each unique
packet increases, so it is difficult to predict whether the
product increases or decreases. Fig. 3 shows that the
expected number of packets in the system increases some-
what with pn for several levels of confidence in delivery for
the chosen set of parameters.

4 BANDWIDTH-DELAY TRADE-OFF

Having set up all of the mobility parameters in the model
shown in Fig. 1, we further investigate the relationship
between the probability of sending a packet in an interac-
tion and the corresponding allocated communication
bandwidth. We solve this problem in a manner that may
seem “backward”3 by choosing values for pn and ps and
then solving for the corresponding values of bn and bs for a
given choice of desired fraction of offloaded packets.

Suppose we choose pn, ps, and Pthresh. Using the model
from Fig. 1, we can find the Time-To-Live of a packet that
corresponds to a desired probability of offloading Pthresh. As
long as ps > 0, a TTL value exists for any Pthresh, but it may
be very large. In such a case, the queues could get very long,
but, since we assume the storage buffers are unbounded,
packets are not lost.

Using this TTL value and the model of Fig. 1, we find
the average number of copies of a unique packet in the
system, EðIÞ, for any time within ½0; TTL�. If each of the
N nodes generates packets by a Poisson process at rate �,
then the distribution of the total packets in the system is
approximately

P total packets ¼ N � EðIÞ � kð Þ ¼
e�ð��TTLÞð� � TTLÞk

k!

and, since all nodes are equally likely to carry packets, we
can divide the packets among the N nodes and estimate the
distribution of packets per node, Q, as

P ðQ ¼ EðIÞ � kÞ ¼
e�ð��TTLÞð� � TTLÞk

k!
: ð7Þ

To find the corresponding bn and bs, we also need the
distributions of the interaction durations. Recall that Ln is
the interaction duration between nodes and Ls is the
interaction time between nodes and collection stations. If
the mobility pattern is complicated, the distributions of Ln

and Ls can be calculated using precise empirical measure-
ments. However, for simple mobility patterns, it can be
calculated analytically, as shown for the mobility para-
meters of the model in Appendix B.

Note that the queue length Q is independent of Ln. Q is
calculated using the generation rate � and the model from
Fig. 1, whose parameters do not depend on interaction times.

Equation (8) relates pn and bn by mathematically
expressing pn as the fraction of packets sent in a node-to-
node interaction averaged over all possible queue lengths
and all possible interaction lengths. For each instance of an
interaction with a sender queue of size q, the entire queue
can be sent if q � lnbn, but only lnbn of the queue can be sent
if q > lnbn. Since bn is the only unknown in this formula, we
can solve for bn and discover the pn � bn relationship,

pn ¼
xn þ yn

P1
ln¼1

P1
q¼0 qP ðQ ¼ qÞP ðLn ¼ lnÞ

; ð8Þ

where xn ¼
P1

ln¼1

Plnbn
q¼0 qP ðQ ¼ qÞP ðLn ¼ lnÞ and

yn ¼
X

1

ln¼1

lnbn
X

1

q¼lnbnþ1

P ðQ ¼ qÞP ðLn ¼ lnÞ:

In a similar way, we can say that

ps ¼
xs þ ys

P1
ls¼1

P1
q¼0 qP ðQ ¼ qÞP ðLs ¼ lsÞ

; ð9Þ

where xs ¼
P1

ls¼1

Plsbs
q¼0 qP ðQ ¼ qÞP ðLs ¼ lsÞ and

ys ¼
X

1

ls¼1

lsbs
X

1

q¼lsbsþ1

P ðQ ¼ qÞP ðLs ¼ lsÞ:

4.1 pn � bn Evaluation

Let us examine the calculations of the previous section
using a network area of size 300 units by 300 units with
40 nodes and one collection station. The nodes move with
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3. If instead, the bn and bs are given, it is difficult to estimate the queue
lengths to solve for pn and ps.

Fig. 2. Energy-delay trade-off.
Fig. 3. Indication of total number of packets, EðNÞ, since
EðNÞ=� ¼ TTL�(copies of a unique packet).



the following mobility model (random directional mobi-
lity). The nodes choose their directions uniformly at
random and choose a speed uniformly at random between
0 and 6 units/time-step, move in that direction for 15 time-
steps, then choose a new direction without pausing. The
communication ranges of the nodes and of the collection
station is 7 units.

If we suppose that the stationary collection station can
have a large antenna and significant decoding capability
(both longer than the mobile nodes), we can assume that
ps � 1 and find bn for different values of pn. These results
are shown in Table 1.

To evaluate the accuracy of this relationship, we can use
many different metrics. One such metric is the delay, the
time from creation of a packet until its reception at a
collection station. In Fig. 4a, the analytical cumulative delay
distribution is obtained using the model from Fig. 1 with
pn ¼ 0:4, 0.7, and 1 and with ps ¼ 1. We are able to estimate
the queue lengths for models with multiple packets and
find the corresponding values for bn. The empirical curve
uses simulation with TTL corresponding to a probability of
offloading of 0.9 and the bn values with � ¼ 1

30
. The

empirical simulation only reports the delays for packets
that are offloaded to a collection station and the other

packets are lost; therefore, we scale the empirical delay
distribution by the fraction of the generated packets that
successfully offloaded at least one copy. We can also
compare the predicted lengths of the queues to the queue
lengths observed in simulation. As shown in Fig. 4b, the
queue lengths also agree well.

With the pn � bn relationship, we are able to use our
analytical model to examine the performance of a system as
the resource constraints vary. Fig. 5 shows how the average
packet delay changes in a network where different node-to-
node bandwidths are used. Five different levels of con-
fidence in delivery are shown. At low values of node-to-
node bandwidth, the replication of packet copies is slower,
which leads to longer times that the packet copies must
remain in the system to achieve the same offloading
probability. At these values of bn, only a small number of
packets are replicated during an interaction. Increasing bn
by a small amount leads to several times the number of
packets sent between nodes. This results in a sharp
decrease in TTL for small bn values. However, at large
values of bn, we see little variation in the TTL values
required to achieve a particular confidence level of off-
loading. Increasing the already large bn values does not
reduce the TTL because the sparsity in the network and the
rate at which the nodes interact are the bottleneck that
limits the system performance.

4.2 Incorporating Antipackets

In order to reduce the storage requirement at the nodes, we
introduce antipackets,which erase unnecessary packets from
the queues of the network nodes [6]. An antipacket is
generated when a packet is offloaded to its destination and
is given the same identifier as the offloaded packet. These
antipackets are transmitted between nodes as they interact,
although antipackets are much smaller, so we assume that
all of the antipackets in a queue can be sent during a time
equal to a single packet transmission time. The purpose of
the antipacket is to inform a node that a packet that it holds
has already been offloaded. Therefore, the packet is no
longer needed and the node can erase that packet from its
memory without harming the data delivery in the system.
The antipacket carries the remaining Time-To-Live field
from the original packet, allowing the nodes to purge all
packets and antipackets at the same time. Note that there is
no reason to send antipackets in node-to-station interac-
tions; thus, the calculations of the previous section suffice to
relate ps and bs in this case as well.
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TABLE 1
pn versus bn in [Packets/Time-Step] with ps ¼ 1 and Pthresh ¼ 0:9

Fig. 4. Comparing theoretical to empirical metrics with Pthresh ¼ 0:9.

(a) Cumulative delay distributions. (b) Node queues.

Fig. 5. Average delay versus bandwidth in a 40-node system with one

collection station.



Each node carries two queues: one for packets (with
queue of size qp) and one for antipackets (with queue of
size qa). Let Qp and Qa be random variables representing the
numbers of packets and antipackets in the packet and the
antipacket queues, respectively. pp is the probability of
sending a packet (given that jQpj 6¼ 0) and pa is the
probability of sending an antipacket (given that jQaj 6¼ 0)
in a single interaction between nodes. Much like the
evaluation of the pn � bn relationship of the previous
section, the goal in intermittent-connectivity networks with
antipackets is to calculate and evaluate the relationship
between pp, pa, and bn.

Since each node carries two queues, there is a choice of
which queue to send first. The two orderings lead to
similar results, so we assume that the antipacket queue is
sent first. Recall that all antipackets can be sent in one
packet transmission time. If lnbn 	 1 for a particular
interaction of length ln, then the antipackets are sent first
and up to ðlnbnÞ � 1 packets are sent in the remaining time.
However, if there are no antipackets in the node’s queue,
then up to lnbn packets can be sent. From these descrip-
tions, we derive equations for pa and pp, the respective
average probabilities of sending an antipacket or a packet
in a node-to-node interaction. Recall that all packets (and,
therefore, packets and antipackets that have different
identifiers) are independent.

Let us assume that the node-to-node bandwidth is large
enough that at least one packet can be sent in any
interaction; that is, lnbn 	 1 and, therefore, pa ¼ 1. As in
the previous section, we choose pp, ps, and Pthresh. We
adjust the model from Fig. 1, as shown by Haas and Small
[6], and find the Time-To-Live TTL that corresponds to
Pthresh. Again, we predict the size of the queues for the
packets using the expected number of packet copies EðIÞ
using (7). In cases using antipackets, relating these pp and
ps to the bandwidth constraints requires us to calculate the
probability that antipackets exist at the node. This tells us if
we can send lnbn packets during the interaction or only
ðlnbn � 1Þ packets.

A node has no antipackets if both of the following
independent conditions are true:

. It has no knowledge of any of its current
(nonexpired) packets being offloaded to a collec-
tion station and

. no antipackets have been received for packets
generated at other nodes.

Suppose that packets are independent as before; then, we
approximate the probability that none of the node’s own
packets have created an antipacket, i.e., have been
offloaded to a collection station. Using the model of a
unique packet and its antipackets, we know that the
offloading rate is ps�. Packets are generated reasonably
often at the nodes, so we can assume that at least one
packet is generated between each two node-to-station
interactions. The node still holds antipackets for the
remainder of the TTL value after reaching the collection
station, so we expect the nodes to hold antipackets that
they generate themselves for ps� � TTL time duration.
Also, recall that times between collection station visits are
memoryless (exponential), which means that the overall

process of visiting a collection station is Poisson. We can
then calculate

P ðno antipackets from node0s own offloadsÞ

¼
e�ðps��TTLÞðps� � TTLÞ0

0!
¼ e�ðps��TTLÞ:

Next, consider the probability of receiving antipackets from

other nodes’ offloads. Suppose that we are considering a

particular node, call it Node 1. Interactions between Node 1

and another node will occur at the rate 1
�t1ðNÞ in a system

with N nodes. If Node 1 receives a set of antipackets from

another node, then the “youngest” antipacket could last up

to TTLmore time-steps. Unfortunately, we do not know the

probabilities that the nodes involved in these interactions

have antipackets because this is precisely the probability we

wish to obtain. We call this probability P ðjQaj ¼ 0Þ.

P ðno antipackets from other nodes0 offloadsÞ

¼
e
� P ðjQaj¼0Þ TTL

�t1ðNÞ

h i

ðP ðjQaj ¼ 0Þ TTL
�t1ðNÞÞ

0

0!

¼ e
�

P ðjQa j¼0ÞTTL
�t1ðNÞ

h i

:

We find the overall probability of a node having
antipackets by solving

P ðjQaj ¼ 0Þ ¼ e�ðps��TTLÞ � e
�

P ðjQa j¼0Þ�TTL
�t1ðNÞ

h i

: ð10Þ

As we conservatively estimated the length of the TTL for

the antipackets, this calculated P ðjQaj ¼ 0Þ may be slightly

lower than the actual value.

Now, we are able to relate the probability pp to the node-

to-node bandwidth.

pp ¼
ðxþ yÞP ðjQaj ¼ 0Þ þ ðuþ vÞP ðjQaj 6¼ 0Þ
P1

ln¼1

P1
qp¼0 qpP ðQp ¼ qpÞP ðLn ¼ lnÞ

; ð11Þ

where

x ¼
X1

ln¼1

Xlnbn

qp¼0
qpP ðQp ¼ qpÞP ðLn ¼ lnÞ;

y ¼
X1

ln¼1
lnbn

X1

qp¼lnbnþ1
P ðQp ¼ qpÞP ðLn ¼ lnÞ;

u ¼
X1

ln¼1

Xlnbn�1

qp¼0
qpP ðQp ¼ qpÞP ðLn ¼ lnÞ;

v ¼
X1

ln¼1
ðlnbn � 1Þ

X1

qp¼lnbn
P ðQp ¼ qpÞ � P ðLn ¼ lnÞ:

To gain more confidence in the accuracy of this relation-

ship, we compare the analytical and the empirical packet

delays using the SWIM routing scheme [6] that incorporates

antipackets, called VACCINE. The VACCINE method of

packet removal generates antipackets at the time of off-

loading of any packet. These antipackets are passed during

a node-to-node interaction, regardless of whether the

receiving node has ever stored a copy of that packet before.

If the receiver has never stored a copy of the packet, we are

“vaccinating” the node such that a copy of the packet will

never be accepted. If the receiver has a copy of the packet, it

is erased and the antipacket is retained. Fig. 6 shows good
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agreement between the analytical and the empirical delays

for this example.

5 ON THE CAPACITY MODELING

Using a SWIM system with collection station bandwidth bs,
the best possible offloading rate that can be obtained would
offload new data at every possible opportunity. This is
achieved if the packet generation rate � is very large, so that
the queues always contain new data to offload at rate bs for
the entire time they are within range of the collection
station. The capacity is the maximum offloading rate

bs �
time in communication range of a station

total time

¼ bs �N
EðLsÞ

1=� þ EðLsÞ

ð12Þ

for a system with N nodes. Equation (12) assumes that
either the system is sparse enough4 or that the station has
multiple receivers.5 This capacity can be achieved with any
desired packet offloading fraction Pthresh for any band-
width bs if the delays and the storage queues can be
arbitrarily long.

If we wish to limit the average delay of packets or the
average queue size, we can use the theory previously
discussed in this paper. Suppose that 0 � Pthresh < 1 is the
fraction of packets that we desire to offload successfully.
With infinite storage buffers, we can find the finite TTL
values that achieve the fraction Pthresh of successfully
offloaded packets. Expiring packets after TTL means that
the queues will be stable (not infinite), but could be very
large. As we have seen in the previous sections, we begin by
choosing pn and ps, finding the queues using the model, and
solving for the corresponding bn and bs for a particular
value of �. The choice of pn, ps, Pthresh, and � completely
specify the queue lengths, the Time-To-Live, and average
delay for the packets. Therefore, we can calculate the
throughput capacity of the channel with the desired
average delay.

If the nodes send all of their packets before the end of a
node-to-station interaction, then some of the communication
bandwidth iswasted; packets could have been sent, but there
were no new packets available. The utilization is the fraction

of the bandwidth that is used to send packets and is not

wasted. Let Us be the utilization of the bandwidth at the

collection stations as nodes are offloading packets.

Us ¼
u1 þ u2

P1
l¼1 lbs

P1
q¼0 P ðQ ¼ qÞP ðLs ¼ lÞ

; ð13Þ

where u1 ¼
P1

l¼1

Plbs
q¼0 qP ðQ ¼ qÞP ðLs ¼ lÞ and

u2 ¼
X

1

l¼1

lbs
X

1

q¼lbsþ1

P ðQ ¼ qÞP ðLs ¼ lÞ:

The offloading rate for the unique packets in a system

depends on �, Pthresh, bn, and bs and can be expressed as

offloading rate ¼
1

EðIÞ
Us � bs �N

EðLsÞ

1=� þEðLsÞ

� �

ð14Þ

if each unique packet has EðIÞ copies on average. To

maximize the offloading rate and to achieve the capacity,

our system takes EðIÞ ¼ 1, obtained by setting pn ¼ 0. In

this way, there is no redundancy in the offloading to

collection stations.
We set pn ¼ 0 and choose some ps. This fixes the model

and the average delay experienced by the packets. Using
different packet generation rates �, we obtain different
corresponding values of bs using (8). Substituting into (13),
we calculate the utilization experienced by the system for
each choice of � and, in turn, the packet offloading rate.

The offloading rates in Fig. 7 use a system with 40 nodes

and 1 collection station in a toroidal area of size 300 units by

300 units for communication radii of 7 units for both the

nodes and the collection stations and a random directional

mobility pattern. The “Unlimited delay” curve corresponds

to the optimal capacity of the system described by (12). In

this case, nodes always have packets to send during node-

to-station interactions, so the utilization of the communica-

tion channel is Us ¼ 1. However, this also means that there

are very long queues and it would take many interactions to

send a particular data packet on average.
The other curves of Fig. 7 limit the desired average delay

of packets. Mathematically, this is accomplished by increas-

ing ps. In particular, ps ¼ 0:3, 0.6, and 0.9 are used in the

figure. Intuitively, limiting the average delay means that the

packets need to be offloaded in fewer interactions on

average; the queues must be shorter, so the utilization and

overall offloading rate are smaller.
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4. That there is at most one node within the range of a collection station
at any time.

5. That all the node’s messages can be received at once.

Fig. 6. Comparing analytical and empirical delay metrics with

Pthresh ¼ 0:9.

Fig. 7. Capacity that can be achieved with limitations on desired average

packet delay.



6 CONCLUSION

This study analytically quantifies trade-offs between packet
delay and network resources by defining a mathematical
model that accounts for Quality of Service constraints.
Although many constraints could have been considered, we
chose a particular QoS constraint in this paper, finite
communication bandwidth, to exemplify methods of
translating a physical resource constraint into variables of
the model. We saw that, when bandwidth is scarce, small
increases in bandwidth resources can lead to a considerable
reduction in average delay or increase in the fraction of
offloaded packets. With moderate to substantial resources
available, the performance will improve only slightly
because the lack of connectivity, rather than communication
resources, is the limiting factor of packet delivery in the
network.

The performance of resource-constrained networks is
improved by introducing antipackets into the system.
Antipackets allow nodes to share packets that have not
previously been offloaded more frequently because re-
dundant packets can be erased before their Time-To-Live
expires. Therefore, the average delays of packets are
reduced compared to an equivalent system without
antipackets.

The throughput capacity of the intermittent-connectivity
networks increases linearly with respect to the available
communication bandwidth between the nodes and the
collection stations. We are able to set network parameters to
achieve different average delays for the packets. However,
smaller average packet delays correspond to a smaller rate
of increase of throughput capacity.

Our analytical model gives network designers control
over intermittent-connectivity systems. By allowing the
designers to choose the most important parameters to
constrain, the model effectively predicts the system perfor-
mance. One can experiment with expected packet delays for
different allocations of network resources and can make
educated decisions about the resource allocation in the
system. Furthermore, the designer can set the desired
fraction of packets to be offloaded and calculate the average
output rate. In our future work, we plan to further explore
resource conservation by exploiting nonrandomness prop-
erties of the network with mobility patterns that better
represent real-world scenarios.

APPENDIX A

EXPLANATION OF NOTATIONS

See Table 2 and Table 3.

APPENDIX B

TIME UNTIL TWO NODES MEET

For relatively simple mobility patterns such as fluid
mobility, we can analytically calculate the time until two
nodes meet in a system with only two nodes. Nodes using
the fluid mobility pattern choose a direction uniformly at
random and continue in that direction indefinitely. Our
network area is toroidal, so a node that reaches the
boundary on the left (top) side simply reenters on the right
(bottom) with the same direction and the same velocity.

At time t ¼ 0, a node is placed uniformly at random in a
network area with one collection station. Let the total
network area have size xy and the initial node position be
ðx0; y0Þ. Without loss of generality (due to the toroidal
nature of the area), we assume that the collection station is
at the center of the network area. Each time a node crosses a
boundary and reenters from the “other side,” we can
imagine that a new copy has entered the network area. In
this way, we form an infinite tiling of network areas and the
collection stations appear to be a lattice with vertical
separation y and horizontal separation x, as shown in Fig. 8.

We wish to calculate the time for the node to meet any
one of the collection station copies. We can think about the
distribution of the meeting times as geometric distribution.
Each time the node path crosses a copy of the network area,
it is considered as one attempt. For each attempt, there is
some probability � that the node will successfully reach a
collection station.
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TABLE 2
Table of Notations Used in This Paper

TABLE 3
Further Notations



In order to simplify the calculations, we suppose that the

rectangular network area regions are approximately the

same as circular areas with radius R ¼ xþy
4
, half of the

average side length. Assume that the node travels at some

constant velocity v. We find Xv, the distribution of times for

one attempt when the node is known to be traveling at

speed v. If the node begins at the boundary of the circle with

radius R at a uniformly randomly chosen entrance angle �,

then, from Fig. 9, we see that the distribution of distances

across the circle is

P ðpath distance � lÞ ¼P � > cos�1 l

2R

� �� �

¼ 1� P � � cos�1 l

2R

� �� �

¼ 1�
2

�
cos�1 l

2R

� �

for 0 � l � 2R:

Therefore, the distribution of the time taken for one

attempt is

P ðXv � tÞ ¼
1

v
1�

2

�
cos�1 vt

2R

� �� �

for 0 � vt � 2R: ð15Þ

During each attempt, the node reaches the collection

station if its path intersects the area covered by the

collection station. If r is the radius of the collection station,

then the node’s path intersects a collection station if � �

sin�1ð rRÞ and misses the station otherwise. Since � is the

angle of deviation from the center of the circle in either

direction, the probability of a node’s path reaching the

station in a particular experiment is therefore

� ¼
2 sin�1 r

R

� �

�
:

The time taken to reach the station in the first network

area “copy” is approximated by EðXvÞ
2

, where EðXvÞ is the

expected value of Xv. We only expect the time to be 1
2
of

EðXvÞ because the node is initially placed uniformly at

random in the network area and Xv is the distribution of

time across the network area assuming that we begin at the

boundary. We also expect that the time spent in the last

“copy” of the network (the “copy” where the node actually

meets the station) is only EðXvÞ
2

because the node travels only

half-way across the area. The expected time spent in each

other attempt is EðXvÞ. Thus, we can write the cumulative

distribution for the total time until a station is reached as

P Tv �
EðXvÞ

2

� �

¼�;

P ðTv � iEðXvÞÞ ¼ ð1� �Þi� 8i 2 f1; 2; 3; . . .g:

ð16Þ

Up to this point, we assumed that the node moved at
speed v. Next, we use (16) to find the cumulative distribu-
tion T of the delay for a system whose nodes choose their
velocity uniformly at random between vmin and vmax. If a
node chooses a velocity v0 instead of velocity v, then the
node’s path is the same but is traveled at a different rate. The
distribution of times to reach the station is simply a scaled
version of Tv, i.e., P ðTv0 � iÞ ¼ P ðTv �

v0

v iÞ. Therefore,

P ðT � iÞ ¼
1

vmax � vmin

Z vmax

vmin

P Tv �
v0

v
i

� �

dv0: ð17Þ

In Fig. 10, we show that our analytical calculations agree

well with empirical tests for a 300 units by 300 units

network area where the node and the station have

communication radii of 7 units, vmin¼ 0½units=time-step�

and vmax¼ 6½units=time-step�. Note that, using the same

methods as above, we are able to find the distribution of the

duration of an interaction between a node and a stationary

collection station,Ls. This is again the time for a node to cross

a circular area along a linear path with velocity chosen from

some interval ½vmin; vmax�. This work can be extrapolated to

the duration of an interaction between moving nodes, as

shown in [14].
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Fig. 8. Node moves with fluid mobility; torus is viewed as many copies of
the same area.

Fig. 9. Node enters circular area at angle � and travels length l in the
range.

Fig. 10. Distribution of the times until a collection station is reached using
fluid mobility.
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