
The Pennsylvania State University

The Graduate School

Department of Computer Science and Engineering

QUALITY OF SERVICE (QoS) PROVISIONING

IN THE INTERNET USING FLOW ESTIMATION

A Thesis in

Computer Science and Engineering

by

Sungwon Yi

c© 2005 Sungwon Yi

Submitted in Partial Fulfillment
of the Requirements

for the Degree of

Doctor of Philosophy

August 2005



The thesis of Sungwon Yi has been reviewed and approved* by the following:

Chita R. Das
Professor of Computer Science and Engineering
Thesis Co-Advisor
Co-Chair of Committee

George Kesidis
Associate Professor of Electrical Engineering & Computer Science and Engineering
Thesis Co-Advisor
Co-Chair of Committee

Thomas F. La Porta
Associate Professor of Computer Science and Engineering

Guohong Cao
Associate Professor of Computer Science and Engineering

Constantino M. Lagoa
Associate Professor of Electrical Engineering

Ray Acharya
Professor of Computer Science and Engineering
Head of the Department of Computer Science and Engineering

*Signatures are on file in the Graduate School.



iii

Abstract

Quality-of-service (QoS) provisioning in the Internet in the presence of unpre-

dictable traffic dynamics is an important, but admittedly complex problem. The main

goal of this thesis is to investigate flow estimation based techniques for better QoS sup-

port in the Internet. In this context, we discuss five related topics in this thesis. First,

we propose a flow estimation scheme, called Hash-based Two-level Caching (HaTCh),

to accurately estimate the number of active connections, which can be used for better

congestion control. It is shown that the HaTCh scheme provides more accurate flow esti-

mation than the exising (SRED)scheme under various workloads. Second, we investigate

the design issues of drop functions in an AQM scheme and propose a new AQM scheme,

called HaTCh based RED (HRED), based on the new flow estimation technique. Third,

we propose a HaTCh-based Dynamic Quarantine (HaDQ) scheme, an extension of the

HaTCh scheme, to detect and penalize unresponsive TCP flows, which pose a serious

threat to conforming TCP users through Cenial of Service (DoS) attacks. Then, the

HaDQ scheme is further extended to dynamically detect and block worm propagation.

It is shown through extensive simulation that the HADQ mechanism is an effective and

feasible solution for controlling bandwidth attack of unresponsive TCP flows and worms.

Finally, we extend our AQM framework to wireless networks, and present a new AQM

scheme, called Proxy-RED, for Wireless Local Area Networks (WLANs). The Proxy-

RED scheme can enhance the performance of WLANs in terms of goodput and packet

loss rate.
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Chapter 1

Introduction

Recently, a number of empirical studies on the traffic measurement showed that a

variety of network traffic exhibit self-similarity and long-range dependency [16] [71] [14].

These traffic characteristics, which imply time-invariant bursts, can cause serious per-

formance degradation such as longer queueing delay and higher packet loss rate at the

congested routers [7] [52], and thus make congestion control quite complex. In addition,

millions of Internet users have recently experienced Denial-of-Service (DoS) due to sever

network congestion, which is attributed not only to traffic dynamics and volume but

due to malicious users or software. Therefore, developing an efficient mechanism that

handles network congestion, whether it is naturally formed or maliciously intended, is

essential for not only improving the network performance but also for providing Quality

of Service (QoS) in the Internet.

Although congestion issues have traditionally been considered in wired network,

the need for efficient congestion control in wireless networks is quite obvious. Recently,

wireless networks based on the IEEE 802.11 standard have been widely deployed in enter-

prises and university campuses mostly to provide wireless data access to laptops, PDAs,

etc., to the wired infrastructure such as Internet. However,the available bandwidth in

IEEE 802.11 networks is much smaller than in wired local area networks. Therefore,

the disparity in the link speed between wired and wireless networks makes the wireless
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access point a significant potential bottleneck in the downstream direction, and finding

solutions, considering wireless networks characteristics such as longer delay and higher

packet loss rate, is critial for successful deployment of wireless services.

The main motivation of this research is to design and analyze an AQM scheme

for better congestion control, to develop security measures to protect networks from

malicious users and softwares, and to extend AQM concept to wireless networks to

improve wireless network performance.

1.1 Active Queue Management

Internet architects addressed congestion problems by extending the TCP scheme

to incorporate congestion control mechanisms such as slow start and fast retransmit. The

main idea of the TCP congestion control mechanism is to regulate the packet injection

rate according to the estimated level of congestion. A TCP source detects packet loss

(i.e, congestion) by monitoring the transmitted and acknowledged packets, and backs off

the transmission rate to avoid successive packet loss. If all the packets are successfully

delivered, the sender slowly increases the transmission rate until it reaches the maximum

rate. However, the TCP congestion control mechanism often results in congestion col-

lapse [32] due to delayed congestion detection and activation of the back-off mechanism,

and synchronized packet transmission from different senders.

Along with the TCP’s congestion control mechanism, the Internet Engineer-

ing Task Force (IETF) recommended to deploy an Active Queue Management (AQM)

scheme such as Random Early Detection (RED) [9]. Since then, several AQM schemes

have been proposed to minimize the packet loss rate, to stabilize buffer occupancy, and
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to prevent global synchronization in the Internet [22] [38] [50] [19]. The main role of an

AQM scheme is to inform senders about the onset of any congestion in order to activate

the TCP congestion control mechanism before the queue overflows, resulting in succes-

sive packet loss at the congested router. This can be achieved by detecting the level

of congestion accurately and deploying a packet drop mechanism based on the level of

congestion. However, none of these schemes are very effective due to limited information

about the level of congestion and inefficient design of the drop mechanism.

1.2 Internet Security

According to the Census Bureau of the Department of Commerce, e-commerce

accounted for 19.6% of U.S. manufacturing shipment, 11.7% of U.S merchant whole sale,

and 28.1% of electronic shopping (including mail order) in 2002 [4]. Considering the fact

that e-commerce handled 0.8% of U.S. retails in 2000 and it increased to 1.9% in 2004 [6],

it is clear that U.S. economy will heavily rely on Internet technology in the near future.

On the other hand, 83% of senior information technology executives acknowledged that

their system had been compromised during 2003 in Global Security Survey 2004 [5]. In

addition, 40% of them stated that their organization experienced financial loss due to

these activities.

Today, one of the most common ways to breach security is a Denial-of-Service

(DoS) attack. A DoS attack is a malicious attempt to cripple a target infrastructure,

commonly by flooding packets, resulting in denial of service to legitimate users. Since

February 2000’s, DoS attacks on major Web sites such as Amazon.com, Yahoo.com, and

Ebay.com have been one of the most serious threats to millions of users who rely on
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the Internet for their daily business. DoS Attack technology has continued to evolve

and recently include large scale attacks called worms, self-propagating mal-codes. Since

the advent of the worm, known as morris worm [60], new and faster worms have been

constantly released and threatened the Internet community. In July 2001, Code Red II

infected more than 359,000 hosts within 14 hours [45], and it was followed by a series of

fast spreading worms such as Nimda [66], SQLSlammer [44], and Sasser [67]. It is believed

that a worm can theoretically infect more than hundreds of thousands of vulnerable hosts

within a couple of minutes. A worm can therefore initiate any destructive activities on an

infected machine such as corrupting data, killing processes, and installing Trojan horses

and back doors [64] [65]. In addition, worms can consume serious amount of network

resources including buffer and bandwidth, leading to sever congestion and denial of

service to legitimate network users.

Although several solutions have been proposed for handling these problems, the

performance of these schemes are seriously limited by assuming the specifics of a DoS/worm

attack or by overlooking the implementation details. To our knowledge, there is no ef-

fective technique to handle DoS attacks in Internet.

1.3 Overview of Thesis

This thesis focused on finding practical solutions for these problems by i) design-

ing and analyzing an Active Queue Management (AQM) scheme for better congestion

control, ii) developing an algorithm, which can detect and penalize malicious flows used

in bandwidth attack and worm propagation, and iii) extending the AQM concept to the
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wireless domain such as Wireless Local Area Networks (LANs). The proposed research

addresses the following five issues:

• To develop an accurate congestion estimation mechanism

• To design a new AQM scheme by combining accurate congestion estimation and

an efficient drop mechanism

• To develop a router mechanism for controlling unresponsive flows

• To develop a network-based worm defense mechanism

• To study the performance of AQM in wireless LANs and improve wireless LAN

performance using an AQM based approach

These ideas are discussed in greater detail in the rest of the thesis. Chapter 2

presents a new AQM scheme called HRED (HaTCh-based RED). The improved per-

formance of HRED results from the accurate estimation of the congestion level by the

Hash-based Two-level caChing (HaTCh). To accurately estimate the severity of conges-

tion, we extend the SRED [48] scheme that estimates the number of active flows and use

it to indicate the level of congestion. The proposed scheme can eliminate SRED’s innate

problems such as fluctuation in estimating the number of flows and under-estimation

when misbehaving flows are mixed with TCP flows. The HaTCh scheme uses hashing

and a two-level caching mechanism to accurately estimate the number of active flows

under various workloads. Then, the estimated number of flows is used to determine

the packet drop/marking probability of HRED along with the current queue capacity.
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However, HRED provides better control in buffer occupancy and achieves low loss rate

through efficient design of the dropping function.

The architecture of the HaTCh scheme is extended in Chapter 3 to detect and

penalize unresponsive flows. The proposed scheme, called HaTCh-based Dynamic Quar-

antine (HaDQ), identifies high bandwidth flows without the collecting per-flow informa-

tion, as is done in many cases. The identified flows are monitored using a small Content

Addressable Memory (CAM), called the quarantine memory, and are rate-limited based

on the number of active flows estimated by the HaTCh scheme.

Chapter 4 presents ongoing research on a worm defense mechanism based on

the HaDQ architecture along with preliminary simulation results. The proposed scheme

exploits HaTCh’s hashing mechanism to sample multiple flows originated from the same

source node. The sampled flows are quarantined using the quarantine memory of HaDQ,

and the number of destination nodes are estimated using the similar technique used

in HaTCh. The main feature of the proposed scheme is that it is independent of the

underlying transport layer protocol and minimizes the memory requirement for detecting

worm traffic. The preliminary simulations results show that the proposed scheme can

detects a worm’s probing traffic less than 3 seconds.

In Chapter 5, we study the use of RED [], a well known active queue management

(AQM) scheme, and explicit congestion notification (ECN) [] to handle bandwidth dis-

parity between a wired and the wireless interface of an access point. Then, we propose

the Proxy-RED scheme as a solution for reducing the AQM overhead from the access

point. Simulations-based performance analysis indicates that the proposed Proxy-RED

scheme improves the overall performance of the network. In particular, the Proxy-RED
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scheme significantly reduces packet loss rate and improves goodput for a small buffer,

and minimizes delay for a large buffer size. The concluding remarks of the thesis are

drawn in Chapter 6.
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Chapter 2

An AQM Scheme based on the Number of Active Flows

An Active Queue Management (AQM) Scheme consists of two main functions.

The one is to estimate the level of congestion and the other is to deploy random

drop/marking. In this chapter, we first present an accurate and robust congestion esti-

mation technique, and then extend it to design a complete AQM scheme, called HRED.

2.1 Introduction

Internet congestion control is an important, but admittedly complex problem pri-

marily because of the unpredictable traffic dynamics. Several active queue management

(AQM) schemes have been proposed for congestion control to minimize high packet loss

rates and global synchronization in the Internet [19] [22] [36] [38] [40] [50]. Two crucial

functions of an AQM scheme are to estimate the level of congestion and to respond

accordingly either by randomly dropping or marking the packets. In these schemes, the

average queue length [22] [38] [40] , link idle time or packet loss due to buffer overflow [19]

was used as an indication of the congestion level. However, none of these schemes are

very effective since they give limited information about the level of congestion.
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Recently a new approach, called Stabilized RED (SRED)1 [48], drew wide atten-

tion since it proposed to use the number of active flows as an indication of the congestion

level. It is believed that the number of active flows is a better indicator of network con-

gestion compared to other parameters such as average queue length and packet loss event.

Furthermore, the number of active flows can be used as a configuration parameter to

stabilize the AQM control systems [31] [36]. Therefore, an accurate estimation of this

number will lead to improved congestion control.

In SRED, a small cache memory, called the zombie list, is used to record the M

most recently seen flows. Each cache line (zombie) contains the source and destination

address pair, last arrival time, and hit count of the flow. Each arriving packet (source and

destination address) is compared with a randomly selected cache line. If the addresses

match (called a hit), the hit count of the cache line is increased by 1. Otherwise (called a

miss), the selected cache line is replaced by the arriving flow’s address with a replacement

probability r. To estimate the number of active flows, SRED maintains a hit frequency

f(t) and updates f(t) with (1− α)f(t− 1) + α on a hit, and with (1 − α)f(t− 1) on a

miss, where α is a time constant. Then, the inverse of the hit frequency (f(t)−1) is used

as the estimation of the number of active flows.

Although the SRED concept and the use of number of active flows as an indication

of the severity of congestion are quite novel, a detailed performance analysis showed sev-

eral limitations. For example, one of the problems in SRED is that the estimated number

of flows fluctuates as the number of flows increases in the network. This implies that

the severity of the congestion is not accurately captured. Second, although misbehaving

1In this chapter, we use “SRED” to denote the flow estimation capability of SRED.
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flows such as UDP can be identified by computing the hit count and calculating the total

occurrence of the flow as described in [48], SRED still underestimates the number of

active flows when the traffic mix includes both TCP and aggressive UDP connections.

To address these problems, we first present a mathematical model to analyze the

estimation capability of SRED, and show how the steady-state hit frequency of the cache

model can be used to estimate the number of active flows. We then propose a modified

SRED scheme, called HaTCh (Hash-based Two-level Caching), that uses hashing and

a two-level caching mechanism to accurately estimate the number of active flows under

various workloads. Unlike the original SRED, where the entire cache is a single block, the

proposed scheme divides the cache into a fixed number of sub-blocks. With the hashing

scheme, each arriving packet is hashed into one of the partitioned subcaches, and the hit

frequency is maintained for each subcache. Due to the reduced size of the subcache and

the number of flows per subcache, the hit probability of an arriving packet is improved.

The hashing scheme stabilizes the estimation through this improved hit probability.

The proposed two-level caching scheme consisting of a smaller “Level 1” (L1)

cache and a larger “Level 2” (L2) cache, basically works similar to the general two-level

cache used in processor architecture design. It implies that an L1 cache miss results

in an access to the L2 cache. However, the cache inclusion property is not satisfied

here. An arriving packet is first compared with a randomly selected L1 cache line. If

the addresses match, the hit count is incremented, otherwise a randomly selected L2

cache line is compared with the packet ID (the source and destination addresses). A

hit in the L2 cache results in bringing the cache line to the corresponding cache line

in the L1 cache. If the addresses do not match in the L2 cache (a miss), the L2 cache
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line is replaced with the packet ID with a given replacement probability. The purpose

of the L1 cache in HaTCh is to isolate the misbehaving flows from the L2 cache. The

two-level caching scheme accurately estimates the number of active flows by isolating the

misbehaving flows to prevent monopolization of the L2 cache, and to yield more room

in the L2 cache for the conforming flows.

We extend the SRED analytical model for the proposed two-level caching scheme

to demonstrate its effectiveness in isolating the misbehaving flows. We then analyze

the performance of the HaTCh scheme through extensive simulations using the ns-2

simulator [3]. Estimation accuracy and stability of estimation in the presence of burst

traffic and misbehaving flows are used as the main performance metrics to compare the

proposed scheme with SRED. The simulation results indicate that the two-level scheme

not only stabilizes the estimation but also improves the accuracy of estimation for various

workloads. In particular, HaTCh out-performs SRED in the presence of misbehaving

flows.

The rest of this chapter is organized as follows: In Section 2.2, we present a

mathematical model to analyze the estimation capability of SRED. We describe the

limitations of SRED in Section 2.3. The proposed estimation scheme, HaTCh, is detailed

in Section 2.4. In Section 2.5, the simulation results are presented followed by the

concluding remarks in Section 2.7.

2.2 SRED Model for Estimating the Number of Active Flows

The key idea of SRED is to relate the cache hit frequency to the number of active

flows. However, this was not proved formally in the original paper [48] that relied on
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simulation to arrive at the conclusion. In this section, we present a Markov model to

understand the concept of SRED and analyze its estimating behavior.

Consider a small cache memory (zombie list) with M lines, and N independent

flows, each with a rate λi packets/s. Here, the packet arrival process may not be neces-

sarily Poisson. We only assume that the flow IDs of the multiplexed sequence of arriving

packets are independent. If we assume Xi is the number of cache lines with the flow ID

i in the cache and X̄ is the vector that maintains the number of cache lines occupied by

each flow, then X̄ can be presented as a Markov chain whose transitions occur at packet

arrival time. X̄ and its state space can be defined as:

N
∑

i=1

Xi = M, and X̄ ∈ {m̄ =

































m1

· · ·

mi

· · ·

mN

































| 0 ≤ mi ≤M,
N
∑

i=1

mi = M} ≡ SM,N .

Here, the transition rates of the Markov chain are dependent on both the replace-

ment probability and the outcome of the cache comparison between an arriving packet

and a randomly selected cache line. Based on the SRED’s functionality, for a given

cache state m̄, the number of cache lines for each flow in the cache remains the same

either in the event of a cache hit, or in the event of a cache miss with probability 1− r.

However, the state of the cache changes from m̄ to δijm̄ in the event of a cache miss

with replacement probability r.
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m

 random cache line ID = i)
(arriving ID = j,

r.m, δ(P i,j m)

r.m, m)P δ( i,j

r.m, m)P δ( i,j

r.m, δ(P i,j m)

ij mδ

(arriving ID = i,
 random cache line ID = j)

1-

1-

mi

mj

m   ]

[ m1

mi+1

mj-1

m   ]

[ m1

N
N

Fig. 2.1. The state transition diagram of X̄.

In this figure, m̄ and δijm̄ represent the present and the next states. P (m̄, δijm̄) denotes the

cache miss probability when a flow ID i is compared with a cache line j, and r is the replacement
probability.



14

A pictorial view of the state space transition is given in Figure 2.1. When an

arriving packet has a flow ID i, and a randomly chosen cache line belonging to flow ID

j in the given cache state m̄ is replaced by ID i with the replacement probability of r,

the new state δijm̄ is defined as:

δijm̄ =



















































m1

· · ·

mi + 1

· · ·

mj − 1

· · ·

mN



















































if i < j, (2.1)

for all the cache states m̄ such that mi < M and 0 < mj . If i > j, then the i and j

terms are swapped. For a given state m̄, the probability of a cache hit is the product

of the probability that an arriving packet has the flow ID i and the probability that a

randomly selected cache line has the same flow ID. Similarly, the probability of a cache

miss is the product of the probability that an arriving packet has the flow ID i and the

probability that a randomly selected cache line has a different flow ID than i. Therefore,

the transition probability of this cache model can now be written for a cache hit or a

cache miss without replacement as:

P (X̄(t + 1) = m̄ | X̄(t) = m̄) ≡ Phit(m̄, m̄) + Pmiss(m̄, m̄) (1− r)

=
N
∑

i=1

mi
M
·

λi
∑N

k=1
λk

+
N
∑

i,j=1
i6=j

mj

M
·

λi
∑N

k=1
λk

(1− r). (2.2)
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For a cache miss that is replaced with probability r, the expression is:

P (X̄(t + 1) = δijm̄ | X̄(t) = m̄) ≡ P (m̄, δijm̄) r =
N
∑

i,j=1
i6=j

mj

M
·

λi
∑N

k=1
λk

r. (2.3)

In the above expressions,
λi

∑N
k=1

λk

denotes the probability that an arriving packet has a

flow ID i, and the
mi
M and

mj
M terms represent the probability that a randomly selected

cache line from the zombie list has the same and different IDs, respectively.

For a given state m̄ such that mi < M and 0 < mj , the detailed balance equation

of this system for any r becomes:

π(m̄)P (m̄, δijm̄) = π(δijm̄)P (δijm̄, m̄), (2.4)

where

P (m̄, δijm̄) =
mj

M
·

λi
∑N

k=1
λk

and P (δijm̄, m̄) =
mi + 1

M
·

λj
∑N

k=1
λk

.

Here, π(m̄) is the steady-state distribution of X̄. Thus, (2.4) becomes

π(m̄) = π(δijm̄)
λj

mj
·
mi + 1

λi
. (2.5)

We have found that the following distribution solves the detailed balance equation (2.4):

π(m̄) =

∏N
n=1

λmn
n

mn!

GMN
, (2.6)
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where the normalizing constant is

GMN =
∑

m̄∈SM,N

N
∏

n=1

λmn
n

mn!
. (2.7)

Thus, we can conclude that the process X̄ is time reversible. From (2.5), (2.6) and (2.7)

we get:

π(δijm̄) =

∏

n 6=i,j

λmn
n

mn!
·

λ
mi+1
i

(mi + 1)!
·

λ
mj−1

j

(mj − 1)!

GMN
.

Now, let us denote f(t) as the hit frequency, and H as the steady-state hit prob-

ability of the cache. Then, H includes the summation of all states as:

H =
∑

m̄∈SM,N

π(m̄)Phit(m̄, m̄). (2.8)

In practice, H can be estimated by a first order autoregressive process, defined as:

f(t) = (1− α)f(t− 1) + α · 1 {hit at tth packet }

for 0 < α < 1. 1 in the above expression represents an indicator function of a cache

hit. It is clear that H is a limiting point of the process f . ie, limt→∞ f(t) ≡ H. We

assume that the choice of α is such that f(t) converges faster than the rate of change of

N. (TCP estimates the round trip time using an autoregressive process too.) Here, α is a

time constant that determines the speed of the model to reach the steady-state. Finally,
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from (2.2), (2.6) and (2.8), we express the steady-state hit frequency of the given cache

model as the following theorem.

Theorem 1. Under the assumption of independent packet flow identifiers, the hit fre-

quency, calculated by a first order autoregressive process for the single cache system

(SRED), converges to

H =
∑

m̄∈SM,N













∏N
n=1

λmn
n

mn!

GMN

N
∑

i=1

(
mi
M
·

λi
∑N

k=1
λk

)













(2.9)

in the steady-state.

Observe that if each λi in the summand of the numerator of (2.9) is replaced by

the maximum value of λmax, then H is less than or equal to
λmax

∑N
k=1

λk

. Similarly, if

each λi in the summand of the numerator of (2.9) is replaced by the minimum value of

λmin, then H is greater than or equal to
λmin

∑N
k=1

λk

. Therefore, we have the following

two corollaries.

Corollary 1.

λmin
∑N

k=1
λk

≤ H ≤
λmax

∑N
k=1

λk

. (2.10)

Corollary 2. If all the arriving rates, λi, are equal for all N , then the upper and lower

bounds on H in (2.10) are equal, leading to

H =
1

N
.
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The above expression shows that one can compute the number of active flows (N)

from the steady-state hit frequency (H). We calculated the steady-state hit frequency

and the number of flows using (2.9) and compared them with the simulation results. Due

to the large state space (M+N−1CM), we first investigate the accuracy of our model

with a relatively small cache memory (10 cache lines) and a small number of flows (10

or less) by enumerating the entire state space. We then extend the validation for large

cache size (up to 800 cache lines) and more number of flows (up to 100) by using various

state space truncation techniques.

When the same arrival rate is used for all flows, the estimation using (2.9) was

exactly the same as the actual number of flows. Table 2.1 shows the results of the

comparison between the estimation by (2.9) and the simulation results. (We used the

ns-2 simulator and the simulation environment is described in Section 2.3.) The results

indicate that the model is quite robust in estimating the number of flows. However, the

simulation results showed that the accuracy of estimation depends on the cache size (M)

and the replacement probability (r). A larger cache size, at least equal to greater than

the number of flows, and a smaller replacement probability (r) help in better estimation.

2.3 Limitations of SRED

In order to examine the capability of SRED in estimating the number of active

flows, we performed a number of simulations using the network, shown in Figure 2.2.

In the simulations, all the connection requests are generated at the leftmost nodes and
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Table 2.1. Estimated Number of Flows

Number Memory Estimated Number Estimated Number by Simulation
of Flows Size by Equation (9) r = 1.0 r = 0.25 r = 0.01

5 10 31.8063 12.5903 10.3349
10 10 16.1963 11.6975 10.2145

10 20 10 13.1511 10.4804 10.3596
40 10 11.5175 10.1427 9.9184
80 10 10.5701 9.4195 9.9970
25 50 161.7820 63.3137 52.8626
50 50 88.0117 56.6543 51.3475

50 100 50 66.5306 54.1983 52.2865
200 50 59.6492 50.2373 51.7769
400 50 52.7332 52.1293 50.8571
50 100 334.7113 137.3253 109.6963
100 100 182.7144 115.3155 108.0594

100 200 100 143.9651 118.6892 100.2126
400 100 112.5784 104.5773 106.1109
800 100 116.2514 110.4582 105.9616
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Fig. 2.2. The network topology used for simulation
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terminate at the rightmost nodes, and all the sources randomly initiate packet transmis-

sion between 0 to 1s. Each intermediate node has a buffer size of 600 packets, while the

packet size is fixed at 1 K bytes. SRED is deployed at R6 to estimate the number of

active flows with a cache size of 1000 lines, replacement probability (r) = 0.25, and α =

0.001, as used in [48].

We investigated three important factors that mostly affect the estimation per-

formance of SRED: stability of the estimation, impact of burst traffic, and impact of

misbehaving flows.

Stability : Figure 2.3 shows the estimated number of active flows with SRED

when 20, 100, 1000, and 4000 flows are used. The estimation capability of SRED is quite

accurate with a small number of flows, but it highly fluctuates as the number of flows

increases. The fluctuation results from the low hit probability when a large number of

flows is used.

Impact of burst traffic : Figures 2.4 (a) and (b) show the estimated number

of flows for 500 TCP and 500 UDP connections, respectively. The estimation behavior

of SRED was not the same for the two types of traffic. Successive arrival of the burst

traffic sources (TCP connections) caused more hits within a short period of time, and

this resulted in more stable but lower estimation in Figure 2.4 (a) compared to that in

Figure 2.4 (b). Unlike the argument in SRED, SRED works properly only under proper

configurations. The replacement probability (r) implies not only the lifetime of the cache

line, but also the sampling frequency of the caching mechanism in that the cache line is

updated (sampled) roughly for every M
r packets. By lowering the sampling frequency,

the number of packets sampled from the burst flows was reduced.
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(b) 100 TCP sources
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(c) 1000 TCP sources
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Fig. 2.3. Estimated number of flows with SRED
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(a) 500 TCP sources with r = 0.25
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(b) 500 UDP sources with r = 0.25
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(c) 500 TCP sources with r = 0.01
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(d) 500 UDP sources with r = 0.01

Fig. 2.4. Impact of burst traffic in estimating the number of flows
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Now, we changed the replacement probability to 0.01. Figures 2.4 (c) and (d)

show that the effect of the burst flows was significantly reduced without degrading the

response time, but the fluctuation still remained as a problem. Note from Figures 2.4

(c) and (d) that both the TCP and UDP flows exhibit similar performance unlike in

Figures 2.4 (a) and (b).

Impact of misbehaving flows : The effect of misbehaving flows (generally

UDP), when mixed with TCP flows has been extensively studied in the context of AQM

schemes [38] [40]. These studies tried to detect the misbehaving flows with a mini-

mum amount of per flow information. Another approach, called SFB [19], controls the

misbehaving flows without using the per flow information via a group of hash tables.

A problem of both SFB and SRED is that when a large number of misbehaving

flows is present in a network, the hash table (or zombie list) is contaminated by these

flows, and the performance of these schemes is significantly degraded. We demonstrate

the impact of misbehaving flows using the SRED mathematical model in Table 2.2 and

through a simulation study in Section 2.5.

We again used a cache size of 10 lines, with 10 flows, and set the arrival rate of

misbehaving flows (λm) as 2 and 3 times that of the conforming flows (λc) to mimic

the behavior of misbehaving flows in the mathematical model (equation (2.9)). The

small memory size and number of flows are not enough to capture the exact effect of

misbehaving flows, but it helps us to predict the tendency when a large number of flows

is used. Table 2.2 shows that as the fraction of misbehaving flows increases, the number

of active flows is underestimated. When misbehaving flows become a dominant part of

the traffic, the estimated number starts to recover from underestimation. These results
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have a similar trend as that of the simulation result with a total 500 flows (TCP + UDP)

presented in Section 2.5 (Figure2.9).

Table 2.2. Impact of misbehaving flows in estimating the number of flows

Fraction of Misbehaving Flows Estimated Number of Flows Estimated Number of Flows
in Total Workload (when λm = 2 · λc) (when λm = 3 · λc)

0 % 10 10
10% 9.309 8.001
20% 9.000 7.541
30% 8.897 7.529
40% 8.907 7.712
50% 9.002 8.000

In summary, SRED exhibits unstable estimation with a large number of flows,

different estimation behavior for different traffic characteristics, and underestimation in

the presence of misbehaving flows.

2.4 The Proposed Hash-based Two-level Caching Scheme (HaTCh)

Based on the discussions in the previous section, we propose a new active flow

estimation scheme, called HaTCh (Hash-based Two-level Caching) that can minimize

SRED’s innate problems as discussed in the previous section. The HaTCh scheme con-

sists of two parts. The first part is a hashing scheme to stabilize the estimation, and the
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other is a two-level caching scheme to isolate the misbehaving flows that contaminate

the zombie list and lead to underestimation.

2.4.1 A Hash-Based Estimation

The key idea of the hashing scheme comes from the observation that SRED’s

hit probability is low for large number of flows. This problem can be alleviated by

using a hashing scheme. To implement hashing, the single cache memory (zombie list) is

partitioned into k small chunks, called subcaches. Whenever a packet arrives, the packet

is hashed into a subcache using the source and destination addresses, and a cache line is

randomly selected for comparison from the subcache. Note that a connection is always

hashed to the same subcache with this technique. Each subcache maintains its own hit

frequency and the estimated number of flows, and the estimated number of flows per

subcache is aggregated to find the total number of estimated flows. The performance of

the hash-based estimation may degrade when most active flows are hashed into one or

two subcaches, but this can be alleviated by periodically scattering the hash function as

noted in [42]. When all the flows have the same sending rate and round trip time, the

hit probability of a flow is ( 1
N )2 under SRED, but the hit probability increases to ( k

N )2

when k subcaches are used in HaTCh. This improved hit probability helps in getting an

accurate and stable flow estimation.

2.4.2 A Two-level Caching Scheme

The motivation for a two-level caching comes from the fact that the misbehaving

flows tend to send more packets than the conforming flows, and this increases the hit
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rate. Therefore, developing an efficient scheme to isolate excess packets from the memory

is the key for accurate estimation. We accomplish this through a two-level cache design.

Figure 2.5 shows the basic organization of HaTCh, which combines hashing and

the two-level caching. The structure of the two-level caching proposed here is similar to

that of the general two-level caching scheme. The major differences are that the inclusion

property is not necessarily satisfied in the two-level cache model proposed here, and the

L1 and L2 cache update operations are also different. L1 is a smaller cache compared

to the second level L2 cache, and each of the two caches are divided into k subcaches

(blocks). Note that corresponding to each subcache in L1, there is a subcache in L2.

An arriving packet is hashed into one of the L1 subcaches using the source and

destination addresses. Then a randomly selected cache line from the L1 subcache is

compared with the arriving packet. If there is a L1 cache hit (Case 1 in Figure 2.5),

the hit count of the cache line is increased by 1, but the hit frequency of this subcache

remains the same. Otherwise, the corresponding L2 subcache is selected. Then, a

randomly selected L2 cache line in the corresponding subcache is compared with the

arriving packet. If there is a L2 cache hit (Case 2 in Figure 2.5), the previously selected

L1 cache line is updated with this L2 cache line, and the hit count of L1 cache line is set

to 1, and the L2 cache line is then cleared. If the L2 cache misses (Case 3 in Figure 2.5),

the L2 cache line is replaced with the arriving packet with a probability r. Irrespective

of whether there is a hit or miss in the L2 cache, the hit frequency and the number of

estimated flows for the subcache are recalculated, and also the total number of flows.

The sequence of operations for the three cases is shown by the solid, dotted and dashed

lines in Figure 2.5.
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The key features of HaTCh are following: First, HaTCh takes advantage of the

improved hit probability though hashing in both L1 and L2 caches. This stabilizes the

estimation process of HaTCh. Second, the hit frequency is recalculated only when there

is a L1 cache miss. The L1 cache is updated only when a flow hits the L2 cache and

thus, the L1 cache is generally shared by the flows that hit the L2 cache. Filtering

these flows to the L1 cache provides a fair chance for all the flows to update the hit

frequency. Third, on an L2 cache hit, the selected cache line is cleared to yield room

for the following conforming flows; a mechanism called L2 cache cleaning. Ideally, the

L2 cache (zombie list) should be shared uniformly among all competing flows to yield

an accurate flow estimation. Although the misbehaving flows are filtered in the L1

cache, the flows that missed the L1 cache will fill the L2 cache more aggressively than

conforming flows. Therefore, the cleaning mechanism in the L2 cache also contributes

to fair sharing of the L2 cache.

2.4.3 A Preliminary Model of the HaTCh Scheme

In this section, we present a mathematical model for the proposed HaTCh scheme

to demonstrate its effectiveness in isolating the misbehaving flows. Unlike the SRED

model presented earlier, where we were able to compute the hit frequency from the

steady-state distribution of the cache lines occupied by each flow, here we simply show

how the proposed scheme controls the misbehaving flows. As we will see, the model

for the HaTCh is extremely complex, and thus, the state space enumeration and com-

putation is expensive. Thus, in stead of focusing on the solution of the steady-state



30

probabilities, here we show through a Markov model why the two level caching is better

than SRED.

The model extends the single cache design to capture the two-level cache memory

with M1 lines for the L1 cache and M2 lines for the L2 cache (M1 ≪ M2), and N

independent flows. If we assume that (Xi, Yi) be the number of cache lines with the flow

ID i in the L1 and L2 caches respectively, and (X̄ , Ȳ ) be a pair of vectors representing

the number of cache lines in L1 and L2 occupied by each flow, then (X̄ , Ȳ ) represents

the discrete state model of the system. Now the state space for X̄, Ȳ can be defined as:

X̄ ∈ {c̄ =
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Ȳ ∈ {m̄ =
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| 0 ≤ mi ≤M2,
N
∑

i=1

mi ≤M2} ≡ SY ,

and SM1,M2,N ≡ SX × SY .

Let us assume an arriving packet has a flow ID i, a randomly selected cache line

from the L1 cache has a flow ID j, and a randomly selected cache line from the L2 cache
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has a flow ID k. For a given cache state (c̄, m̄), if there is a L1 cache hit or a miss in

both the caches and the cache line is not replaced in the L2 cache, the number of cache

lines for each flow in both caches remains the same, (c̄, m̄). On the other hand, if there

is an L1 cache miss and an L2 cache hit, the state changes to a next state γij(c̄, m̄),

where ci = ci + 1, cj = cj − 1, and mi = mi − 1. If both L1 and L2 caches incur miss

and the L2 cache is replaced with the replacement probability of r, the state changes to

another state ηij(c̄, m̄), where mi = mi + 1, and mk = mk − 1.

For a given state (c̄, m̄), the probability of an L1 cache hit is the product of the

probability that an arriving packet has the flow ID i and the probability that a randomly

selected L1 cache line has the same flow ID. Accordingly, the probability of an L1 cache

miss and L2 cache hit is the product of the probability that an arriving packet has the

flow ID i and the probability that a randomly selected L1 cache line has a flow ID other

than i, and the probability that a randomly selected L2 cache line has the flow ID i.

Similarly, the probability of the L1 and L2 cache miss is computed by considering the

probabilities that both the L1 and L2 cache lines have different flow IDs other than i.

Now, the transition probability of the two-level cache model can be written for

an L1 cache hit or for miss in the both caches and without replacement in the L2 cache

as:

P ((X̄, Ȳ )(t + 1) = (c̄, m̄) | (X̄, Ȳ )(t) = (c̄, m̄))

≡ Phit((c̄, m̄), (c̄, m̄)) + Pmiss((c̄, m̄), (c̄, m̄)) (1− r)

=
N
∑

i=1

ci
M1
·

λi
∑N

z=1
λz

+
N
∑

i,j,k=1
i6=j,i6=k

cj
M1
·

mk
∑N

z=1
mz
·

λi
∑N

z=1
λz

(1− r). (2.11)
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For an L1 miss and L2 hit, the state transition probability becomes,

P ((X̄, Ȳ )(t + 1) = γi,j(c̄, m̄) | (X̄, Ȳ )(t) = (c̄, m̄)) ≡ P ((c̄, m̄), γij(c̄, m̄))

=
N
∑

i,j=1
i6=j

cj
M1
·

mi
∑N

z=1
mz
·

λi
∑N

z=1
λz

=
N
∑

i=1

(1−
ci

M1
)

mi
∑N

z=1
mz
·

λi
∑N

z=1
λz

. (2.12)

For the miss in the both caches and the L2 cache line being replaced with probability r,

the equation becomes,

P ((X̄, Ȳ )(t + 1) = ηi,j(c̄, m̄) | (X̄, Ȳ )(t) = (c̄, m̄)) ≡ P ((c̄, m̄), ηij(c̄, m̄)) r

=
N
∑

i,j,k=1
i6=j,i6=k

cj
M1
·

mk
∑N

z=1
mz
·

λi
∑N

z=1
λz

r. (2.13)

Note that these equations are derived using the same context that we used for SRED

model. Therefore, for the two-level cache under HaTCh, we can prove the following

theorem following the idea of (2.8).

Theorem 2. Under the assumption of independent packet flow identifiers, the hit fre-

quency calculated by a first order autoregressive process for the two-level caching system

(HaTCh) converges to

H =
∑

(c̄,m̄)∈
SM1,M2,N

π(c̄, m̄)P ((c̄, m̄), γij(c̄, m̄))

=
∑

(c̄,m̄)∈
SM1,M2,N

π(c̄, m̄)
N
∑

i=1

(1−
ci

M1
)

mi
∑N

z=1
mz
·

λi
∑N

z=1
λz

(2.14)
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in the steady-state.

In the above equation π(c̄, m̄) represents the steady-state distribution of (X̄, Ȳ ).

Unlike the SRED model, it is difficult to find a closed form expression for π(c̄, m̄). Thus,

instead of computing the state probability distribution, we explain how equation (2.14)

captures the misbehaving flows.

The steady-state hit frequency is determined by the steady-state cache line distri-

bution and the steady-state hit probability as shown in (2.9) and (2.14). In (2.9) for the

SRED model, the effect of the misbehaving flows is magnified by both the arrival rate

of the misbehaving flows, λi, and the number of cache lines occupied by the flows,
mi
M ,

which is proportional to the arrival rate. This leads to the underestimation of SRED

when misbehaving flows are present. In contrast, (2.14) clearly indicates how HaTCh

effectively isolates the misbehaving flows and yields more accurate estimation. First,

HaTCh clears the selected L2 cache line on an L2 cache hit (L2 cache cleaning mecha-

nism) to create more room for the following conforming flows, and this contributes to a

fair distribution of the L2 cache lines for all active flows. The term
mi

∑N
z=1

mz

in (2.14)

captures this because it represents the probability that the flow ID in the L2 cache is

i. Second, the distribution of the L1 cache lines, which is occupied by other flows, the

(1 −
ci

M1
) term in (2.14) mitigates the effect of arrival rate of the misbehaving flows,

λi. As a result, HaTCh yields more accurate and stable estimation even in the presence

of misbehaving flows. We validate our claim about the effectiveness of HaTCh through

simulation results in the next section.
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2.4.4 Limitations of HaTCh

Although the HaTCh scheme stabilizes the estimation and isolates the misbe-

having flows, understanding the limitations of HaTCh is important to avoid possible

performance penalty. For example, if all the N active flows are hashed into the first half

of the subcaches, the estimated number of flows becomes N . Later, these flows could

terminate and N new flows could be hashed into the other half of the subcache. Al-

though the actual number of flows is N , the estimation becomes 2N . Another problem

comes from the two-level caching. Assume that N flows are initiated and hashed into all

different subcaches, and the L1 cache and the L2 cache are filled. Once the L1 cache is

completely filled, each of the 10 flows will keep on hitting at the L1 cache before the hit

frequency reaches the steady-state. The estimation thus becomes much larger than the

actual number of flows.

We propose two simple solutions for these problems: Periodic reset and Expo-

nential back off of the hit frequency per subcache. For example, each subcache can

keep track of the last time when the hit frequency was updated, and it is periodically

compared with the current time. The number of estimated flows per subcache is then

reset to 1 (if there is an L1 cache hit in the period, otherwise reset to 0) or is backed

off to half when there is no update during the period. However, we did not perform

further investigation of this problem since these cases are very rare in practice, and are

not relevant to our investigation of the estimation performance.
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2.5 Performance Evaluation

The proposed HaTCh scheme was simulated to analyze estimation stability, im-

pact of burst flows, and impact of misbehaving flows, as has been done in Section 2.3.

In our simulation, we configured HaTCh with a hash size (k) of 10, and L1 and L2 cache

sizes as 100 and 1000 lines, respectively. The L1 cache size is fixed at 10% of the L2

cache size, which in turn is kept closer to the number of flows (N). The results are

summarized below.

Stability : Figure 2.6 shows the estimated number of active flows with HaTCh

for two different replacement probabilities (r = 0.25 and 0.01) when 20, 100, 1000,

and 4000 TCP flows are used. The estimated number of flows is remarkably stabilized

compare to Figure 2.3 at the cost of a little bit of more delay. However, HaTCh also

showed a tendency to underestimate the number of flows for a replacement probability of

0.25 as the workloads increased. The accuracy of the estimation is significantly improved

with a replacement probability of 0.01 as was shown in the previous section. Up to 1000

flows, the estimated number of flows oscillated within 20% range with HaTCh. As the

number of flows increased, the fluctuation was more and also the number of flows was

underestimated due to the traffic burst and insufficient cache size.

Theoretically, SRED like mechanisms (including HaTCh) can keep track of N
r

flows as discussed in [48]. We observed that if the number of active flows (N) is greater

than the number of L2 cache lines (M2), the HaTCh performance starts to degrade (oscil-

lation exceeds 20% ranges). However, unlike SRED, HaTCh showed smooth (damped)
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(b) 100 TCP sources
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(c) 1000 TCP sources
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(d) 4000 TCP sources

Fig. 2.6. Estimated number of flows with HaTCh
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oscillation even for 8000 TCP flows, but the oscillation gradually increased as we in-

creased the number of flows from 1000 to 8000. Since the memory requirement for each

cache line is very marginal (about 16 bytes), we believe that the L2 cache can accom-

modate a large number of flows (16M bytes L2 cache can support 1 million flows with

about 20% error bound).

Assuming a perfect hash function, the optimal hash size could be the same as

the L2 cache size, since all the flows could be hashed into exactly one cache line. In the

following simulation, we examined the impact of hash size (k) in the estimation behavior

of HaTCh with 2000 TCP flows, while the total memory requirement remains the same

(1000 cache lines). Figure 2.7 depicts the estimation results of HaTCh with different

hash sizes. As noted in the comparison between SRED and HaTCh, hashing with L2

cache cleaning mechanism generally degrades the response time especially when a small

number of flows is used. The delay is due to the time required to fill the L2 cache lines.

Although the hash size of 40 outperformed all other cases in terms of accuracy, it also has

the longest response time. We leave this as a design study that optimizes the accuracy

and response time of the system.

Impact of burst traffic : As discussed in Section 2.3, burst nature of TCP

traffic affects the estimation accuracy of SRED. The impact of burst traffic is significantly

reduced by configuring SRED with appropriate parameters. Therefore, we evaluated the

performance of the two-level caching in the presence of burst traffic in this section. To

investigate the impact of more realistic and burst traffic in the estimation, we used 500

Pareto On/Off sources with a shape parameter s = 1.2 (corresponding to the Hurst

parameter of 0.9), which represents long-range dependency [47] [71]. Here, we defined a
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(b) Hash size = 5
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(c) Hash size = 10

0 20 40 60 80 100
0

500

1000

1500

2000

2500

3000

3500

4000

Time (s)

Es
tim

at
ed

 N
um

be
r o

f F
lo

ws

(d) Hash size = 20
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Fig. 2.7. Impact of hash size in the estimated number of flows (r = 0.01)
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(b) β = 0.857 with HaTCh

0 20 40 60 80 100
350

400

450

500

550

600

Time (s)

Es
tim

at
ed

 N
um

be
r o

f F
low

s

Estimation
Actual Number

(c) β = 0.5 with hashed SRED
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(d) β = 0.5 with HaTCh
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(e) β = 0.167 with hashed SRED
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(f) β = 0.167 with HaTCh

Fig. 2.8. Estimated number of flows when 500 Pareto On/Off sources are used.
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parameter that affects the burst size as:

β =
ǭ

ǭ + ω̄

where, ǭ and ω̄ are the average On and Off periods. We varied β from 0.167, which

represents the maximum burst case to 0.857 (the minimum burst), and compared the

performance of hashed SRED (by implementing hashing scheme in the zombie list of

SRED) and HaTCh. Figure 2.8 shows the simulation results with r = 0.01. In both

cases, the gap between the peak and nadir increases as the burst size increases. However,

hashed SRED still slightly underestimated the number of flows, whereas HaTCh showed

more accurate and stable estimation.

Impact of misbehaving flows : To demonstrate the effect of misbehaving

flows on HaTCh performance, we performed simulations with different sending rates of

misbehaving UDP flows. We also varied the UDP traffic workload from 0 to 50% of the

total workload. Figure 2.9 shows the results of SRED estimation with 500 total flows. In

Figure 2.9 (a), we set the sending rate of the misbehaving UDP flows (λUDP ) as 2 times

of the fair share of the link bandwidth (λfair). Although the estimated number of flows

went down slightly, the fluctuation was not alleviated. The impact of misbehaving flows

was more pronounced when we increased the UDP sending rate to 3 times of the fair

share of the link bandwidth in Figure 2.9 (b). Here, SRED began to underestimate the

number of flows as the UDP workload increased up to 30%, and the estimation recovered

after the UDP flows became a dominant part of the traffic (40 and 50%).



41

0
10

20
30

40
50

0

20

40

60

80

100
0

1000

2000

3000

UDP/Total Workload (%)
Time (s)

E
s
ti
m

a
te

d
 n

u
m

b
e

r 
o

f 
fl
o

w
s

(a) λUDP = 2 · λfair

0
10

20
30

40
50

0

20

40

60

80

100
0

1000

2000

3000

UDP/Total Workload (%)
Time (s)

E
s
ti
m

a
te

d
 n

u
m

b
e

r 
o

f 
fl
o

w
s

(b) λUDP = 3 · λfair

Fig. 2.9. Impact of misbehaving flows in estimating the number of active flows with
SRED
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Fig. 2.10. Impact of misbehaving flows in the estimating the number of active flows
with HaTCh
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We repeated the same experiments using HaTCh. Note that we used different

scaling factors in the graphs to show the results. Clearly in Figure 2.10 (a), HaTCh’s

estimation is remarkably stable, and the misbehaving flows were successfully isolated as

expected. HaTCh showed the same performance up to 20% UDP workload in Figure 2.10

(b) as well. As the UDP workload increased, HaTCh also showed graceful performance

degradation since a large number of excess packets from misbehaving flows could not be

captured in the L1 cache. However, the estimation error was significantly reduced with

HaTCh compared to SRED.

We also found that the performance of HaTCh was not affected significantly by

the size of L1 cache as long as the number of L1 cache lines is greater than the number

of misbehaving flows. The size of L1 and L2 cache lines can be determined based on

the target number of misbehaving flows and the target number of active flows. In our

experiments, we set the L1 cache size to 100 lines to control up to 100 misbehaving flows.

This configuration provided the best performance for our simulation environment, where

HaTCh effectively isolated up to 100 UDP flows (20% of total workload) in Figure 2.10

(b).

The impact of TCP sources with heterogeneous round trip times (RTTs) is an

important factor that affects the performance of AQM schemes. TCP flows with short

RTTs not only slow down the transmission rates quickly after a congestion notification

(packet drop) of an AQM scheme, but also recover quickly compared to those with long

RTTs. Therefore, an AQM scheme has to react differently for TCP sources with different

RTTs to achieve fair share of bandwidth. However, flow estimators such as HaTCh have

no control on transmission rates of traffic sources. Therefore, HaTCh performance on
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TCP sources with heterogeneous RTTs can be predicted by investigating the impact of

misbehaving flows. The simulation results with TCP sources that experience different

RTTs (varied between 60ms to 540ms) exhibited the same trend as shown in Figure 2.9

and Figure 2.10.

Table 2.3. Impact of L2 Cache Size and Hash Size

L2 Cache Hash Number of Flows per Ratio of L2 Cache Size to Number of Flows
Size (M2) Size (k) Subcache when M2 = N 1:1 1:2 1:4

2 100 0.116178 0.200499 0.295529
200 4 50 0.084269 0.138910 0.268778

8 25 0.061544 0.071426 0.256025
5 100 0.119863 0.189939 0.258613

500 10 50 0.053280 0.102669 0.258538
20 25 0.016502 0.087497 0.200555
10 100 0.081638 0.124901 0.240245

1000 20 50 0.072930 0.093449 0.229931
40 25 0.020743 0.077896 0.243097
20 100 0.058761 0.106871 0.259732

2000 40 50 0.024954 0.090319 0.267330
80 25 0.016792 0.083062 0.281995

Impact of HaTCh configuration parameters : Finally, we examine the

impact of two major configuration parameters (the second level cache size M2 and the

hash size k) on the performance of HaTCh. Initially, we set the L2 cache size (M2) to

200 lines, and increased it up to 2000 lines. We adjusted the the hash size (k) to make

the number of active flows per subcache constant (100, 50, and 25 flows) for each L2

cache size when the L2 cache size is equal to the number of active flows N. Then we



44

increased N twice and four times that of M2. In all these experiments the L1 cache size

was set at 10% of the L2 cache size since that provided the optimal configuration.

Here, we summarize the performance of HaTCh by presenting the relative error of

the estimated number of flows, defined as the ratio of the standard deviation (σ) to the

mean (µ) of the estimated number of flows. In Table 2.3, the relative error was bounded

within 11% regardless of the hash size when the L2 cache size and the number of flows

were the same. Notably, HaTCh performs better as the number of flows (accordingly

the L2 cache size is larger) increases, because a large number of flows multiplexed at the

router reduces the impact of burst traffic. A large hash size (k) helped in the accurate

estimation of N at the cost of little additional delay. As the numbers indicate, the relative

error was about 6% when the the hash size k was 20, and was reduced to less than 2%

for k = 80 when N = 2000. The trend also indicates that HaTCh can provide more

accurate estimate of N if the number of flows is higher than 2000, which is likely to be

true in many practical cases.

As the number of flows (N) became two to four times M2, the accuracy of estima-

tion suffered although the overall trend in the impact of N and k remained valid. For the

1:2 ratio, the error was limited to 8% when N = 2000 and k = 80. However, the relative

error was high for the 1:4 ratio suggesting that number of flows should not exceed twice

the size of the L2 cache to limit the flow estimation error to 10%. Moreover, the impact

of the hash size on the estimation accuracy was reduced because of more contending

flows for the cache lines.
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2.6 A HaTCh-based AQM Scheme (HRED)

This section presents a new AQM scheme, called HaTCh-based RED (HRED),

which uses the HaTCh scheme to estimate the level of congestion, i.e, the number of

active flows (N). HRED then deploy a random drop mechanism (at the enqueue point

of packet memory) using N and the instantaneous queue length to regulate the packet

injection rate.

2.6.1 Previous Work

We briefly reviews currently proposed Active Queue Management (AQM) schemes

before describing the proposed scheme.

RED: The basic idea of RED [22] is to detect the incipient stage of a congestion,
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Fig. 2.11. The drop function of RED
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and notify the sources to reduce the packet injection rate by deploying a random drop

mechanism. RED calculates the Exponentially Weighted Moving Average (EWMA) on

each packet arrival, and uses this number to find the drop rate. Figure 2.11 shows the

drop function of RED. To find the drop probability, RED maintains parameters such as

minth, maxth, and maxp. When the average queue length is less than or equal to minth,

no packets are dropped, whereas all the packets are dropped when the average queue

length exceeds maxth. Otherwise, the drop probability is determined by maxp, which

is statically configured and is a linear function of the average queue length. Although

RED queue outperforms the traditional drop-tail queue in terms of packet loss rate and

preserving the burst flows, the performance of RED can easily degrade to that of the

drop-tail queue due to the statically configured parameters. To address this problem,

adaptive versions of RED (ARED) have been proposed [18] [21]. The main idea of the

adaptive REDs is to adjust maxp dynamically based on the level of congestion (the

average queue length). ARED increases maxp when the average queue length exceeds

the maxth, and decreases it when the average queue length goes below the minth.

Although the ARED scheme eliminates many problems of RED, it has the follow-

ing two problems. First, ARED still relies on the average queue length to indicate the

level of congestion. As noted in [19], the average queue length gives very little informa-

tion about the level of congestion at a persistent queue. Second, the drop probability is

decoupled from the current capacity of the target queue (instant queue length).

BLUE: W. Feng et al. [19] proposed a scheme, called Blue, to overcome the

shortcomings of RED. The main idea of Blue is that it uses the packet loss rate and the

link utilization to indicate the level of congestion rather than the average queue length.
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With the Blue scheme, the target queue is monitored during short periods of time, and

the packet drop rate is adjusted either at queue overflow or when a link is idle. Although

Blue showed better performance especially in terms of packet loss rate compared to RED,

it still suffers from severe queue oscillation with a small queue size, since it waits for the

under or over utilization of the queue to adjust the drop rate.

SRED: Stabilized RED (SRED) [48] proposed by T. Ott et al. uses the number

of active flows as an indication of the level of congestion. Under SRED, a rough range

of the packet drop (or marking) probabilities, Psred, is initially calculated based on the

instantaneous queue length (q) (see Figure 2.12). If the queue length is greater than

or equal to 1/3 of the queue capacity B, Psred is set to Pmax. Else, if the queue

length is less than 1/6 of the queue capacity, then Psred is set to Pmax/4. Otherwise,

Psred is set to zero. The actual packet drop probability, Pzap, is then calculated as

Pzap = Psred × min (1, 1/(Nmax × f(t))2), where 1/f(t) is the estimated number of

active flows using the packet memory at time t. The above expression implies that if

the estimated number of flows 1/f(t) is greater than Nmax, then the drop probability

is only determined by the instantaneous queue length. Otherwise, the drop probability

is set to Psred × (N/Nmax)2. In [48], Pmax was set to 0.15 and Nmax was 256.

Although SRED generally shows fine control on the queue occupancy for a certain

range of congestion, we observed several shortcomings in the SRED drop mechanism

through extensive simulation. First, the buffer utilization is very low since the queue

length converges to B/6. Second, finding optimal configuration parameters such as Pmax

and Nmax for different workloads and network environments are very difficult. Third,
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SRED degrades to Tail-Drop when the severity of congestion exceeds the level that can

be controlled by the maximum drop probability (Pmax).
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Fig. 2.12. The drop functions of the SRED and the HRED schemes

2.6.2 The Proposed HaTCh-based RED (HRED) Scheme

In this section, we propose a new AQM scheme based on the HaTCh concept.

First, we examine the impact of a drop function on the packet loss rate before proposing

the new AQM scheme.

2.6.2.1 Impact of a Packet Drop/Marking Function

The role of the “drop function” in an AQM schemes is to find the drop probability

based on the estimated level of congestion. Drop functions of AQM schemes can be
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classified into two categories. One is a flat or step type functions used in SRED and

BLUE, and the other is a linear type function used in RED. In order to examine the

impact of the drop functions on the performance of an AQM scheme, we performed

the following simulation using the similar environment described in the previous section.

Figure 2.13 shows the loss rate with a drop-tail queue, and queues with step type and liner

type drop functions for different values of maximum drop probabilities. The experiments

are conducted with 100 and 500 TCP connections. The simulation results show that the

random drop mechanism outperformed the drop-tail queue only in a small range of

maximum drop probabilities. However, the loss rate of the queue with a linear drop

function is less than that of the queue with step type function, and the range of the

maximum drop probability that leads to performance gain is wider. Moreover, the

packet loss rate of the step type function seriously increases when the maximum drop

probability is aggressively configured whereas the linear drop function shows graceful

degradation.

2.6.2.2 HRED Drop Mechanism

Based on the discussion in the previous subsection, we present a new drop mech-

anism. The overall structure of the proposed drop mechanism is similar to that of RED.

The main differences are that i) the proposed scheme uses the number of active flows to

indicate the severity of congestion, whereas RED uses the average queue length2, and

2An averaging of the queue length is conducted using a typical first-order autoregressive
mechanism. Averaging reduces the false-positive congestion-detection probability at the expense
of a higher missed-detection probability.
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ii) the proposed drop mechanism also considers the instantaneous queue length to sta-

bilize queue occupancy as well as minimize the packet loss rate. (Note that SRED also

used an estimated number of active flows and the instantaneous queue length in finding

the drop probability. However, SRED’s performance showed severe dependency on the

configuration parameters due to the inefficiency of the drop function.)

To overcome the shortcomings of SRED, we propose a new packet drop mech-

anism, which uses a piece-wise linear function of the instantaneous queue length, q as

depicted in Figure 2.12. This design of the drop function helps in steering the instan-

taneous queue length to the target range and in improving the buffer utilization. In

particular, if the buffer is empty or almost empty (q < B/5), no packet is dropped. If

the buffer is underutilized (B/5 ≤ q < 2B/5), HRED reduces the maximum drop proba-

bility to half of its original value, i.e., Pmax → Pmax/2. If q begins to exceed the target

range (4B/5 ≤ q), which is assumed to imply imminent buffer overflow, HRED doubles

the drop probability (Pmax → 2Pmax).

2.6.2.3 Finding the severity of congestion (maxp)

Here, we complete the HRED design by showing how the estimated number of

active flows is used to determine Pmax. Assuming that all the flows are TCP based,

several AQM schemes [48] [28] relate the number of active flows in finding the maximum

drop probability. These techniques merely relied on a simple relationship, called the

square-root law, more precisely BW = 1
RTT

√

3
2p [49]. Here, BW is the throughput

of a single TCP flow, RTT is the round-trip time, and p is the packet loss rate of the

flow. However, the above equation only incorporats the packet loss rate from triple
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duplicate ACKs without considering the TCP retransmission timeouts. This is a simpler

solution, but can result in over-estimation of throughput at a severely congested router.

Therefore, we use the throughput equation with retransmission timeout [49], given by

BW = 1

RTT
√

2p
3 +RTO min (1,3

√

3p
8 )p(1+32p2)

, to find the maximum drop probability as

follows.

C =
N

RTT
√

2p
3 + RTO min (1, 3

√

3p
8 )p(1 + 32p2)

, (2.15)

where C is the link bandwidth, RTO is the retransmission timeout. Given C and N , we

use Newton’s method to find the loss rate p and, in turn, use this quantity to indicate the

maximum drop probability Pmax. Clearly, we assume that good estimates of average

RTT and RTO are available at a router for this computation. We believe that the

complexity and the overhead of the computation may not be a serious concern since it

is not computed per-packet.

Finally, the HRED scheme is summarized as follows:

• Upon each packet arrival, the HaTCh scheme estimates the number of active flows,

N .

• The maximum drop probability (Pmax) is periodically calculated based on N using

equation (2.15), which needs the number of active flows (N).

• An arriving packet is dropped with a probability calculated from the maximum

drop probability, Pmax, and the instantaneous queue length according to the pro-

posed drop mechanism given in Figure 2.12.

The next subsection presents performance analysis of the proposed HRED scheme.
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2.6.3 Performance Evaluation

We performed a variety of simulations by varying the number of connections (from

20 to 2000), buffer size (400, 600, or 1000 packets), and link capacity (5Mbs or 45Mbs).

We monitored the instantaneous queue length and the packet loss rate, which are the

most commonly used metrics in evaluating the performance of AQM schemes. We first

analyzed the simulation results of SRED and ARED, and then compared them with the

proposed scheme, HRED.

Although the drop probability of SRED is adaptively determined according to the

level of congestion (the number of active flows), its performance heavily relies on its two

configuration parameters, Pmax and Nmax. In Figures 2.14(a) and (b), for a 45Mbs link

and Pmax = 0.15, SRED degraded to a Tail-Drop mechanism when there are a large

number of flows. For a large number of flows, SRED showed better control on the queue

occupancy with a larger Pmax (= 0.25) as in Figure 2.14(c). However, this configuration

resulted in poor buffer utilization for the samll number of flows (100 to 200). For a

small number of flows (100 to 200), the SRED queue suffered from oscillation when the

buffer size was also small (400 packets) as shown in Figure 2.14 (a). Furthermore, SRED

exhibited poor buffer utilization in most of the experiments.

Next, we changed the capacity of the bottleneck link to 5Mbs; Figure 2.15(a)

depicts how SRED attempts to keep the buffer full, a behavior noted in [25]. Assuming

that the maximum number of flows is limited to 256 (Nmax = 256) for a 45Mbs link,

the average throughput that each flow can get is 175.8Kbs, but this number decreases to

19.5Kbs for a 5Mbs link when the same maximum number of flows is used. Therefore,
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Fig. 2.15. Impact of Nmax with SRED

the drop probability, used in SRED based on Nmax = 256, is too conservative. As a

result, the SRED queue again suffered severe oscillation. With a smaller value of Nmax

(=25) (targeting approximately 175.8kbs of average throughput), SRED showed better

performance in Figure 2.15(b), but the queue occupancy behavior with high workloads

remained similar to that of the same queue under a Tail-Drop mechanism.

In summary, SRED used an unambiguous indicator (N) for the severity of con-

gestion, and showed some level of adaptability in reacting to congestion. Nevertheless,

its performance degraded due to the inaccuracy in estimating N and inefficient design

of the packet dropping function.

The key idea of ARED is to adaptively change the maximum drop probability

according to the target average queue length. However, finding an optimal value of the

maximum drop probability is difficult in ARED. In Figure 2.16(a) and (b), the ARED

queue suffered from severe oscillation and degraded to a Tail-Drop queue as the number
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Fig. 2.16. Instantaneous Queue Length under ARED
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of flows increased. As with the original RED mechanism, ARED also performed better

with a large buffer size as shown in Figure 2.16(c), but the queue occupancy again became

unstable as the workload increased. On the other hand, HRED showed fine control of

the queue occupancy regardless of the change in workloads, link speed, and buffer size

as depicted in Figure 2.17.

In Figure 2.18, the packet loss rates are plotted for different buffer sizes (400

and 1000 packets) under three AQM schemes (ARED, SRED and HRED). Most of the

simulation results demonstrated that HRED outperforms the other two AQM schemes

regardless of the buffer size. Note that the packet loss rate of ARED is smaller than that

of HRED for the 1000 flows case in Figure 2.18(a). In this case, severe oscillation of the

ARED queue (Figure 2.16(a)) resulted in poor link utilization with a lower packet loss

rate. Although it is believed that the performance of ARED can improve with a large

buffer size, the proposed HRED scheme outperformed the other two schemes in terms

of packet loss rate and queue occupancy behavior even with a large buffer as shown in

Figure 2.18(b).

2.7 Concluding Remarks

Design of AQM schemes has been an active area of research in the Internet com-

munity to minimize network congestion, and thus, improve performance. However, the

complexity of the Internet traffic dynamics has eluded researchers in finding an efficient

solution. Recently, SRED [48] was proposed to provide better congestion control by

using the number of active flows as an indicator of congestion. It was shown through
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a simulation study that an accurate estimation of the number of active flows is a very

useful indication of the level of congestion.

In this chapter, we have presented a mathematical framework for analyzing the

estimation behavior of SRED. The model showed that the steady-state hit frequency

of the SRED cache model can be used to estimate the number of active flows. The

model is accurate enough to capture the effect of misbehaving flows in the estimation.

In order to alleviate the drawbacks of SRED, we have proposed a modified SRED, called

HaTCh, that uses hashing and a two-level caching mechanism. A preliminary model of

the proposed scheme was presented to demonstrate its effectiveness. Also, we conducted

extensive simulation for an in-depth performance analysis of both the schemes. It was

observed that the proposed HaTCh scheme improves not only the estimation accuracy

and stability compared to SRED, but also improves the robustness of the estimation by

effectively isolating the misbehaving flows to avoid cache contamination.

The HaTCh scheme is practically viable since the two caches can be implemented

using standard hardware. A standard configuration of HaTCh could be the following:

(i) L2 cache size = the target number of flows supported by the link (N); (ii) L1 cache

size = 10% of L2 cache size or the target number of misbehaving flows; (iii) Replacement

probability (r) = 0.01, and (iv) Keep the hash size k as large as possible based on the

implementation complexity.

We, then, extended HaTCh into a complete AQM scheme, called HaTCh-based

RED (HRED), which uses the number of active flows (N) to indicate the level of conges-

tion. HRED effectively minimizes the dependency of configuration parameters through
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a new dropping mechanism. As a result, HRED can provide a much stable queue occu-

pancy and low loss rate compared to SRED and ARED.

Our future work involves in-depth performance study or HRED with more realistic

workloads. Also, the model needs fine-tuning to include other system/design parameters.
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Chapter 3

Controlling Unresponsive Flows

3.1 Introduction

Proliferation of unresponsive flows is becoming a major concern for providing at

least a satisfactory level of service to millions of users who rely on the Internet for their

daily business. Recent traffic analysis conducted by CAIDA (Cooperative Association

for Internet Data Analysis) shows that unresponsive flows contribute to as high as 70-

80% of the overall Internet traffic, although the byte volume is limited to about 20% [2].

Most of these unresponsive flows are UDP applications, which unlike their TCP counter

parts, do not respond to network congestion. Thus, UDP flows can effectively shut out

the responsive TCP flows by occupying almost the entire bandwidth and can ultimately

lead to congestion collapse [32].

Although the end-to-end TCP congestion control mechanism [57] and an Active

Queue Management (AQM) scheme (such as RED, SRED, and AVQ [22][48][36]) can help

in preventing global synchronization and minimizing packet loss, the effectiveness of these

schemes still heavily relies on the voluntary use of the congestion control mechanism by

the end-users. Since UDP flows naturally do not respond to the network status, TCP

congestion control is quite vulnerable in their presence.

Recently, several studies have analyzed the impact of unresponsive UDP flows

on network performance [41][30][23], and argued the need for a router mechanism that
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detects and penalizes them. In practice, network processors on the ingress line cards of

Internet routers can easily discriminate between TCP and UDP packets without causing

extra packet processing overhead. Furthermore, separate queues could be allocated for

TCP data packets and TCP control packets. Thus, UDP flows can be effectively isolated

from the TCP flows in packet memory by diverting them to a small dedicated queue as

discussed in [12]. This technique provides a partial remedy for the bandwidth starvation

of TCP flows, and also can reduce the delay of real-time traffic over UDP.

However, there is another class of misbehaving flows, called unresponsive TCP

sessions, which can be interpreted as a kind of Denial-of-Service (DoS) attack on “hon-

est” flows that employ the standard TCP congestion control mechanisms. In [58][15], it

is demonstrated that malicious users at the TCP receiver side can exploit the vulnera-

bilities in TCP congestion control to obtain better service or to initiate DoS attack. The

authors proposed a modified congestion control scheme to handle these users within the

TCP framework. On the other hand, such activity at the sender side has more serious

impact on the network security. For example, malicious users can easily compromise

TCP’s communal congestion control mechanism by deactivating the slow-start and re-

transmission timeout (RTO) mechanisms in their TCP/IP stack. Modifying the TCP

source code to deactivate these functionalities, for example, in an open-source Linux

context, is clearly not difficult. In addition, greedy users can launch multiple parallel

TCP sessions to reduce their download time, a technique known as “turbo-TCP”. In

fact, a number of applications such as FlashGet, GolZilla, ReGet and Download Acceler-

ator [39] bypass the TCP congestion control scheme and open multiple connections per
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object [61]. We believe that such activities are likely to spread and will pose a serious

security concern for the Internet.

Relatively little work has been targeted directly at ensuring that TCP flows con-

form to the assumed protocols. Although this problem was understood, the AQM tech-

niques often exacerbated it by allowing a nonconformant TCP session to obtain even

more than its fair share of available resources. Recent research, therefore, has been di-

rected towards game theoretic modeling of end-system flow control [34][35][8][61]. In

this context, a user is typically expected to act in a greed fashion (interpreted as a non-

conformant in an AQM context); the network, in turn, uses a pricing mechanism to

control user behavior. Although it seems promising, the pricing and billing technology

is currently in its infancy in the Internet context.

In this chapter, we propose a scalable policing technique, which is deployable in

network buffers, to detect and control a smaller, but potentially significant, number of

nonconformant TCP flows for ensuring fair bandwidth sharing to conformant TCP ses-

sions. Although the proposed scheme can be used for controlling all types of high band-

width flows, we mainly restrict our discussion to malicious TCP flows here. We propose

a comprehensive solution that involves sampling, detection, and punitive measures for

such flows. The proposed scheme, called HaDQ (HaTCh-based Dynamic Quarantine),

builds upon our proposed HaTCh technique [73], which can provide an accurate and ro-

bust estimation of the number of active flows compared to the single cache-based SRED

mechanism [48]. To estimate the number of active TCP flows through a packet memory

in an Internet router, the HaTCh scheme uses a small L1 cache that primarily captures
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the aggressive flows and a larger L2 cache that monitors the normal flows for estimating

the “hit” frequency and subsequently the number of flows.

Dynamic quarantine requires sampling of the aggressive flows to measure their

arrival rates. Here, we exploit the advantage of using the L1 cache since it isolates

the aggressive flows from the L2 cache. Therefore, any incoming flow that results in a

high hit count in the L1 cache is a possible “attacker” and is quarantined in a separate

small Content Addressable Memory (CAM), called quarantine memory. The quarantined

flows are monitored for a certain duration (monitoring period) to compute the drop

probability for each flow based on the measured arrival rate and the fair share of the

bandwidth provided by HaTCh. All other flows are directed to the L1 cache of the

HaTCh scheme to identify possible attackers. To avoid false positives, a flow is released

from the quarantine memory if its drop probability is less than the drop probability of

the underlying queuing policy. However, the proposed HaDQ scheme is independent of

the underlying queue management scheme since it does not require an AQM scheme for

quarantining and punitive actions. It can work even with a simple Tail-Drop mechanism.

However, since most prior research have used AQM-based approach to handle aggressive

UDP flows, we use a similar technique in this research. In this context, we use HRED,

presented in the previous chapter, as an underlying AQM scheme since it showed better

performance in handling network congestion.

We simulated our proposed scheme along with two prior schemes (CHOKe [50]

and FRED[38]), targeted to handle unresponsive flows, by injecting a certain number of

misbehaving TCP flows, which deactivated their congestion control and retransmission

timeout mechanisms. The simulation results indicate that HaDQ is very effective in
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penalizing the unresponsive flows. In fact, it provided almost equal bandwidth to the

conforming and aggressive TCP flows, while CHOKe and FRED were less effective in

controlling unresponsive sessions. Furthermore, analysis of the proposed scheme as a

function of the monitoring period and the detection threshold indicates that, with a

proper configuration, the false positive probability can be kept very low (less than 0.1%).

We believe that HaDQ is a scalable technique in that per-flow states are only required

for the small number of quarantined flows, which in turn, are minimized by the accurate

HaTCh-based sampling technique.

The rest of this chapter is organized as follows: We demonstrate the impact

of unresponsive TCP flows, and briefly discuss related solutions in Section 3.2. The

proposed dynamic quarantine scheme, HaDQ, is detailed in Section 3.3. In Section 3.4,

simulation results are presented followed by the concluding remarks in Section 3.5.

3.2 Motivation

In this section, we analyze the impact of unresponsive TCP flows on the conform-

ing flows, and summarize previous solutions for handling unresponsive flows.

3.2.1 Impact of Unresponsive TCP flows

In order to demonstrate the impact of unresponsive TCP flows on the conforming

TCP connections, we performed a number of simulations using ns2 [3] for the network

shown in Figure 3.1. In the simulations, all the connection requests are generated at the

leftmost nodes and terminate at the rightmost nodes except for the acknowledgments,

and all the sources randomly initiate packet transmission using FTP over TCP reno [43]
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between 0 to 2s. We injected a single unresponsive TCP flow that can operate in two

modes. In the first mode, we deactivated the window control mechanism, and in the

second mode, we deactivated the window control and kept the retransmission timeout

(RTO) very low (0.1ms) to mimic an aggressive flow. Therefore, the second case is more

aggressive than the first case. We measured the average throughput of the conforming

flows and the unresponsive TCP flow under two different queue management policies

(Tail-Drop and Adaptive RED (ARED) [21]) at R1.

Table 3.1 summarize the simulation results. Two important observations from

theses results are the following: First, RTO has a more serious impact on bandwidth

sharing than the window control (WC) mechanism in TCP. The bandwidth consumption

of the malicious flow increased considerably when both the window control and RTO

mechanisms were tampered with. Unlike UDP flooding, the unresponsive TCP flow

occupied a significant portion of the bandwidth both at light load (100 flows case: 80%

of total bandwidth) as well as at heavy load (1000 flows case: 38% of total bandwidth).

Second, the Tail-Drop (TD) scheme provided better protection to the conforming

flows than ARED. This is consistent with the conclusion reported in [41]. This is

because the unresponsive flow quickly fills up the buffer, and thus, the available buffer

size for the arriving TCP flows becomes small. Therefore, most TCP flows lose their

packets due to insufficient buffer size, and suffer from high packet loss rate. In addition,

unlike Tail-Drop, the high average queue length will force ARED to activate the random

drop mechanism, which in turn, will lead conforming flows to bandwidth starvation. As

a result, ARED exhibits poor protection for conforming TCP users against malicious

users.
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In summary, unresponsive TCP flows can cause a serious DoS attack against the

conforming TCP users. A standard AQM scheme like ARED is not adequate to provide

protection against such flows. Therefore, in the next subsection, we summarize the

handful of existing techniques that have been proposed to protect honest users.

3.2.2 Previous Work

The prior research for handling unresponsive UDP flows can be classified into two

types as summarized below.

1) AQM based techniques

Here, we summarize four schemes: RED-PD [40], FRED [38], CHOKe [50], and

SFB [19]. These techniques use an AQM scheme to penalize the unresponsive flows to

ensure fair share of bandwidth.

The main idea of RED-PD [40] is to use the property of RED that the amount

of packet loss for each flow is proportional to its bandwidth share. In this approach, M

separate lists of recently dropped packets are maintained, and a flow is identified as a

high bandwidth flow when it loses packets from K out of the total M lists. Measuring

only a subset of the traffic is feasible and may be effective for detecting high-bandwidth

flows. Maintaining the history of recently dropped packets can, however, be costly during

periods of congestion since most of the active flows lose packets at a congested router.

The detection mechanism of FRED [38] is similar to RED-PD in that it maintains

partial flow information. However, FRED collects bandwidth sharing information based

on the currently queued packets. With FRED, the average per-flow queue length is

calculated and is used to identify and penalize high bandwidth flows. As a result, FRED
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Table 3.1. The Impact of a Single Unresponsive TCP flow
Traffic Throughput with Throughput with
Mix Tail-Drop (Mbs) ARED (Mbs)

100 Standard TCPs 0.433 0.431
1 TCP w/o WC 1.581 1.842

100 Standard TCPs 0.367 0.091
1 TCP w/o WC and RTO 8.194 35.824

500 Standard TCPs 0.087 0.087
1 TCP w/o WC 1.342 1.147

500 Standard TCPs 0.078 0.039
1 TCP w/o WC and RTO 5.620 25.138

1000 Standard TCPs 0.044 0.044
1 TCP w/o WC 0.271 0.790

1000 Standard TCPs 0.041 0.027
1 TCP w/o WC and RTO 3.502 16.989

* WC : Window Control, RTO : Retransmission Timeout
* Throughput for Standard TCP is the average value
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requires a larger queue to make the detection mechanism work properly. Moreover, the

buffer usage often does not capture bandwidth sharing accurately.

In CHOKe [50], an arriving packet is compared with a randomly selected packet in

the queue, and both packets are dropped when they belong to the same flow. Otherwise,

the arriving packet is dropped with a probability determined by RED. Although CHOKe

is relatively simple to implement, its level of protection (or the degrees of fairness) is

coarse, and packet loss from conforming flows is unavoidable.

A kind of Bloom filter mechanism, called SFB [19], was proposed using multiple

hash functions to detect and penalize unresponsive flows without maintaining per-flow

states. Although SFB is a scalable mechanism, finding good configuration parameters

for SFB is not easy. SFB uses X levels of hash functions with a bin size of L. It allocates

buffer for each hash bin, e.g., 1.5B/L, and uses this quantity as the threshold value for

packet dropping. (Here, B denotes the buffer size.) Even with a large number of levels

X, most of the bins will suffer from high packet drop rates with a small bin size when

number of flows is large. Therefore, a large value for L is desirable but, in this case,

a good threshold value is difficult to ascertain since B/L is very small. In addition,

the bandwidth consumed by unresponsive flows is controlled by a statically configured

parameter regardless of the number of actively competing flows.

2) Network Security based technique

Gil et al. proposed a data-structure, called Multi-Level Tree for Online Packet

Statistics (MULTOPS), as a “bandwidth attack” detection mechanism [27]. To detect

high bandwidth flows or bandwidth attackers, MULTOPS maintains packet rate statis-

tics using a 4-level tree. For example, MULTOPS keeps the destination address of the
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packets going in a forward direction, and keeps the source address of the packets going

in the reverse direction. If the ratio of forward packets with an IP address prefix x to

the reverse packets with the same address prefix goes below the minimum threshold or

exceeds the maximum threshold, the subnet with the prefix x becomes a candidate for

an attacker-victim pair. This approach is based on the assumption of symmetric traffic.

However, today’s Internet traffic is often asymmetric with extremely wide variation as

shown in [53]. To maintain a low false positive rate, MULTOPS needs to incorporate

precise traffic statistics for a specific location, which is difficult to achieve in practice.

In this chapter, we consider solutions for unresponsive TCP flows. In summary,

all prior techniques may work in specific scenarios, but the performance of these schemes

can be seriously limited by the inefficient/inaccurate detection mechanism or parameter

dependency. Moreover, the effectiveness of these schemes for handling unresponsive TCP

flows is not known.

3.3 The HaTCh-based Dynamic Quarantine Scheme (HaDQ)

This section presents the proposed policing scheme, called HaTCh-based Dy-

namic Quarantine (HaDQ), which dynamically quarantines and penalizes the unrespon-

sive TCP flows based on HaTCh concept. The detail description on the HaTCh scheme

is presented in Section 2. The process of mitigating the effect of unresponsive TCP flows

can be divided into three parts: sampling, detection, and punitive measures. Several

practical limitations make it difficult to find efficient solutions for these tasks. First, to

accurately identify and penalize an attack, maintaining a per-flow state is impractical

considering the extremely high volume of TCP sessions at any given point and time in
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today’s Internet. Second, identification of the misbehaving flows should be based on the

fair sharing of the available transmission bandwidth to prevent the malicious users, who

exploit a statically configured parameter. Third, a detection mechanism should provide

protection for the wrongly detected flows (false positives). Finally, punitive measures

should be conducted in real-time to protect the network and all the active users at the

time of attack.

We now describe the HaDQ scheme in such terms: sampling, detection, and

punitive measures.

3.3.1 Sampling

The first step in detecting an attacker is to monitor the arrival rate of each

candidate. One of the simplest solutions is to deploy a classical random sampling scheme

as used in [17]. With this scheme, incoming packets are randomly sampled with a low

probability and the sampled flows are more carefully studied using a separate memory

over a certain period of time. Although random sampling is simple, accurate detection

may require longer time when a small memory is used to sample from a large number of

competing flows.

To improve the sampling accuracy, we use the hit count of the smaller L1 cache

of HaTCh. The purpose of the L1 cache (a RAM) is to protect the much larger L2 cache

(also a RAM) from the aggressive flows. Indeed, any flow that results in a high hit count

in the L1 cache is a suspect and a good candidate for more careful observation. Once a

flow is sampled and classified as a possible unresponsive flow, the flow is quarantined from

the HaTCh RAM and its session identifier is registered in a separate Content Addressable
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Memory (CAM), called the quarantine memory. Note that, although we maintain per-

flow state in the quarantine memory, the size of the memory is very small compared to

the number of active flows (N). We assume that the size of the quarantine memory is

comparable to the size of the L1 cache since the L1 cache size is configured according

to the target number of aggressive flows, which is about 10% of the target number of

flows. Considering today’s lowest Internet access rate of 56Kbs, we used C/56000 as a

guideline for the target number of flows, where C represents the link bandwidth.

To control the number of sampled (quarantined) flows in the quarantine memory,

the sampling threshold (θsmpl) for the hit count in the L1 cache is periodically adjusted

according to the number of flows registered in the quarantine memory and the target

number of quarantined flows. Here, the target number of quarantined flows has a lower

bound (NQlow) and an upper bound (NQup). The quarantine memory needs to be

filled, but not too full, to maintain a proper sampling sensitivity. Therefore, the sampling

threshold (θsmpl) is decremented by 1 when the number of sampled flows is less than the

lower bound (NQlow) of the target number of flows, and it is incremented by 1 when

the number of sampled flows is greater than the upper bound (NQup). If NQlow is too

small, the quarantine memory can be easily filled with false positive conforming flows,

and if it is too large, an attacker may not be sampled.

When the quarantine memory becomes full, we assume that the sampling process

(by which new flows could be quarantined) is turned off. This is a simple yet efficient

mechanism to control the sampling sensitivity, but false positive conforming flows can

block real attackers from being sampled when the quarantine memory is full. Thus, there
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is a need to quickly “exonerate” or time-out mistakenly quarantined flows1. Instead of

deactivating sampling when the quarantine memory is full, we could sort the session

identifiers in the quarantine memory according to their estimated arrival rates. Thus, a

newly sampled flow with a high hit count could push out a flow with the lowest arrival

rate. This solution can effectively avoid the quarantine memory overflow problem, but

sorting adds significantly more implementation complexity to the HaDQ design. Note

that “turbo-TCP” can be easily handled with HaDQ since all the sessions share the same

session identifier (source-destination address pair).

3.3.2 Detection

There are three factors that should be considered in detecting unresponsive flows.

First, to accurately measure the arrival rate of quarantined flows, which may include

highly bursty but conforming (mis-quarantined) flows, the traffic monitoring period

should be large enough to cover multiple round-trip times. A larger monitoring period

would, however, increase the system response time to unresponsive flows. Second, detec-

tion of an aggressive flow should be based on the number of active flows as this quantity

obviously determines the fair share of available bandwidth. Third, errors in HaTCh’s

estimation of the number of active flows should be considered. Although HaTCh is a

more robust estimator than SRED, its estimate also exhibits oscillation [73]. Therefore,

1Also, separately queuing TCP control packets will reduce the total number of session identi-
fiers under consideration for the TCP data queue, which is especially helpful if, e.g., the link is a
conduit for a TCP SYN attack on a server during which time many spurious session identifiers
will be transmitted.
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we use certain multiples of C/N as the detection threshold, θdet, in identifying the un-

responsive flows to reduce the false positives. Here, C is the link bandwidth and N is

the estimated number of flows.

A flow registered in the quarantine memory is isolated from the process that

computes N (HaTCh). The quarantined flows are then monitored for a period of time,

tmon, to measure a flow’s actual arrival rate (computed by simply counting the number of

packets arrived during the monitoring period). At the end of a monitoring period tmon,

the drop probability PID for each quarantined flow is updated based on the measured

arrival rate and the estimated fair share of the bandwidth, C/N . If the measured arrival

rate of a flow (BWID) is greater then θdet, the flow is identified as an aggressive flow

and its drop probability PID is computed proportional to the excess bandwidth. If the

measured arrival rate is less than θdet, the drop probability PID is reduced by half as

long as it is greater than the drop probability PQ of the underlying queuing policy. When

the drop probability of a flow is less than PQ, it is released from the quarantine memory.

All the flows to be released are measured for the entire monitoring period to prevent

releasing an unresponsive flow sampled in the middle of a monitoring period.

The drop probability, PQ, can be computed in a variety of ways. In the simplest

form, PQ represents the packet loss rate due to buffer overflow with a Tail-Drop queue,

and is easily computed by counting the number of packet forwarded and dropped. Alter-

natively, it can be replaced by the maximum drop probability (Pmax) when a sophisti-

cated queue management scheme such as ARED [21] and SRED [48] is used. Therefore,
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the proposed scheme is quite generic and is independent of any AQM algorithm. How-

ever, in this chapter, we used HRED, presented in the previous chapter, in order to

compare HaDQ to two prior scheme, CHOKe and FRED.

3.3.3 Punitive Measures

The simplest approach to protect honest, conforming TCP users is to completely

block the unresponsive flows by dropping all of their packets. Instead of using total

blocking, we adopt a random drop mechanism that enforces fair share of the bandwidth

among all competing flows and, in particular, does not starve a mis-quarantined flow.

Instead of a random drop, a sophisticated traffic measuring mechanism such as a time

sliding window [13] or a leaky bucket mechanism[68] could be used to throttle a flow. If

we assume that there are three queues in a packet memory, one each for TCP control,

TCP data, and UDP, then another alternative that avoids starvation is to isolate the

unresponsive TCP flows by simply demoting them to the UDP queue.

HaDQ with a probabilistic drop mechanism as a punitive measure is summarized

in Figure 3.2. We reiterate that HaDQ does not require an AQM mechanism

to enact punitive measures. When a new packet with a session identifier i arrives

at a router, the quarantine CAM is searched first. If the flow is found in the quarantine

memory, the flow’s arrival rate estimation is updated. If the flow’s drop probability PID

is greater than zero, the packet is dropped with a probability PID (CASE 1). Otherwise,

the packet is directed to the packet memory (CASE 2). If the flow is not found in the

quarantine memory, it is directed to the L1 cache of HaTCh and the estimated number

of active flows is recalculated in HaTCh (CASE 3).
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For every hit in the L1 cache of HaTCh, the hit count of the cache line is com-

pared against the sampling threshold, θsmpl, and the flow is registered in the quarantine

memory if the hit count is greater than the sampling threshold. At this time, the flow’s

drop probability is set to zero. The sampling threshold is periodically updated based on

the target number of quarantined flows (NQlow and NQup) to be monitored. At the

end of a monitoring period, the drop probability for each quarantined flow is updated

based on the measured arrival rates and the fair share of the bandwidth. If the number

of flows in the quarantine memory is less than NQlow, the threshold θsmpl of the L1

cache is reduced by 1; while if the number of quarantine flows is greater than NQup,

θsmpl is incremented by 1. We used 4 as the initial value of θsmpl, and limited its range

(3 ≤ θsmpl ≤ 12) to avoid extremely low and high sampling rate. However, the initial

value was not very critical in the detection accuracy in our simulations.

3.4 Performance Evaluation

The proposed scheme was evaluated through extensive simulation in terms of

the efficiency of the sampling mechanism, the accuracy of detection, and the protection

capability (punitive measure). Although the proposed HaDQ scheme is independent of

the choice of the AQM schemes, we used HRED described in previous chapter, along

with HaDQ because the traffic workload used in the following simulation covers from

normal network conditions to heavily congested workload. We used the same simulation

environment described in Section 3.2.1. The size of the quarantine memory of HaDQ

was configured equal to HaTCh’s L1 cache targeting a maximum of 100 unresponsive

flows (note that this is less conservative than “maximum aggressive flow” limit in [73]).
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3.4.1 Sampling Efficiency and Scalability
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First, we investigated the sampling efficiency of SRED [48] and HaTCh [73],

which is used in HaDQ. Under SRED or HaTCh, an accurate estimation of the number

of active flows (N) is essential since N is used in indicating the severity congestion.

Therefore, the accuracy of the sampling mechanism depends on the performance of the

estimation process. Aggressive flows can be efficiently sampled with these schemes either

by counting the number of cache lines occupied by each flow or by comparing the hit

counts as noted in [48]. In SRED, some of the active flows occupy cache lines more

aggressively than others. This unfair share of cache lines among the competing flows

results in underestimation of N , and therefore, in an inaccurate target fair bandwidth
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sharing. As a result, the sampling mechanism will suffer from unacceptably high false

positives.

Now, consider using the hit count to detect the aggressive flows. If the hit counts

of aggressive and conforming flows are similar, the sampling mechanism will suffer from

high false positives. To compare the characteristics of the hit count under SRED and

HaTCh, we performed the following simulation. First, we divided 50 UDP flows into

5 groups, where each group had the same packet injection rate. The packet injection

rate increased as the flow index increased as shown in Figure 3.3(a). Next, we took

100 snapshots of the SRED and the L1 cache of HaTCh between 100s and 200s from

10 simulations, and calculated the average hit count for each flow. In Figure 3.3(b),

the average hit counts of all flows with SRED are quite similar regardless of the packet

injection rate. On the other hand, the average hit count in HaTCh clearly increased as

the packet injection rate increased. Although the hit count in HaTCh did not exhibit

the exact amount of shared bandwidth, it is accurate enough to discriminate relatively

aggressive flows as we will see in greater detail in the following section.

Next, we investigated the memory requirement of the sampling/detection tech-

nique used in RED-PD [40]. As explained in Section 3.2.2, RED-PD maintains M

separate lists of recently dropped packets to identify high bandwidth flows. Clearly,

the accuracy of detection will improve with a larger M , but the memory requirement

will also increase accordingly. Therefore, M is a critical parameter that determines the

sampling/detection performance of RED-PD (RED-PD recommends M = 5 as a default

value). In this simulation, we measured the number of per-flow states required for main-

taining the drop history of RED-PD for different values of M (1,3, and 5) when 100,



82

100 200 500 1000
0

200

400

600

800

1000

1200

The Number of Flows

N
u

m
b

e
r 

o
f 

P
e

r−
F

lo
w

 S
ta

te
s

M=1
M=3
M=5

Fig. 3.4. The number of per-flow states required for RED-PD



83

200, 500, and 1000 TCP flows are used. In Figure 3.4, the memory requirement is less

than 20% of the total number of flows when M = 1, but the K out of M concept [40]

is no longer valid since all these flows are mis-sampled when a single list is used. With

a larger value of M (3 and 5), the number of per-flow states increases almost linearly.

As a result, the number of pef-flow states required for sampling reaches up to 70% of

the number of active flows (N = 1000). Considering the characteristics of today’s In-

ternet traffic [52][14], which often results in persistent congestion, this can bring serious

scalability problem.

The memory requirement for maintaining the per-flow sates with SRED also can

grow to N in the worst case. On the other hand, the memory requirement of HaDQ is

limited to the quarantine memory size, which is 10% of N assuming that the number

of unresponsive flows is limited to 10%. In addition, HaDQ exhibits accurate sampling

property as shown in Figure 3.3(b).

3.4.2 Detection Performance

Table 3.2. HaDQ Configuration Parameters
Parameter Values

Monitoring Period (tmon) (Sec) 0.5, 1, 2, 3, 4, 5
Detection Threshold (θdet) 1.5, 2, 3, 4, 5

Replacement Probability (r) for HaTCh 0.01, 0.1
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In these simulations, we used 500/1000 standard TCP flows and an unresponsive

TCP flow, and varied NQlow from 30% to 50% and NQup from 70% to 90% of the

quarantine memory size. Although the overall performance was similar with these values,

the sampling threshold θsmpl was more stable with NQlow = 40% and NQup = 80% of

the quarantine memory. Therefore, we used these values in the rest of the simulations,

and the other HaDQ configuration parameters are shown in Table 3.2. We measured

the false detection and false drop rates, which are defined as Sfls/Stot and Dfls/Dtot

respectively. Here, Sfls and Stot represent the total number of false detections and

the total number of samplings in HaTCh’s L1 cache respectively; and Dfls and Dtot

represent the total number of false packet drops and the total number of packet drops,

respectively. A false detection occurs when a conforming TCP flow is quarantined and

mis-classified as an aggressive flow (i.e., false positives in detection), whereas a false

drop occurs when a packet is dropped from conforming TCP flows due to the quarantine

mechanism (false positives in punitive action).

Figure 3.5 and Figure 3.6 show the simulation results for the false detection rate

and false drop rate, respectively. For 500 TCP flows and an unresponsive flow case, the

false detection rate decreased from 38% to 0.3% as θdet increased from 1.5 to 5 when

tmon = 0.5s in Figure 3.5 (a). As tmon increased, the false detection rate decreased, and

it became almost zero (less than 0.1%) in most simulations for tmon > 3s. In Figure 3.6,

the false drop rate also followed the same trend as the false detection rate. In addition,

we found that both the false detection rate and the false drop rate significantly reduced

as the number of flows increased (up to 1000 standard TCP flows and 25 unresponsive

TCP flows).
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Fig. 3.5. False Detection Rate of HaDQ with different configurations
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While the false detection rate and false drop rate are maintained in acceptable

ranges by using proper configuration parameters, it is interesting to note that the dy-

namic quarantine scheme introduced a little inaccuracy in the estimation process of

HaTCh, and resulted in an increased false detection rate. That is, if a flow is mis-

sampled and quarantined, the cache lines belonging to that flow remain in the L2 cache,

and HaTCh consequently underestimates the number of active flows. To minimize this

side-effect, we increased the replacement probability r of HaTCh from 0.01 to 0.1, re-

sulting in a shorter life-time of L2 cache lines. Now, the false detection rate reduced

to 28% (from 38.8% to 28%) with the new configuration in Figure 3.5 (c) compared to

Figure 3.5 (a). Thus, a higher value of the replacement probability (r) decreases the

false detection and false drop rates. Irrespective of the variation in false detection/drop

rate, HaDQ successfully limited the bandwidth of unresponsive flow to the fair share of

the bandwidth.

We configured HaDQ with r = 0.1, tmon = 2s, and θdet = 3 for the following

simulations, since the false sampling and false drop rates were negligible with these

values, while maintaining a good sampling sensitivity.

The detection speed of HaDQ was also investigated. In each simulation, we began

with 500 TCP flows, and added unresponsive TCP flows (from 1 to 80 flows) between

100 to 102s. Figure 3.7 depicts the quarantine delay, i.e., the time between when an un-

responsive flow commences and when it is quarantined, and shows that HaDQ managed

the detection time within 2.3 seconds regardless of the number of unresponsive flows. In

addition, the detection time showed very small variation.



87

0

2

4

6 1
2

3
4

5

0

2

4

6

8

Detection 
Threshold

Monitoring 
Period (s)

F
a

ls
e

 D
ro

p
 R

a
te

 (
%

)

0

2

4

6 1
2

3
4

5

0

2

4

6

8

Detection 
Threshold

Monitoring 
Period (s)

F
a

ls
e

 D
ro

p
 R

a
te

 (
%

)
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Fig. 3.6. False Drop Rate of HaDQ with different configurations
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3.4.3 Impact of the Punitive Measure

To show the effectiveness of HaDQ in protecting conforming TCP users, we com-

pared the average throughput of the conforming TCP flows and unresponsive flows under

CHOKe, FRED and HaDQ. CHOKe and FRED are built upon ARED, and all these

schemes are deployed at the congested link in Figure 3.1. We did not simulate RED-PD

in this study. Intuitively RED-PD should provide fair bandwidth share like HaDQ, since

it also monitors the aggressive flows. However, as showed in Section 3.4.1, the memory

required for the sampling mechanism is much higher than the HaDQ scheme, resulting in

poor scalability. We also simulated SFB [19], but its results were very much dependent

on the system configuration parameters and the simulations environments. Since the

SFB results showed wide variation, we only discuss CHOKe and FRED results here.

The simulation results for 500 to 1000 conforming TCP flows with an unresponsive

flow are depicted in Figures 3.8 (a) and (b). FRED showed slightly better protection of

the standard TCP flows compared to CHOKe, but both the schemes failed to sufficiently

penalize the unresponsive TCP flow. Under FRED, the single unresponsive TCP flow

occupied 13% and 11% of the total bandwidth, respectively for 500 and 1000 TCP

flows; these numbers increased to 39% and 31%, respectively, under CHOKe. As a

result, conforming TCP flows suffered from continuous retransmissions and timeouts.

Moreover, none of the packet drops applied to the conforming TCP flows was caused

by the random drop mechanism of the underlying AQM scheme (ARED). This implies

that both CHOKe and FRED failed to differentiate between the conforming TCP flows

and the unresponsive flows, and subjected the former to unnecessary packet drops. On
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the other hand, HaDQ performed extremely well as the figures show. HaDQ precisely

activated the punitive measure against the unresponsive TCP flow and enforced fair

sharing of the available bandwidth in both cases. In contrast to CHOKe and FRED, all

the packet drops applied to the standard TCP flows were triggered by the underlying

AQM scheme (HRED), not by HaDQ, which fairly increased the packet drop rate for

the unresponsive flow.

Figures 3.8 (c) and (d) depict the simulation results when we increased the number

of unresponsive flows up to 5% of the total number of standard TCP flows. As can be

seen, significant performance degradation resulted under CHOKe and FRED: 5% of the

unresponsive TCP flows occupied more than 99% of the total available link bandwidth.

HaDQ, again, fairly and accurately limited the total bandwidth of unresponsive flows

to around 5%, and provided excellent protection to conforming TCP flows. Finally, we

added an UDP flow, whose injection rate is 16 times the fair sharing of the available

bandwidth, to an unresponsive TCP and 500/1000 TCP flows assuming that all the

flows are multiplexed in a queue. The drop rate of CHOKe was again proportional to

the bandwidth share, and FRED showed slightly better performance in Figures 3.8 (e)

and (f). However, Under CHOKe and FRED, the UDP and unresponsive TCP flows

again consumed significant amount of bandwidth, whereas HaDQ effectively enforced

the fair bandwidth sharing.
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3.5 Concluding Remarks

Internet users can easily compromise the TCP congestion control mechanism by

deactivating the slow-start and retransmission timeout or by launching multiple paral-

lel TCP sessions. These activities can be interpreted as a DoS attack on the honest,

conforming users and, thus, pose a serious security concern. Finding an efficient and

feasible solution to control these unresponsive flows is made difficult primarily because

of the large traffic volume and the complexity of the Internet traffic dynamics.

In this chapter, we propose a novel solution for handling unresponsive TCP flows.

The proposed policing technique, called HaDQ, uses our proposed HaTCh scheme to

sample, detect and dynamically quarantine the aggressive flows, which are initially cap-

tured in the first level (L1) cache of HaTCh. The HaTCh scheme accurately estimates

the number of active TCP sessions, which ,in turn, is used to compute the per-session

fair share of bandwidth. The proposed scheme uses a small CAM, called the quarantine

memory, to monitor the aggressive flows and take punitive measures when their esti-

mated arrival rates significantly exceed the fair bandwidth sharing. The main attractive

features of the proposed scheme are its accurate sampling technique that helps in mini-

mizing the per-flow state, and thus, helps in scalability, and the detection and punitive

mechanisms that are based on the number of competing flows.

Extensive performance evaluation indicated that the proposed dynamic quaran-

tine scheme maintains a very low false drop (false positive) rate of less than 0.1%, and

can provide much better protection to conforming TCP flows compared to CHOKe and

FRED. Simulations with up to 5% unresponsive TCP sessions and with a mix of UDP
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and an unresponsive TCP sessions showed that HaDQ can provide almost equal band-

width allocation to all of the competing sessions. Although HaDQ was integrated with

an AQM scheme (HRED) in order to compare with CHOKe and FRED in this chapter,

it does not require any AQM scheme in detecting and taking punitive action.

Our future work involves further investigation of adaptive HaDQ configurations

under more realistic workloads consisting of heterogeneous traffic.
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Chapter 4

Worm Defense Mechanism

4.1 Introduction

Since November 1988, worms have been one of the most serious threats to the

millions of the Internet community. A worm is a self-propagating program, which con-

tains malicious payloads that rapidly spread using the network connections. Although

the potential impact of worms is significant enough to bring down the entire network

service, defending against worms remains a largely open problem. Difficulties in devel-

oping an efficient worm defense mechanism lie in its ferocious nature. First, as has been

shown in [44] [63], the propagation speed of today’s worms is extremely fast, and thus

can easily outpace human response. For example, SQL Slammer, also known as Sap-

phire, infected more than 90 percent of vulnerable host within 10 minutes [44]. Second,

worms are becoming sophisticated in that variations (and imaginations) of each worm

outbreaks in short period of time after the initial instance. For example, the Code Red

worm was initially released in July 13 2001. Although the first version of Code Red

infected many hosts and consumed network bandwidth by spreading itself, it did not

cause serious damage due to a poor scanning (or probing) mechanism. A week later,

the second version of Code Red, Code Red II, was released with a new scanning mech-

anism resulting in hours of network breakdown [45]. Therefore, signature-based worm

detection is vulnerable to the presence of new worms. Third, considering the fact that
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false positives can cause denial-of-service to legitimate network users, a worm defense

mechanism should be highly reliable.

Current trends in worm defense technology are largely rely on containment frame-

work [62] [70] [46]. The main idea of the containment technique is to quarantine the worm

activities within a limited area such as an enterprise network or a subset of an enter-

prise network, called a cell, to prevent Internet-wide infections. When probing activities

are detected, all traffic from the suspected hosts are blocked, either totally or partially.

Therefore, a reliable and robust detection mechanism, which can minimize the false

positive, is a key success component in deploying a containment technique.

We present a novel worm detection mechanism in this chapter. The proposed

detection mechanism is based on the HaTCh scheme presented in Section 2, which es-

timates the number of active flows at the Internet router, and HaDQ scheme described

in Chapter 3, designed to detect and penalize bandwidth attacker. The main feature

of the proposed scheme is that it minimizes the amount of per-flow state required to

detect probing activities using HaTCh. Once the probing activity is detected, then all

the traffics from the suspected source address are blocked using a mechanism similar

to that used in HaDQ. Initial simulation results show that the proposed scheme is very

effective in detecting malicious worm traffic. For example, the detection time for SQL

Slammer type of worm is less than 3 seconds without any observed false positives.

The rest of this chapter is organized as follows: We briefly describe previous

work on worm defense mechanisms in Section 4.2. The proposed approach is detailed in

Section 4.3. In Section 4.4, simulation results are presented followed by the concluding

remarks in Section 4.5.
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4.2 Related Work

Williamson [70] proposed to implement a kind of filter on the network stack

to regulate the rate of connection requests to new hosts. In rate regulation, a small

buffer called the delay queue, is used to allow a fixed rate of new requests. Therefore,

legitimate connections with occasional bursts experience a small delay and loss, whereas

port probing traffic of worms is rate-limited with possible heavy loss. One limitation of

this approach is that most of the Internet end-hosts must upgrade their network stack

to make this approach successful. Another problem is that this technique itself can

be compromised by a worm that may gain system level control, since this technique is

implemented in network stack of individual hosts.

In [46], Moore et al. studied worm containment techniques, particularly address

blacklisting and content filtering. Address blacklisting is a technique to limit access of

a set of IP addresses, which are identified as infected hosts. It can be easily deployed at

an Internet router, but list management operations such as update and remove can be

very expensive computationally considering the volume of traffic in the Internet.

Unlike address blacklisting, the content filtering approach actively detect worm

propagation by investigating content signature of packets. For this, an Internet router

needs to maintain a database of content signatures for each identified worm. This ap-

proach should be accompanied by additional technologies such as characterizing and

generating content signatures of worms, and only work under the assumption that worm

is not polymorphic. However, this assumptions is likely to be broken in the near fu-

ture [45] [69].
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Recently, Staniford [62] proposed a cell-based containment technique. Here, an

enterprise network is divided into smaller units, called cells. Each cell is equipped with

containment device, which limits the number of new destinations, at the boundary of

cells. Although he claims that for most port the number of new destination can be

managed within a constant (10 flows), cells that include web servers, game servers, and

p2p participants (e.g., Kazaa) can easily exceed such limitations. In addition, UDP-based

worms such as SQL Slammer are difficult to control under this scheme.

Within the worm containment concept, a few worm detection techniques have

recently been proposed. S. Chen et al. proposed the DAW technique to detect and limit

the propagation rate of a worm [10]. The main idea of DAW is that a worm-infected

host will show higher connection failure rate than an uninfected host due to its fast but

inaccurate scanning behavior. A limitation of this approach is that DAW only works for

worms that use TCP as the transport layer protocol. However, SQL Slammer, which is

a UDP based worm, has infected more than 90% of vulnerable hosts within ten minutes,

and other UDP based worms are likely to outbreak in the near future due to the simplicity

and effectiveness of their scanning strategies. Another problem is that implementation

details have not been discussed in [10]. An Internet router is a point where millions of

connections converge. To analyze the connection failure rate with DAW, maintaining

significant amount of per-flow state is unavoidable. Therefore, DAW also should be

accompanied by an effective technique to minimize the amount of per-flow state to be

deployed at the Internet router.

Recently, X. Chen et al. proposed a new worm detection and suppression tech-

nique called DEWP [11]. DEWP’s detection mechanism is based on the port matching
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and the number of different destination addresses using a port. However, today’s Inter-

net traffic is often asymmetric with extremely wide variation as shown in [53]. In this

case, the DEWP detection mechanism should be only rely on the number of unique des-

tinations for a specific port in detecting worm activity, but the implementation details

on regarding per-flow maintenance has not been investigated. More importantly, DEWP

has to block all packets that use the specific port number. Considering the fact that

worms such as Code Red, Nimda and Welchia [54] have exploited port 80, which is also

used by web traffic, a worm detection mechanism based on this specific port number can

be easily hampered.

In summary, worm containment based approach may be one of effective solutions

in limiting and suppressing worm propagation. However, its performance is heavily

dependent on the detection mechanism. Prior worm detection techniques explored in this

section may work in the specific scenario, but they depends on a specific transport layer

characteristics. In addition, the implementation issues has not been fully investigated.

4.3 The Proposed Scheme

This section presents the proposed worm detection and quarantine mechanism,

which detects and suppress scanning activities in an enterprise network.

4.3.1 Worm Detection and Quarantine Mechanism

A network-based worm defense mechanism needs to collect and analyze per-flow

or per-source statistics to determine whether the specific flows are malicious or not. In

addition, per-flow or per-source state maintenance is necessary to reduce false positives.
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However, a modern Internet router is a place where millions of connections converge at

any given time. Collecting information on all the connections can not only raise the scal-

ability issues but also cause significant overhead that can result in serious performance

degradation. Therefore, developing scalable techniques to ascertain suspicious flows and

to collect information only for suspicious flows is critical in deploying a network-based

worm defense mechanism. For this reason, a network-based worm defense mechanism

requires two steps: sampling and detection. A main purpose of sampling is to select

only a subset of active flows that show abnormal behavior to reduce per-flow or per-

source information management, and then the sampled flows are closely investigated

and classified as either worms or normal flows.

The main idea of our the proposed Worm-DQ scheme comes from the investiga-

tion of general worm behavior. First, the total size of a worm payload is very small

ranging from hundreds bytes to a few kilo bytes. Second, today’s worms can trans-

mit enormous amount of probing packets either at the link speed (SQL Slammer) or

by invoking multiple threads (Code Red) in searching for possible victims. Although

some worms such as blaster exploit address co-relation among the workstations within

a network, target addresses of scanning packets are generally randomly generated. For

example, the blaster worm uses linear scanning after a successful scan. However, these

worms still rely on random scanning until the first successful compromise. As a result,

a router located in the attack path will see many short-lived connections from the same

source address toward millions of different destination address.

The proposed worm defense mechanism is based on both the HaTCh [73] and

HaDQ [74] schemes (See Section 2 and Chapter 3). The HaTCh scheme estimates the
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number of active flows without maintaining per-flow states and this quantity is used to

dynamically detect and penalize unresponsive flows in HaDQ. The first step in worm

detection is to sample the possible scanning traffic since since it requires significant

resources including CPU and memory to trace all the active flows in Internet router.

Sampling: Under HaTCh, worm traffic cannot be registered at the L1 cache

due to so many different destination addresses. As a result, worm packets will tend to

miss at the L1 cache, but will occupy the L2 cache lines very aggressively. Therefore, we

use the L2 cache of HaTCh to sample possible scanning traffic. All the flows registered

in the L2 cache represent a short history of the recent packets, precisely M
r packets, that

have arrived at the HaTCh device. Theoretically, these cache lines should be shared

equally by all the competing flows. Therefore, the ”unfair” distribution of the L2 cache

lines per source address implies the presence of an aggressive flow. Here, we exploit the

hash mechanism of the HaTCh scheme. The L1 and L2 Cache of HaTCh is partitioned

into small chunks called subcaches. When a packet arrives, it is hashed into a subcache

using its source and destination addresses. Thus, every given flow is always hashed into

the same subcache. On each packet arrival, the per-source L2 cache lines count for

the corresponding subcache is updated. If the per-source L2 cache lines count for the

subcache exceeds the fair cache line share, the source address becomes suspicious. A

flow is quarantined from HaTCh if a source address is suspicious at more than c out of

k subcaches, where k is the hash size. Therefore, the quarantined flow is always assured

that there are at least c different connections from the same source address.

Detection: A quarantined flows is isolated from the HaTCh operation, and

registers to the quarantine memory as has been done in HaDQ. Unlike HaDQ where
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actual bit rate is measured for each quarantined flows, here, we estimate the number

of different destination addresses by using the HaTCh technique. Here, we define this

quantity as the degree of destination. In estimation, only a single memory cell is used for

a source address. Assuming that the degree of destination from a single source should be

small generally, a large this number imply that the host is highly suspicious. Then, all

the packets form the source address are blocked. Since the performance of the estimation

mechanism is critical in the accurate detection, we modified the estimation process of

HaTCh for more accurate and stable estimation. HaTCh calculate the hit frequency to

estimate the number of active flows using a first order autoregressive process as follows:

f(t) = (1− α)f(t− 1) + α · 1 {hit at tth packet }

for 0 < α < 1. 1 in the above expression represents an indicator function of a cache

hit. Then, the inverse of the hit frequency (f(t)) is used as the estimate of number of

flows. It is clear that the smaller α gives more stable estimation with a longer response

time, since it is the time constant of the estimation process. When the number of flows

is small, a single miss in HaTCh contributes a very small change in the total estimated

number of flows. However, the estimation process over-reacts for the large number of

flow with a static value of α. For example, assuming α = 0.001, the hit frequency for

ten competing flows is 0.1, and the estimate becomes 0.1009 after a cache hit. On the

other hand, the hit frequency of a thousand competing flows is 0.001, and the estimate

becomes 0.00199 (500 flows) after a cache hit. As a result, the estimated number of flows
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severely fluctuates under a large number of competing flows. Therefore, we adaptively

adjust α based on the current hit frequency as shown in Figure 4.1.

.

if (adaptive )
if ( f(t) > 0.4 )

alpha = 0.01
else if ( f(t) > 0.2 )

alpha = 0.005
else if ( f(t) > 0.02 )

alpha = 0.001
else

alpha = 0.0001
.

Fig. 4.1. The Adaptive Estimation Algorithm

The proposed scheme can be summarized as follows: When a packet arrives at a

router, the quarantine memory is searched first looking for the same source address. If

the flow is found in the quarantine memory and the estimated number of flows for the

source address exceeds the threshold (θb), the packet is dropped. Otherwise, the packet

is processed by the HaDQ mechanism. For the each miss in the L2 cache, the number

of cache lines per source address is updated. If there are more than θs subcaches, which

has more cache lines for the source address, then the flow is registered in the quarantine

memory. We used the threshold (θb) value for blocking suspicious flow as 400, which is

the four times of the size of a subcache in the following section. The quarantined flows

are released if the estimated number of flows is alway less than θb for a period of time

(θr).



103

4.3.2 Discussion

Although the proposed scheme may generally be effective in detecting high speed

worm traffic, there are a few practical limitations. Within an enterprise network, there

can be several high-profile end-hosts. For example, a game server, web server or database

server can legitimately support more than a thousand of concurrent users. To reduce

the false positives, the proposed scheme should maintain a high-profile server list. When

these hosts are identified as a worm infected under the proposed scheme, the detection

can be suppressed. However, this approach leaves two problems. First, router resources

can be meaninglessly consumed since these hosts will be keep on being detected and

released from the quarantine memory. Second, it will leave another vulnerability for

possible attacks that target theses hosts. Therefore, we investigate the subset of the

traffic for these flows. When these hosts are registered at the quarantine memory, the

hit frequency is calculated only for the subset of the flows instead of all the active flows.

Here, a simple hash function can be used to select a subset of the traffic, and the size of

the hash function can be determined by the traffic statistics for the particular host.

4.4 Performance Evaluation

In this section, the simulations environment is described and then preliminary

simulation results are presented.

4.4.1 Simulation Environments

The proposed scheme was evaluated through extensive simulations using ns2 [3]

for the topology given in Figure 4.2. The main structure of the topology is based on one
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at Oregon State University [1], and it is scaled down to represent an enterprise network

with five hundred end nodes. There are 506 work stations and 4 SQL servers, and these

nodes are connected to the Internet using a hierarchy of routers, such as a multi-port hub

(MH), building switch (BS), router (R), center router (CR) and edge router (ER). Links

between end node and MH are 10Mbs with 10ms delay, and all other nodes are connected

with links of 100Mbs with 10ms delay. For simulations, we used the ns2 worm model [11]

that is based on the SIR (Susceptible-infectious-removal) model [46] [63] [37] [29]. In

the ns2 worm model, an entire simulation network is divided into two parts: an abstract

network, which represents the Internet and an detailed network where the packet level

details is simulated.

The overall behavior of an abstract network is similar to the SIR model. Thus, the

number of infected, vulnerable, and removed hosts are calculated based on the scan rate,

the number of probing packets received from the detailed networks, and the total number

of hosts. In addition, probing packets are periodically released toward the detailed

network. When a host in the detailed network receives a probing packet, the node is

infected if it is vulnerable. The host then immediately starts to generate the probing

packets at the predefined rate. Here, worm traffic uses UDP for sending 404-byte probing

packets to mimic the behavior of SQL Slammer, and the average scanning rate is set to

4000 [44].

The proposed worm defense mechanism is deployed at the edge router (ER) with

HaDQ configured according to [74] as shown in Table 4.1.
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Table 4.1. Configuration Parameters

Parameter Values

L1 Cache Size 200
L2 Cache Size 2000

Quarantine Memory Size 200
Hash Size 20

4.4.2 Simulation Results

Before we evaluate the performance of the proposed scheme, we first evaluate the

accuracy of the modified estimation process using a single memory since the performance

of the proposed worm detection relies on it. A simple dumbbell-like topology was used for

the simulations. There is a source node on the left side of the network and five hundreds

node on the right side of the network are used as the destinations, and the proposed

mechanism is deployed in the middle to estimated the number of active flows. TCP traffic

was generated at the beginning of the simulations and the proposed scheme activated

after 50 seconds and lasted for 150 seconds. Figure 4.3 summarizes the estimation process

with the static time constant (α = 0.001). For small number of flows, the estimation is

quite accurate as shown in Figure 4.3 (a). However, the estimation severely oscillates as

the number of flows increases in Figure 4.3 (b), (c), and (d). On the other hand, the

adaptively configured estimation process shows significantly reduced oscillation resulting

in more stable and accurate estimation. The proposed scheme also accurately estimated

up to 50 flows in Figure 4.4 (a) and (b). Note that we use a different scale for the

y-axis in Figure 4.4 to show the estimation in detail. In addition, the response time of
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the estimated process also improved. However, a large number of flows brings under-

estimation in Figure 4.4(c) and (d) as noted in [73].

To evaluate the performance of the proposed scheme, we performed a number of

simulations by varying the amount of background traffic from 250 to 1000 TCP flows

and configuration parameters, such as the sampling threshold (θs) from 2 to 20. Then,

we randomly selected 5 end-hosts and generated 300Kbs of UDP traffic from 2 to 20

different destinations (degree of destinations) to cause false samplings (we refer to these

flows as the controlled traffic in the following). Figure 4.5 summarizes the simulation

results. Figure 4.5 (a) and (c) shows the sampling time, which is defined as the time

when the host is infected to the time when the flow is quarantined. It is clear that

the average sampling time gradually increases with the larger value of the sampling

threshold (θs) since a larger subcache should be assigned a larger sampling threshold.

However, the difference is less than 1.3 seconds. Note that the sampling time with large

background traffic (250 flows) in Figure 4.5 (c) is smaller than that of the 1000-flows case

in Figure 4.5 (a). As the number of flows increase, the background TCP traffic backs

off due to the congestion, but the worm traffic does not respond to it. In addition, since

the fair per-source=- cache lines are reduced due to the large number of flows, the worm

traffic is quickly sampled. Once the worm traffic is sampled, all of this traffic is blocked

in less than two seconds in all the simulations we ran. Therefore, the maximum delay

for the proposed scheme to block worm traffic is 2.8 seconds for 250 background TCP

flows and 2.5 seconds for 1000 TCP flows case.

We also investigate the impact of false sampling. As describe previously, we used

the controlled traffic to cause false sampling. Obviously, when the degree of destination is
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smaller than the sampling threshold (θs), the source nodes are not sampled. In Figure 4.5

(b) and (d), these cases are presented as the zero sampling time, all the mis-sampled

flows are released after 2 seconds, which is a design parameter (θr). The number of

mis-sampled flows with 1000 background TCP flows in Figure 4.5 (d) is smaller than

that for 250 TCP flows shown in Figure 4.5 (b). This is because that the controlled flows

are competing with a large amount of background traffic. As a result, some controlled

flows are not sampled for the large sampling threshold (θs > 10). In all simulations,

there was no false detection.

4.5 Concluding Remarks

In this chapter, we presented a new worm defense mechanism based on the num-

ber of flows estimated by the technique described in Chapter 2. A simulation-based

performance study showed that the proposed scheme detected and quarantined worm

propagation traffic quickly without causing false positives. We plan to extend the pro-

posed scheme and to explore the following issues:

• The impact of transport layer protocol used by worm traffic on the detection per-

formance

• The impact of the worm scanning rate on the detection performance

• The design of a detection mechanism for slowly propagating worms

For this purpose, we implemented TCP-based worms, which mimic the behavior of the

blaster worm. We believe that the proposed scheme will provide a viable solution to

protect networks from scanning worms.
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Chapter 5

Proxy-RED: An AQM Scheme for Wireles LAN

5.1 Introduction

Wireless networks based on the IEEE 802.11 standard have been widely deployed

in enterprises and university campuses mostly to provide wireless data access to Lap-

tops, PDAs, etc., to the wired infrastructure. However, the available bandwidth in

IEEE 802.11 networks is much smaller than in a wired local area networks since IEEE

802.11 networks are non-switched half-duplex, i.e. only one participant can transmit

at a time. Interference from radio sources such as microwaves, cordless phones and

other 802.11 networks further reduces the available bandwidth. These networks also

suffer from hidden-station problem which results in collisions and hence lowered channel

performance [59].

The peak transmission rate possible in 802.11a/g stations is 54 Mbs. However,

as earlier analytical [33] and experimental studies [26] have shown, due to the large

fixed overhead per frame transmission, the maximum channel efficiency is only 50–60%.

Moreover, the peak data rate can only be used in close proximity to the Access Point

(AP); stations further away from the access point fall back to lower data rates that in

turn diminish the maximum channel throughput. The actual channel throughput also

heavily depends on the frame payload size. When only frames as are typical for VoIP
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traffic are sent, the maximal throughput on the wireless channel can drop to below 1

Mbs even at data rate of 11 Mbs [33].

Bandwidth in wireless media will remain a limited resource as compared to wired

networks. Increasing bandwidth by adding other base stations covering the same area

does not scale as there is only a limited number of non-interfering channels. While

an IEEE working group (IEEE 802.11e) is working on alleviating some of the Quality

of Service (QoS) issues that come with the use of wireless networks and their limited

bandwidth, MAC layer approaches will not solve the congestion problem arising from

the disparate link speeds in an access point. An access point has two interfaces, an

802.11 wireless interface to transmit/receive frames on the air and a wired interface to

the Distribution System (DS). In an enterprise, the DS typically is 100 Mbs switched

Ethernet. The disparity in channel capacity of these two interfaces makes the access

point a significant potential bottleneck in the downstream direction.

In such scenarios, it is very likely that the outgoing link gets oversubscribed

resulting in frequent output buffer overflow. In the absence of any special mechanism,

congestion notification to the TCP sources using the link will occur in the so called

“tail-drop” manner, and the performance of Tail-Drop queue is well documented to be

poor [22]. Furthermore, synchronization of multiple TCP connections flowing through

the access point may result in substantial lower throughput exacerbating the overhead

of 802.11 networks. The throughput problem could be alleviated to a certain extent by

having large buffers on the outgoing “air-interface” of the access point. However, this

causes excessive delays for packets with real-time constraints. Further, which packets

are dropped is not controlled by the access point.
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In wired networks, as a solution for congestion, Active Queue Management (AQM)

schemes, especially RED [22] and its variants [18] [21] [38] [50] [40] have been widely

studied. The basic idea of RED is to detect the incipient stage of a congestion, and notify

the sources to reduce their packet injection rates by deploying a random drop/marking

mechanism. To measure the severity of congestion, RED calculates the Exponentially

Weighted Moving Average (EWMA) of queue length at each packet arrival, and uses this

number to find the drop/marking probability. RED is implemented in network switches

and in routers which are likely to suffer from congestion due to disparate interface speeds.

It thus appears well motivated to study the effect of implementing AQM schemes in a

wireless access point to address the congestion issues.

As deployment of 802.11 networks has increased, so has the concern for supporting

enterprise applications over these networks. The lack of sufficient support for mobility

(subnet roaming), security and QoS are key concerns that have led to the development of

wireless architectures which include a gateway (GW) shown in Figure 5.1. This gateway

is a network element that sits one or more hops away from the access point to provide

mobility, security and QoS support. All traffic in-out of the access point is routed through

this gateway, with some sort of tunneling/NATing mechanism if the gateway is server-

based and multiple hops away from the access point. Next hop gateways are switch

based and provide the same services as server-based gateways. Switch-based solutions

can also supply power-over-Ethernet (POE) to the access point.

Another overriding concern in wireless deployments is cost. As access points

get loaded with functionality, they get more and more expensive, thereby making radio

coverage provisioning in an enterprise very expensive. An alternative architecture, called
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light weight access points, is again the use of a gateway in which the bulk of networking

functionality is provided by a gateway, limiting the access point to do basic 802.11 channel

access along with simple bridging to 802.2 frames. Features like QoS, mobility, security,

management, location services etc. are supported in the gateway which can handle more

than one access-port. The economies of scale deliver significant cost benefits for medium

and large scale deployments.

In this chapter, we first study the impact AQM/ECN schemes on wireless Local

Area Networks (WLAN). Simulation results shows that an AQM scheme such as RED

aggravates the packet loss rate and goodput due to the large delay at the access point.

However, we found that the performance of RED could be significantly improved when

used with ECN. We then investigate the feasibility of implementing AQM at the gateway.

In particular, we study whether it is possible to achieve effective congestion avoidance



116

GWAP

< 1Mbs

potentially

Random Drop

by Proxy-RED

10/100 Mbs 10/100 Mbs

TCP

Fig. 5.2. High level solution architecture

by implementing RED in the gateway, not the access point. Since in this scheme, the

gateway performs RED on behalf of the access point, we call this scheme Proxy-RED. The

basic idea behind this approach is depicted in Figure 5.2. In the downstream direction,

Ethernet frames cross the ingress and egress interfaces of the gateway and get queued up

at the access point for transmission over the air. For RED to be effectively implemented

in the gateway, the gateway should be aware of the queue state in the access point.

Here, we uses a periodically sampled instantaneous queue length of the access point to

calculate the estimated average queue length at the gateway. Once this is achieved, the

gateway can implement RED in the usual manner with the RED parameters configured

based on the maximum queue size at the access point.

In the original RED, the average queue length is calculated on each packet arrival

whereas it is done periodically in Proxy-RED. The average queue length is an important

parameter that determines the overall AQM performance since it indicates the severity of

congestion, and affects the stability of the random drop mechanism. Simulation results

show that the estimated average queue length in Proxy-RED depicts the behavior of
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original average queue length very accurately. As a result, the proposed Proxy-RED

scheme results in overall performance improvement in WLAN. In particular, the Proxy-

RED scheme significantly improves packet loss rate and goodput for a small buffer, and

delay for a large buffer size.

The remainder of this chapter is organized as follows: We demonstrate the impact

of an AQM/ECN scheme on WLAN with a brief discussion in Section 5.2. The proposed

AQM scheme for WLAN, called Proxy-RED, is detailed in Section 5.3. In Section 5.4,

simulation results are presented followed by the concluding remarks in Section 5.5.

5.2 An AQM scheme in WLAN

Although congestion due to the speed mismatch between a wired network and

wireless LAN (WLAN) at the access point (AP) is regarded as a critical problem that

affects overall performance of WLAN, only a handful of research have investigated the

AQM issues in WLAN. H. Xu et al. proposed an AQM scheme for WLAN in [72],

but the performance analysis of the proposed AQM scheme was limited only to issue of

delay (from wired network to WLAN). On the other hand, goodput and packet loss rate

are generally accepted as more important metrics in evaluating an AQM performance.

In [51], the authors mainly focused on the comparative analysis of different versions of

TCPs, particularly TCP veno [24] and TCP reno under RED and Tail-Drop (TD) Queue.

This study concluded that RED does not help improve goodput in WLAN. However,

it lacks the detailed analysis of the reason why RED can result in the performance

degradation.
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To investigate the impact of an AQM scheme in WLAN, in particular RED, we

performed extensive simulation using ns2 [3] for the network shown in Figure 5.3. In the

simulations, all the data packets are generated at the wired nodes and terminate at the

mobile nodes except for the ACK packets, and all the sources randomly initiate packet

transmission between 150 to 152s (for the ns2 simulator reach the stable state), and

connections are terminated 400s later. Each intermediate node has a buffer size of 500

packets, while TCP payload is fixed at 1460 bytes. RED/Tail-Drop is deployed at the

the access point whose buffer size varies from 50 to 700 packets, which roughly target up

to 1 Mbyte of memory. We set the minimum (θmin) and maximum (θmax) threshold of

RED as 30% and 70% of the buffer size respectively, and the maximum drop probability

(pmax) is varied from 0.001 to 0.4.

Figures 5.4, 5.5 and 5.6 summarize the simulation results of 10 TCP connections

for the downlink (access point to mobile nodes). Although throughput roughly converges
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Fig. 5.5. Tail-Drop with 10 TCP connections under different buffer size

to 5.25 Mbs regardless of the queue management scheme, gootput and packet loss rate

with Tail-Drop in Figure 5.4 are better compared to RED as reported in [51], and the

performance degradation increases as pmax of RED increases. (Note that the Tail-Drop

(TD) results are the leftmost points in most of the graphs.) However, the delay expe-

rienced at the access point and the standard deviation for each competing connections

are significantly improved with RED.

To get a better understanding of the Tail-Drop/RED behavior in the WLAN, we

first investigated the queue behavior and the congestion window size of a connection.

In Figure 5.5, for a small buffer size, the instantaneous queue length fluctuated severely

and the congestion window size was very small. On the other hand, the queue behavior

exhibited the typical saw-tooth shape, and the window size became large for a large

buffer size. A large congestion window size and buffer size imply that packet injection

is much more bursty resulting in a larger delay compared to a network with a small
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Fig. 5.6. The impact of Tail-Drop and RED on TCP sources

window size and buffer. A large bandwidth delay product induces instability in the

TCP/RED mechanism, and it is extremely difficult for RED to find the optimal operating

points [56]. Next, we measured the number of TCP time-outs and the number of packets

retransmitted at TCP sources with Tail-Drop and RED. Figure 5.6 (a) clearly shows that

the number of TCP time-outs decreases with RED for a range of pmax, but the number

of retransmitted packets increases as pmax does in Figure 5.6 (b). This implies that

although RED helps in reducing the number of TCP time-outs, the number of dropped

packets, i.e., retransmitted packets due to the RED mechanism, is larger than that caused

by the buffer overflow with the Tail-Drop Queue. This explains why Tail-Drop shows

better goodput and packet loss rate than RED in Figure 5.4.

To reduce the effect of packet loss by the random drop mechanism, we performed

the same simulation with the ECN [20] [55] enabled. When ECN is enabled, the RED

queue sets the explicit notification (ECN) bit in the header of an arriving packet instead
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of dropping it, and then the receiver copies the ECN bit to the ACK packet to notify

the possibility of congestion to the source. When a TCP source receives an ACK packet

with the ECN bit activated, it was interpreted as a sign of congestion, and reduced

its congestion window size by half of the original value. In Figure 5.7, RED with ECN

significantly improves the packet loss rate and goodput compared to Tail-Drop and RED

without ECN in Figure 5.4. Also, RED with ECN maintains a comparable delay and

standard deviation of RED queue.

In summary, RED does not help in a WLAN environment as was reported in [51],

but with ECN, RED can provide better performance than Tail-Drop. Therefore, in the

rest of the experiments, we use RED with the ECN marking. However, implementing the

RED scheme at an access point may not be practically feasible considering the current

architectural trends of light weight access points. While all prior studies have considered

the impact of RED at the access point, we investigate the modified RED scheme that

works on the behalf of the access point.

5.3 The Proposed Proxy-RED Scheme

The main idea of proxy AQM is to reduce the overhead of the access point by

implementing the AQM functionality at the gateway as shown in Figure 5.2. An AQM

scheme deploys a random drop/marking mechanism based on the information such as

the average queue length [22] or the outgoing rate [36] that indicates the severity of

congestion. In WLAN, the outgoing rate is dependent on the number of mobile nodes,

which participate in communication. Therefore, estimating the outgoing rate or the
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queue state at a gateway without explicit notification from an access point is a practically

difficult problem.

In this thesis, we extend the RED/ARED scheme to a proxy mode since RED is

the most widely studied AQM scheme, and is commercially used in CISCO routers. To

investigate the feasibility of this idea, we slightly modify ARED as follows. The access

point calculates the average queue length and update pmax of ARED, and then these val-

ues are transmitted to the wireless gateway periodically (every tsample seconds). When

the wireless gateway receives these values, it simply deploys a random drop mechanism.

The simulation results show that the proposed scheme improves goodput and packet loss

rate in Figures 5.8 (b) and (c). Especially, the delay at the access point, which is the

most critical factor in deploying VoIP in WLAN, is significantly improved in Figure 5.8

(d) compared to Tail-Drop (TD).

However, calculating the average queue length still takes a significant amount of

overhead in the RED/ARED scheme than just deploying the random drop mechanism.

As a solution to this problem, we propose to use the sampled instantaneous queue length

of the access point to calculate the average queue length at the gateway. One way

to achieve this is to block the egress interface on the gateway as long as there is a

frame in the access point to transmit. This leads to queue buildup in the gateway

(as opposed to the access point) and the gateway can then implement RED in the

usual manner. In other words, the service rate of the egress Ethernet interface is made

to mimic the wireless egress interface by blocking it from time to time. If the egress

Ethernet interface on the gateway is blocked as soon as there is a frame in the access

point to be sent out, and is unblocked as soon as that frame is sent on the air, then the
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queue in the gateway will exactly mimic the instantaneous queue length in the access

point (minus 1). Another approach is to simply transmitting the instantaneous queue

length to the gateway periodically (every tsample seconds). Although there are multiple

ways to obtain the sampled instantaneous queue length of the access point, we used the

later since it is simpler, and the choice of the implementation detail is beyond the focus

of our study. Once this is achieved, the gateway can implement RED with the RED

parameters configured based on the maximum queue size at the access point.

Here, we slightly modify the ARED’s drop function considering the WLAN char-

acteristics. First, we use the smaller maximum drop probability for Proxy-RED. In sim-

ulations, we observed that the packet loss rate and goodput started to degrade quickly

when pmax exceeds 0.1 for 10 and 30 TCP connections. We believe that a large value

of pmax only results in higher packet loss rate and lower goodput by driving most of

the TCP sources to timeout. In practice, using more than 30 mobile node for an access

point is very rare, and the impact of aggressive packet dropping is much more serious

for a network with longer RTTs, such as in WLAN . Therefore, we limit the maximum

drop probability (pmax) of Proxy-RED to 0.1.

Second, RED/ARED drops all the arriving packets when the average queue length

exceed the maximum threshold1. Since the instantaneous queue length is periodically

transmitted to the wireless gateway, all the connections may suffer from severe packet loss

when the estimated queue exceeds the maximum threshold value for the entire sampling

interval (tsample). To prevent this undesirable packet loss, we double the pmax value

1ARED in gentle mode chooses the drop probability between pmax and 1.0 when the qave
moves thmax to 2thmax. Then, RED/ARED’s drop probability is too conservative for the large
thmax.
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when the average queue length exceeds the maximum threshold in Proxy-RED as shown

in Figure 5.9.

5.4 Performance Evaluation

The average queue length of RED is calculated by qave ← (1 − qw)qave + qwq,

where qw represents the queue weight, and q and qave represent the instantaneous and

the average queue lengths, respectively. Here, the overall characteristics of the average

queue length is dependent on the queue weight. When the queue weight is large, the

average queue length fluctuates severely according to the instantaneous queue length.

On the other hand, the average queue is more stable, but requires a longer time to reach

the steady state behavior for a small value of the queue weight. In [21], the queue

weight is determined by the link capacity since the average queue length is calculated

on each packet arrival. ARED configures the queue weight to represent a time constant
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for the queue average of one second, which is equivalent to 10 RTTs of queue average

assuming RTT = 100ms, and uses wq = exp(−1/C), where C is the link capacity

(packets/second) for the default configuration. However, Proxy-RED uses the sampled

instantaneous queue length of the access point to calculate the average queue length.

Therefore, we first investigate the accuracy of the estimated average queue length of the

proposed scheme.

In this simulation, we varied the sampling interval (tsample) from 0.1 to 1.0s and

configured the queue weight to target 2 to 10 RTTs of queue average2. In the beginning,

10 TCP flows started at 150s to 152s and lasted for 300s. Later, 20 TCP flows are

added at 250s and lasted for 100s. Figure 5.10 summarizes the simulation results with

100 and 350 packet buffers at the access point. Here, we define the response time as

the time between when 20 TCP connections were added to the time when the average

queue length reached the peak value. It is clear that the response time was better with

a larger sampling interval (tsample). However, the standard deviation of the average

queue length was also large. On the other hand, a smaller sampling interval exhibits

more stable estimation at the cost of the communication overhead between the AP to

the wireless gateway. From the simulations, we found that the estimated average queue

length is very accurate when the sampling interval is less then 1 second. For the rest of

the simulations, we configured tsample and wq with 500ms and 0.167 respectively, which

represent the estimated average queue length of 6 RTTs since these value showed the

best result in our simulation.

2We deactivated the adaptive algorithm in the Proxy-RED to eliminate the impact of pmax,
thus we used pmax = 0.1 to target maximum 30 TCP flows.
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Fig. 5.10. Proxy-RED performance for different parameter settings
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Next, we activated the adaptive mode for Proxy-RED, and investigated the queue

behavior of the Proxy-RED scheme. In Figure 5.11 (a), the access point queue severely

fluctuates regardless of the buffer size with the Tail-Drop queue, and suffers from the

continuous buffer overflows, especially when traffic is increased. On the other hand,

Proxy-RED effectively reduces the buffer overflow, and the queue behavior becomes

more stable for the larger the buffer size in Figure 5.11 (b).
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Fig. 5.11. The impact of Tail-Drop and Proxy-RED on queue behavior

Figure 5.12 finally summarizes the simulation results with 10 and 20 TCP flows

with the Tail-Drop queue and Proxy-RED. Although the WLAN throughput is not af-

fected by the AQM scheme, the goodput with Proxy-RED shows significant improvement

compared to the Tail-Drop queue in Figures 5.12 (a) and (b). Moreover, the goodput

with Tail-Drop queue degrades as the number of a connection increases, but Proxy-RED
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effectively maintains a stable goodput regardless of the number of connections when

buffer size is larger than 100 packets. Proxy-RED also shows a lower and stable packet

loss rate and delay. Although packet loss rate with the Tail-Drop queue significantly is

reduced with a larger buffer size, the larger buffer size also contributes to a longer delay

in Figures 5.12 (c) and (d). On the other hand, Proxy-RED keeps the packet loss rate

under 1% regardless the buffer size. Since the Proxy-RED is based on ARED, which

aims to keep the queue size around the middle of the buffer, the delay still increases even

with Proxy-RED as the buffer size grows, but not as much as the Tail-Drop queue.

5.5 Concluding Remarks

Although wireless networks based on the IEEE 802.11 standard have been widely

deployed in enterprises and university campuses, the congestion arising from the disparity

in channel capacity of the wireless and the wired interface of an access point poses a

serious challenge in providing Quality of Service (QoS) to the wireless network users. In

this chapter, we first studied the feasibility of an AQM scheme to handle the congestion

at the wireless access point, and observed that an AQM scheme such as RED can bring

significant performance improvement in WLAN when used with ECN marking. We,

then, proposed the proxy AQM scheme, called Proxy-RED, that performs the AQM

functionality at the gateway on the behalf of wireless access points considering the current

architectural trend of a light-weight access points.

Simulation results showed that the proposed Proxy-RED scheme can bring overall

performance improvement in WLAN. In particular, the Proxy-AQM scheme significantly
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improved packet loss rate and goodput for a small buffer, and delay for a large buffer

size.

In the future, we plan to investigate the effect of proxy RED schemes on converged

wireless local area networks, i.e., wireless networks used for Voice over IP (VoIP) and

data. Initial simulation results indicate that the quality of the VoIP connections could

largely benefit from the use of such a scheme. Furthermore, although we limited our

focus on the queue length based AQM scheme, i.e., RED, in implementing the proxy-

RED scheme in this chapter, our future work will involve a comparative study with other

classes of AQM schemes such as AVQ [36] and HRED [74].
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Chapter 6

Conclusions

With the proliferation of different types of applications that need customized

service, Quality-of-Service (QoS) provisioning has become an active research area in the

Internet community. However, the complexity of the Internet traffic dynamics has eluded

researchers in finding an efficient solution. The main theme of this thesis is to investigate

flow estimation based techniques to support QoS in the Internet.

In this thesis, we investigated five related topics aimed at improving the stability

and security of the Internet, which are critical components in supporting QoS in the

Internet. First, we developed a flow estimation scheme, called HaTCh, to accurately

measure the congestion level since congestion control is an efficient way of improving

network stability. In-depth performance evaluation including analytical modelings and

extensive simulations showed that the HaTCh scheme improved not only the estimation

accuracy and stability, but also improved the robustness of the estimation compared

to the SRED mechanism. Second, the HaTCh scheme was extended to design a new

AQM scheme (HRED). HRED effectively minimized the dependency of configuration

parameters through a new dropping function, resulting in a much stable queue occupancy

and low packet loss rate compared to existing AQM schemes such as SRED and ARED.

Third, we developed a new DoS defense mechanism, called HaDQ, based on the flow

estimations technique to detect and penalize the bandwidth attack of non-responsive
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flows. The main advantage of the HaDQ scheme is that it is a scalable technique since

it minimizes the per-flow state by exploiting HaTCh’s accurate sampling techniques.

Simulation based performance evaluation showed that the HaDQ scheme maintained very

low false positives, while providing much better protection to conforming users compared

to CHOKe and FRED. Then, we developed a worm defense mechanism, called the worm-

DQ scheme, which inherited the main advantages of HaTCh and HaDQ. Performance

study including various background traffic showed that the worm-DQ scheme was very

effective in detecting and penalizing worm scanning activities. Finally, we investigated

the impact of an AQM scheme in wireless networks, and presented a new AQM scheme,

called Proxy-RED, which is tailored for Wireless Local Area Networks (WLANs). The

Proxy-RED scheme is shown to be an effective technique for improving the goodput and

delay of access points in WLANs.

In the future, we plan to extend these works in following directions. First, based

on the understanding of today’s Internet traffic characteristics, we plan to optimize the

performance of HaTCh/HRED and HaDQ schemes by properly configuring or by extend-

ing them to self-configuring to various traffic conditions. Second, in security measures,

false positive is critical since it can cause Denial-of-Service (DoS) to legitimate users.

Therefore, diversifying the evaluation tools is important in evaluating security measures.

As an on-going work, we plan to perform trace-driven performance evaluations to mini-

mize possible false positives. We believe these techniques, when fully fetched, can provide

a viable solution for supporting QoS in Internet.
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