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Abstract—In this paper, we study quality-of-service (QoS)
and quality-of-protection (QoP) issues in redundant tree based
preplanned recovery schemes for a single-link failure in two-edge
connected graphs and for a single-node failure in two-connected
graphs. We present schemes (to be called G-MFBG schemes) that
generalize the schemes (to be called MFBG schemes) developed
by Médard et al. to construct a pair of redundant trees, called
red and blue trees, which guarantees fast recovery from any
single-link/node failure, as long as the failed node is not the root
node. Using the G-MFBG schemes, we study QoS issues relating
to red/blue trees. We present effective heuristics for computing a
pair of redundant trees with low average delay or small total cost.
We develop an optimal algorithm for computing a pair of red/blue
trees with maximum bandwidth. Furthermore, a pair of red/blue
trees guarantees fast recovery from simultaneous multiple failures
if it satisfies certain properties. This leads us to define the concept
of QoP of a pair of red/blue trees. We present an effective heuristic
to construct a pair of red/blue trees with high QoP. The paper con-
cludes with a discussion of computational results that demonstrate
the effectiveness of the different algorithms presented.

Index Terms—Protection and restoration, quality-of-protection
(QoP), quality-of-service (QoS), redundant trees.

I. INTRODUCTION

PROTECTION and restoration in high-speed networks is
an important issue that has been studied extensively [1],

[6], [7], [13]–[15], [17], [19], [20], [22], [25], [26], [30]–[33].
It has important applications in synchronous optical network
(SONET) and wavelength-division multiplexing (WDM) net-
works [1], [4], [5], [10], [18]–[20], [29], [35]. In [15], Médard
et al. proposed a tree-based preplanned recovery scheme (we
will call it the MFBG scheme), which is applicable to any pro-
tocol, in particular, WDM, SONET, and ATM, which allows the
use of tree routings and redundancy for recovery from failures.
For two-connected graphs, the MFBG scheme constructs two
directed trees rooted at the root node. One of them, the blue tree,
is used as the working tree. The other, the red tree, is used for
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recovery. When a single node (other than the root node) fails,
every other node in the graph is still connected to the root node
via either the red tree or the blue tree. For two-edge connected
graphs, the MFBG scheme constructs a pair of red/blue trees
rooted at the root node. When a single link fails, every node in
the graph is still connected to the root node via either the red
tree or the blue tree.

In this paper, we first investigate several important measures
of quality of preplanned recovery schemes using red/blue trees.
First, assuming that each link in the network has a known delay,
one design goal is to construct a pair of red/blue trees with min-
imum average delay in the blue (primary) tree. We present an
effective heuristic for constructing such a pair of red/blue trees.
Next, assuming that each link in the network has a known cost,
another design goal is to construct a pair of red/blue trees with
minimum total cost. For this problem, we present an effective
heuristic. Finally, assuming that each link in the network has
a known bandwidth, one design goal is to construct a pair of
red/blue trees with maximum possible bottleneck bandwidth.
We present an efficient algorithm for constructing such a pair of
red/blue trees. We then define the concept of quality-of-protec-
tion (QoP) and present an effective heuristic which constructs a
pair of red/blue trees with high QoP. Finally, we discuss gener-
alizations of the MFBG scheme. Computational results are pre-
sented to demonstrate the effectiveness of our algorithms and
heuristics.

The rest of the paper is organized as follows. In Section II,
we introduce concepts and definitions relating to fast recovery
using redundant trees and define the optimization problems in-
volving quality-of-service (QoS) and QoP. In Section III, we
first present the MFBG scheme of [15] and illustrate this with
an example. We then present a scheme, called the G-MFBG
scheme, which generalizes the MFBG scheme. In Sections IV
and V, we develop effective heuristics for computing a pair of
red/blue trees that has low average delay or small total cost,
respectively. In Section VI, we present an efficient optimal al-
gorithm for computing a pair of red/blue trees with maximum
bandwidth. In Section VII, the problem of maximizing the QoP
is considered, and an effective heuristic to compute red/blue
trees with good QoP is discussed. In Section VIII, we estab-
lish that the G-MFBG scheme generalizes the MFBG scheme
and demonstrate this with an example. We also discuss certain
properties of the G-MFBG scheme. Computational results are
presented in Section IX and the paper is concluded in Section X
with future research directions.
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Fig. 1. Graph with edge weights.

Fig. 2. Blue tree (solid arcs) and red tree (dashed arcs).

II. FAST RECOVERY USING REDUNDANT TREES

We model a computer network using an undirected graph
, where is a set of verticesand is a set of

edges. A vertex represents a computer or a router. An edge rep-
resents a communication link. We will use vertex and node in-
terchangeably, as well as edge and link. A graph isconnectedif
there is a path connecting any given pair of vertices in the graph.
An edge of is abridgeif there exists a pair of verticesand

such that every path passes through edge. A vertex
is anarticulation pointif there exists a pair of verticesand
( ) such that every path passes through

vertex . A connected graph istwo-edge connected(or edge-re-
dundant) if it does not contain a bridge. A connected graph is
two connected(or vertex redundant) if it does not contain an ar-
ticulation point. We assume that the graphis either two-edge
connected or two connected. We will use to denote the
undirectededge connecting verticesand . We will use
to denote thedirectededge from vertex to vertex . We as-
sume standard graph theoretic notations [24], [28], unless spec-
ified otherwise.

In the following, we briefly describe the MFBG scheme for
preplanned recovery against single-link (node, respectively)
failure in two-edge connected (two connected, respectively)
graphs.

Fig. 1 illustrates a sample network with 8 nodes and 15 links.
Fig. 2 illustrates two directed trees rooted at the root node,
spanning all the other nodes in the network. The tree with solid
edges is theblue treeand the tree with dashed edges is thered
tree. The blue tree is theworking tree and the red tree is the
backuptree.

In the redundant tree protocol [7], [13]–[15], a packet from a
node to a node is transmitted from to the root node and
then from the root node to. For example, a packet fromto
in Fig. 2 would go from to and then from to . If there is
no link or node failure, each node in the network is connected to
the root node in the blue tree (and in the blue tree). As a result,
a packet from to would go from to , and then from to
to , all in the blue tree.

When a single-link failure occurs, say at link , nodes
are no longer connected tovia the blue tree. How-

ever, they are connected tovia the red tree. The packet from
to would go from to (via the blue tree), and then fromto

to to to to (via the red tree). When a single-node failure
occurs, say at node, none of the remaining nodes (except node

) is connected to in the blue tree. They are, however, con-
nected to in the red tree. The packet fromto would go
from to (via the blue tree), and then fromto to to to

to (via the red tree). The precomputed red/blue trees enable
ultra fast recovery from single-link/node failure using automatic
protection switching (APS).

Definition 1: Let be an undirected graph with
edge set and vertex set , where is a distinguished
root. Let and be a pair of directed trees such that there
is a directed path in from to every vertex and a
directed path in from to every vertex .

1) and form a pair ofsingle-node recovery trees
if for any chosen vertex and any

and do not both contain node.
2) and form a pair ofsingle-link recovery trees if

for any chosen edge and any and
do not both use edge .

We will use recovery trees to denote either a pair of
single-node recovery trees or a pair of single-link recovery
trees when the exact meaning can be derived from the context.
We will use and to denote the two paths discussed above
throughout this paper.

Assume that each link also has a nonnegativedelay,
denoted by . Let and be a pair of recovery trees
rooted at node. Then, for each node , there is adelay
from to in [denoted by ], and adelay from to
in [denoted by ], which are the sum of the delays
of the edges on the directed path fromto in and ,
respectively. We define theaveragedelayof as

. Therefore, is the
average delay between a pair of nodes sustained in the redundant
tree protocol, in the absence of any failure.

The red/blue trees in Fig. 2 form a pair of single-node re-
covery trees. So do the red/blue trees in Fig. 3. Assume that the
edge labels in Fig. 1 represent edge delays. Then, the average
delay of the blue tree in Fig. 2 is

and the average delay of the red tree
in Fig. 2 is

. The average delay of the blue tree in Fig. 3 is 62. There-
fore, the pair of recovery trees in Fig. 3 is better than the pair
of recovery trees in Fig. 2 in terms of average delays in the
working tree. These discussions lead to the following optimiza-
tion problems.
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Fig. 3. Recovery trees with lower average delays.

Definition 2: Let be a graph where each
edge has a positive delay andis the root node. A pair of
single-node recovery trees and is called a pair of
min-delay single-node recovery trees if the average delay
of is minimum among all single-node recovery trees. The
MinDelayV problem asks for a pair of min-delay single-node
recovery trees. A pair of single-link recovery trees and
is called a pair ofmin-delay single-link recovery trees if the
average delay of is minimum among all single-link recovery
trees. TheMinDelayE problem asks for a pair of min-delay
single-link recovery trees. We usemin-delay recovery treesto
mean either a pair of min-delay single-node recovery trees or a
pair of min-delay single-link recovery trees.

It is challenging to compute min-delay recovery trees in gen-
eral. In Section IV, we will present an effective heuristic algo-
rithm which computes a pair of recovery trees with low average
delay in the working tree. The worst-case time complexity of
our heuristics is .

Assume that each link has a nonnegativecost, denoted
by . Let and be a pair of recovery trees rooted at
node . The total cost of and , denoted by ,
is the sum of the edge costs over edges that are used by at least
one of the two trees. reflects the network usage by
the pair of recovery trees. Therefore, it is desirable to design
recovery trees with small cost.

Definition 3: Let be a graph where each edge
has a nonnegative cost and is the root node. A pair of
single-node recovery trees and is called a pair of
min-cost single-node recovery trees if the total cost of
and is minimum among all single-node recovery trees. The
MinCostV problem asks for a pair of min-cost single-node
recovery trees. A pair of single-link recovery trees and
is called a pair ofmin-cost single-link recovery trees if the
total cost of and is minimum among all single-link
recovery trees. TheMinCostE problem asks for a pair of
min-cost single-link recovery trees. We will use the term
min-cost recovery treesto mean either a pair of min-cost
single-node recovery trees or a pair of min-cost single-link
recovery trees.

In Section V, we will present effective heuristics, which com-
pute a pair of recovery trees with small total cost. The worst-case
time complexity of our algorithms is , which is a
factor of higher than that of the MFBG scheme [15].

Assume that each link also has a positiveband-
width, denoted by . Let and be a pair of

recovery trees rooted at node. We define thebandwidth
of as and the band-
width of as . We define
the bottleneck bandwidthof the pair of recovery trees as

.
Definition 4: Let be a graph where each edge

has a positive bandwidth and is the root node. A pair of
single-node recovery trees and is called a pair of
max-bandwidth single-node recovery trees if the bot-
tleneck bandwidth of and is maximum among all
single-node recovery trees. TheMaxBandV problem asks
for a pair of max-bandwidth single-node recovery trees. A
pair of single-link recovery trees and is called a
pair of max-bandwidth single-link recovery trees if the
bottleneck bandwidth of and is maximum among all
single-link recovery trees. TheMaxBandE problem asks for
a pair of max-bandwidth single-link recovery trees. We will
use the termmax-bandwidth recovery treesto mean either a
pair of max-bandwidth single-node recovery trees or a pair of
max-bandwidth single-link recovery trees.

Unlike the optimization problems with QoS issues related
to delay and cost, where we could only presentheuristicsto
find suboptimalsolutions, the max-bandwidth recovery trees
problem can be solved efficiently. In Section VI, we will present
an efficient algorithm which computes a pair of recovery trees
with maximum bottleneck bandwidth. The worst-case time
complexity of our algorithms is , which is the same as
that of the MFBG scheme [15].

Although the recovery trees are designed for recovery from a
single-link/node failure, they can be used to recover from cer-
tain simultaneous multiple failures as well. For example, the
recovery trees shown in Fig. 2 can survive simultaneous fail-
ures of links and . When such simultaneous failures
occur, node is still connected to the root nodevia the blue
tree, nodes are all connected to the root node via
the red tree, node is connected to node via the red tree,
which is then connected to the root node via the blue tree. How-
ever, the recovery trees shown in Fig. 2 cannot survive simulta-
neous failures of three or more links (in the blue tree and/or the
red tree).

Similarly, the recovery trees shown in Fig. 3 can survive
simultaneous failures of links

. When such simultaneous failures occur, nodes
can be connected to the root node via

the spanning tree consisting of the links
. However, the recovery trees shown in

Fig. 3 cannot survive simultaneous failures of seven or more
links (in the blue tree and/or the red tree). These discussions
lead to the following optimization problem.

Definition 5: Let and be a pair of single-link re-
covery trees. Thequality-of-protection (QoP) of and
is defined as the maximum integersuch that there exists an
instance of simultaneous link failures that and can
survive. TheMaxQoPE problem asks for a pair of single-link
recovery trees with maximum QoP.

We note that the pair of single-link recovery trees shown in
Fig. 3 has a higher QoP than the pair of single-failure recovery
trees shown in Fig. 2.
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Next, we define the QoP of a pair of single-node recovery
trees. Whereas the removal of any link used by the blue tree (red
tree, respectively) disconnects the blue tree (red tree, respec-
tively), removal of certain nodes (for instance, the leaf nodes)
will not disconnect the blue tree (red tree, respectively). This
situation must be taken care of in the definition of QoP for
single-node recovery trees. Toward this end, we first define a
cut (with respect to and ) as a set of nodes whose re-
moval disconnects the blue tree. A cutis calledcritical if every
proper subset of is also a cut, but the removal of breaks
the blue tree into fewer subtrees than the removal of. We shall
also refer to a critical cut as a critical set of node failures.

Definition 6: Let and be a pair of single-node re-
covery trees. The QoP of and is defined as the maximum
integer such that there exists a critical cutof size that
and can survive.

III. MFBG SCHEMES AND GENERALIZATIONS

For ease of discussion, we first give a formal description of
the MFBG protection schemes for node recovery and link re-
covery. We then present schemes that generalize the MFBG
schemes. These generalized schemes are used in heuristics and
algorithms presented in the following sections.

Algorithm 1: MFBG-V
step 1 Initialize and to contain the root node

only. Assign node both a blue voltage
and a red voltage .

step 2 Find a cycle with . Let
be the blue chain and
be the red chain. Add the

blue chain to and the red chain to .
Assign blue voltages at the new nodes in this
cycle such that

.
step 3 if spans all the nodes in stop.
step 4 Find a path connecting two

distinct nodes and on and
nodes not on such that where

unless , in the latter case
is set to .

Let be the blue chain and
be the red chain. Add the

red chain to and the blue chain to .
Let be the maximum of all voltages that
are lower than . Assign blue voltages at
these new nodes on this path such that

. goto Step 3.

The MFBG scheme for node recovery is listed as Algorithm 1
and the MFBG scheme for link recovery is listed as Algorithm 2.
In these schemes, each tree nodeis assigned ablue voltage

. In some cases, is also assigned ared voltage .
The elegant voltage techniques are introduced by [15].

Note that in bothMFBG-V andMFBG-E, a cycle starts out
with a node on the tree, passes through nodes not on the
tree, and returns to the starting node; a path starts out with a
node on the tree, passes through nodes not on the tree,

and returns to a different node on the tree. We will assume this
rule about cycles and paths (without specifically saying it) in all
algorithmic descriptions in the rest of this paper.

Algorithm 2: MFBG-E
step 1 Initialize and to contain the root node

only. Assign node both a blue voltage
and a red voltage .

step 2 Find a cycle with . Let
be the blue chain and
be the red chain. Add the

blue chain to and the red chain to .
Assign voltages at the new nodes in this cycle
such that

.
step 3 if spans all the nodes in stop.
step 4 Find a path connecting two

(not necessarily distinct) nodesand on
and nodes not on such that

where unless , in the
latter case is set to .
Let be the blue chain and

be the red chain. Add the
red chain to and the blue chain to .
Let be the maximum of all voltages that
are lower than . Assign blue voltages at
these new nodes on this path such that

. goto Step .

The MFBG schemes grow the red tree and blue tree gradually
by finding a path or a cycle connecting a node already on the
tree to another node (or the same node in the case of a cycle) via
nodes not on the tree. Once a path or cycle is found, we grow
the red tree and the blue tree with the help of the voltages. As
proved in [15], the voltage rule guarantees the correctness of the
algorithms.

As an example, we explain how Algorithm 1 constructs the
pair of red/blue trees in Fig. 2. Nodeis chosen as the root node.
In Step , the algorithm finds the cycle . It
assigns the voltages and constructs the tree edges with label
in the figure. InStep , the algorithm finds the path
[note that ]. Note that equals
at this time. It assigns the voltage forsuch that

.
The voltage rule of MFBG-V imposes acomplete orderon

the voltages . Adding an arti-
ficial node to the nodes in , we can establish a one-to-one
correspondence between the nodes and the voltages,
with corresponding to and corresponding to
for every nonartificial node . Therefore, the pair of red/blue
trees imposes apartial order on the nodes by the fol-
lowing rules.

PV If is a directed edge from to in , then
.

PV If is a directed edge from to in with
, then .

PV If is a directed edge from to in , then
.
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It turns out that this partial order is sufficient to guarantee the
construction of a pair of single-node failure recovery trees. This
leads us to present a modified MFBG scheme for single-node
recovery as Algorithm 3.

Algorithm 3: G-MFBG-V
step 1 Initialize and to contain the root node

only. Initialize the partial order on the
nodes with the precedence relation .

step 2 Find a cycle .
Let be the blue chain and

be the red chain. Add the
red chain to and the blue chain to .
Use the precedence relations

to augment the partial order on the
nodes. Note that and imply
.

step 3 if spans all the nodes in stop.
step 4 Find a path connecting two

distinct nodes and on and nodes
not on such that either or .
Let be the blue chain and

be the red chain. Add the
red chain to and the blue chain to .
If , we will use to denote in the
following. Use the precedence relations

to augment the
partial order on the nodes.
goto Step .

Similarly, one can show that the voltage rule for MFBG-E
defines a complete order on the set of (undirected) edges of
that are used by or . As in the case of node recovery, a
carefully designed partial order is sufficient. For this purpose,
we define a partial order on the (undirected) edges of the
graph using the red/blue trees and in the following
way.

PE Let and be two-undirected edges of
such that for some node passes edge be-
fore passing edge . Then, .

PE Let and be two-undirected edges of
such that for some node passes edge be-
fore passing edge . Then, .

PE Let and be two-undirected edges of
such that passes edge and that passes
edge . Then, .

Algorithm 4: G-MFBG-E
step 1 Initialize and to contain the root node

only. Initialize the partial order on the edges
to be the empty set.

step 2 Find a cycle .
Let be the blue chain and

be the red chain. Add the
red chain to and the blue chain to .
Use the precedence relations

to
augment the partial order on theedges. Note
that and imply .

step 3 if spans all the nodes in stop.
step 4 Find a path connecting two

(not necessarily distinct) nodesand on
and nodes not on such that either one
of and is the root node or ,
where ( , respectively) denotes the
undirected edge of which is adjacent with
and is on the path in ( , respectively).
Let be the blue chain and

be the red chain. Add the
red chain to and the blue chain to .
Use the precedence relations

to
augment the partial order on theedges.
goto Step .

Our modified MFBG scheme for link recovery based on the
above partial order is presented as Algorithm 4. Formal proofs
establishing that Algorithms 3 and 4 generalize Algorithms 1
and 2, respectively, and other illustrations relating to this gener-
alization will be given in Section VIII.

IV. REDUCING THE AVERAGE DELAY

In this section, we present an effective heuristic for con-
structing a pair of single-failure recovery trees with low average
delay. Algorithm 5 constructs a pair of such single-node re-
covery trees. Recall that is the delay in .
During each iteration of Algorithm 5, we find a path (a cycle in
the first iteration) such that the maximum delay in
(among the newly added nodes) is as small as possible after
the addition of the blue chains and the red chains.

Algorithm 5: MinDelayV
step 1 Initialize and to contain the root node

only. Initialize the partial order as in Algorithm 3.
step 2 Find a cycle such that the

delay of this cycle minus the delay of its last
edge is minimum among all such cycles.
Let be the blue chain and

be the red chain. Add the
red chain to and the blue chain to .
Augment the partial order as in Algorithm 3.

step 3 If spans all the nodes in G,stop.
step 4 Find a path connecting two

distinct nodes and on and nodes
not on such that either or and
that plus the delay in the found
path is minimum among all such paths.
Let be the blue chain and

be the red chain. Add the
red chain to and the blue chain to .
Augment the partial order as in Algorithm 3.
goto Step .

Theorem 1: The heuristicMinDelayV terminates with a pair
of single-node recovery trees if the graph is two connected. The
worst-case running time of the heuristic is .

Proof: The correctness and finite termination of the
heuristic follows from Theorem 7 to be proved in Section VIII.
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Since the set of cycles or paths is nonempty, we can always find
one which minimizes our objective function. Therefore, the
heuristic terminates after a finite number of steps if the graph
is two connected.

Now, we explain an time implementa-
tion of the heuristic. There are choices for in a cycle
of form . For each chosen , we can hide
edge and compute a minimum delay path from to
in time. Therefore, the worst-case time com-
plexity of Step is .

Each time a path is computed inStep MinDelayV adds at
least one node to both and . Therefore,Step is exe-
cuted at most times. We will show that the worst-case time
complexity of each execution ofStep is .
There are possible choices of node. Assume that is
chosen. Let be all the neighboring nodes of
that are not already on . Let be a new (artificial) node
which is connected to by zero delay edges

. Hide node . Hide all the nodes
in such that . Then, we obtain a new graph

from the original graph . Find a constrained shortest path (if
none exists, the cost is assumed to be infinity) fromto in

such that the first portion (closer to) of the path consists
of only edges in that were not hidden in the above hiding
process and the other portion (closer to) does not contain
any nodes in . Replacing node on this path by produces
an path, which we denote by . Remove node from
the graph and unhide all the hidden nodes or edges.can
be computed in time using a modification of
Dijkstra’s algorithm. We loop over all of the nodes on the tree

and choose the best (path delay minus delay of the last
edge is minimized). Therefore,Step can be implemented in

time. This shows that the worst-case time
complexity of the heuristic is .

Let us illustrateMinDelayV with the sample network shown
in Fig. 1, assuming that the edge labels are the edge delays. Also
assume that nodeis the root node.

In Step of MinDelayV, we find the cycle . We
label all the edges on this cycle with , indicating that they
are added to the red/blue trees during the first iteration. The blue
chain is and the red chain is .

The first timeStep is executed, we find the path .
The blue chain is and the red chain is . The
edges on this path are labeled with because they are selected
during the second iteration. The second timeStep is executed,
we find the path . The blue chain is and the
red chain is . The edges on this path are labeled with

because they are selected during the third iteration. The
third time Step is executed, we find the path . The
blue chain is and the red chain is . The edges on
this path are labeled with because they are selected during
the forth iteration. The fourth timeStep is executed, we find
the path . The blue chain is and the red chain is

. The edges on this path are labeled with because they
are selected during the fifth iteration. The fifth timeStep is
executed, we find the path . The blue chain is and
the red chain is . The edges on this path are labeled with

because they are selected during the sixth iteration.

At this time, we have found a pair of single-node recovery
trees illustrated in Fig. 3. Note that the average delay of the
working (blue) tree blue is 62, which is smaller than the average
delay of in Fig. 2 (which is 112.29) and the average delay
of in Fig. 2 (which is 173.86).

Our heuristic for constructing a pair of single-link recovery
trees with low average delay in the working tree is presented in
Algorithm 6.

Algorithm 6: MinDelayE
step 1 Initialize and to contain the root node

only. Initialize the partial order as in Algorithm 4.
step 2 Find a cycle such that the

delay of this cycle minus the delay of its last
edge is minimum among all such cycles.
Let be the blue chain and

be the red chain. Add the
red chain to and the blue chain to .
Augment the partial order as in Algorithm 4.

step 3 If spans all the nodes in stop.
step 4 Find a path connecting two

(not necessarily distinct) nodesand on
such that either one of and is the root node

or and that plus the
delay in the found path is minimum among

all such paths.
Let be the blue chain and

be the red chain. Add the
red chain to and the blue chain to .
Augment the partial order as in Algorithm 4.
goto Step .

Theorem 2: The heuristicMinDelayE terminates with a
pair of single-link recovery trees if the graph is two-edge
connected. The worst-case running time of the heuristic is

.
Proof: The correctness and finite termination follows

from Theorem 9. The time complexity can be analyzed simi-
larly as in the Proof of Theorem 1.

A couple of closely related heuristics for delay reduction in
red/blue trees are presented in [31]. However, the ordering rules
in [31] are too restrictive. The ordering rules inMinDelayV
and MinDelayE are more general and, therefore, can lead to
better performance. Computational results forMinDelayV and
MinDelayE will be presented in Section IX.

V. REDUCING TOTAL COST

If hardware usage is a major concern, one would like to con-
struct a pair of single-failure recovery trees with minimum total
cost. However, finding a pair of red/blue trees with minimum
total cost is difficult [15]. In this section, we will present a pair
of effective heuristics for constructing a pair of single-failure re-
covery trees with small total cost.

Recall that initially only the root node is on the trees. By
selecting a cycle , we add nodes to the trees
at a cost of . By selecting
a path , we add nodes to the trees at a cost of

. Therefore, we define the
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scaled costof cycle as
and the scaled cost of path

as . Algorithm 7 (Al-
gorithm 8, respectively) presented below finds a path (path or
cycle, respectively) with low scaled cost at each step of the con-
struction of red/blue trees.

Note that finding a path or cycle with minimum scaled cost is
not easy. For both heuristics, we use depth first search (DFS) to
find a set of feasible cycles and paths and choose the one with
the lowest scaled cost.

Similar to the case of delay reduction heuristics, we can prove
the following theorems. The time complexity is
instead of because we are using DFS in-
stead of shortest paths.

Theorem 3: The heuristicMinCostV terminates with a pair
of single-node recovery trees if the graph is two connected. The
worst-case running time of the heuristic is .

Theorem 4: The heuristicMinCostE terminates with a pair
of single-link recovery trees if the graph is two-edge connected.
The worst-case running time of the heuristic is .

Algorithm 7: MinCostV
step 1 Initialize and to contain the root node

only. Initialize the partial order as in Algorithm 3.
step 2 Find a cycle in the graph with

low scaled cost.
Let be the blue chain and

be the red chain. Add the
red chain to and the blue chain to .
Augment the partial order as in Algorithm 3.

step 3 if spans all the nodes in, stop.
step 4 Find a path with low scaled

cost connecting two distinct nodesand on
and nodes not on such that either

or .
Let be the blue chain and

be the red chain. Add the
red chain to and the blue chain to .
Augment the partial order as in Algorithm 3.
goto Step 3.

Algorithm 8: MinCostE
step 1 Initialize and to contain the root node

only. Initialize the partial order as in Algorithm 4.
step 2 Find a cycle with low scaled cost.

Let be the blue chain and
be the red chain. Add the

red chain to and the blue chain to .
Augment the partial order as in Algorithm 4.

step 3 if spans all the nodes in stop.
step 4 Find a path with low scaled

cost connecting two (not necessarily distinct)
nodes and on and nodes not on

such that either one of and is the root
node or .
Let be the blue chain and

be the red chain. Add the
red chain to and the blue chain to .

Augment the partial order as in Algorithm 4.
goto Step 3.

VI. M AXIMIZING BOTTLENECK BANDWIDTH

In this section, we present an efficient algorithm for con-
structing a pair of red/blue trees with maximum bottleneck
bandwidth. For any positive , define to be the subgraph
of with only those edges whose bandwidth isor larger.
Our algorithm first uses bisection on the different bandwidth
values to find the largest bandwidth valuesuch that
is two connected (two-edge connected). It then applies the
corresponding MFBG scheme to to construct a pair
of single-node (single-link) recovery trees. The algorithm is
formally stated in Algorithm 9.

Algorithm 9: MaxBand
step 1 Use bisection on the bandwidth values to

find the largest such that is 2-connected
(2-edge connected).

step 2 Apply G-MFBG-V (G-MFBG-E, respectively)
on to construct a pair of single node (link)
recovery trees.

Theorem 5: The time complexity of Algorithm 9 is .
If is two connected, Algorithm 9 constructs a pair of
single-node recovery trees with maximum bottleneck band-
width. If is two-edge connected, Algorithm 9 constructs a
pair of single-link recovery trees with maximum bottleneck
bandwidth.

Proof: The G-MFBG-V scheme can construct a pair
of single-node recovery trees if and only the graph is two
connected. The G-MFBG-E scheme can construct a pair of
single-link recovery trees if and only the graph is two-edge
connected. This proves the correctness of the algorithm.

Using Tarjan’s DFS technique [23], we can test whether a
given graph is two connected (two-edge connected) in linear
time. Using the selection technique, the median can be found
in linear time [2]. Since the maximum number of bisections is

, the time complexity of Algorithm 9 is .
Note thatMaxBand is anoptimal algorithm, which is dif-

ferent from theheuristicpresented in [30].

VII. ENHANCING QUALITY OF PROTECTION

As we have seen from the heuristics in the previous section,
the pair of single-failure recovery trees can be constructed by
choosing an initial cycle and then adding paths and cycles it-
eratively until all nodes are covered. The QoP of the pair of
single-link recovery trees equals the total number of cycles and
and paths used in this construction process. Therefore, it is desir-
able to construct a pair of single-link recovery trees using more
paths and cycles.

Since our goal is to enhance the QoP, we can choose the root
node to our advantage. Such an algorithm is presented next.

Algorithm 10:QoPE
step 1 Initialize and to contain the root node

only. Initialize the partial order on the edges
to be the empty set.
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step 2 Find a cycle with minimum
hop count and .
Let be the blue chain and

be the red chain. Add the
red chain to and the blue chain to .
Use the precedence relations

to
augment the partial order on theedges. Note
that and imply .

step 3 If spans all the nodes in stop.
step 4 Find a minimum hop path

connecting two (not necessarily distinct) nodes
and on and nodes not on

such that either one of and is the root
node or , where ( ,
respectively) denotes the undirected edge of
which is adjacent with and is on the - path
in ( , respectively).
Let be the blue chain and

be the red chain. Add the
red chain to and the blue chain to .
Use the precedence relations

to
augment the partial order on theedges.
goto Step 3.

Theorem 6: Algorithm 10 constructs a pair of single-link re-
covery trees provided that is two connected. The time com-
plexity of Algorithm 10 is .

Proof: The correctness of the algorithm follows from the
correctness of the G-MFBG-E scheme.

Step takes time, because finding a minimum hop
cycleincluding a particular noderequires time using
breadth first search (BFS).Step takes time, because
finding a minimum hop path or cycle startingfrom a given
noderequires time using BFS.Step is executed

times. Therefore, the time complexity of Algorithm 10 is
.

Selecting one link from each path (or cycle) defines a set
of simultaneous link failures that the red/blue trees can pro-
tect. However, selecting one node from each path (or cycle) will
not define a set of simultaneous node failures that the trees can
protect unless these nodes have degree 2 in the blue tree. This
presents difficulties if we wish to use our G-MFBG algorithm
for designing red/blue trees with a high value for quality of node
failure protection.

Suppose we design the red/blue trees using DFS [32] and call
two verticesunrelatedif neither is a descendant of the other in
the DFS tree. With this definition we can see that the red/blue
trees can protect simultaneous failures of mutually unrelated
vertices. This means that to design red/blue trees with a high
value for the quality of vertex failure protection, we need an al-
gorithm for designing the blue tree with the largest number of
mutually unrelated vertices. Research along the above lines is
in progress.

VIII. G ENERALIZATIONS OF THEMFBG SCHEME

In this section, we show that G-MFBG-V (G-MFBG-E, re-
spectively) is indeed a generalization of MFBG-V (MFBG-E,

respectively). We will prove that for any given two-connected
graph (two-edge connected graph, respectively), every pair of
red/blue trees that can be constructed by MFBG-V (MFBG-E,
respectively) can also be constructed by G-MFBG-V (MFBG-E,
respectively). We then present an example showing the exis-
tence of a pair of red/blue trees which can be constructed by
G-MFBG, but not by MFBG. We will present another example
showing the existence of a pair of redundant trees which cannot
be constructed by G-MFBG. Recall that ( , respectively)
denotes the unique path in ( , respectively) and that

( , respectively) denotes the undirected edge of
which is adjacent with and is on ( , respectively).

Theorem 7: Let be a two-connected graph anda distin-
guished root node. Then, Algorithm 3 correctly constructs a pair
of single-node recovery trees and .

Proof: We will use and to denote the blue tree
and the red tree obtained afterStep of the algorithm and use

and to denote the blue tree and red tree obtained after
adding the blue chain and the red chain corresponding to a path
found inStep of the algorithm to and , respectively.

First, we will prove that and impose a partial order
on the nodes in via PV1, PV2, andPV3
(see Section III for definition) for every. In other words, for
any two distinct nodes and cannot be
both true.

At the end ofStep , all precedence relations can be charac-
terized by . Therefore, at the
end ofStep and impose a partial order on .

Assume that and impose a partial order on . Let
be the path found inStep of the algorithm.

It follows from the algorithm that .
Let and be two nodes in such that before this

execution ofStep but after this execution ofStep .
This would imply and before this execution of
Step . This in turn would imply that before this execu-
tion of Step , for otherwise we would have ,
which contradicts the assumption that . Therefore, after
this execution ofStep and cannot be both true.

Let be a node in and a node in but not .
after this execution ofStep implies that or
before this execution ofStep . after this execution of
Step implies that or before this execution of
Step . Therefore, and after this execution of
Step implies that before this execution ofStep ,
which contradicts our assumption that .

Let and be two nodes in but not . Without loss
of generality, we may assume that and with

. It follows from our definition of the precedence
relations that and before this execution ofStep
and that and after this execution ofStep .
Therefore, and also impose a partial order on .

Second, we will prove that the algorithm can find a cycle
or path as long as does not span all the nodes in. The
existence of the cycle found inStep follows from the fact
that the graph is two connected [15]. For the same reason, in
Step , we can find a path connecting two
distinct nodes and already on the trees and nodes
not on the trees. If Step is successful with the path



1340 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 21, NO. 8, OCTOBER 2003

. If , then we must have
. In this case,Step is successful with the path

. Therefore, Algorithm 3 can successfully
construct a pair of red/blue trees and spanning all the
nodes in .

Finally, we will prove that for any node other than the
root node and are node-disjoint. Let be any internal
node on . We must have . Let be any internal
node on . We must have . Therefore, we have

, which implies that . This completes the proof of
the theorem.

Theorem 8: Let be a two-connected graph anda distin-
guished root node. Then, every pair of red/blue trees constructed
by Algorithm 1 can be constructed by Algorithm 3.

Proof: Note that at the end ofStep and each execu-
tion of Step of Algorithm 1, the set of voltages

are distinct and imply a partial order on the
nodes in via PV1, PV2, and PV3. [If is a

directed edge from to in , then ; If
is a directed edge from to in with , then

; If is a directed edge from to in
, then ]. Therefore, for each feasible exe-

cution of Algorithm 1, there is a corresponding feasible execu-
tion of Algorithm 3 which updates and in exactly the
same way. Therefore, every pair of red/blue trees constructed
by Algorithm 1 can also be constructed by Algorithm 3.

Theorem 9: Let be a two-edge connected graph anda
distinguished root node. Then, Algorithm 4 correctly constructs
a pair of single-link recovery trees and .

Proof: We will use and to denote the blue tree
and the red tree obtained afterStep of the algorithm and use

and to denote the blue tree and red tree obtained after
adding the blue chain and the red chain corresponding to a path
found inStep of the algorithm to and , respectively.

First, we will prove that and impose a partial order
on the edges of via PE1, PE2, andPE3 for every . In
other words, for any two distinct edges ,
and cannot be both true.

At the end ofStep , all precedence relations can be charac-
terized by . Therefore, at the
end ofStep and impose a partial order on.

Assume that and impose a partial order on . Let
be the path found inStep of the algorithm.

It follows from the algorithm that .
Let and be two edges of that are used by or

such that and before this execution ofStep
but and after this execution ofStep . Due
to the way the precedence relations are added duringStep ,

becomes true due to this execution ofStep if and only
if and before this execution ofStep .
However, that implies before this execution of
Step , contradicting to our assumption that .
Therefore, and cannot be both true after this
execution ofStep .

Let be an edge of that is used by or and
be an edge of that is used by or but not or .
Before this execution ofStep , none of or

is true. If is true after this execution ofStep ,

we would have either or . If
is true after this execution ofStep , we would have either

or . Therefore, if and
are both true after this execution ofStep , we

would have , another contradiction. Therefore,
and cannot be both true after this

execution ofStep .
Let and be two edges of that are used by or

but not or . Without loss of generality, assume thatis
closer to than . It follows from the algorithm that
but . Therefore, and cannot be both
true after this execution ofStep . Therefore, and
also impose a partial order on.

Second, we will prove that the algorithm can find a cycle
or path as long as does not span all the nodes in. The
existence of the cycle found inStep follows from the fact
that the graph is two connected [15]. For the same reason, in
Step , we can find a path connecting two (not
necessarily distinct) nodesand already on the trees and

nodes not on the trees. If or Step is trivially
successful. Now assume that bothand are different from
. Since and impose a partial order on

and cannot be both true, for otherwise
we would have ,
contradicting the assumption that and impose a partial
order on . Therefore,Step is always successful.

Finally, we will prove that for any node other than
the root node , and are link disjoint. Let be any edge
on . We must have . Let be any edge on .
We must have . Therefore, we have , which
implies that . This completes the proof of the theorem.

Theorem 10:Let be a two-edge connected graph anda
distinguished root node. Then, every pair of red/blue trees con-
structed by Algorithm 2 can be constructed by Algorithm 4.

Proof: In Step of both Algorithm 2 and Algorithm 4,
we are seeking a cycle. Clearly, Algorithm 4 can choose the
cycle that Algorithm 2 is using. At the end ofStep , and

imposes a partial order on.
Step of Algorithm 2 selects a path such

that and are already on the trees, are not on the
trees yet, and that unless . In both
cases, it was proved in [15] that and are link-disjoint.
This implies that , which, in turn, implies that

. This means thatStep of Algorithm 4 can
use the same path. Therefore, we have proved that every pair of
red/blue trees constructed by Algorithm 2 can be constructed by
Algorithm 4.

Fig. 4 shows a pair of single-failure (link or node) recovery
trees (the red tree) and (the blue tree). We will show that
both Algorithm 3 and Algorithm 4 can construct this pair of trees
while Algorithm 1 and 2 cannot construct this pair of trees.

First of all, we show that both G-MFBG-V and G-MFBG-E
can construct this pair of red/blue trees. Starting from root
node , we can find the cycle and assign the
corresponding red tree edges and blue tree edges labeled

. For G-MFBG-V, the partial order is characterized by
. For G-MFBG-E, the partial order is

characterized by .
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Fig. 4. Pair of red/blue trees.

Next, we find the path . For G-MFBG-V, we note
that . For G-MFBG-E, we note that . There-
fore, the path is feasible for both G-MFBG-V and G-MFBG-E.
Hence, we can assign the tree edges labeledas shown in
Fig. 4. For G-MFBG-V, the augmented partial order is charac-
terized by and .
For G-MFBG-E, the augmented partial order is characterized
by and

.
Finally, we find a path . For G-MFBG-V, and are

unrelated in the partial order. Therefore, the path is feasible. For
G-MFBG-E, and are unrelated in the partial order.
Therefore, the path is feasible. Hence, we can assign the tree
edges labeled as shown in Fig. 4. This completes the tree
construction.

Next, we show that this pair of treescannot be constructed
by either Algorithm 1 or Algorithm 2.

If it were constructed using the MFBG scheme, the first cycle
must be (this is the only cycle that is formed by a
path from in the blue tree followed by an edge that is only
used by the red tree). Since there is only one blue edge into
node and only one red edge into node must be
a path found inStep of the algorithms. For a similar reason,

must be a path found inStep of the algorithms.
Since the end nodeon is an internal node on ,
the algorithms finds before .

When the cycle is found, both MFBG-V
and MFBG-E add the edges to the blue
tree and the edges to the red tree. The
MFBG-V scheme (MFBG-E scheme, respectively) assigns
the voltages to nodes such that

[
,

respectively].
When the path is found (note that ),

both MFBG-V and MFBG-E add the edges to
the blue tree and the edges to the red tree.
For MFBG-V, . For MFBG-E,

. Therefore, the MFBG-V scheme (MFBG-E scheme,
respectively) assigns the voltages to nodes such that

Fig. 5. Difficult case.

[
, respectively].

When the path is found (note that ),
both MFBG-V and MFBG-E add the arc to the blue
tree and the arc to the red tree and assign voltage(s) at
accordingly.

However, the resulting pair of red/blue trees so constructed
is different from the pair of red/blue trees shown in Fig. 4. At
the last step of the tree construction,and are unrelated (for
G-MFBG-V), and are unrelated (for G-MFBG-E).
Therefore, the generalized MFBG schemes can add to
the blue tree and to the red tree. However, we have

. Therefore, the original MFBG schemes
can only add to the blue tree and to the red tree.
This example, together with Theorems 3 and 4, shows that
G-MFBG-V (G-MFBG-E, respectively) is indeed more general
than MFBG-V (MFBG-E, respectively).

We want to point out that there are red/blues that cannot be
generated by our generalized schemes. Such an example is illus-
trated in Fig. 5. Note that there are only two cycles
and passing through root node. If we pick the first
cycle, there should be an additional blue edge in the blue
tree [the edge should be removed from the blue tree in this
case]. If we pick the second cycle, there should be an additional
red edge in the red tree [the edge should be removed
from the red tree in this case]. This shows that our generalized
schemes are not the most general.

IX. COMPUTATIONAL RESULTS

In order to evaluate how useful our proposed algorithms and
heuristics are, we implemented all of them and tested them
out on randomly generated input data. We useRedBlueV and
RedBlueE to denote the algorithms in [15] for node recovery
and link recovery, respectively, where the paths and cycles
are computed using DFS, without any of the QoS or QoP
considerations.

A C++ class library, LEDA is used in all of our implemen-
tations. The experiments were carried out on a Pentium III
desktop with 512 M memory and running RedHat Linux 7.0.
We have used 50, 100, and 200 as the number of nodes in the
networks. For each value of, we have used and
as the number of links. Therefore, there are six node-link
combinations. For each given size (given by the node-link



1342 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 21, NO. 8, OCTOBER 2003

TABLE I
WITH DELAY IN [1; 10]

TABLE II
WITH DELAY IN [1; 10]

TABLE III
USING HOP COUNT AS DELAY

combination), we randomly generate 100 two-connected
graphs (for node recovery) or two-edge connected graphs (for
link recovery). The bandwidth, cost, and delay of the links are
random integers uniformly distributed in the range . Each
entry in the tables reported here is the average over100runs.

Tables I and II present the results of delay reduction for node
recovery trees and link recovery trees, respectively, with the link
delay uniformly distributed in the range . From the tables,
we observe that QoS heuristics require longer running time, but
construct trees with lower average delays. The delay reductions
range from 70% to 91%. We observe that QoS heuristics are
more effective for than for . This is ex-
pected because when there are more edges in the graph, there
are more choices at each step of the QoS heuristics.

In many cases, hop count is used as a measurement for
end-to-end delays. Therefore, we also tested the delay reduc-
tion heuristics when the delay of every link is one. These results
are reported in Tables III and IV. We observe that the delay
reductions here are slightly lower, but are consistent, ranging
from 48% to 81%.

Results for the cost reduction heuristics are reported in
Tables V and VI for node recovery and link recovery, respec-

TABLE IV
USING HOP COUNT AS DELAY

TABLE V
WITH COST IN [1; 10]

TABLE VI
WITH COST IN [1; 10]

TABLE VII
WITH BANDWIDTH IN [1; 10]

tively. We observe that the running time of these heuristics are
pretty short. Delay reduction are consistent, ranging from 37%
to 57%. Again, we notice that the results for are
better than that for .

In Tables VII and VIII, we present computational results for
MaxBand for node recovery and link recovery, respectively. We
observe from the tables thatMaxBandV andMaxBandE con-
struct red/blue trees with significantly larger bandwidths while
using very short time. Again, the performance for
is better than that for .
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TABLE VIII
WITH BANDWIDTH IN [1; 10]

TABLE IX

Finally, Table IX reports the results of our heuristic for en-
hancing QoP in link recovery schemes. The running time of the
QoP heuristic is similar to that without the QoP consideration.
The increase in QoP is between 86% and 112%, which is sig-
nificant. Here, we observe that the effective of the QoP heuristic
performs better for than for . A possible
explanation to this scenario is that it is easier for the DFS used
in our implementation of the MFBG schemes to find small cy-
cles and paths when there are more the edges in the graph.

X. CONCLUSION AND FUTURE RESEARCH

The focus of this paper is on the investigation of several
issues relating to QoS and QoP in redundant tree based
preplanned recovery schemes for any single-link failure in
two-edge connected graphs and any single-node failure in
two-connected graphs. The work by Médardet al. [15] on
the MFBG schemes and the work by Lumettaet al. [12] on
robustness of recovery schemes provided the inspiration for the
work reported in this paper. We have added and extended the
contributions in [15] in different ways. We have investigated
the construction of red/blue trees using QoS parameters such
as delay, cost, and bandwidth. We have introduced the concept
of QoP and showed how to incorporate this parameter in the
construction of red/blue trees. Finally, we have generalized
the scheme in [15]. In the following, we summarize these
contributions and present some directions of future research.

The MFBG algorithms to construct the red/blue trees are
very elegant and generalize and simplify an earlier work [7].
Whereas the scheme in [7] is based on st-numbering [24], the
MFBG scheme employs a method closely related to what is
called theear decompositionof two-connected and graphs and

two-edge connected graphs [28]. Basically, in ear decomposi-
tion cycles and paths are added one at a time. These cycles and
paths are called ears of the decomposition. In this paper, we
have further generalized the MFBG scheme. The generalized
algorithm G-MFBG uses a new node ordering rule, in contrast
to the voltage based rule used by MFBG. We have also pointed
out that there are red/blues that cannot be generated by this
generalized scheme. In fact, we have given an example of a pair
of red/blue trees (constructed by adding two ears at time) that
cannot be generated by G-MFBG. However, it can be shown
that the new rule is the most general one if one were to use an
algorithm which adds cycles and paths one at a time.

The red/blue trees are also called independent trees. To re-
cover from two simultaneous failures three independent trees
are required. In other words, the graph under consideration must
be three connected. It is possible to construct three independent
trees for three-connected graphs. But the algorithm in [3] is quite
complex. Developing a simpler scheme similar to ours to con-
struct three independent trees for three-connected graphs is an
interesting direction of research. Another related work in this
context is in [9].

The concept of QoP introduced in this paper captures the
ability of single-link recovery schemes to provide protection
against simultaneous multiple failures. The more the number of
ears used in constructing the red/blue trees the better the QoP.
Another interesting direction of research is to develop similar
ideas to enhance the QoP of trees developed for recovery from
any pair of link failures.

In [16], the authors propose a generalized loop-back re-
covery schemes for optical mesh networks whose topologies
are two-edge connected or two connected. This work is in the
context of recovery using link restoration. The generalized
loop-back recovery method constructs two directed spanning
graphs such that one of the spanning subgraphs,, contains the
reverse of the directed edges of the other spanning subgraph,

. These spanning subgraphs are constructed using cycles
and paths (ears) one at a time. This approach is, thus, closely
related to that employed by MFBG and G-MFBG algorithms.
As in the case of redundant trees we can define the QoP of the
generalized loop-back recovery graphs. The ideas developed in
this paper can, therefore, be useful in designing methods for
constructing generalized loop-back recovery graphs with high
QoP.

The use of red/blue trees permits path rerouting. If a node
is disconnected from the primary route because of a failure,
then a backup route can be identified using these trees. This re-
covery can be achieved in a distributed manner using a broadcast
scheme as in [16]

The concept of QoP introduced in this paper is closely related
to the DFS based construction of red/blue trees of [32] and the
concept of robustness introduced in [12]. In [32], Xue and Got-
tapu present two linear time algorithms for constructing red/blue
trees in two-edge connected graphs or two-connected graphs,
based on pre-order traversal of the DFS tree and post-order tra-
versal of the DFS tree. The pre-order traversal algorithm con-
structs a pair of red/blue trees with more ears, therefore can
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provide more localized protection. The post-order traversal al-
gorithm constructs a pair of red/blue trees with fewer ears, there-
fore, has a smaller total cost. In [12], Lumettaet al. define ro-
bustness of a single-failure recovery scheme as the percentage of
the simultaneous multiple failures that this recovery scheme can
protect. The smaller size the ears (lengths of cycles or paths), the
greater the number of ears and, hence, the better the QoP. It will
be interesting to develop a heuristic (similar to Algorithm 10)
which incorporates both QoP and robustness as parameters in
the construction of red/blue trees.

In the development of our heuristics for red/blue tree con-
struction, we have assumed that the three metrics, namely, av-
erage delay, total cost and bandwidth are independent ones. In
a practical scenario, this may not be the case. A single heuristic
which takes care of these parameters in an integrated manner
is desirable. In such an integrated heuristic, we can incorporate
appropriate tuning parameters whose weights will depend upon
the needs of the application. This is a typical approach often
followed in developing heuristics for problems involving mul-
tiple parameters (for instance, the QoS routing problem). Work
along these lines is now in progress. The three heuristics we
have developed provide the basis for developing an integrated
heuristic for the red/blue tree construction problem. Another di-
rection of future research is to design provably good approxima-
tion schemes to the QoS and QoP problems related to red/blue
trees. Results of a similar nature reported in the context of QoS
routing algorithms (for instance, see [8] and [11]) may be prof-
itably used in this work.

Our simulations have been performed on graphs selected
from the LEDA library. More realistic graphs specifically
designed to capture characteristics of telecommunication
networks have been reported in [21], [27], and [34]. Our future
work will study the performance of our heuristics by evaluating
them on such more realistic networks.
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