
Quality of Service Enabled Database
Applications

S. Krompass, D. Gmach, A. Scholz, S. Seltzsam, and A. Kemper

TU München, D-85748 Garching, Germany
{krompass, gmach, scholza, seltzsam, alfons.kemper}@in.tum.de

Abstract. In today’s enterprise service oriented software architectures,
database systems are a crucial component for the quality of service
(QoS) management between customers and service providers. The data-
base workload consists of requests stemming from many different service
classes, each of which has a dedicated service level agreement (SLA).
We present an adaptive QoS management that is based on an economic
model which adaptively penalizes individual requests depending on the
SLA and the current degree of SLA conformance that the particular
service class exhibits. For deriving the adaptive penalty of individual
requests, our model differentiates between opportunity costs for under-
achieving an SLA threshold and marginal gains for (re-)achieving an
SLA threshold. Based on the penalties, we develop a database compo-
nent which schedules requests depending on their deadline and their
associated penalty. We report experiments of our operational system to
demonstrate the effectiveness of the adaptive QoS management.

1 Introduction

Future business software systems will be designed as service oriented architec-
tures. These services are accessed via the Internet by a variety of different users
– as exemplified by providers and vendors of Web-based business software, in-
cluding RightNow Technologies, Salesforce.com, hosted SAP, and Oracle. This
Web-based software is characterized by a multitude of services which invoke
other enterprise services and ultimately submit requests to databases. The Web-
based business software is made accessible for a multitude of customers, where
each customer may have individual quality of service (QoS) requirements. The
more customers access the services, the more they compete for system resources.
In an uncontrolled environment this may lead to unpredictable and unaccept-
able response times. To prevent the customers from suffering bad performance
in terms of response times of their invoked services, service level agreements
(SLAs) are negotiated.

An SLA is a formal agreement between the service provider and a customer.
The establishment of an SLA imposes obligations on the service provider regard-
ing the service level of the provided services. If the constraints formulated in the
SLA are violated after a certain time window, the evaluation period, the service
provider is fined. The penalty depends on the severity of the SLA violation and

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 215–226, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

216 S. Krompass et al.

is negotiated in the SLA. SLAs are typically only defined for services directly
invoked by customers. Thus, the goal is to establish an end-to-end control for
the quality of service, which covers all layers of the Web service architecture.

The contribution of this paper is to enable QoS for the bottom layer of a
service infrastructure, where almost all services access a shared database. This
is a very common scenario in mission-critical enterprise services that rely on an
integrated database. For this scenario, we assume that an SLA for every service
submitting requests to the database has been negotiated. Due to the multitude
of services which access the database, the workload of the database consists of
requests stemming from many different customers with different service classes,
each having a dedicated SLA.

The challenge is to schedule incoming database requests in order to meet
the performance goals specified in the SLAs. Scheduling is based on adaptive
priorities which are derived from the current level of conformance with the
request’s SLA, that is, the percentage of timely requests, and the economic
importance of this SLA relative to other pending requests’ SLAs.

Current solutions in database systems, e.g., the Query Patroller for DB2 [7]
or the Oracle Resource Manager [13], assign groups of customers to performance
classes with static priorities. Thus, each request is assigned its priority depending
solely on the client by whom it has been submitted. This static prioritization
is used to schedule the requests, so that high-priority clients should complete
faster on average than their low-priority counterparts.

This approach is sufficient to fulfill the requirements of particularly valuable
customers. However, it cannot adequately manage overall SLA enforcement.
Consider an SLA which requires 90% of all service requests to be processed
within a certain time window. With static prioritization, SLAs for high-priority
customers are likely to be overfulfilled by processing almost all requests in time.
However, during peak-load times, it is likely that they overachieve their SLAs at
the expense of lower-priority users. From a business-oriented point of view, it is
desirable to provide only the service level which has been negotiated in the SLA.
If SLAs are not overfulfilled, the additional free resources are used for satisfying
SLAs that are violated with the static prioritization.

For this purpose, we developed a QoS management concept based on an eco-
nomic model which adaptively prioritizes individual requests depending on the
SLA and the current degree of SLA conformance that the particular service class
exhibits. The core of the QoS management consists of penalty-carrying requests,
that is, database requests which carry the requirements needed to fulfill the SLA
constraints from the submitting service to the database.

The rest of the paper is organized as follows: Section 2 describes the two
cost components, marginal gains and opportunity costs, of our QoS model in
detail and presents the adaptive QoS management with which penalty-carrying
requests are derived. Section 3 describes the system architecture and the im-
plementation of our QoS management. The scheduling of the requests is in the
focus of Section 4, followed by the evaluation results of our prototypical imple-
mentation in Section 5. An overview of related work is presented in Section 6.

Quality of Service Enabled Database Applications 217

Finally, in Section 7, we summarize the conclusions of our study and outline
ongoing and future research on this subject.

2 Quality of Service Model

The central concept of our quality of service management is adaptive penaliza-
tion of individual requests according to the current degree of SLA conformance
c. The conformance is monitored per service class, that is, for each transaction
type invoked by an individual customer and the associated SLA. We define c as

c =
Number of timely transaction invocations

Total number of invocations of the transaction

In practice, so-called step-wise SLAs are commonly used to specify the QoS
requirements of a service class. The SLAs consist of one or more percentile con-
straints and an optional deadline constraint. Percentile constraints require n%
of all service requests to be processed within x seconds. If a percentile constraint
is violated after the evaluation period, a penalty p for every m percentage points
under fulfillment is due. Furthermore, pmax defines a maximum penalty for vi-
olating a percentile constraint. The deadline constraint – which does not incur
any penalty – specifies an upper bound for the execution time of the service
request. An example for a step-wise SLA with one percentile constraint d1 and
one deadline constraint d2 is shown in the following:

d1: 90% in less than 5s; p = $900 per 10 percentage points of underful-
fillment, pmax = $1800; evaluation period: 1 month (e.g., end of month)

d2: Deadline 15s

In general, SLAs contain additional constraints such as sizing constraints
which restrict the maximum number of transaction invocations per time pe-
riod. We concentrate on fulfilling response time constraints with the percentile
and deadline constraints, assuming any additional SLA constraints are obtained.

500

1000

1500

Service level conformance

2000

P
e
n

a
lt

y
 i

n
 $

 0.65 0.7 0.75 0.8 0.85 0.9 0.950.6 1

1

0

s3Service level
SLA penalty

Marginal gain (mg)

Opportunity costs (oc)

s1
Service level

s2Service level

c3 c2 c1

mg(c’) = $441

oc(c’) = $81

2

c’=0.87 (current service
level conformance)

2

Fig. 1. Visualization of SLA constraint d1

218 S. Krompass et al.

A percentile constraint in a fixed step-wise SLA implicitly defines an SLA
penalty function with n steps. The penalty function for d1 of our sample SLA is
shown as the step function in Figure 1 (black solid lines). With ci, 1 ≤ i ≤ n+1,
we denote the boundaries of the steps of the SLA penalty function. For the
example in Figure 1, we have c4 = 0 (not in the figure), c3 = 0.8, c2 = 0.9, and
c1 = 1.

Using the SLA penalty function, we define service levels as follows: For a
penalty function with n steps, let si, 1 ≤ i ≤ n, denote the ith service level. This
level is defined in the interval [ci+1, ci[, so that dropping to a lower service level
corresponds to a higher penalty. Thereby, si+1 denotes a lower service level than
si, that is, the penalty incurred at si+1 is higher than at si. We denote Δi as
this cost difference between si+1 and si.

As shown in Figure 1, our sample percentile constraint d1 implicitly de-
fines three service levels: Service level s3 is defined in the interval [0, 0.8[, s2
in [0.8, 0.9[, and s1 in [0.9, 1]. The cost difference between service levels s3 and
s2 is $900 which is identical to the cost difference between s2 and s1.

2.1 Penalty-Carrying Requests

Penalty-carrying requests are queries with attached penalty information in a SQL-
comment. For example, the penalty-carrying request for a select-Statement
looks like this:

/* penalty ...
* deadline ... */

select ... from ...

We use the SLA penalty function to compute these adaptive penalties for indi-
vidual service requests. In the following section, we describe how to compute the
adaptive penalty from the percentile constraint for an individual request. Then,
we describe briefly the derivation of the deadline constraint for an individual
query.

2.2 Deriving the Penalty for Individual Requests

The penalty of an individual request is covering two different economic aspects.
On the one hand, the opportunity costs model the danger of falling into the next
lower service level. If the current SLA conformance c converges to the next lower
service level, the penalty for processing the service too late increases, because
delaying a further request increases the danger of an ultimate SLA violation.
Then, the opportunity costs oc are piece-wise defined quadratic functions which
are defined as follows:

oc(c) :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
cn−1−c
cn−1−cn

)2
· Δn−1, cn ≤ c < cn−1

· · ·
(

c1−c
c1−c2

)2
· Δ1, c2 ≤ c < c1

0, otherwise

Quality of Service Enabled Database Applications 219

The rationale for choosing squared terms is given below. For the opportunity
costs, we derive the decreasing parts of the parabolas as in Figure 1.

On the other hand, with marginal gains, we model the chance that a service
class re-achieves a higher service level, that is, reaches si from si+1. If this
appears to be “within reach”, individual requests are penalized more and more
to eventually achieve the higher level. The marginal gain mg is a piece-wise
quadratic function:

mg(c) :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
c−cn+1
cn−cn+1

)2
· Δn−1, cn+1 ≤ c < cn

· · ·
(

c−c3
c2−c3

)2
· Δ1, c3 ≤ c < c2

0, otherwise

Analogous to the opportunity costs, the rationale for choosing squared terms
is given below. The marginal gain is depicted as increasing part of the parabolas
in Figure 1.

If the SLA conformance of a request’s service class is approaching the next
lower service level, the chance for reaching the next higher service level is very
small. Thus, the penalty of a request of this transaction is dominated by the
opportunity costs. Similarly, the penalty is dominated by the marginal gain if
the next higher service level is “within reach”. Therefore, we define the penalty
as the maximum of the computed opportunity costs and the marginal gain of
this service request.

To define opportunity costs and marginal gains, we use a squared term – re-
sulting in the parabolas – to weight the distance from the borders of neighboring
service levels. If linear terms are used, requests stemming from SLAs with high
penalties are almost always be handled with top priority, because there is only a
very small area in the middle of a service level where the calculated penalties are
low. This leads to overfulfillment and therefore an inferior overall performance.
In contrast to that, if the order of the functions is chosen too high, the request
has high priority only for SLA conformances near the borders of the next higher
and next lower service level, respectively. So, if the opportunity costs are de-
fined by higher order polynomials, there are only very few requests with high
priority. If all of these requests are delayed, e.g., by waiting for database locks,
the SLA conformance falls onto the next lower service level. To justify this ra-
tionale, we conducted extensive experimental studies, which cannot be reported
here for space limitations. These studies have shown that squared terms were
better suited to model the opportunity costs and marginal gains than linear
order higher order terms.

2.3 Deriving the Deadline Constraint for Individual Requests

The time constraint of a deadline constraint xd specifies an upper bound for
the processing time of a transaction. We therefore need to derive the deadlines
for individual requests of that transaction. Requests which have passed their

220 S. Krompass et al.

deadline are scheduled with maximum priority. These requests most likely have
a processing time that is less or equal to the observed average processing time
as there are no requests with even higher priority. Note that the deadline is no
guarantee, as high priority requests can still be delayed within the database if
they access an object that is locked by a request with lower priority.

With enfi, we denote the latest time at which a request ri should be executed
to be able to complete the respective transaction within the time constraint
given by xd. To compute enfi, we monitor the execution times of requests already
processed in the current transaction. In addition to that, we monitor previous
invocations of the transaction and maintain the average processing time of each
request. Thus, we derive the expected time to process the remaining requests
by summing up the average response times of the requests. The time constraint
enfi for the current request is computed by subtracting the observed execution
times and the expected time to process the remaining requests from xd.

3 System Architecture and Implementation

To provide end-to-end quality of service for Web services, it is essential to incor-
porate all components of a Web service architecture, that is, the invoked service
itself, all called sub-services and the databases at the bottom layer.

Client with scheduler
Database server

SLA
component

Penalty function
Penalty-

carrying request

Processing
time

Fig. 2. Architecture Overview

A primary design goal for the implementation of the described concepts was
to ease the future extension of the QoS management to entire Web service ar-
chitectures. We therefore encapsulated all SLA-relevant functionality, including
the monitoring of the SLA conformance and the generation of adaptive penal-
ties, into a central entity, the SLA component. Figure 2 shows the resulting
architecture. The SLA component can easily be extended to monitor the overall
execution of Web service requests and not only derive adaptive penalties for the
database layer, but also for all sub requests on the Web service layer. The adap-
tive penalties are piggybacked onto the corresponding requests and transported
as penalty-carrying requests to the database. Upon completion of the database
request, the SLA component is notified of the observed response time by the
client and can thus update the current SLA conformance ratio.

The actual scheduling of requests is based on the adaptive penalties and is real-
ized by a scheduler. The scheduler intercepts all arriving requests and carries out
the admission control and the reordering of individual requests. The scheduler is

Quality of Service Enabled Database Applications 221

architected as an external component so that it can be easily adapted to sched-
uling arbitrary service requests, besides the database requests exemplified here.

4 Request Scheduling

At the database server, the processing of a newly arriving penalty-carrying re-
quest works as follows. To prevent the database from being overloaded, the
admission control limits the number of simultaneously executing requests. If the
request it not immediately executed, it is queued. Prior to dequeueing a request,
all queued requests are scheduled, that is, they are ordered by their priority. If
there are sufficient system resources, requests are dequeued by the admission
control.

In most current database systems, processes are assigned the same amount of
resources, irrespective of the priority of the respective request. This implies that
the available resources of the database are assigned in a round-robin manner to
all active requests. In other words, all requests are equally important. To limit
the database load it is therefore sufficient to restrict the number of concurrent
queries, irrespective of their individual complexity [15].

As an alternative, we experimented with an admission control that is based on
the optimizer costs of the requests that are currently being processed. However,
our empirical studies, which cannot be shown here due to space restrictions,
revealed that the query-complexity based admission control performed worse
than simply controlling the multi-programming level by restricting the maximum
number of concurrently processed requests.

Requests which are held back are put in one of two queues, as shown in Fig-
ure 3. Queue A holds requests which belong to running transactions, requests
of transactions not yet started are maintained in queue B. Statements to be
processed are chosen from queue A. Only if this queue is empty, new transac-
tions are started by picking statements from queue B, so that running transac-
tions are not unnecessarily delayed. Using this approach, we avoid the problem
of lock convoys [6]. Lock convoys can arise if a transaction TL which submits
various requests to the database, exclusively locks a database object and there
are pending requests of other transactions which intend to lock the same object.
The queue of waiting objects does not shrink as long as the locking transaction
is not finished. Before TL releases the blocking lock, all of its requests need to
be processed. Thus, intuitively, requests from active transactions are prioritized
over requests from pending transactions.

Our goal is, prior to dequeuing a request, to create a schedule of the pending
requests, such that the overall sum of incurred penalties is minimized. Thus,
the requests are ordered in both queues according to their adaptive penalties.
So, a request is inserted and removed, respectively, in O(log n) time by using a
priority queue implementation, that is, the overhead for scheduling a request is
negligible. For queue lengths of 150, which we observed in our benchmarks, the
scheduling of a single request took about 0.28 milliseconds.

222 S. Krompass et al.

Sorted by scheduling algorithm

Sorted by scheduling algorithm

Queue B

Requests of new transactions

Queue A

Requests of active transactions

Admission

Admission,
if A is empty

Database core

Simultaneously
executing
requests

Fig. 3. Dual Queue Scheduling

5 Performance Evaluation

We performed comprehensive benchmarks using our prototype implementation
to assess the effectiveness of the adaptive request-penalization. For the perfor-
mance evaluation, we chose the TPC-C benchmark as a representative Online
Transaction Processing (OLTP) workload.

5.1 Description of the Benchmarks

The TPC-C-benchmark models a company which is a wholesale supplier op-
erating several warehouses which serve customers in geographically distributed
sales districts. The database workload of the benchmark is centered around five
principal business transactions of an order-entry environment. The transactions
are invoked by emulated users whose behavior is controlled by think times and
keying times. The detailed specification of the TPC-C benchmark can be found
in [16].

The SLA for a transaction is based on the corresponding response time goal. For
our experiments, we specified the SLAs using XML, similar to WS-Agreement [10],
which is becoming a standard for establishing a service agreementbetween a service
provider and a client. Our experiments are conducted with the step-wise SLAs in-
troduced in Section 2. For each transaction, we define an SLA with a percentile and
an deadline constraint. The percentile constraint requires 90% of the invocations
to be processed in less than the corresponding response time requirement which
is specified for each transaction in [16]. A violation of this constraint is fined with
a penalty which depends on the terminal representing the client from which the
transaction is invoked, that is, the SLAapplies for the terminal and all transactions
that are invoked from this terminal. In our test scenario, we chose a customer-mix
where 15% of the terminals incur high ($1000), 35% incur medium ($200), and the
remaining terminals incur low penalties ($40) if the corresponding SLA is violated.
This customer mix models a service provider with a high number of regular cus-
tomers that must be preferably processed compared to “normal” users. In order to
avoid starvation of queued requests, we define an upper bound for the execution
time of a transaction in our benchmark. The deadline for high-priority customers

Quality of Service Enabled Database Applications 223

is three times the response time requirements. For medium- and low-priority cus-
tomers, the deadline of the transactions is five and ten times of the response time
requirement of that transaction.

For our experiments, we implemented our own version of the TPC-C bench-
mark based on MaxDB Version 7.5 [11]. The number of warehouses is held
constant at 20, thus, the size of the database is about 2GB. As specified by the
TPC-C, the number of terminals is ten times the number of warehouses, thus
yielding a total number of 200 terminals during the benchmark.

For the benchmarks, we dimensioned the 100%-workload such that the required
response times of the specification are met without any scheduling and admission
control at all. Furthermore, we define a productive workload of 80%, as databases
should not be operated at its limit due to possible load peaks. We control the work-
load by multiplying the keying and think times with a scaling factor.

A single benchmark consists of several phases. First, there is a “warmup”
phase where the database is operated at 80% load for 15 minutes. Subsequently,
8 minute-periods of peak load (180% workload) alternate with “rest periods”
(80% workload) which again last for 15 minutes. The benchmark terminated
after an evaluation period of 65 minutes. After this time, the requests that have
been accumulated in the second load peak, have been processed, so that the
number of queued requests is reduced to the normal level again. The scheduler
with admission control is configured such that the throughput is identical to the
throughput of a benchmark with terminals directly connected to the database.

Our experiments are performed running the QoS-enabled database on a server
with 1GB RAM and an Intel Xeon processor with 2.8GHz. The operating system
is SUSE Linux Enterprise 9 based on kernel 2.6. All terminals run on another
server with identical hardware and connect to the database via Gigabit-Ethernet
using the MaxDB JDBC-driver.

5.2 Results

First, we present the analysis of the SLA conformance using static prioritization,
that is, the priority of a customer remains constant throughout the entire bench-
mark. Figure 4 shows the SLA conformance for the NewOrder transaction which
is the central transaction of the TPC-C benchmark. The values shown are the
conformances at the end of the evaluation period for each of the terminals in-
volved. The SLA conformances are ordered decreasingly, grouped by the priority
of the terminals. With static prioritization, all SLAs for transactions stemming
from high priority terminals are overfulfilled. 92% of the medium-priority ter-
minals obtain their SLA, some of them with a conformance near 1. Only 6% of
the low-priority terminals meet their SLA conformance requirements. The in-
equity between terminals having medium priority, i.e., terminals with the same
SLA, arises if transactions from one terminal compete with more high-priority
transactions than the other. Due to the lack of SLA awareness, the static prior-
itization cannot differentiate between a transaction stemming from a customer
whose SLA is currently vastly overfulfilled and a transaction where the next
higher service level is within reach.

224 S. Krompass et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

S
LA

 C
on

fo
rm

an
ce

Terminal

high priority medium priority low priority

Fig. 4. SLA Conformance for all Terminals Using Static Prioritization

 0

 0.2

 0.4

 0.6

 0.8

 1

S
LA

 C
on

fo
rm

an
ce

Terminal

high priority medium priority low priority

Fig. 5. SLA Conformance for all Terminals Using Adaptive Penalization

In contrast to this, the SLA conformance using adaptive prioritization is far
more balanced within a group. Figure 5 shows the SLA compliance of all terminals
using our novel adaptive penalization. Again, all high-priority terminals satisfy
their SLAs. But the SLAs are not overfulfilled to the extent as with static prioriti-
zation, that is, the SLA conformance with static prioritization is 100%and with our
adaptive prioritization between 97.3% and 98.8%. This adaptive “down-grading”
of requests stemming from high-priority terminals is used to free resources for re-
quests from low- and medium-priority terminals. Furthermore, as requests stem-
ming from low-priority terminals do not have deadlines, these requests are delayed
as long as possible to allow the prioritized execution of higher priority requests.

If the pending requests are statically prioritized, the reduction of costs induced
by violating the SLAs of the terminals is due to favoring requests stemming from
high-priority terminals to lower-priority requests. For our example configuration,
the decrease of overall costs for all five transactions of the TPC-C is 53.5%, from
$17, 600 using the static prioritization to $8, 180 with the adaptive penalization.

6 Related Work

Enabling QoS for Web service infrastructures is in the focus of our research
group. Braumandl et al. [2] discuss distributed query processing systems on the
Internet where the queries have different QoS demands. The paper presents an
extension to the distributed query processing to support user QoS constraints.
The query processor generates plans in such a way that its quality estimates

Quality of Service Enabled Database Applications 225

are compliant with the user-defined quality constraints. Gmach et al. [5] present
a fuzzy controller module which supervises services in a service oriented archi-
tecture. The controller executes appropriate actions to remedy overload, failure,
and idle situations in the service architecture.

Quality of Service is an important issue for e-commerce and other e-services.
Beeri et al. [1] analyze service compositions at compile-time stage to gain further
information on the service’s behavior. Selecting services which are dynamically
bound to composite services at runtime to satisfy user QoS requirements is pre-
sented by Maximilien and Singh [12], and Gibelin and Makpangou [4]. However,
these approaches are only applicable if there are several concrete services which
implement the same interface. This is not necessarily true for enterprise services.
Kraiss et al. [8,9] describe an analytical model for the HEART tuning tool for mes-
sage oriented middleware. The tool assigns static priorities to different workload
classes. The messages of the different classes are then processed by a priority based
scheduling algorithm in the middleware. The approach differs from our work in
three points. First, there is a fixed number of workload classes. Second, for each
class, the workload parameters have to manually be specified by an administrator.
Third, if the workload change, the priorities for the classes have to be recomputed.

An admission control and request scheduling for e-commerce Web sites is
presented by Elnikety et al. [3]. Their work focuses on achieving stable behavior
during overload and improved response times. Analog to our SLA based request
management component they install a proxy between the Web service and the
database. However, the optimization is not associated to the SLA conformance.
As we have discussed in this paper, considering the conformance is an integral
part of an adaptive QoS management.

Schroeder et al. [14] present a framework for providing QoS where the response
time requirements are specified in an SLA. To meet the multiclass response time
goals, the number of concurrently executing requests is dynamically adjusted
using a feedback control loop which considers the available hardware resources
and concurrently executing queries in the database. However, other than our
approach their work is not based on an economic model that optimizes the
overall system performance across different classes.

7 Conclusion and Future Work

In this paper, we presented and evaluated an adaptive QoS management that is
based on an economic model which adaptively penalizes individual requests de-
pending on the SLA and the current degree of SLA conformance. Our economic
model differentiates between opportunity costs and marginal gains. Using this
economic model, we compute adaptive penalties and annotate them to individual
requests, thus creating penalty-carrying queries. Second, we described the archi-
tecture and the implementation of our QoS management. Third, we presented
the scheduling of the requests which is based on an admission control. We in-
tegrated our research prototype of a QoS-enabled database into MaxDB. Using
our prototype, we demonstrated the effectiveness of our proposed approach by

226 S. Krompass et al.

performing comprehensive real-world studies using the TPC-C benchmark as
OLTP workload.

Having shown the effectiveness of our approach for databases, we now move
towards scheduling in multi-level service infrastructures.

References

1. C. Beeri, A. Eyal, S. Kamenkovich, and T. Milo. Querying Business Processes with
BP-QL. In Proceedings of the 31st International Conference on Very Large Data
Bases, Trondheim, Norway, September 2005.

2. R. Braumandl, A. Kemper, and D. Kossmann. Quality of Service in an Information
Economy. TOIT, 3(4):291–333, 2003.

3. S. Elnikety, E. Nahum, J. Tracey, and W. Zwaenepoel. A Method for Transpar-
ent Admission Control and Request Scheduling in E-Commerce Web Sites. In
Proceedings of the 13th International Conference on WWW, pages 276–286, New
York, NY, USA, 2004. ACM Press.

4. N. Gibelin and M. Makpangou. Efficient and Transparent Web-Services Selection.
In Proceedings of the 3rd International Conference on Service Oriented Computing,
Lecture Notes in Computer Science (LNCS), Vol. 3826, pages 527–532, 2005.

5. D. Gmach, S. Krompass, S. Seltzsam, and A. Kemper. AutoGlobe: An Automatic
Administration Concept for Service-Oriented Database Applications. In Proceed-
ings of the 22nd International Conference on Data Engineering (ICDE). IEEE
Computer Society, 2006.

6. J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan
Kaufmann, 1993.

7. IBM DB2 Query Patroller. http://www-306.ibm.com/software/data/db2/
querypatroller/.

8. A. Kraiss, F. Schön, G. Weikum, and U. Deppisch. Towards Response Time Guaran-
tees for E-Service Middleware. IEEE Data Engineering Bulletin, 24(1):58–63, 2001.

9. A. Kraiss, F. Schön, G. Weikum, and U. Deppisch. With HEART Towards Re-
sponse Time Guarantees for Message-Based E-Services. In Proceedings of the 8th
International Conference on Extending Database Technology, pages 732–735, Lon-
don, UK, 2002. Springer.

10. H. Ludwig and Toshiyuki. WS-Agreement Concepts, Use, and Implementation. In
Tutorial at the ICSOC, 2005.

11. MaxDB. http://www.mysql.com/products/maxdb/.
12. M. Maximilien and M. P. Singh. Toward Autonomic Web Services Trust and

Selection. In Proceedings of the 2nd International Conference on Service Oriented
Computing, pages 212–221, New York, NY, USA, 2004. ACM Press.

13. Oracle Database Resource Manager. http://www.oracle.com/technology/
deploy/availability/htdocs/rm overview.html.

14. B. Schroeder, M. Harchol-Balter, A. Iyengar, and E. Nahum. Achieving Class-
Based QoS for Transactional Workloads. In Proceedings of the 22nd International
Conference on Data Engineering (ICDE). IEEE Computer Society, 2006.

15. B. Schroeder, M. Harchol-Balter, A. Iyengar, and E. Nahum. How to Determine a
Good Multi-Programming Level for External Scheduling. In Proceedings of the 22nd
International Conference on Data Engineering (ICDE). IEEE Computer Society,
2006.

16. TPC Benchmark C, Standard Specification Version 5.4. http://www.tpc.org/
tpcc/, April 2004.

http://www-306.ibm.com/software/data/db2/querypatroller/
http://www-306.ibm.com/software/data/db2/querypatroller/
http://www.mysql.com/products/maxdb/
http://www.oracle.com/technology/deploy/availability/htdocs/rm_overview.html
http://www.oracle.com/technology/deploy/availability/htdocs/rm_overview.html
http://www.tpc.org/tpcc/
http://www.tpc.org/tpcc/

	Introduction
	Quality of Service Model
	Penalty-Carrying Requests
	Deriving the Penalty for Individual Requests
	Deriving the Deadline Constraint for Individual Requests

	System Architecture and Implementation
	Request Scheduling
	Performance Evaluation
	Description of the Benchmarks
	Results

	Related Work
	Conclusion and Future Work

