QUALITY OF THE ARKANSAS RIVER AND IRRIGATION-RETURN FLOWS IN THE LOWER ARKANSAS RIVER VALLEY, COLORADO By Doug Cain

U.S. GEOLOGICAL SURVEY

Water-Resources Investigations Report 84-4273

Prepared in cooperation with the SOUTHEASTERN COLORADO WATER CONSERVANCY DISTRICT

Lakewood, Colorado 1985 UNITED STATES DEPARTMENT OF THE INTERIOR

DONALD PAUL HODEL, Secretary

GEOLOGICAL SURVEY

Dallas L. Peck, Director

For additional information write to:

Colorado District Chief U.S. Geological Survey, WRD Box 25046, Mail Stop 415 Denver Federal Center Lakewood, CO 80225 Copies of this report can be purchased from:

Open-File Services Section Western Distribution Branch U.S. Geological Survey Box 25046, Mail Stop 306 Denver Federal Center Denver, CO 80225 Telephone: (303) 236-7476

CONTENTS

	Page
Abstract	1
Introduction	2
Description of study area	2
Problem and objectives	5
Approach	6
Acknowledaments	6
Areal variations in the quality of irrigation-return flows	6
locations of identified irrigation-return flows	8
Water quality of identified irrigation-return flows	8
Seasonal variations in the Arkansas River and selected irrigation-	U
return flows	13
Variations in the Arkansas River	13
Discharge	13
Specific conductance	13
Ather water-quality constituents	13
Variations in solected irrigation-return flows	16
Discharge	16
Specific conductance	16
Ather water-quality constituents	19
Pelationships between quantity and quality of applied water and	19
innigation-noturn flow in a small innigated anon-	21
Description of cmall impigated apparent and area	21
Method of investigation	21
	24
Water Duuyet	24
Sources of water in west noticy Drain	24
	27
Irrigation-return flow	27
Salt budget	31
Other water-quality constituents	34
Summary	38
References cited	41
Supplemental information	43
System of numbering wells	44
Data	46

ILLUSTRATIONS

Plate 1.	Maps showing location of irrigation-return flows and sampling sites, Arkansas River, Coloradoin p	ocket
		Page
Figure 1. 2-8.	Map showing location of study area Graphs showing: 2. Mean annual streamflow 1974-78, irrigated acreage, and mean specific conductance of ground and	3
	surface water	4
	3. Downstream increase in specific conductance of irrigation-return flows	10

CONTENTS

Figures 2-8	Graphs showing continued:	Page
riguies 2 o.	4 Specific conductance and streamflow of the	
	Arkansas River, July 1977	12
	5. Streamflow of the Arkansas River.	16
	1978 irrigation season	14
	6. Specific conductance of the Arkansas River.	
	1978 irrigation season	15
	 Discharge and specific conductance of irrigation- return flow at five sites, 1978 irrigation 	
	season	18
	8. Dissolved-oxygen and suspended-solids	
	concentration of irrigation-return flow at	
	five sites, 1978 irrigation season	20
9.	Map showing data-collection sites in the intensive	
10	study area near Holly	22
10.	Diagram showing water budget in the intensive study	05
11	area near Holly, 19/8 irrigation season	25
11.	Graph showing sources of water and sait in the	20
10	Chaph showing counces and fate of uster analised	28
12.	at the land surface in the intensive study area	
	at the fally 1079 impigation concomposition area	20
12-10	Diagname chewing:	29
15 15.	12 Chound-waten balance in the intensive study	
	anoa noan Holly 1978 innigation coacon	30
	14 Salt hudget in the intensive study area near	50
	Holly 1978 innigation socon	32
	15 Sources and fate of salt applied at the land	52
	surface in the intensive study area near	
	Holly 1978 irrigation season	35
	16 Minimum maximum median and mean concentrations	55
	of major ions in water from the intensive study	
	area near Holly, 1978 irrigation season	36
	17. Minimum, maximum, median, and mean concentrations	
	of nutrients, suspended solids, biochemical-	
	oxygen demand, and bacteria in the intensive	
	study area near Holly, 1978 irrigation season	37
	18. Median ratios of water-quality constituents	
	in the West Holly Drain and applied water	39
	19. System of numbering wells in Colorado	45

TABLES

		Page
Table 1.	Water-quality standards for selected streams	7
2.	Sources of irrigation water and discharge points for irrigation-return flows and selected tributaries	9

CONTENTS

		Page
Table 3.	Statistical summary of selected water-quality data from irrigation-return flows and selected tributaries sampled	
	during 1976-77	10
4.	Characteristics of five irrigation-return flows sampled	17
Б	during the 1978 intrigation season head we in the intensive study area near Helly 1978	1/
J. 6	Calculated water budget for the intensive study area near	25
0.	Holly 1978 irrigation season	26
7.	Calculated salt budget for the intensive study area near	20
	Holly, 1978 irrigation season	33
8.	Water-quality data from reconnaissance sampling of	
	irrigation-return flows and selected tributaries	47
9.	Pesticide data from selected irrigation-return flows	
10	and tributaries	57
10.	Water-quality data at Arkansas River sites, July 19//	58
11.	water-quality data at Arkansas River sites, 1978	61
12	Water-quality data for four irrigation-return flow sites	01
12.	1978 irrigation season	62
13.	Daily precipitation in the intensive study area near	•
	Holly, 1978 irrigation season	64
14.	Mean daily air temperature in the intensive study area	66
15.	Daily streamflow in the intensive study area near Holly.	00
	1978 irrigation season	67
16.	Water levels in and near the intensive study area near Holly, 1978 and 1979	71
17.	Calculated ground-water pumpage in the intensive study	• =
	area near Holly, 1978 irrigation season	79
18.	Daily mean specific conductance in the intensive study	
	area near Holly, 1978 irrigation season	80
19.	Water-quality analyses in the intensive study area near Holly, 1978 irrigation season	82

METRIC CONVERSION FACTORS

Inch-pound units used in this report may be converted to SI (International System) units by using the following conversion factors:

Ву	To obtain SI units
0.4047	hectare
1,233	cubic meter
0.02832	cubic meter per second
0.01093	cubic meter per second per square kilometer
0.3048	meter
2.54	centimeter
1.000	microsiemen per centimeter at 25° Celsius
1.609	kilometer
2.590	square kilometer
0.9072	metric ton
0.9072	metric ton per day
	By 0.4047 1,233 0.02832 0.01093 0.3048 2.54 1.000 1.609 2.590 0.9072 0.9072

To convert degrees Fahrenheit (°F) to degrees Celsius (°C), use the following formula: $^{\circ}C = (^{\circ}F-32)X5/9$.

QUALITY OF THE ARKANSAS RIVER AND IRRIGATION-RETURN FLOWS IN THE LOWER ARKANSAS RIVER VALLEY, COLORADO

By Doug Cain

ABSTRACT

Irrigation-return flows in the lower Arkansas River valley of Colorado were investigated using data from a one-time sampling at 59 sites during the 1976 and 1977 irrigation seasons, monthly sampling at 4 sites, and intensive measurement and biweekly sampling in a small irrigated area during the 1978 irrigation season. The data were evaluated to determine areal and seasonal variations in the quality of irrigation-return flows and to develop relationships between the quantity and quality of applied water and irrigation-return flow.

Specific conductance of return flows generally increased downstream, paralleling a downstream increase in the specific conductance of irrigation water. During July 1977, the source of most Arkansas River streamflow downstream from Manzanola was irrigation-return flow. A similar situation probably existed during periods of little precipitation in the early and late irrigation seasons during 1974 to 1978. Irrigation-return flows had a large effect on the quality of water in the Arkansas River during these times.

Seasonal variations of discharge, specific conductance, and dissolved oxygen of five return flows were similar to those observed in the Arkansas River. Three irrigation-return flows, composed mainly of tailwater, had larger concentrations of suspended solids, biochemical-oxygen demand, and Kjeldahl nitrogen than two flows that were composed primarily of ground-water return flow.

Irrigation-return flow accounted for 40 percent of applied water in a small (6.75-square mile) irrigated area. Three-fourths of the total return flow was ground-water return flow, which also transported 88 percent of applied salts to the ground-water system. Except for nitrite plus nitrate and total phosphorus, measured water-quality constituents were generally more concentrated in the West Holly Drain, which drains the area, than in the applied water.

INTRODUCTION

Irrigation-return flow is the volume of water applied for irrigation but not consumed by crops, which returns to its source or to another water body. Irrigation-return flows are two types: (1) Surface-water return flow, or tailwater, is excess irrigation water that runs off the end of fields and flows directly back to streams; and (2) ground-water return flow is excess irrigation water that percolates to the ground-water reservoir, and may eventually return to streams as ground-water inflow or seepage.

Approximately 300,000 acres of irrigated land in the lower Arkansas River valley of Colorado may contribute irrigation-return flow to the Arkansas River. Recognizing the possible impacts that irrigation-return flows could have on the quality of water in the Arkansas River, and, thereby, its use as an agricultural, municipal, or industrial supply, the Southeastern Colorado Water Conservancy District requested the U.S. Geological Survey to conduct a 3-year investigation to determine the quality of irrigation-return flows in this area of Colorado (fig. 1).

Description of Study Area

The study area extended from just below Pueblo Reservoir to the Colorado-Kansas State line, and focused on irrigated agricultural lands in the valley of the Arkansas River (pl. 1). According to the U.S. Bureau of the Census (1981), the 1980 population of this area was approximately 160,000, with twothirds of the total living within the city limits of Pueblo. One-half of the remaining population lives in the towns of Rocky Ford, La Junta, Las Animas, and Lamar. About 25,000 people reside in smaller towns or rural areas. Excluding the city of Pueblo, the economy of the area is primarily agricul-The value of crops produced in 1978 was about \$60 million (Colorado tural. Department of Agriculture, 1980). Hay, wheat, corn, and sorghum were the principal crops east of La Junta; beans, melons, vegetables, hay, and corn were the principal crops west of La Junta during the study period. Diversion of streamflow and ground-water pumpage are required to sustain agriculture because the mean annual precipitation is 12-15 in.

The Arkansas River flows from west to east through the study area. Major tributaries include Fountain Creek and the St. Charles, Huerfano, Apishapa, and Purgatoire Rivers. During the period 1974 to 1978, the mean annual flow of the Arkansas River decreased downstream by more than a factor of 10 from Avondale to Lamar, as a result of diversions for irrigation and resultant consumptive use (fig. 2).

Streamflow in the study area is regulated by Pueblo Reservoir and John Martin Reservoir near Las Animas. Both reservoirs store water during the winter and during flood periods for later release. In addition, Pueblo Reservoir is used for storage of water diverted into the Arkansas River from the Colorado River basin as part of the Fryingpan-Arkansas Project, a multipurpose, water-development project of the U.S. Bureau of Reclamation.

2

Figure 2.--Mean annual streamflow 1974-78, irrigated acreage, and mean specific conductance of ground and surface water.

Streamflow used for irrigation is diverted from the river through a system of 16 major and several minor canals. Because streamflow is not normally adequate to meet crop demands, especially in spring and late summer, the hydraulically connected alluvial aquifer adjacent to the Arkansas River has been extensively developed. According to Taylor and Luckey (1974), an estimated 153,000 acre-ft, or about 20 percent of the water applied to crops during 1941-65, was pumped from approximately 1,400 wells completed in the alluvial aquifer. Despite extensive ground-water withdrawals and efforts to supplement streamflow with imported water from the Fryingpan-Arkansas Project and from private transmountain-diversion projects, demand for irrigation water has exceeded available supply in most years.

The quality of water in the Arkansas River changes dramatically in the study area. Specific conductance, which is directly related to dissolvedsolids concentrations, increased from a mean of about 500 micromhos at Pueblo Reservoir to a mean of about 3,500 micromhos at the Colorado-Kansas State line According to Miles (1977), the main reason for the increase in (fig. 2). dissolved solids is consumptive use, which concentrates the chemical constituents in both ground and surface water. Associated with this increase is a shift in the relative proportions of the major ions that comprise most of the dissolved solids. Relative proportions of sodium, chloride, and sulfate increase, whereas relative proportions of calcium, magnesium, and bicarbonate decrease (Gaydos, 1980). In addition, increases occur in stream temperature, concentrations of nitrite plus nitrate, and suspended solids (Cain and Edelmann, 1980; U.S. Geological Survey, 1978). Impacts on river-water quality related to municipal and industrial wastewater discharges are greatest just east of Pueblo; these impacts have been intensively analyzed by Cain and others, (1980). The salinity problem, located primarily east of La Junta, has been studied by Miles (1977).

Water pumped from the alluvial aquifer for irrigation also showed a large downstream increase in specific conductance (fig. 2). Ground water generally had a larger specific conductance than water from the Arkansas River, but the difference between the two sources decreased downstream. In the stream reach between Lamar and the Colorado-Kansas State line, the mean specific conductance of surface and ground water was similar.

Problem and Objectives

During the process of application and return to streams, irrigation water undergoes changes in quality that may cause adverse effects on receiving streams. Some commonly observed effects on water quality caused by irrigation-return flows are increases in concentrations of suspended sediment, nutrients, pesticides, bacteria, and salinity.

The objectives of the investigation were:

- 1. Identify and define the quality and areal trends in the quality of major irrigation-return flows.
- 2. Document seasonal variations in the quality of both surfaceand ground-water return flows.

3. Document relationships between the quality and quantity of applied water and irrigation-return flows in a small irrigated area.

Approach

Water-quality samples were collected from irrigation-return flows throughout the study area during 1976 and 1977 to define areal variations in their quality. Based on these samples four irrigation-return flows were selected for monthly sampling during the 1978 irrigation season to document seasonal trends in quality. A small irrigated area was also selected for intensive study during 1978 to document relationships between the quantity and quality of applied irrigation water and irrigation-return flow. This evaluation included developing water and salt budgets for the small irrigated area.

The quality of irrigation-return flow was evaluated in comparison with the quality of applied water and with water-quality standards for the Arkansas River and selected tributaries in the study area (Colorado Department of Health, 1982). Water-use classifications and resulting numerical standards are listed in table 1. These standards are not intended to apply specifically to irrigation-return flows. However, because irrigation-return flows enter the Arkansas River and its natural tributaries and, in some places, may be a large part of the flow, these standards are used in this report as one measure of the quality of irrigation-return flows.

Acknowledgments

The author wishes to thank the many landowners who permitted access to their property to measure and to collect samples of irrigation-return flows. Special appreciation is extended to the Buffalo Mutual Irrigation Company and the Board of the Holly Drain for allowing temporary installation of continuous-recording instrumentation.

AREAL VARIATIONS IN THE QUALITY OF IRRIGATION-RETURN FLOWS

An inventory and reconnaissance sampling of irrigation-return flows was made during the 1976 and 1977 irrigation seasons to define the locations, quality, and areal variations in the quality of major irrigation-return flows. Because a drought condition existed in the study area at the time, less water than normal was available for irrigation, and it is likely that the volume of irrigation-return flows was significantly decreased. Some of the irrigationreturn flow channels or ditches that contain water during normal years were dry and were not sampled.

eams
str
selected
for
standards ¹
Table 1Water-quality

milligrams per liter;	
Colorado Department of Health (1982); mg/L,	<pre>µg/L, micrograms per liter]</pre>
[from	

			,				
				Streams			
	Arkansas River ²	St. Charles River	Sixmile Creek	Huerfano River	Apishapa River	Purgatoíre River	Other tributaries
Water-use classifications ³ Class 2 recreation ⁴	×	×	×	×	×	×	×
ulass z warm-wauer aquatic life Water supply Adriculture	×××	×××	× × ×	× × ×	× × ×	×××	× × ×
, Numeric standards ⁵ Dissolved oxygen (mg/L) ⁶ pH (standard units)	5.0 6.5-9.0	5.0 6.5-9.0	5.0 6.5-9.0	5.0 6.5-9.0	5.0 6.5-9.0	5.0 6.5-9.0	5.0 6.5-9.0
Fecal colif orm (colonies per 100 milliliters)	2,000	2,000	2,000	2,000	2,000	2,000	2,000
Nonionized ammonia (mg/L as N)	0.1	0.1		0.1	0.1	0.1	
uissoived nitrate (mg/L as N) Dissolved chloride (mg/L)	10 250	10 250		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
Dissolved sulfate (mg/L) Dissolved iron (µg/L) Dissolved manganese (µg/L) Aldrin (µg/L) Dieldrin (µg/L)	2,200 300 50 .003 .003	1,600 300 50 .003 .003			003	003	. 003
DDT (µg/) Endrin (µg/L) Heptachlor (µg/L) Lindane (µg/L) Malathion (µg/L)	.001 .004 .1 .1	.001 .004 .1 .1	.001 .004 .1	.001 .004 .1 .1	.001 .004 .001 .1	.001 .004 .1 .1	.001 .004 .001 .1
Methoxychlor (µg/L) Mirex (µg/L) PCB's (µg/L) Toxaphene (µg/L)	.03 .001 .001 .005	.03 .001 .005	.03 .001 .001 .005	.03 .001 .001	.03 .001 .001 .005	.03 .001 .001	.03 .001 .001
¹ Standards are listed or	nly for those	water-quality c	constituents f	or which data	are included i	n this report.	

²For the reach from the confluence with fountain Creek to the State line. ³X indicates classification applies to stream. ⁴Defined as secondary contact (that is, boating, kayaking). ⁵Dashes indicate no standard for that parameter.

Locations of Identified Irrigation-Return Flows

Identified irrigation-return flows are shown on plate 1. Most of the sites are ditches or channels constructed for collection and conveyance of return flow. Many natural tributaries in the area also contain irrigationreturn flow; the five tributaries that were sampled during the study are shown on plate 1. Water-quality samples were collected at 59 irrigation-return flow sites. Data for onsite determinations (discharge, temperature, specific conductance, pH, and dissolved oxygen), major ions, nutrients, and bacteria from these samples are in table 8; data at selected sites for pesticides are listed in table 9 (tables 8 and 9 are in the Supplemental Information section at back of report).

Distribution of both identified and sampled irrigation-return flows was not uniform. Larger numbers of irrigation-return flows were identified and sampled in the St. Charles River mesa area southeast of Pueblo, in the vicinity of Rocky Ford, between John Martin Reservoir and Lamar, and between Granada and the Colorado-Kansas State line. Although most of the sampled irrigation-return flows discharged directly to the Arkansas River, some of the flow discharged into irrigation canals, then was reapplied to crops, or the flow infiltrated through sandy channels and percolated directly to the groundwater table before reaching the river. The name of the sites sampled, the source of irrigation water for each site, and the point of discharge, are listed in table 2.

Water Quality of Identified Irrigation-Return Flows

The quality of identified irrigation-return flows sampled during 1976 and 1977 was generally acceptable when compared with the water-quality standards in table 1. Water-quality standards were exceeded, however, in 3 of 24 samples analyzed for sulfate, 14 of 20 samples analyzed for manganese, 2 of 44 samples analyzed for nitrite plus nitrate, 1 of 7 samples analyzed for fecal coliform, and 3 of 15 samples analyzed for dieldrin. In all, water-quality standards for one or more constituents were exceeded at 18 to 59 sites.

The discharge and quality of irrigation-return flows sampled during 1976 and 1977 varied widely in the study area. Minimum and maximum values and other statistics for selected constituents are given in table 3. Some of the variation in amount and quality of irrigation-return flow is caused by variations in the amount and quality of applied water.

The specific conductance of irrigation-return flows shows a large downstream increase (fig. 3). The major cause of the increase is an increase in specific conductance of both surface and ground water available for irrigation (fig. 2).

The quality of applied irrigation water has a large effect on the quality of irrigation-return flow. The relationship between the two was quantitatively evaluated for an intensive study area near Holly, described later in this report. To provide an indication of the areal relationship between the quality of irrigation-return flow and applied surface water, samples were

Table 2s	Sources of	irrigation water	and	discharge	points	for	irrigation-return	flows	and	selected	tributaries
----------	------------	------------------	-----	-----------	--------	-----	-------------------	-------	-----	----------	-------------

Site No. on Plate 1	Site name	Source of irrigation water ¹	Point of discharge
IR-54	21st Lane Drain	Bessemer Ditch, wells	Reapplication to fields
IR-53	23rd Lane Drain	Bessemer Ditch, wells?	Reapplication to fields
IR-52	25th Lane Drain	Bessemer Ditch, wells?	Tailwater ponds
IR-51	St. Charles Bottomland Drain	Bessemer Ditch, wells?, tailwater?	Arkansas River
IR-50	St. Charles Drain	Bessemer Ditch, wells?	St. Charles River
IR-49	37th Lane Drain	Bessemer Ditch, wells?	Tailwater Pond
IR-48	39th Lane Drain at Mouth	Bessemer Ditch, wells?	Tailwater Pond
IR-47	39th Lane Drain at Highway 50	Bessemer Ditch, wells?	Tailwater Pond through IR-48
1R-46	40th Lane Drain	Bessemer Ditch, wells?	Tailwater Pond
1K-45	Wheeler Lane Drain	Bessemer Ditch, wells?	Arkansas River
IR-44	Avondale Drain at Highway 50	Bessemer Ditch, wells	Collier Ditch
IR-43	Avondale Drain at Br 50	Bessemer Ditch, wells	Collier Ditch
IR-42	51st Lane Drain	Bessemer Ditch, wells?	Collier Ditch
IR-41	Avondale Bottomland Drain	Collier Ditch, wells?	Arkansas River
IR-40	North Nepesta Drain	Wells?	Arkansas River
1R-39	RR Junction Drain	Wells?	Arkansas River
18-38	Uxford Farmers Drain	Oxford Farmers Ditch?, wells?	Arkansas River
1R-37	E. Manzanola Drain	Catlin Canal, wells	Arkansas River
18-36	Vroman Urain	Rocky Ford Canal, wells?	Arkansas River
18-32	Patterson Hollow Drain	Catlin Canal, wells	Arkansas River
IR-34	Highway 71 Drain	Rocky Ford Canal, wells?	Arkansas River
IR-33	N. Rocky Ford Drain	Rocky Ford Canal, wells?	Arkansas River
IR-32 ²	Rocky Ford STP Drain	Rocky Ford Canal, wells	Arkansas River
IR-31	Rocky Ford Drain	Rocky Ford Canal, wells	Arkansas River
IR-30	Krammes Drain	Rocky Ford Canal, wells	Arkansas River
IR-29	Newdale Drain	Rocky Ford Canal, wells	Arkansas River
1R-28	W. La Junta Drain	Catlin Canal, wells	Arkansas River
1R-27	East Swink Drain	Catlin Canal, wells	Arkansas River
1R-26	E. Purgatoire Drain	Jones Canal, wells	Arkansas River
18-25	Miller Ditch	Ft. Lyon Canal, wells?	Arkansas River (John Martin Res.)
IR-24	McClave Drain	Ft. Lyon Canal	Arkansas River
IR-23	Lubers Drain	Ft. Lyon Canal, wells?	Alluvial aquifer
IR-22	Prowers Arroyo Drain	Ft. Lyon Canal?	Alluvial aquifer
IR-21	West Keesee Drain	Keesee Canal, wells?	Arkansas River
IR-20	East Keesee Drain	Keesee Canal	Arkansas River
IR-19	Dry Creek Drain	Ft. Bent Canal, wells	Arkansas River
IR-18	Prowers Drain	Ft. Bent Canal, wells	Arkansas River
IR-17	Vista Del Rio Drain	Amity Canal, wells	Pumped from drain for irrigation
IR-16	Markham Arroyo Drain	Amity Canal, wells	Hyde Canal
1K-15	East Lamar Drain	Lamar Canal, Ft. Bent Canal, wells	Arkansas Kiver
IR-14	Vista Del Rio Drain	Amity Canal, Hyde Canal, wells	Big Sandy Creek
IR-13	N. Granada Drain	X-Y Canal, wells	Arkansas River through IR-10
IR-12	S. Granada Drain	X-Y Canal, wells	Arkansas River through IR-10
IR-11	Western Alfalfa Drain	X-Y Canal, wells	Arkansas River
IR-10	Granada Drain at Mouth	X-Y Canal, wells	Arkansas River
IR- 9	N. Arkansas Drain near Barton	Buffalo Canal, wells	Arkansas River through 1R-6
IR- 8	N. Fork W. Holly Drain	Buffalo Canal, wells	Arkansas River through 1R-6
IR- 7	S. Fork W. Holly Drain	Buffalo Canal, wells	Arkansas River through IR-6
1R- 6	W. Holly Drain at Mouth	Buffalo Canal, wells	Arkansas River
1R- 5	E. Holly Drain at Holly	Buttalo Canal, wells	Arkansas River through IR-2
IR- 4	E. Holly Drain Tributary	Buffalo Canal, wells	Arkansas River through IR-2
IR- 3	E. Holly Drain at Highway 50	Buffalo Canal, wells	Arkansas River through IR-2
IR- 2	E. Holly Drain at Mouth	Buffalo Canal, wells	Arkansas River
IR- 1	Romer Field Drain	Wells	Arkansas River
T - 1	Sixmile Creek at Highway 50	Bessemer Ditch, wells	Arkansas River
T - 2	Chicosa Creek near Fowler	Rocky Ford Highline Canal, wells	Arkansas River
T - 3	Apishapa River near Fowler	Rocky Ford Highline Canal, Dxford	Arkansas River
		Farmers Ditch, wells	
T - 4	Timpas Creek at Highway 50	Rocky Ford Highline Canal, Otero Canal, Catlin Canal,	Arkansas River
		Rocky Ford Canal, wells	
1 - 5	Crooked Arroyo at Highway 50	Otero Canal, wells	Arkansas Kiver

 $^1\mbox{Question}$ mark indicates source is uncertain. $^2\mbox{Receives}$ effluent from Rocky Ford sewage lagoons.

Table 3.--Statistical summary of selected water-quality data from irrigationreturn flows and selected tributaries sampled during 1976-77 [ft³/s, cubic feet per second; °C, degrees Celsius; micromhos, micromhos per centimeter at 25° Celsius; mg/L, milligrams per liter]

Con- stit- uent	Number of samples	Mean value	Stan- dard devia- tion	Min- imum value	Median value	Max- imum value
Discharge (ft ³ /s)	66	3.2	5.3	0.10	1.7	31
Temperature (°C)	74	21.9	4.3	14.0	22.0	34.0
Specific conductance						
(micromhos)	72	2,580	1,350	445	2,500	6,020
pH	68	8.0	. 24	7.5	8.0	9.0
Dissolved chloride						
(mg/L)	70	69	61	4.9	51	250
Dissolved nitrite						
plus nitrate (mg/L)	1 44	3.7	2.9	. 06	3.7	15
Suspended solids						
(mg/L)	35	375	806	6	61	3,300

¹Includes 13 values of total nitrite plus nitrate.

irrigation-return flows.

collected at 41 main-stem sites during July 1977. Approximately two-thirds of the irrigation-return flow samples were collected about the same time. Locations of the Arkansas River sites are shown on plate 1; results of the chemical analyses of the samples are given in table 10 (in the Supplemental Information section).

Specific conductance of the Arkansas River during July 1977 (fig. 4) showed a similar pattern to mean specific conductance (fig. 2). Specific conductance in both instances increased slowly and steadily from Pueblo to near Las Animas, where an abrupt increase occurred. The abrupt increase during July 1977 is related to canal diversions from the Arkansas River between Manzanola and Las Animas. Just downstream from Manzanola, all Arkansas River streamflow was diverted for irrigation. Between this zero-flow point and Las Animas is a distance of about 35 miles. In this reach, streamflow recovered as a result of inflows from several possible sources. These include sluicing of canal water back to the river, returns from several large irrigation-return flows near Rocky Ford, and to a lesser extent, tributary inflows and ground-water seepage. Sluice water would not show an increased specific conductance, and return flows near Rocky Ford had specific conductances similar to the river during July 1977. The specific conductance of tributary inflows and ground-water seepage to the river would be expected to be larger than the specific conductance of sluice or return-flow water in this reach.

As the replenished flow of the river was further diverted between La Junta and Las Animas, specific conductance increased abruptly as a result of the increasing proportion of streamflow composed of tributary inflow and ground-water seepage. Gaged-tributary inflow between the zero-flow point downstream from Manzanola and the Colorado-Kansas State line was less than 10 ft³/s during the sampling period in July 1977. During the same period, the combined discharge of measured irrigation-return flows entering the Arkansas River between the zero-flow point and the Colorado-Kansas State line was about $80 \text{ ft}^3/\text{s}$. These data indicate that the source of most Arkansas River streamflow downstream from Manzanola was irrigation-return flow.

To determine how often this situation occurred, an analysis of streamflow data was made for 1974 through 1978. During this period, the flow of the Arkansas River at La Junta was less than 30 ft³/s about one-half the time. These periods of low flow occurred primarily during the winter and during periods of little precipitation in the early (April, May) and late (August, September) parts of the irrigation season. Irrigation-return flows between Manzanola and the Colorado-Kansas State line of only 40 ft³/s (one-half the July 1977 amount) would have been enough to make up more than one-half the flow of the Arkansas River downstream from La Junta when the flow at La Junta was less than 30 ft³/s and tributary inflow was small (less than 10 ft³/s).

Because irrigation-return flows were such a large contributor to streamflow downstream from Manzanola, they could be expected to have a major effect on the quality of water in the Arkansas River. Based on the data collected in 1976 and 1977, the volume of irrigation-return flows upstream from Manzanola was small compared to Arkansas River flow, and their effect on the quality of water in the Arkansas River was likely to be less.

Figure 4.--Specific conductance and streamflow of the Arkansas River, July 1977.

SEASONAL VARIATIONS IN THE ARKANSAS RIVER AND SELECTED IRRIGATION-RETURN FLOWS

Water-quality samples were collected monthly during the 1978 irrigation season at four irrigation-return flow sites, and biweekly at an additional site in the intensive study area, to evaluate seasonal variations. Concurrent with collection of the monthly return-flow samples, selected onsite waterquality data were collected at eight Arkansas River sites to illustrate seasonal variations in stream quality, and to evaluate further the relationship of the quantity and quality of streamflow and irrigation-return flow.

Variations in the Arkansas River

The eight main-stem sites, where water-quality data were collected monthly during the 1978 irrigation season, are shown on plate 1; water-quality data are listed in table 11 in the Supplemental Information section.

Discharge

Arkansas River streamflow had a large seasonal variation during the 1978 irrigation season (fig. 5). Flows were small during the early part of the irrigation season (April, May). Snowmelt runoff in the mountains west of the study area caused the largest flows of the season during June. Streamflow decreased from the peak in June to successively smaller amounts in July and August and returned to discharges similar to springtime flows by September. Throughout the irrigation season, streamflow declined greatly from Pueblo to the Colorado-Kansas State line.

Specific Conductance

Streamflow variations in the study area had a strong effect on the seasonal variation of specific conductance in the Arkansas River (fig. 6). Largest specific-conductance values occurred during the low-flow periods in spring (April, May) and late summer (August, September). High streamflow in early summer (June, July) resulted in the smallest specific-conductance values observed during the irrigation season. Large downstream increases in specific conductance occurred throughout the irrigation season.

Other Water-Quality Constituents

During the 1978 irrigation season, measured dissolved-oxygen concentrations in the Arkansas River ranged from 4.0 to 13.2 mg/L (milligrams per liter). These concentrations generally were greater than the water-quality standard of 5 mg/L; the only value less than the standard was at the La Junta site in June. Measured dissolved-oxygen values were probably larger than the daily mean value at each site, because the measurements were made during daylight hours. Based on 24-hour dissolved-oxygen measurements, Cain and others (1980) and Cain and Edelmann (1980) showed that larger dissolved-oxygen

Figure 5.--Streamflow of the Arkansas River, 1978 irrigation season.

concentrations occurred during daylight than during nightime hours at three Arkansas River sites in Pueblo County. During the 1978 irrigation season, dissolved-oxygen concentrations were generally larger during the spring and fall, and smaller during the summer.

The number of fecal-coliform bacteria in water samples from the Arkansas River was largest at most sites during the high streamflow period of June and July 1978. About one-half the samples collected during this period exceeded the standard of 2,000 colonies per 100 mL (milliliter). During the low-flow periods in spring and late summer, all but two fecal-coliform values were less than 500 colonies per 100 mL. The numbers of fecal-streptococci bacteria did not exhibit the same strong seasonal variation. Fecal-streptococci data are characterized by large, apparently unrelated variations.

Variations in Selected Irrigation-Return Flows

Four irrigation return-flow sites were chosen for collection of monthly water-quality samples during the 1978 irrigation season. Water-quality samples were also collected biweekly at one site in the intensive study area. Locations of all five sites are shown on plate 1; water-quality and streamflow data are given in tables 12 and 19 in the Supplemental Information section. The sites were chosen to represent areas with different crop types and sources of irrigation water, and to illustrate differences in the quality of tailwater and ground-water return flows. Characteristics of the sites and their contributing drainage areas are listed in table 4.

Discharge

Discharge of the five irrigation return-flows sampled during the 1978 irrigation season is plotted in figure 7. Discharge of East Lamar Drain and Sixmile Creek consisted largely of ground-water return flow and showed less variation than the other three sites. All sites had the largest measured discharge during June, July, or August, when irrigation water was most plentiful. The discharge per square mile of area drained by the Rocky Ford Drain (table 4) was much greater than the other irrigation-return flows. The Rocky Ford Canal has one of the oldest surface-water rights in the study area, resulting in the most available water per irrigated acre, and larger amounts of irrigation-return flow.

Specific Conductance

Specific conductance of water at all five sites was largest in spring and fall and smallest during the summer (fig. 7). The magnitude of variation in Rocky Ford Drain and Sixmile Creek was less than the three sites downstream from La Junta. The same variability occurred in the Arkansas River at sites upstream and downstream from La Junta (fig. 6) and thereby, for irrigation water diverted from the river.

IR-31 R	name	mate drainage area ¹ (mi ²)	Approxi- mate length of drain (mi)	<pre>Åverage discharge per square mile [(ft³/s)/mi²]</pre>	Type of channel	Primary source of irrigation water	Secondary source of irrigation water	Primary crops grown	Type of irri- gation return flow
10-15	ocky Ford Drain	3.0	5.5	5.2	Excavated ditch	Rocky Ford Canal	Wells	Corn, vegetables, melons	Primarily tailwater
CT _ 11	ast Lamar Drain	2.5	4.0	0.4	Deeply ex- cavated (15-20 ft) ditch	Lamar and Fort Bent Canals	Wells	Corn, alfalfa, sorghum	Primarily ground- water return flow
IR-10 G	ranada Orain	8.5	11.0	۲.	Excavated ditch with two branches	Wells	X-Y Canal	Alfalfa	Primarily tailwater
IR-6 🖌	est Holly Drain	6.75	10.7	1.2	Excavated ditch with two branches	Buffalo Canal	Wells	Alfalfa, sorghum (see table 9)	Primarily tailwater (see fig. 11)
1-1 S	ixmile Creek	ی ک	ъ. Э		Natural tri- butary; ephe- meral above and perennial below Bessemer Ditch	Bessemer Ditch	Wells	Vegetables, corn	Primarily ground- water return flow from terrace deposits

Table 4.--Characteristics of five irrigation-return flows sampled during the 1978 irrigation season

Figure 7.--Discharge and specific conductance of irrigationreturn flow at five sites, 1978 irrigation season.

Specific conductance of water in Sixmile Creek was larger than water in Rocky Ford Drain, even though the area drained by Sixmile Creek is irrigated by water of less specific conductance. Average specific conductance of return flow from Sixmile Creek was about 6 times the applied surface water, whereas average specific conductance of return flow from Rocky Ford Drain was only about 1.5 times the applied surface water. The apparent reason for this large difference was that the discharge of Sixmile Creek was primarily ground-water return flow, and the discharge of Rocky Ford Drain was mostly tailwater. Ground-water return flow had a much larger specific conductance than applied irrigation water for two reasons. First, dissolved salts were concentrated by crop evapotranspiration and second, ground-water return flow has a long contact time with soluble minerals, which results in a greater pickup of dissolved salts. Tailwater did not show a large increase in dissolved solids over applied water because it generally was in contact with less soluble material during its comparatively short residence time on the irrigated field.

Other Water-Quality Constituents

Seasonal variation of dissolved oxygen for the five return-flow sites is shown in figure 8. Dissolved-oxygen concentrations were generally greatest during cooler spring and fall months of the irrigation season. This seasonal variation is related to the fact that larger amounts of oxygen can be dissolved in cooler rather than warmer water. Only 2 of 43 values measured were less than the water-quality standard of 5 mg/L.

All pH values measured at the return-flow sites were between 7.3 and 8.4, within the water-quality standard of 6.5 to 9. The smallest pH value at all sites except West Holly Drain occurred during June.

Suspended-solids concentrations were largest and showed the greatest seasonal variation in water from the Rocky Ford, Granada, and West Holly Drains, which primarily contained tailwater (fig. 8). As irrigation water flows across a field it can dislodge, suspend, and transport sediment particles, often resulting in a significant increase of suspended solids in tailwater. The concentration of suspended solids in water from East Lamar Drain and Sixmile Creek was small and relatively stable in 1978. Flow in both systems was composed primarily of ground-water return flow.

Consistent seasonal trends were not readily apparent for any of the nutrients analyzed at the five return-flow sites during 1978; however, other trends were evident. Concentrations of total Kjeldahl nitrogen (organic nitrogen plus ammonia) were generally greater in samples from both the Rocky Ford and Granada drains than concentrations that were commonly observed in the Arkansas River at three sites in 1976, 1978, and 1979 (Goddard, 1980; Cain and Edelmann, 1980; U.S. Geological Survey, 1980). These three sites were the Arkansas River above Pueblo, Arkansas River near Nepesta, and Arkansas River at Coolidge. Total Kjeldahl nitrogen would be expected to be larger in water from these two drains, because the flow consisted primarily of tailwater. Total Kjeldahl nitrogen concentrations in water from the West Holly Drain were also generally larger when the flow was primarily tailwater.

Figure 8.--Dissolved-oxygen and suspended-solids concentration of irrigation-return flow at five sites, 1978 irrigation season.

Concentrations of total nitrite plus nitrate at Rocky Ford and Granada Drains and Sixmile Creek were also greater than concentrations usually found in the Arkansas River. Concentrations of total nitrite plus nitrate (as nitrogen) at the three sites were usually between 5 and 9 mg/L; these concentrations did not exceed the water-quality standard of 10 mg/L on samples collected in 1978. In contrast, concentrations of total nitrite plus nitrate at East Lamar and West Holly Drains were less than 5 mg/L.

Total orthophosphorus concentrations were less than 0.2 mg/L (as phosphorus), except for one sample from the East Lamar Drain and two samples from the Granada Drain. All three samples were collected early in the irrigation season; the large concentrations may have been related to early season fertilization. Total phosphorus concentrations were considerably greater than total orthophosphorus, and they also were more variable.

Biochemical-oxygen demand (BOD_5) did not show an apparent seasonal variation at the five return-flow sites. Concentrations of BOD_5 for the return flows consisting primarily of tailwater (Rocky Ford, Granada, and West Holly Drains) generally were larger than for the two return flows consisting primarily of ground-water return flow (East Lamar Drain and Sixmile Creek). Concentrations of BOD_5 found in water from the Rocky Ford and Granada Drains are quite large, averaging about one-half of the 20 mg/L concentration that would be expected from a sewage-treatment plant operating at the secondary-treatment level. Concentrations of BOD_5 found in water from the East Lamar Drain were variable, with more than one-half the values greater than 5 mg/L. Because the suspended-solids concentration at this site was small, with a mean value of 32 mg/L, it was expected that some of the BOD_5 may have been caused by oxygendemanding substances in the dissolved state. The BOD_5 of Sixmile Creek was uniformly small, 1.0 to 2.0 mg/L, similar to values commonly observed in ground water.

Numbers of both fecal-coliform and fecal-streptococci bacteria were generally smallest in samples collected early in the irrigation season. The largest counts were observed in samples collected in July, August, or September, in contrast to the Arkansas River sites, where the largest counts occurred in June or July. Counts exceeding the water-quality standard of 2,000 colonies per 100 mL for fecal coliform were recorded at all sites except the East Lamar Drain. The number of fecal-streptococci colonies found was greater than the number of fecal-coliform colonies on all but 3 of the 27 return-flow samples.

RELATIONSHIPS BETWEEN QUANTITY AND QUALITY OF APPLIED WATER AND IRRIGATION-RETURN FLOW IN A SMALL IRRIGATED AREA

Description of Small Irrigated Area

A small (6.75 mi²) irrigated area near Holly (fig. 9 and pl. 1) was selected for intensive sampling and measurement during the 1978 irrigation season (March 16-October 31). The area was chosen because it had defined geographic boundaries, was irrigated by one canal, and had a single drain for collection and conveyance of return flow.

Figure 9.--Data-collection sites in the intensive study area near Holly.

The area, which is north of the Arkansas River and just west of Holly near the Colorado-Kansas State line, is bounded on the north by the Buffalo Canal, on the south by a railroad levee, on the west by a levee along the Arkansas River, and on the east by a levee along Wild Horse Creek.

In addition to an average-annual precipitation of about 15 in., water for irrigation is supplied by the Buffalo Canal and by 13 wells completed in the alluvial aquifer, which is hydraulically connected to the Arkansas River. The aquifer was mapped and studied by Vogeli and Hershey (1965), Major and others (1970), and R. T. Hurr, U.S. Geological Survey, (written commun., 1978). Some tributary inflow, consisting of rainfall runoff and tailwater from irrigation to the north, enters the Buffalo Canal and is available as irrigation water.

The West Holly Drain, which enters Wild Horse Creek about 0.25 mi upstream from its confluence with the Arkansas River, provides drainage for the area. It consists of two eastward-flowing branches, one along U.S. Highway 50, and another branch one-half to three-quarters of a mile north; these branches merge about one-half mile upstream from Wild Horse Creek. The drain, especially along the north branch, is deeply excavated; the drain provides conveyance for intercepted ground water in addition to collecting tailwater and rainfall runoff. Crops grown during the 1978 irrigation season, which were typical of the lower Arkansas River valley east of Las Animas, are listed in table 5.

Land use	Approximate area ¹ (mi ²)	Percent of total area	
	Cultivated areas		
Alfalfa	1.92	28.4	
Sorghum	1.76	26.1	
Pasture grasses	1.14	16.9	
Sugar beets	. 69	10.2	
Winter wheat	. 26	3.8	
Corn	. 24	3.6	
Barley	. 18	2.7	
	Uncultivated areas		
Phreatophytes ²	. 23	3.4	
Built-up land ³	. 33	4.9	

Table 5.--Land use in the intensive study area near Holly, 1978 [mi², square miles]

¹Determined from Holly West quadrangle, centered aerial photography (U.S. Geological Survey, 1976) and onsite mapping.

²Phreatophytes includes salt cedar, cottonwood, willow and some herbaceous plants.

³Includes roads, structures, and unvegetated rights-of-way.

Method of Investigation

Data were collected to provide information to calculate water and salt budgets, and to illustrate relationships between the quantity and quality of water used for irrigation and the return flow from irrigation. Location of the data-collection sites and the type and frequency of data collected at each site are shown in figure 9. The data are presented in tables 13-19 in the Supplemental Information section.

Water Budget

The water budget for the area is diagrammed in figure 10; the method of calculation and source of data for most components of the water budget are listed in table 6. The methods of calculation of other components are described in the following sections.

Errors associated with terms in the water budget vary. A rigorous evaluation of these errors is beyond the scope of this study. However, Winter (1981) has made an extensive review of the type and magnitude of errors that can be expected in the determination of many hydrologic quantities. This review, along with specific knowledge of data collection and analysis methods used during this study allows some general statements to be made about expected relative magnitudes of errors. Values which were measured directly, such as streamflow or ground-water pumpage measured by flowmeter, were probably the most accurate, having expected errors in the range of ±10 percent. Water budget components, such as precipitation and tributary inflow, which are based on data measured at a few points and extrapolated to the entire area, are likely to have somewhat larger errors. Similar magnitudes of error can be expected for water budget components that were determined indirectly, such as ground-water inflow, outflow and storage; ground-water pumpage, calculated from power records; rainfall runoff; tailwater; and ground water intercepted by West Holly Drain. The largest errors can be expected for water budget components that were calculated from other water budget components, especially if the calculation involved subtracting one component from another. This type of component would include ground-water return flow, applied surface water, applied irrigation water, and total applied water. Even though the percentage error of terms in the water budget may vary, all values (except ground-water storage) are shown to the same number of places for ease of comparison and to eliminate major discrepancies in calculated terms.

Sources of Water in West Holly Drain

Water in the West Holly Drain originates from three sources: (1) Rainfall runoff; (2) intercepted ground water; and (3) tailwater from irrigation. Where applicable, the volume of rainfall runoff was estimated by using the straight-line base-flow separation technique described by Schulz (1976, p. 315). Intercepted ground water was differentiated from tailwater by assuming the volume of intercepted ground water was directly proportional to water levels in wells near the drain. Monthly mean water levels in four wells were plotted, and a smooth curve was drawn through the points. This plot was

Mean daily a		ily amount	amount Total for season		
Water budget component	(acre- feet)	(cubic feet per second)	(acre- feet)	(inches for en- tire area)	Method of calculation and source of data
Buffalo Canal inflow	51.6	26.0	11,900	32.9	Buffalo Canal near Amity stream gage (table 15).
Buffalo Canal outflow Tributary inflow	19.2 5.2	9.7 2.6	4,400 1,200	12.3 3.3	Buffalo Canal near Holly stream gage (table 15). Regression relation between daily measurements at Crowley Lateral and biweekly measurements at other tributaries (table 15)
West Holly Drain outflow	15.9	8.0	3,700	10.1	West Holly Drain at Mouth stream gage (table 15).
Ground-water inflow	15.2	7.7	3,500	9.B	Darcy's Law using monthly water level data (table 16), bedrock and transmissivity maps (modified from R. T. Hurr, U.S. Geological Survey, written commun., 1978). Boundaries of area were broken down into 24 sections across which flow was calculated. These flows were summed to get total ground-water inflow and outflow
Ground-water outflow	14.7	7.4	3,400	9.4	Same as ground-water inflow.
Ground-water storage	² 42,300)			Monthly water level data (table 16), bedrock map (modified from R. T. Hurr, U.S. Geological Survey, written commun., 197B) and specific yield of 0.2 (Vogeli and Hershey, 1965, p. 25).
Change in ground- water storage	-3.5	-1.B	-800	-2.3	From ground-water storage.
Ground-water pumpage	25.0	12.6	5,700	16.0	From biweekly discharge meter readings or pump rating and
Precipitation	20.3	10.2	4,700	13.0	From 2 rain gages (table 13), weighted according to area of Thiessen polygons constructed around each site.
Evapotranspiration Rainfall runoff Tailwater	45.9 3.0 7.7	23.1 1.5 3.9	10,600 700 1,800	29.3 1.9 4.9	See text. See text and figure 11. See text and figure 11.
Intercepted ground water	5.2	2.6	1,200	3.3	See text and figure 11.
Ground-water return flow	26.2	13.2	6,000	16.7	See text and figures 12 and 13.
Applied surface water	37.6	19.0	8,700	24.1	Buffalo Canal inflow plus tributary inflow minus Buffalo Canal outflow.
Applied irrigation water	62.6	31.6	14,400	40.0	Applied surface water plus ground-water pumpage.
Total applied water	82.9	41.8	19,100	53.0	Applied irrigation water plus precipitation.

Table 6. -- Calculated water budget for the intensive study area near Holly, 1978 irrigation season1

¹Apparent discrepancies are the result of rounding. ²Average amount in storage for irrigation season; storage decreased from 42,000 acre-feet at the beginning of the irrigation season to 41,200 acre-feet at the end, after reaching a peak of 43,600 acre-feet in August.

then superimposed on the plot of daily streamflow for the West Holly Drain, and the scale was adjusted until the two plots approximately corresponded during the early and late irrigation season, when most of the flow was intercepted ground water. The estimated amount of intercepted ground water was then read off the ordinate axis. Results of the separation are shown in figure 11.

Evapotranspiration

Seasonal evapotranspiration was estimated to be all the water unaccounted for in the water budget for the area. Inflows to the area were precipitation, the Buffalo Canal inflow, tributary inflow, and ground-water inflow. Outflows were evapotranspiration, West Holly Drain outflow, Buffalo Canal outflow, and ground-water outflow. A decrease in ground-water storage of 800 acre-ft was taken into account in the calculation. This technique gave an evapotranspiration estimate for the intensive study area of 10,600 acre-ft, or an average of 29.3 in. for the entire area.

The estimate for evapotranspiration calculated using the water-budget method was compared to evapotranspiration calculated using the modified Blaney-Criddle method (U.S. Soil Conservation Service, 1970). This method assumes that crop growth and yields are not limited by inadequate water at any time during the year. Seasonal consumptive use is calculated by summing the consumptive use for shorter periods. During this study, consumptive use was calculated daily for the vegetation types listed in table 5. The method uses mean air temperature (table 14 in the Supplemental Information section) and the percentage of daylight hours to calculate a consumptive-use factor. This factor is multiplied by a consumptive-use coefficient to determine consumptive use for the period. The consumptive-use coefficient takes into account variations in consumptive use resulting from various climates and growth stages of specific crops. The Blaney-Criddle method resulted in a value of seasonal evapotranspiration for the intensive study area that was only 6 percent greater then the estimate using the water-budget method. Because of the close agreement between the methods, daily estimates of evapotranspiration used in some water-budget calculations were made using the Blaney-Criddle method and reducing these values by 6 percent.

Irrigation-Return Flow

Irrigation-return flow consists of both tailwater and ground-water return flow. Ground-water return flow cannot be easily measured so it was estimated by two different methods: (1) A water balance at the land-surface (fig. 12); and (2) a ground-water balance (fig. 13). According to the land-surface water-balance method, water reaching the land surface may be evaporated or transpired, or it may run off as tailwater or rainfall runoff, or it may infiltrate the soil and percolate to the water table as ground-water return flow. Because all other terms were known, ground-water return flow could be calculated. The ground-water balance method states that the difference between inflows to and outflows from the ground-water system must equal the change in ground-water storage. Ground-water inflow from outside the area is the only inflow to the ground-water system besides ground-water return flow.

Figure 11.--Sources of water and salt in the West Holly Drain, 1978 irrigation season.

Figure 12.--Sources and fate of water applied at the land surface in the intensive study area near Holly, 1978 irrigation season.

Figure 13.--Ground-water balance in the intensive study area near Holly, 1978 irrigation season.
Outflows in the area were ground-water pumpage, ground water intercepted by the West Holly Drain, and ground water that flowed out of the area. Because the change in ground-water storage and all other ground-water inflows and outflows could be estimated ground-water return flow could be calculated. As shown in figures 12 and 13, the two methods gave the same result for the seasonal ground-water return flow. However, seasonal distribution of groundwater return flow using the two methods was different, probably as a result of transient storage of ground-water return flow in the unsaturated zone. Irrigation-return flow in the intensive study area accounted for 40 percent of the total water applied to crops; about three-fourths of the irrigation return flow was ground-water return flow.

Salt Budget

The salt budget was calculated from the water budget by using measured specific-conductance data converted to dissolved-solids concentrations by means of regression equations. Data used to develop the equations were obtained from measurements made on surface and ground water collected in the intensive study area during 1978. Dissolved-solids concentrations used in developing the regression equations were computed as the sum of measured major dissolved constituents in the waters. The regression equations were developed using the General Linear Models (GLM) Procedure of SAS Institute, Inc.¹ (1979, p. 140-199) for surface and ground water. To simplify salt-budget calculation, the equations were developed without an intercept term as described by Krumbein and Graybill (1965, p. 240-241). The regression equation used for the calculation of dissolved solids in surface water was:

Dissolved	solids	=	0.84	Х	Specific	conductance
(in mg/L	.)				ín mi	icromhos)

The equation for the calculation of dissolved solids in ground water was:

The correlation coefficient for both equations was 0.99, indicating that specific conductance is an excellent predictor of dissolved-solids concentration.

The salt budget is diagrammed in figure 14; the method of calculation and source of flow and specific-conductance data are given in table 7. Comments regarding errors in the water budget can generally be applied to the salt budget. Errors associated with a given component in the salt budget are probably somewhat larger than for the same component in the water budget because of additional errors in the measurement or estimation of specific conductance and its conversion to dissolved-solids concentration. As with the water budget, values listed in table 7 (except ground-water storage) are shown to the same number of places for ease of comparison and to eliminate discrepancies in calculated terms.

¹Use of the firm name in this report is for identification purposes only and does not constitute endorsement by the U.S. Geological Survey.

Figure 14.--Salt budget in the intensive study area near Holly, 1978' irrigation season.

Salt-budget component	Mean of daily specific-conductance values (micromhos per centimeter at 25° Celsius)	Mean daily amounts of salt (tons per day)	Total salt for season (tons)	Method of calculation and source of flow and dissolved-solids data ¹
Buffalo Canal inflow	3,850	170	39,200	Buffalo Canal near Amity daily streamflow (table 15), and specific conductance (table 18).
Buffalo Canal outflow	3,850	64	14,700	Buffalo Canal near Holly daily streamflow (table 15), specific con- ductance set equal to Buffalo Canal near Amity (table 18).
Tributary inflow	3,850	14	3,200	Daily streamflow from water budget (table 6), specific conductance set equal to Buffalo Canal near Amity (table 1B).
West Holly Drain outflow	4,780	67	15,500	West Holly Drain daily streamflow (table 15) and specific con- ductance (table 18).
Ground-water inflow	25,010	85	19,500	Flow from water budget (table 6), specific conductance for each of 24 sections where flow was calculated was taken from map of ground-water specific conductance. Loads from each section were summed to give total salt load in ground-water inflow and outflow.
Ground-water outflow	² 5,7 4 0	94	21,700	Same as ground-water inflow.
Ground-water storage	5,740	³ 271,000		Amount of water from water budget (table 6) specific conductance set equal to mean specific conductance of ground-water pumpage.
Change in ground-water storage		43	10,000	Difference between salt inflows and outflows.
Ground-water pumpage	5,740	159	36,500	Pumpage and specific conductance at each well used to calculate salt load at each well, then loads summed for all wells.
Precipitation	0	0	0	Amount of water from water budget (table 6), specific conductance set equal to zero for purposes of salt budget.
Evapotranspiration	0	0	0	Amount of water from water budget (table 6), specific conductance set equal to zero for purposes of salt budget.
Rainfall runoff	500	2	400	Flow from water budget (table 6), specific conductance estimated to be 500 micromhos.
Tailwater	² 4 ,660	33	7,500	West Holly Drain salt load minus intercepted ground-water salt load minus rainfall-runoff salt load.
Intercepted ground water	5,700	33	7,600	Flow from water budget (table 6), specific conductance estimated at 5,700 micromhos from map of ground-water specific conductance.
Ground-water return flow	² , ⁴ 8,170	244	56,300	Total applied water-salt load minus rainfall-runoff salt load minus tailwater salt load minus evapotranspiration salt load.
Applied surface water	² 3,850	120	27,700	Buffalo Canal inflow salt load plus tributary-inflow salt load minus Buffalo Canal outflow salt load.
Applied irrigation water	² 4,370	279	64,200	Applied surface-water salt load plus ground-water pumpage salt load.
Total applied water	² 4,110	279	64,200	Same as applied irrigation-water salt load, because precipitation salt load equals zero.

Table 7.--Calculated salt budget for the intensive study area near Holly, 1978 irrigation season

¹All specific-conductance data converted to dissolved solids using regression relations shown in text. ⁴Specific conductance calculated by applying regression equation to dissolved-solids concentration determined from salt load and flow (table 6). ⁴Average amount of salt stored in ground water during irrigation season. ⁴Specific conductance calculated seasonally rather than from daily data

The source and fate of salts in water applied at the land surface are shown in figure 15. Although ground water comprised only 30 percent of applied water (fig. 12), it contributed 57 percent of the salts, because of its larger dissolved-solids concentration. Most of the salts applied at the land surface eventually were transported to the ground-water system, after a period of transient storage in the unsaturated zone. The remainder of the salts were removed in tailwater or rainfall runoff.

The salt budget indicated an increase of 10,000 tons of dissolved salts in ground water occurring during the 1978 irrigation season. This value approximates an increase in specific conductance of 4 percent. If an increase of this magnitude occurred annually, the specific conductance of ground water would double in 15 to 20 years. However, long-term increases in specific conductance have not occurred in the study area. The mean specific conductance of water produced from seven wells during 1956-65 and 1978 showed no significant change at the 90-percent confidence level.

Calculations were made for the nonirrigation season from November 1, 1978, to March 15, 1979, to determine if the excess salts had moved from the study area during this period. Because intensive hydrologic data were not collected during this time, estimates of some inflows and outflows were required. Based on available data, salt inflows and outflows were believed to be negligible from the following sources: Buffalo Canal, tributary inflow, West Holly Drain, precipitation, and evapotranspiration. Ground-water inflow and outflow were the only remaining means to transport salt across the study area boundaries. Water-level measurements made on March 9, 1979, allowed an estimate to be made of ground-water inflow and outflow and associated salt during the nonirrigation season. The estimate indicates that the excess salts were transported from the area with ground-water outflow. The difference between salt load in ground-water inflow and outflow during this period was about 10,000 tons, leaving no change in the amount of salt stored in ground water for the full year.

Because the annual salt budget can be balanced using only salt inflows and outflows, it appeared that the controlled test area contained no major net sinks or sources of salts. That is, there did not appear to be any net inflow of salts that were deposited in the area, nor any net dissolution and outflow of salts from the area.

Other Water-Quality Constituents

Because other water-quality constituents were not measured daily, it was not possible to develop budgets for these constituents similar to the water and salt budgets. Minimum, maximum, median, and mean values for other waterquality constituents in the West Holly Drain, in the Buffalo Canal, and in wells in the intensive study area are shown in figures 16 and 17. Calculated values in applied water, on the days samples were collected in the West Holly Drain, also are shown in figures 16 and 17.

Figure 16.--Minimum, maximum, median, and mean concentrations of major ions in water from the intensive study area near Holly, 1978 irrigation season.

Figure 17.--Minimum, maximum, median, and mean concentrations of nutrients, suspended solids, biochemical-oxygen demand, and bacteria in the intensive study area near Holly, 1978 irrigation season.

The widest variations observed for all constituents were in the calculated quality of applied water. These variations resulted from precipitation being a large percentage of the applied water on two of the days used in the calculation. The least variation was in the quality of ground water.

Ratios of concentrations of water-quality constituents in the West Holly Drain and in applied water were calculated as a measure of water-quality changes in the study area. Median values of these ratios are shown in figure 18. Ratios less than one indicate that concentrations were smaller in the West Holly Drain than in applied water, whereas ratios greater than one indicate greater concentrations in the West Holly Drain. Median concentration ratios for all constituents except dissolved nitrite plus nitrate and total phosphorus were greater than one, indicating larger concentrations in the West Holly Drain. These constituents included all major ions, Kjeldahl nitrogen, suspended solids, biochemical-oxygen demand and fecal-coliform and fecalstreptococci bacteria.

To assess the significance of the water-quality changes shown in figure 18, a statistical evaluation was made. Because the data were not normally distributed and also were paired, the Wilcoxon signed-rank nonparametric test (Romano, 1977, p. 208-211) was used. The test evaluates the magnitude and direction of differences between paired data and was applied at a 95-percent probability level. By means of this test, sodium, potassium, magnesium, hardness, sulfate, and fecal-coliform and fecal-streptococci bacteria were determined to have been present at significantly larger concentrations in the West Holly Drain than in applied water. Only dissolved nitrite plus nitrate was determined to have been present at significantly smaller concentrations in the West Holly Drain than in applied water.

Larger concentrations of major ions in the West Holly Drain than in applied water were most likely the result of consumptive use of water by evapotranspiration and interception of ground water by the drain; ground water generally had a larger concentration of major ions than applied water. The greater bacteria count in the West Holly Drain, especially fecal streptococci, suggested the area was a source of bacteria, possibly from grazed pasture lands. Smaller concentrations of dissolved nitrite plus nitrate in the West Holly Drain than in applied water suggests that this nutrient was utilized by plants in the study area.

SUMMARY

Two types of irrigation-return flows occur: (1) Tailwater is excess irrigation water that runs off the ends of fields and flows back to streams; and (2) ground-water return flow is excess irrigation water that infiltrates the soil and percolates to the water table. Irrigation-return flows were located throughout the lower Arkansas River valley, with greater numbers observed in the St. Charles mesa area, in the vicinity of Rocky Ford, between John Martin Reservoir and Lamar, and from Granada to the Colorado-Kansas State line.

and applied water.

Specific conductance of 59 sampled irrigation-return flows increased downstream; this increase paralleled that of available irrigation water. Water-quality standards for one or more constituents were exceeded at 18 of the 59 sites.

During July 1977, irrigation-return flow was the source of most Arkansas River streamflow downstream from La Junta. Irrigation-return flow may have a considerable effect on streamflow quality in this reach because it may comprise much of the Arkansas River flow during the early and late parts of the irrigation season.

Seasonal variations in discharge, specific conductance, and dissolvedoxygen concentrations of five irrigation-return flows sampled during the 1978 irrigation season were similar to those observed in the Arkansas River during the same period. Larger specific conductance and dissolved-oxygen concentrations were associated with lower streamflow and temperatures that occurred in the spring and fall.

Three irrigation-return flows sampled during the 1978 irrigation season and composed mainly of tailwater, had larger concentrations of suspended solids, biochemical-oxygen demand, and Kjeldahl nitrogen than two irrigationreturn flows consisting primarily of ground-water return flow. Return flows composed primarily of ground water showed much smaller seasonal variations in discharge and concentrations of most water-quality constituents. Although concentrations of nitrite plus nitrate were greater at three of the sites sampled during the 1978 irrigation season than concentrations of nitrite plus nitrate commonly observed in the Arkansas River, no values greater than the water-quality standard of 10 mg/L were observed. Fecal-coliform bacteria exceeded the water-quality standard at four of the five sites.

Water and salt budgets were developed for a 6.75-mi² area near Holly for the 1978 irrigation season; the area was irrigated by the Buffalo Canal and by This area was drained by the West Holly Drain, a major irrigationwells. During the 1978 irrigation season, tailwater conreturn flow conveyance. tributed about one-half the flow of the West Holly Drain; intercepted ground water contributed about one-third; and rainfall runoff contributed the re-The salt load of the drain was contributed equally by tailwater and mainder. intercepted ground water, with only a small amount from rainfall runoff. About 40 percent of the water applied at land surface became irrigation-return One-fourth of the total was tailwater, and three-fourths of the total flow. was ground-water return flow. Although ground-water return flow accounted for 88 percent of the salts applied at the land surface, a long-term buildup of salts in ground water beneath the area was not occurring.

Dissolved nitrite plus nitrate was less concentrated in water leaving the area in the West Holly Drain than in applied water, suggesting removal during irrigation or plant growth. Major ions, biochemical-oxygen demand, and fecalcoliform and fecal-streptococci bacteria were more concentrated in the West Holly Drain than in applied water, suggesting concentration through consumptive use or pickup during irrigation.

REFERENCES CITED

- Cain, Doug, Baldridge, Duaina, and Edelmann, Patrick, 1980, Waste-assimilation capacity of the Arkansas River in Pueblo County, Colorado, as it relates to water-quality guidelines and stream classification: U.S. Geological Survey Water-Resources Investigations 80-82, 104 p.
- Cain, Doug, and Edelmann, Patrick, 1980, Selected hydrologic data, Arkansas River basin, Pueblo and southeastern Fremont Counties, Colorado: U.S. Geological Survey Open-File Report 80-1185, 233 p.
- Colorado Department of Agriculture, 1980, Colorado agricultural statistics 1980: Colorado Department of Agriculture, 100 p.
- Colorado Department of Health, 1982, Classifications and numeric standards for the entire Arkansas River Basin: Colorado Department of Health, Water Quality Control Commission, 59 p.
- Gaydos, M. W., 1980, Summary of water-quality data for selected streams in Colorado: U.S. Geological Survey Water-Resources Investigations Open-File Report 80-682, 148 p.
- Goddard, K. E., 1980, Calibration and potential uses of a digital waterquality model for the Arkansas River in Pueblo County, Colorado: U.S. Geological Survey Water-Resources Investigations 80-38, 87 p.; available only from U.S. Department of Commerce, National Technical Information Service, Springfield, VA 22151.
- Krumbein, W. C., and Graybill, F. A., 1965, An introduction to statistical models in geology: New York, McGraw-Hill, 475 p.
- Major, T. J., Hurr R. T., and Moore, J. E., 1970, Hydrogeologic data for the lower Arkansas River valley, Colorado: Colorado Water Conservation Board Basic-Data Release 21, 125 p.
- Miles, D. L., 1977, Salinity in the Arkansas Valley of Colorado: U.S. Environmental Protection Agency, Interagency Agreement, Colorado State University, EPA-1AD-D4-0544, 80 p.
- Romano, Albert, 1977, Applied statistics for science and industry: New York, Allyn and Bacon, 513 p.
- SAS Institute, Inc., 1979, SAS user's guide, 1979 ed: Cary, N.C., 495 p.
- Schulz, E. F., 1976, Problems in applied hydrology: Fort Collins, Colorado, Water Resources Publications, 501 p.
- Taylor, O. J., and Luckey, R. R., 1974, Water-management studies of a streamaquifer system, Arkansas River valley, Colorado: Ground Water, v. 12, no. 1, p. 22-38.
- U.S. Bureau of the Census, 1981, Census of population and housing 1980, Colorado--Preliminary population and housing unit counts: Washington, D.C., U.S. Bureau of the Census, PHC80-P-7, 7 p.
- U.S. Geological Survey, 1976, Holly West quadrangle--Centered aerial photography: U.S. Geological Survey, scale 1:24,000, 1 sheet.
- 1978 and 1980, Water resources data for Colorado--Water years 1977 and 1979: Volume 1. Missouri River basin, Arkansas River basin, and Rio Grande basin: U.S. Geological Survey Water-Data Reports CO-77-1 and CO-79-1; available only from U.S. Department of Commerce, National Technical Information Service, Springfield, VA 22151.
- U.S. Soil Conservation Service, 1970, Irrigation water requirements: U.S. Department of Agriculture, Soil Conservation Service Technical Release No. 21, 88 p.

1976, Land use and natural plant communities, Crowley, Otero and Pueblo Counties, Colorado [map]: Portland, Ore., 6 sheets, scale 1:126,720. 1977, Land use and natural plant communities, Bent and Prowers Counties, Colorado [map]: Portland, Ore., 4 sheets, scale 1:126,720.

Colorado [map]: Portland, Ore., 4 sheets, scale 1:126,720. Voegeli P. T., Sr., and Hershey, L. A., 1965, Geology and ground-water resources of Prowers County, Colorado: U.S. Geological Survey Water-Supply Paper 1772, 101 p.

Winter, T. C., 1980, Uncertainties in estimating the water balance of lakes: Water Resources Bulletin, v. 17, no. 1, p. 82-115.

SUPPLEMENTAL INFORMATION

System of Numbering Wells

The well locations in this report are given numbers based on the U.S. Bureau of Land Mangement system of land subdivision, and show the location of the well by quadrant, township, range, section, and position within the section (fig. 19). The first letter "S" preceding the location number indicates that the well or spring is located in the area governed by the Sixth Principal Meridian. The second letter indicates the quadrant in which the well or spring is located. Four quadrants are formed by the intersection of the base line and the principal meridian--A indicates the northeast quadrant, B the northwest, C the southwest, and D the southeast.

The first, three digits of the number indicate the township, the next three digits the range, and the last two digits the section in which the well or spring is located. The letters following the section number locate the well or spring within the section. The first letter denotes the quarter section, the second the quarter-quarter section, and the third the quarterquarter-quarter section. The letters are assigned within the section in a counterclockwise direction, beginning with (A) in the northeast section and within each quarter-quarter section in the same manner. Where two or more locations are within the smallest subdivision, consecutive numbers beginning with 1 are added in the order in which the data from the wells or springs were collected.

Figure 19.--System of numbering wells in Colorado.

Data

COLONY	CIUM IS- SYL SXL CA)					1111	ta 	ء <u>و</u> ا ا ا	
SZL= MILI ICATE THI IN ED).	CAL AS- CAL CAL CAL CAL CAL AS			ο 			1 1 8 8 1 8 9 1		
SIUS: MC Y K INDI UNDERLI	POI SIU SOLV							~ ~ ~	
REES CEL CEEDED B ARDS ARE	SODIUM DIS- SOLVED AS NA			28 88	1		150 110 260	210	1111
UES DEGE UES PREC	Hd (STINU)	- 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	7.7 8.8 8.8	8.8 8.3 8.1 7.7 7.7	8.9 7.5	8.0 8.0 7.7	7.5 7.7 8.1	8.2 7.9 8.1 8.1	8.1 7.5 7.7
TIMETER A1 ITERS: VAI TER-QUALI1	OXYGEN. DIS- SOLVED (MG/L)					1111			
S PER CEN 00 MILLIL EEDING WA	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	790 730 495 1360	445 955 659 200	565 2599 1410 1999 1489	1530 1820 1270 2500 2590	2560 1280 31900	2200 1790 1800 3180	3399 2599 3799 5129 3139	3830 2790 2873 3120
=MICROMHO	TEMPER- ATURE (DEG C)	17.9 19.9 23.9 23.5	17.9 16.5 25.5 25.5	25.0 25.0 24.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23	25.0 28.9 23.9 22.9	19.9 29.9 28.9 28.9	18.9 19.5 18.5 25.9	34.9 26.9 221.5 221.5	30.0 21.5 17.3 23.0
US; UMHOS ML=COLON PLATE; V	STREAM- FLOW. INSTAN- TANEOUS (CFS)	9.30 -10 -20	. 50	- 20 - 50 - 50 - 50	- 50 - 50 - 50 - 50 - 50	- 00- 00- 0	25 8 8	2.19 2.06 2.29 0.29	.70 1.7 .60
EES CELSI COLS./100 BACTERIA	TIME	0850 1000 1030 1120	0915 1000 1130 1215	1315 1330 1130 1130 1120	1230 1200 1200 1220	1030 0915 0830 1315	1220 1120 1130 1130	1500 1600 1410 1240	1115 1000 1130
DEG C=DEGR PER LITER; A NONIDEAL	DATE OF SAMPLE	77-08-09 77-08-09 76-08-10 77-08-10 77-08-09 77-08-09	76-08-10 76-08-10 77-08-10 76-08-10 76-08-10 71-08-10	77-08-10 77-08-09 76-08-10 77-08-10 77-08-09	77-68-18 77-68-18 77-68-18 77-68-18 77-68-18	77-08-18 77-08-18 77-08-23 77-08-23 77-08-18	77-08-17 77-08-23 77-08-17 77-08-17 77-08-17 77-08-17	77-08-15 77-08-04 77-08-04 77-08-04 77-08-04	77-08-04 77-08-94 77-08-04 77-08-04
CUBIC FEET PER SFCOND: TER: UG/L=MICROGRAMS COUNT WAS BASED ON	SITE NAME	21ST LANE DRAIN 23RD LANE DRAIN 25TH LANE DRAIN 5T. CHAS BTMLND DR	ST. CHARLES DRAIN 37TH LANE DRAIN 39TH LANE DRAT MT 39TH LANE DR AT MT 39TH LN DR AT HW50 40TH LANE DRAIN	WHEELER LANE DRAIN AVONDALE D AT HW50 AVONDALE D AT BR50 51ST LANE DRAIN AVONDALE BTMLND DR	NORTH NEPESTA DR RR JUNCTION DRAIN OXFORD FARWERS DR E MANZANOLA DRAIN VROMAN DRAIN	PATTERSON HOLLOW D HIGHWAY 71 DRAIN N ROCKY FORD DRAIN ROCKY FORD STP DR	ROCKY FORD DRAIN KRAMMES DRAIN NEWDALE DRAIN W LA JUNTA DRAIN	EAST SWINK DRAIN E PURATOIRE DRAIN MILLER DITCH MCCLAVE DRAIN LUBERS DRAIN	PROMERS ARROVO DR WEST KEESEE DRAIN EAST KEESFE DRAIN DRY CREEK DRAIN
(CFS=(PER LI	SITE NO.ON PLATE	IR-54 IR-53 IR-52 IR-52	IR-50 IR-40 IR-40 IR-48 IR-48 IR-46	IR-45 IR-45 IR-43 IR-43 IR-43 IR-42 IR-42	IR-40 IR-39 IR-38 IR-38 IR-36 IR-37 IR-36	IR-35 IR-34 IR-33 IR-33 IR-32	IR-31 IR-30 IR-29 IR-28	IR-27 IR-26 IR-25 IR-25 IR-23 IR-23	IR-22 IR-21 IR-21 IR-29 IR-19

SRAV

TABLE 8. -- MATER-QUALITY DATA FROM RECONNAISSANCE SAMPLING OF IRRIGATION-RETURN FLOWS AND SELECTED TRIBUTARIES

C) NT I N UED	S-TE S-TE S-L S-L S-L	11111						6	1111
RIES —		ω	o –	<u>ت</u> _			- 36 - 20 - 20	11	180
TR I BUTA	CHLO- RIDE, DIS- SOLVE AS CL	2021	4.0.00.0	24 28 24 24 24 24 24 24 24 24 24 24 24 24 24	8 8 4 4 7 2 8 2 8 8 2 8 8 8 8 8 8 8 8 8 8 8 8 8	79 26 39	50 30 30 30	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	78 78 74 90
SELECTED	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)		11111	0.7 8.3			16 	6.3 2.9	<u>4</u>
ONS AND	CAR- BONATE FET-FLD (M3/L AS C03)		1	0 e	1111		e 00	@ @	Í ©
RETURN FL	BICAR- BONATE BONATE FET-FLD (MG/L AS HC03)		11111	110 269	1111		390 220 340	250 	350 350
RIGATION-	ALKA- LINITY FIELD (MG/L AS CACO3)			90 11 219			320 	210 	290
ING OF IR	HARD- NESS, NONCAR- BONATE (VG/L CACO3)			140 1 370	1111		619 640 1300	790 1200	
VCE SAMPL	HARD- NESS (MG/L AS CACO3)			230 			930 830 1500	998 1 1 998	
CONNAI SSA!	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)			- 10 29 10			80 67 130	89 120	
DATA FROM RE(DATE OF SAMPLE	77-08-09 77-08-09 76-08-10 77-08-09 77-08-09 77-08-09	76-08-10 76-08-10 77-08-10 76-08-10 77-08-10	77-08-10 77-08-09 76-08-10 77-08-10 77-08-09	77-08-18 77-08-18 77-08-18 77-08-18 77-08-18 77-08-18	77-08-18 77-08-18 77-08-23 77-08-23 77-08-18 77-08-17	77-08-17 77-08-23 77-08-17 77-08-17 77-08-17 77-08-15	77–08–15 77–08–04 77–08–04 77–08–04 77–08–04	77–08–04 77–08–04 77–08–04 77–08–04 77–08–03 77–08–03
ABLE 8WATER-QUALITY	SITE NAME	54 21ST LANE DRAIN 53 23RD LANE DRAIN 52 25TH LANE DRAIN 51 ST. CHAS BTMLND DR	50 ST. CHARLES DRAIN 19 37TH LANE DRAIN 18 39TH LANE DR AT MT 17 39TH LN DR AT HW50 16 40TH LANE DRAIN	IS WHEELER LANE DRAIN 4 AVONDALE D AT HWS0 13 AVONDALE D AT BR50 12 SIST LANE DRAIN 12 SIST LANE DRAIN 11 AVONDALE BTMLND DR	10 NORTH NEPESTA DR 39 RR JUNCTION DRAIN 38 OXFORD FARMERS DR 37 E WANZANOLA DRAIN 36 VROMAN DRAIN	<pre>F PATTERSON HOLLOW D A HIGHWAY 71 DRAIN I3 N ROCKY FORD DRAIN I2 ROCKY FORD STP DR</pre>	NI ROCKY FORD DRAIN NG KRAMMES DRAIN 9 NEWDALE DRAIN 18 W LA JUNTA DRAIN	7 EAST SWINK DRAIN 6 E PURGATOIRE DRAIN 9 MILLER DITCH 14 MCCLAVE DRAIN 13 LUBERS DRAIN	22 PROWERS ARROYO DR 11 WEST KEESEE DRAIN 10 EAST KEESEE DRAIN 9 DRY CREEK DRAIN 8 PROWERS DRAIN
1/	SITE NO. (PLATE I				IR-1 IR-1 IR-1 IR-1 IR-1 IR-1	IR-1 IR-1 IR-3 IR-3	18-5 18-5 18-2 18-2		18-2 18-2 18-2 18-1

The second state is a sec	ERO- ENIC S/L
The second sec	
The second state of the	N ITRO GEN, AMA MONIA MONIA ORGANI TOTAL
The second structure Date structure	SOL IDS. RES IDUE AT 105 DEG. SUS- PENDED (MG/L)
TH DATE D	SOL IDS, SOL IDS, AT 183 DEG, C DEG, C SOL VED (MG /L)
TE DATE BLAC SILVE SILVE WANGA BIS- BIS- BIS- SILFE MANE STAUND R THUO- SILLICA. HAWKA SITE MANE STAUND R THUO- SILLICA. HAWKA SITE MANE STAUND R THORAL BARIN T-89-09 TH LANE DRAIN T-89-09 TH LANE DRAIN T-89-19 TH LANE DRAIN T-99-19 TH LANE DRAIN T-99-10 TH T-99-10 TH T-99-1	SOLIDS. SUM OF SUM OF CONSTI- CONSTI- TUENTS. DIS- SOLVED (MG/L)
TH DATE DATE DATE DILE- DILE- <thdile-< th=""> <thdile-< th=""> <thdile-< t<="" td=""><td>MANGA- NESE, DIS- SOLVED (UG/L AS MN)</td></thdile-<></thdile-<></thdile-<>	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
TE BATE DATE DATE DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS-	IRON. DIS- SOLVED (UG/L AS FE)
TE DATE DATE DATE DIS- DATE DIS- SITE NAME DATE DATE DIS- 5.252 25TH LANE DRAIN 77-08-09 -5.52 25TH LANE DRAIN 77-08-09 -5.52 25TH LANE DRAIN 77-08-09 -5.52 25TH LANE DRAIN 77-08-09 -5.53 237D LANE DRAIN 77-08-10 -4.53 237D LANE DRAIN 77-08-10 -4.5 37TH LANE DRAIN 77-08-10 -5.5 37TH LANE DRAIN 77-08-10 -5.5 37 CKY FORD DRAIN 77-08-10 -2.5 SUNK DRAIN 77-08-10 -2.5 SUNK DRAIN 77-08-10 -2.5 SUNK DRAIN 77-08-10 -2.5 SUNK DRAIN 77-08-04 -2.5 MILLER DITCH 77-08-04 -2.5 MILLER	51LICA. DIS- SOLVED (MG/L AS SI02)
TE ON TE SITE NAMEDATE SITE NAMEDATE OF SITE NAMEDATE OF SITE NAME53 SITE LANE DRAIN 53 SITE LANE DRAIN77-08-09 77-08-0955 25 TH LANE DRAIN 53 ST. CHAS FITMLND DR 53 TH LANE DRAIN 77-08-1077-08-09 77-08-1056 ST. CHAS FITMLND DR 77-08-1077-08-10 77-08-1057 ST. CHAS FITMLND DR 77-08-1076-08-10 77-08-1058 ST. CHARLES DRAIN 77-08-1076-08-10 77-08-1059 ST. CHARLES DRAIN 77-08-1076-08-10 77-08-1050 ST. CHARLES DRAIN 77-08-1076-08-10 77-08-1051 ST. LANE DRAIN 77-08-1077-08-10 77-08-1052 SIST LANE DRAIN 30 KRAMES DRAIN 73 RANAND DRAIN 31 ROCKY FORD DRAIN 32 ROCKY FORD DRAIN 33 KRAMES DRAIN 34 KRAMES DR	FLUO- RIDE, DIS- SOLVED AS F)
TE ON SITE NAME SITE NAME SITE NAME SITE NAME SITE NAME SITE NAME SITE NAME SITE NAME DRAIN -53 23RD LANE DRAIN -53 23RD LANE DRAIN -53 23RD LANE DRAIN -53 23TH LANE DRAIN -44 30TH LANE DRAIN -44 30TH LANE DRAIN -44 30TH LANE DRAIN -45 30TH LANE DRAIN -46 40TH LANE DRAIN -43 400DALE D AT BR50 -43 400DALE D AT BR50 -33 R ROCKY FORD DRAIN -33 R ROCKY FORD DRAIN -33 ROCKY FORD DRAIN -33 RAMES DRAIN -23 ROCKY FORD DRAIN -24 MUCLAVE DRAIN -23 MCCKY FORD DRAIN -24 MCCLAVE DRAIN -24 MCCLAVE DRAIN	DATE OF SAMPLE
THE STATE ST	ITE NAME
	표 SR H

-WATER-QUALITY DATA FROM RECONMAISSANCE SAMPLING OF IRRIGATION-RETURN FLOWS AND SELECTED TRIBUTARIES ---CONTINUED TABLE 8.-

TABLE 8. -- WATER-QUALITY DATA FROM RECONNAISSANCE SAMPLING OF IRRIGATION-RETURN FLOWS AND SELECTED TRIBUTARIES -- CONTINUED

PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	0.17 	. 07 . 02 . 08		1111	11111	11111	11111	
PH OS- PHO RUS, OR THO, DI S- SOL VED (MG/L AS P)		1111	ē		11111	.04 .04 .20		6 6
NITRO- GEN. TOTAL (MG/L AS N)	9.86 	2 4 - 2	3.7	1111	11111	11111		
NITRO- GEN, GEN, NO2+NO3 TOTAL (MG/L AS N)	a.52	3.7 3.7 1.5	2°9			1111	11111	
NI TRO- GEN, DIS- SOLVED (MG/L AS N)		11,12	0.80 4.10 	।।।- °व	3.5 2.2 4.8	6.5 	5.5 86	m a.
NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	a.20	98 90 92	<u></u> .			11111	11111	
DATE OF SÀMPLE	77–08–09 77–08–09 76–08–10 77–08–10 77–08–09	76-08-10 76-08-10 77-08-10 76-08-10 76-08-10 77-08-10	77 - 08- 10 77 - 08- 09 77 - 08- 10 77 - 08- 10 77 - 08- 09	77 - 08- 18 77 - 08- 18 77 - 08- 18 77 - 08- 18 77 - 08- 18	77-08-18 77-08-18 77-08-23 77-08-18 77-08-18	77 - 08 - 17 77 - 08 - 23 77 - 08 - 17 77 - 08 - 17 77 - 08 - 15	77-08-15 77-08-04 77-08-04 77-08-04 77-08-04	77 - 08 - 04 77 - 08 - 04 77 - 08 - 04 77 - 08 - 03 77 - 08 - 03 77 - 08 - 03
SITE No. ON PLATE I SITE NAME	IR-54 21ST LANE DRAIN IR-53 23RD LANE DRAIN IR-52 25TH LANE DRAIN IR-51 ST. CHAS BTWLND DR	IR-50 ST. CHARLES DRAIN IR-49 37TH LANE DRAIN IR-48 39TH LANE DR AT MT IR-48 39TH LANE DR AT MT IR-47 39TH LN DR AT HW50 IR-46 40TH LANE DRAIN	IR-45 WHEFLER LANE DRAIN IR-44 AVONDALE D AT HM50 IR-43 AVONDALE D AT HM50 IR-43 AVONDALE D AT RR50 IR-42 51ST LANE DRAIN IR-41 AVONDALE RIMLND DR	IR-40 NORTH NEPESTA DR IR-39 RR JUNCTION DRAIN IR-38 OXFORD FARMERS DR IR-37 E WANZANOLA DRAIN IR-36 VROMAN DRAIN	IR-35 PATTERSON HOLLOW D IR-34 HIGHWAY 71 DRAIN IR-33 N ROCKY FORD DRAIN IR-32 ROCKY FORD STP DR	IR-31 ROCKY FORD DRAIN IR-30 KRAMMES DRAIN IR-29 NEWDALE DRAIN IR-28 W LA JUNTA DRAIN	IR-27 EAST SWINK DRAIN IR-26 E PURGATOIRE DRAIN IR-25 MILLER DITCH IR-24 MCCLAVE DRAIN IR-23 LUBERS DRAIN	IR-22 PROMERS ARROYO DR IR-21 WEST KEESEE DRAIN IR-20 EAST KEESEE DRAIN IR-19 DRY CREEK DRAIN IR-19 DRY CREEK DRAIN

STREP- TOCOCCI FE CAL. KF AGAR (OLS. PER 100 ML)						1111	11111	1111
COL 1- FORM, FECAL, 0.7 UM-MF (COLS,/ 100 ML)	4400	1200 360 1900			11111			
OXYGEN DEMAND, BIO- CHEW- ICAL, 5 DAY (MG/L)	117.11			11111			1111	1111
PHOS- PHORUS TOTAL (MG/L AS P)		-19 						
DA TE OF SAMPLE	77-08-09 77-08-09 76-08-10 77-08-09 77-08-09	.76-08-19 76-08-19 77-08-10 76-08-10 76-08-10 77-08-10	77-08-10 77-08-09 76-08-13 77-08-09 77-08-09	77-08-18 77-08-18 77-08-18 77-08-18 77-08-18	77-08-13 77-08-18 77-08-23 77-08-13 77-08-13 77-08-13	77-08-17 77-08-23 77-08-17 77-08-17 77-08-17 77-08-15	77-08-15 77-08-04 77-08-04 77-08-04 77-08-04 77-08-04	77-08-04 77-08-04 77-08-04 77-08-03 77-08-03 77-08-03
SITE NAME	21ST LANE DRAIN 23RD LANE DRAIN 25TH LANE DRAIN ST. CHAS BTMLND DR	ST. CHARLES DRAIN 37TH LANE DRAIN 39TH LANE DR AT MT 39TH LN DR AT HW50 40TH LANE DRAIN	WHEELER LANE DRAIN AVONDALE D AT HW50 AVONDALE D AT BR50 51ST LANE DRAIN AVONDALE BTMLND DR	NORTH NEPESTA DR RR JUNCTION DRAIN OXFORD FARMERS DR E MANZANOLA DRAIN VROMAN DRAIN	PATTERSON HOLLOW D HIGHWAY 71 DRAIN N ROCKY FORD DRAIN ROCKY FORD STP DR	ROCKY FORD DRAIN KRAMMES DRAIN NEWDALE DRAIN W LA JUNTA DRAIN	EAST SWINK DRAIN E PURCATOIRE DRAIN MILLER DITCH MCCLAVE DRAIN LUBERS DRAIN	PROWERS ARROYO DR WEST KEESEE DRAIN EAST KEESEE DRAIN DRY CREEK DRAIN PROWERS DRAIN
SITE NO. ON PLATE 1	IR-54 IR-53 IR-52 IR-51 IR-51	IR-50 IR-50 IR-49 IR-48 IR-47 IR-47	IR-45 IR-44 IR-43 IR-42 IR-42 IR-42	IR-40 IR-39 IR-38 IR-37 IR-37 IR-37	IR-35 IR-34 IR-33 IR-33 IR-33	IR-31 IR-30 IR-29 IR-28	IR-27 IR-26 IR-26 IR-25 IR-23 IR-23	IR-22 IR-21 IR-20 IR-19 IR-19 IR-18

TABLE R. -- WATER-QUALITY DATA FROM RECONNAISSANCE SAMPLING OF IRRIGATION-RETURN FLOWS AND SELECTED TRIBUTARIES -- CONTINUED

CALCT UM DIS- SOLV ED (MG/L AS CA)	350 III	459	47 <i>ð</i> 	 61	342 310 320 399	309 36,9 39,3	269 153 299 419
POTAS- SIUM , DIS- SOLVED (MG/L	::: _≥ :	50	6	1 1 1 1 2	<u>ت</u> : : : : :	; ; ; ; ;	4.7 9.9 9.1
SODIUM, DIS- SOLVED (MG/L AS NA)	4 30	669 669	830 820	240	470 130 116	120 140 140	180 80 190 280
Hq (STINU)	8.8 8.9 8.2 8.2	88888 8979 898888 8979 89888 8979 8988 8978 8088 808	8.8 7.7 8.2 8.2 8	8.8 8.8 9.9 8.9 8.9	8.9 8.3 7.9	7. 9 8. 9 8. 9 8. 9 8. 9	8.8 8.9 1.8 8.9
OXYGEN, DIS- SOLVED (MG/L)	,		7.4		1 1 . 6	8 8 8 8 8 8	0 8 0 0 0 6 4 4
SPE- CIFIC CON- DUCT- ANCE (UMHOS)	4980 4070 1160 3580 1958	3300 3100 5000 3000 5000	6010 5499 1550 1729 6029	2200 2050 3030 3599	4169 4750 2330 2830 2330	2130 2430 2780 2800 2440	2550 1399 2699 3325
TEMPER- ATURE (DEG C)	19.5 16.0 39.9 23.5	26.9 39.9 22.5 32.9	14.5 21.9 22.9 22.9 18.0	28.9 28.9 18.3 26.3 25.3	24.0 28.9 14.0 18.5	27.0 17.5 25.0 21.6 21.5	25.9 1 17.9
STREAM- FLOW, INSTAN- TANEOUS (CFS)	9.70 .80 3.0 1.2	а. 50 8.9 9.9 9.9 9.9	6 9 9 9 9 9 • 9 9 9 9 9 9 9 9 9 9 9 9 9 9	6.9 14 2.9 2.9	∩−4 ∩4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.0 3.9 3.9	31 31 2.9
TIME	0850 0800 1900 1330 0915	1410 1410 1245 1215	1030 1130 1030 1015 1130	0930 1515 0830 1515 1455	1345 1500 0945 0830 1100	1430 1100 1345 1330 1215	1230 1030 1030 1030
DA TE OF SAMPLE	77-08-03 77-08-03 77-07-29 77-08-03 77-08-03	77-07-28 77-07-28 77-07-28 77-07-28 77-08-03	76-09-09 77-07-28 77-07-28 77-07-28 77-07-28 76-09-09	77-07-28 77-08-02 77-07-28 77-07-28 77-07-27	77-07-27 77-07-12 76-04-23 76-05-21 76-06-17	76-07-14 76-08-10 76-08-18 76-08-18 76-09-15 76-08-19	76-09-03 76-09-08 76-09-03 76-09-03
SITE NAME	VISTA DEL RIO DR MARKHAM ARROYO DR EAST LAMAR DRAIN VISTA DEL RIO DR	N GRANADA DRAIN 5 GRANADA DRAIN MEST ALFALFA DRAIN 5RANADA DR AT MTH	N ARK DR NR BARTON N FORK W HOLLY DR S FORK W HOLLY DR M HOLLY DR AT WTH	E HOLLY D AT HOLLY E HOLLY DRAIN TRIB E HOLLY DR AT HW50	E HOLLY DR AT MTH ROMER FIELD DRAIN IXWILE CR AT HWY50	HICOSA'CR NR FOWLER	JISHAPA R NR FOWLER IMPAS CR AT HWY50 ROCKED AR AT HWY50
SITE NO.ON PLATE 1	IR-17 IR-16 IR-15 IR-15	IR-13 IR-12 IR-11 IR-10	18-9 18-8 18-7 18-7	I R-5 I R-4 I R-3	IR-2 IR-1 T- 1 S	T- 2 G	T-3 A T-4 T C C

TABLE 8.- WATER-QUALITY DATA FROM RECONNAISSANCE SAMPLING OF IRRIGATION-RETURN FLOWS AND SELECTED TRIBUTARIES-- CONTINUED

SULFA TE DIS- SOLV ED (MG/L AS SO4)			31 <i>0</i> 2	 66	2109 1200 1400 1100	1200 1403 1507	1100 509 1203
CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	170 120 120 120	96 97 92 82 82	230 259 37 230 230	64 51 130 150	140 25 21	25 27 28 24	1288.29
CA RBON DI O XIDE DIS- SOL VED (MG/L AS CO2)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	\$	°. -	4 8.	3.9 5.42 .443	5.3 3.6 4.4	7 4 3 5 9 5 5 9 9 7 7 9 9 7 9 7
CAR- ROVATE FET-FLD (MG/L AS CO3)	@	1110	e e	10111	000	000	6696
BICAR- BONATE FET-FLD (MG/L AS HCO3)	. 320	 	389 4 1 1 1	18111	3 <i>0</i> 9 287 272 254	261 234 275	311 2 <i>0</i> 2 269 288
ALKA- LINITY FIELD (MG/L AS CACO3)	268	339	319 	191	250 235 235 288 288	214	255 166 221 236
HARD- NESS, NON CAR- BONATE (MG/L CACO3)		<u> </u> <u> </u> 	1 800 1 1900	000	1300 1000 1200	999 	890 410 918
HARD- NESS (WG/L AS CAC03)	400 400	1	2190 2290	760 11	1600 1300 1200	1200	11 00 580 11 00 1500
MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	140	1111	220 250	<u>6</u> 	170 120 140	11 0 130	128 128 128
DATE OF SAMPLE	77-08-03 77-08-03 77-07-29 77-08-03 77-08-03	77-07-28 77-07-28 77-07-28 77-07-28 77-07-28 77-08-03	76-09-09 77-07-28 77-07-28 77-07-28 77-07-28 76-09-09	77-07-28 77-08-02 77-07-28 77-07-28 77-07-27	77-07-27 77-07-12 76-04-23 76-05-21 76-05-21	76-07-14 76-08-10 76-08-18 76-09-15 76-09-15	76-09-03 76-09-08 76-09-03 76-09-03
SITE NAME	VISTA DEL RIO DR MARKHAM ARROYO DR EAST LAMAR DRAIN VISTA DEL RIO DR	V GRANADA DRAIN 5 GRANADA DRAIN 4EST ALFALFA DRAIN 5RANADA DR AT MTH	W ARK DR NR BARTON W FORK W HOLLY DR 5 FORK W HOLLY DR W HOLLY DR AT WTH	E HOLLY D AT HOLLY E HOLLY DRAIN TRIB HOLLY DR AT HW50	E HOLLY DR AT WTH Romer Field Drain Ixmile CR at Hwy50	HICOSA CR NR FOWLER	VISHAPA R NR FOWLER (MPAS CR AT HWY50 ROOKED AR AT HWY50
S I TE NO. ON PLA TE	IR-17 IR-16 IR-15 IR-15 IR-15	IR-13 IR-12 IR-11 IR-10	I R-9 I R-8 I R-7 I R-7	IR-5 IR-4 IR-3 IR-3	IR-2 IR-1 T- 1 S	T- 2 C	T T 4 - 4 C T 1

TABLE 8.--WATER-QUALITY DATA FROM RECONNAISSANCE SAMPLING OF IRRIGATION-RETURN FLOWS AND SELECTED TRIBUTARIES--CONTINUED

.

RIBUT ARIESCONTINUED	VITRO- EN,AM- NITRO- NIA + GEN, RGANIC ORGANIC COTAL (MG/L NS N) AS N)			1.30 1.3 .50 .60		4.20 4.20 .66 .73 .00	.30 .26 .80 .77 .65 .65 .69 .68 .62 .51	.40 .37 .39 .31 .54 .52
SELECTED TI	SOL IDS. RESIDUE AT 105 MG DEG. C. OI SUS- PENDED (MG/L)	518 578	20 187 187	21110	2333	338 ¢ ₹	40 42 40 80 80 80 80 80 80 80 80 80 80 80 80 80	0 0 0 3 0 0 0 5 0 0 0 5
TOWS AND	SOLIDS, RESIDUE AT 180 DEG, C DIS- SOLVED (MG/L)	1111			1111		2 300 2 360 2 360	1111
-RETURN F	SOLIDS, SUM OF CONST I- TUENTS, DIS- SOLVED (MG/L)	3910 	44 6 <i>0</i>	5090 	1667	3430 1940 2180 1780	1900 2190 2350	1929 931 2918
RR IGATION	MANGA- NESE, DIS- Solved (UG/L AS MN)	।।। ग	 1	8811189	188111	21115	1 2	150 821 118
PLING OF	IRON, DIS- SOLVED (UG/L AS FE)	%	\$	81118 8118	189111	29 2	=	20 30 410 20
SANCE SAM	SILICA, DIS- SOLVED (MG/L AS SI02)	ٿ ا ا ا ا	33111	- <u>11</u>	۱۱۱ <u>۲</u>	23 16 21 8	21 23 23 1	21 9.0
RECONNA I S	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	11121	11115.	°. ∞.	12111	<u>.</u>		080r
DATA FROM	DATE OF SAMPLE	77-08-03 77-08-03 77-07-29 77-08-03 77-08-03	77-07-28 77-07-28 77-07-28 77-07-28 77-07-28	76-09-09 77-07-28 77-07-28 77-07-28 76-09-09	77-07-28 77-08-02 77-07-28 77-07-27 77-07-27	77-07-27 77-07-12 76-04-23 76-05-21 76-06-17	76-07-14 76-08-19 76-08-18 76-09-15 76-09-15	76-09-03 76-09-08 76-09-03 76-00-03
TABLE 8WATER-QUALITY	SITE NO. ON PLATE SITE NAME	IR-I7 VISTA DEL RIO DR IR-16 MARKHAM ARROYO DR IR-15 EAST LAMAR DRAIN IR-14 VISTA DEL RIO DR	IR-I3 N GRANADA DRAIN IR-I2 S GRANADA DRAIN IR-I1 WEST ALFALFA DRAIN IR-10 GRANADA DR AT WTH	IR-9 N ARK DR NR BARTON IR-8 N FORK W HOLLY DR IR-7 S FORK W HOLLY DR IR-6 W HOLLY DR AT WTH	IR-5 E HOLLY D AT HOLLY IR-4 E HOLLY DRAIN TRIB IR-3 E HOLLY DRAIN TRIB	IR-2 E HOLLY DR AT WTH IR-1 ROMER FIELD DRAIN T- I SIXMILE CR AT HWY50	T- 2 CHICOSÀ CR NR FOWLER	T- 3 APISHAPA R NR FOWLER T- 4 TIMPAS CR AT HWY50 T- 5 CPOOKED AP AT HWY50

TABLE 8.---WATER-OUALITY DATA FROM RECONNAISSANCE SAMPLING OF IRRIGATION-RETURN FLOWS AND SELECTED TRIBUTARIES---CONTINUED

PHOS- PHORUS, DIS- SOLVED (MG/L	11111	11111	11111	1111	11111	0.20 	
PH OS- PHO RUS, ORT HO, DI S- SOLV ED (MG/L AS P)	0.84 1	111 ⁵³		۱۳			03 04 04 04
NI TRO- GEN, TOTAL (MG/L AS N)			• • • • • • • • • • • • • • • • • • •		0.04 0.00 0.00	4 ₪ ₪ ₪ ₪ 10 ₪ ₪ ₪ 10 ₪ ₪ ₪ ₪ 10 ₪ ₪ ₪	404L
NITRO- GEN • NO2+NO3 TOTAL (MG/L AS N)	11111		а. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.			44404 00040	404 404 404
NITRO- GEN, GEN, DIS- SOLVED (MG/L AS N)	2.3.7 3.7	_∞ **	3.2 2.5 4.3	-	4. 2.1		4040 4040
NI TRO- GEN, AMMONIA TOTAL (MG/L AS N)			 		3.90	- 04 - 03 - 01 - 01 - 1	. 93 91 10 10
DATE DATE OF SAMPLE	77-08-03 77-08-03 77-07-29 77-08-03 77-08-03	77-07-28 77-07-28 77-07-28 77-07-28 77-08-03	76-09-09 77-07-28 77-07-28 77-07-28 77-07-28 76-09-09	77-07-28 77-08-02 77-07-28 77-07-28 77-07-27	77-07-27 77-07-12 76-04-23 76-05-21 76-06-17	76-07-14 76-08-19 76-08-18 76-09-15 76-09-15	76-09-03 76-09-08 76-09-03 76-09-03
SITE No. ON PLATE I SITE NAME	IR-I7 VISTA DEL RIO DR IR-16 MARKHAM ARROYO DR IR-15 EAST LAWAR DRAIN IR-14 VISTA DEL RIO DR	IR-I3 N GRANADA DRAIN IR-I2 S GRANADA DRAIN IR-I1 WEST ALFALFA DRAIN IR-I9 GRANADA DR AT WTH	IR-9 N ARK DR NR BARTON IR-8 N FORK W HOLLY DR IR-7 S FORK W HOLLY DR IR-6 W HOLLY DR AT WITH	IR-5 E HOLLY D AT HOLLY IR-4 E HOLLY DRAIN TRIB IR-3 E HOLLY DR AT HW50	IR-2 E HOLLY DR AT WTH IR-1 ROMER FIELD DRAIN T- 1 SIXMILE CR AT HWY50	T- 2 CHICOSA CR NR FOWLER	T- 3 APISHAPA R NR FOWLER T- 4 TIMPAS CR AT HWY50 T- 5 CROOKED AR AT HWY50

TARLE 8. -- MATER-QUALITY DATA FROM RECONNAISSANCE SAMPLING OF IRPIGATION-RETURN FLOMS AND SELECTED TRIBUTARIES-CONTINUED

.

ST REP- TOCOCCI FECAL, KF A GAR (COL S. PE R 100 ML)					76 340 1400	1900 520 1700	
COLI- FORM. FECAL. 0.7 UM-4F (COLS./ 100 ML)						689 	
OXYGEN DEMAND. BIO- CHEM- ICAL. 5 DAY (MG/L)			×7.8		8 0 0 5	2000 2000 2000 2000	0,0010
PHOS- PHORUS. TOTAL (MG/L AS P)			0.75 .08		- 92 - 93 - 93	. 08 . 08 . 03 . 03 . 03	- 29 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 3
DATE OF SAMPLE	77-08-03 77-08-03 77-07-29 77-08-03 77-08-03	77-07-28 77-07-28 77-07-28 77-07-28 77-07-29 77-08-03	76-09-09 77-07-28 77-07-28 77-07-28 77-07-28 76-09-09	77-07-28 77-087-28 77-07-28 77-07-23 77-07-27	77-07-27 77-07-12 76-04-23 76-05-21 76-06-17	76-07-14 76-08-10 76-08-10 76-08-18 76-09-15 76-08-15	76-09-03 76-09-03 76-09-03 76-09-03
ITE • ON ATE NAME	R-I7 VISTA DEL RIO DR R-I6 MARKIAM ARROYO DR R-I5 EAST LAMAR DRAIN R-14 VISTA DEL RIO DR	R-13 N GRANADA DRAIN R-12 S GRANADA DRAIN R-11 WEST ALFALFA DRAIN R-11 ^M GRANADA DR AT WTH	R-9 N ARK DR NR BARTON R-8 N FORK W HOLLY DR R-7 S FORK W HOLLY DR R-6 M HOLLY DR AT WTH	R-5 E HOLLY D AT HOLLY R-4 E HOLLY DRAIN TRIB R-3 E HOLLY DRAIN TRIB	A-2 E HOLLY DR AT MTH 3-1 ROMER FIELD DRAIN - I SIXMILE CR AT HMY50 -	- 2 CHICOSA CR NR FOWLER	- 3 APISHAPA R NR FOWLER - 4 TIMPAS CR AT HWY50 - 5 CROOKED AR AT HWY50
PL S						ч	ннн

TABLE 9.--PESTICIDE DATA FROM SELECTED IRRIGATION-RETURN FLOWS AND TRIBUTARIES (UG/L=MICROGRAMS PER LITER; VALUES EXCREDING WATER-QUALITY STANDARDS ARE UNDERLINED).

SITE											
NO. ON PLATE I	SITE NAME	DATE OF SAMPLE	TIME	ALDRIN, TOTAL (UG/L)	CHLOR- DANE, TOTAL (UG/L)	DDD, TOTAL (UG/L)	DDE. TOTAL (UG/L)	DDT. TOTAL (UG/L)	DI- AZINON, TOTAL (UG/L)	DI- ELDRIN TOTAL (UG/L)	ENDRIN. TOTAL (UG/L)
R-52 R-50 R-49 R-47 R-43	25TH LANE DRAIN ST. CHARLES DRAIN 37TH LANE DRAIN 39TH LN DR AT HW50 AVONDALE D AT BR50	76-08-10 76-08-10 76-08-10 76-08-10 76-08-10 76-08-10	0830 0915 1000 1030 1130	0.00 .00 .00 .00 .00	0.19 .00 .00 .00 .00	0.00 .00 .03 .03 .03	0.00 .07 .03 .00 .00	7.00 .09 .00 .00 .00		0.24 .90 .23 .23	0.00 .00 .00 .00 .00
IR-34 IR-31 IR-9 IR-6	HIGHWAY 71 DRAIN ROCKY FORD DRAIN N ARK DR NR BARTON W HOLLY DR AT MTH	77-08-23 77-08-23 76-09-09 76-09-09 76-09-09 77-08-02	1140 1120 1030 1130 1515	.00 .03 .00 .00 .00	. 09 . 09 . 00 . 00 . 03	. 90 . 90 . 90 . 90 . 90	.00 .00 .00 .00 .00	. 00 . 00 . 03 . 03	0.09 .03 .02	. 00 . 00 . 00 . 00	. 00 . 00 . 00 . 00
T- 1 T- 2 T- 3 T- 4	SIXMILE CR AT HWY50 CHICOSA CR NR FOWLER APISHAPA R NR FOWLER TIMPAS CR AT HWY50	76-08-10 76-08-10 76-09-08 76-09-03	1100 1215 1030 1030	.00 .00 .00 .00	.00 .00 .00	. 00 . 00 . 00 . 00	. 07 . 99 . 03 . 09	. 03 . 19 . 20 . 33		. 90 . 00 . 00 . 09	. 03 . 03 . 09 . 09
SITE NO. ON PLATE I	SITE NAME	DATE OF E SAMPLE	THION, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL (UG/L)	HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	LINDANE TOTAL (UG/L)	MALA- THION, TOTAL (UG/L)	METH- OXY- CHLOR, TOTAL (UG7L)	METHYL PARA- THION, TOTAL (UG/L)	METHYL TRI- THION, TOTAL (UG/L)	MIREX. TOTAL (UG/L)
IR-52 IR-50 IR-49 IR-47 IR-43	25TH LANE DRAIN ST. CHARLES DRAIN 37TH LANE DRAIN 39TH LN DR AT HW50 AVONDALE D AT BR50	76-08-10 76-08-10 76-08-10 76-08-10 76-08-10 76-08-10	 	0.00 .00 .00 .00	0.00 .00 .03 .03	0.30 .00 .03 .03 .03					
IR-34 IR-31 IR-9 IR-6	HIGHWAY 71 DRAIN ROCKY FORD DRAIN N ARK DR NR BARTON W HOLLY DR AT MTH	77-08-23 77-08-23 76-09-09 76-09-09 77-08-02	0.00 .00 	.00 .00 .00 .00	. 00 . 03 . 00 . 00	. 00 . 00 . 00 . 30 . 00	0.00 .00 	3.00 .00 	0.03 .03 	0.00 .00 .00	0.09 .09 .00
T- 1 T- 2 T- 3 T- 4	SIXMILE CR AT HWY5Ø CHICOSA CR NR FOWLER APISHAPA R NR FOWLER TIMPAS CR AT HWY5Ø	76-08-10 76-08-10 76-09-08 76-09-03		. 00 . 00 . 00 . 00	. 33 . 99 . 89 . 89	. 00 . 00 . 00 . 00				 	
	SITE NO. ON PLATE I	SITE NAME		DATE OF SAMPLE	NAPH- THA- LENES, POLY- CHLOR. TOTAL (UG/L)	PARA- THION, TOTAL (UG/L)	PCB, TOTAL (UG/L)	TOX- APHENE, TOTAL (UG/L)	TOTAL TRI- THION (UG/L)		
	IR-52 25 IR-59 51 IR-49 37 IR-47 39 IR-47 39 IP-43 AV	TH LANE DRAIN C. CHARLES DRAIN TH LANE DRAIN TH LN DR AT N CONDALE D AT N	N N N HW59 BR59	76-08-10 76-08-10 76-08-10 76-08-10 76-08-10 76-08-10	0.00 .00 .00 .00		0.00 .03 .03 .03	0 0 0 0 9			
	IR-34 HI IR-31 RC IR-9 N IR-6 W	IGHWAY 71 DRA DCKY FORD DRA ARK DR NR BA HOLLY DR AT	IN IN RTON WTH	77-08-23 77-08-23 76-09-09 76-09-09 77-08-02	.00 .00 .00 .00 .00	0.00 .00 .00	.00 .03 .00 .00	0 0 0 0	0.03 .00 .00		
	T- 1 SI) T- 2 CH T- 3 AP T- 4 TI)	(MILE CR AT H ICOSA CR NR F ISHAPA R NR F WPAS CR AT HW	NY50 OWLER OWLER Y50	76-08-10 76-08-10 76-09-08 76-09-03	. 00 . 00 . 00 . 00		. 03 . 03 . 00 . 03	0 0 0 0			

.

TABLE 10.---WATER-QUALITY DATA AT ARKANSAS RIVER SITES, JULY 1977

(CFS=CUBIC FOOT PER SECOND: DEG C=DEGREES CELSIUS: UMHOS=MICROMHOS PER CENTIMETER AT 25 DEGREES CELSIUS: MG/L=MILLIGRAMS PER LITER: UG/L=MICROGRAMS PER LITER: MILES=MILES DOWNSTREAM FROM PUERLO RESERVOIR; MG/L=MILLIGRAMS

CALCIU DIS- SOL VE (MG /I AS C/			1 1 0		34 Ø	330 1 1 1 1		11111	1
POTAS- SIUM, DIS- SOLVED (MG/L AS K)	1111		ی ۳.۱۱۳۲		7 6 6	<u>°</u>	<u> </u>		ł
SODIUM, DIS- SOLVED (MG/L AS NA)	1111	1111	_		180 503	470 	· · · · · · · · · · · · · · · · · · ·		ł
Hd (STI ND)	7.9888 7.99 7.99	8.1 8.1 7.9 7.9	๛๛๛๛๛ ๛๛๛๛๛๛	8888 8988 8988 8988 8988 8988 8988 898	0,00,00 0,00,00 0,00,00,00 0,00,00,00 0,00,0	88.2 8.2 7.9 7.9	7.9 8.2 8.1 8.2 8.2	88 8.5 8.5	8.1
OXYGEN, DI S- SOL VED		11111			0 		!		8.1
SPE- CIFIC CON- DUCT- ANCE ANCE	575 910 875 900 910	928 925 958 975	1125 1150 1210 1310	1630 1790 1980 2230	2170 2330 2350 2350 3950	3300 4100 3900 4400 4150	5300 5966 4356 5180 3756	42 00 42 00 57 00 58 00 59 00	52 AA
TEMPER- ATURE (DEG C)	20.0 29.0 37.0 29.0	30.0 27.0 26.0 24.0 24.0	23.0 22.0 34.0 34.0	34.5 34.5 25.5 22.6 22.6	23. 0 22. 0 21. 0 34. 5	35. 9 34. 5 25. 5 25. 5 26. 5 26. 5 26. 5	25.5 26.5 21.5 221.6 29.5 29.5	31. 0 32. 0 32. 0 34. 5	35.0
STREAM- FLOW, INSTAN- TANEOUS (CFS)		215	1 <i>0</i> 0		58 58 3.6		- 20 - 20 - 20		5.9
TIME	1530 1440 1410 1340 1300	1240 1219 1130 1100	0925 0900 0810 1445 1415	1345 1315 1235 1120 1000	0920 0845 0800 0730 1510	1430 1350 1245 11200	1045 1010 0920 0830 1745	1700 1620 1553 1445	1300
DOWN- STREAM LOCA- TION (MILES)	- ∞ - ∞ 4	23 23 23 23 23	0 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	55 63 67	73 79 84 92	94 97 1167 116	119 121 124 134		162
DATE OF SAMPLE	77-07-19 77-07-19 77-07-19 77-07-19 77-07-19	77–67–19 77–67–19 77–67–19 77–67–19 77–67–19	77-07-19 77-07-19 77-07-19 77-07-19 77-07-14 77-07-14	77-07-14 77-07-14 77-07-14 77-07-14 77-07-14	77-07-14 77-07-14 77-07-14 77-07-14 77-07-14	77-07-13 77-07-13 77-07-13 77-07-13 77-07-13	77-07-13 77-07-13 77-07-13 77-07-13 77-07-13	77-07-12 77-07-12 77-07-12 77-07-12 77-07-12	77-07-12
ITE . ON ATE SITE NAME	-41 ARK RIV AR PUEBLO -40 ARK RIV AT SANTA FE -39 ARK RIV NR 23RD LN -38 ARK RIV NR 28TH LN -37 ARK RIV AT BAXTFR	-36 ARK RIV AT DEVINE -35 ARK RIV AT 40TH LN -34 ARK RIV NR AVONDALE -33 ARK RIV AT AVONDALE -32 ARK R AT COLO CANAL	-31 ARK R AT RF HIGHLIN -30 ARK RIV NR NEPESTA -29 ARK RIV AT FOWLER -28 ARK RIVER AT CATLIN -27 ARK R AT MANZANOLA	-26 ARK AT FT LYON STOR -25 ARK RIV NR ORDWAY -24 ARK R NR ROCKY FORD -23 ARK RIV AT SWINK -22 ARK AT FT LYON CAN	-21 ARK RIV AT LA JUNTA -20 ARK RIV NR BENTS FT -19 ARK RIVER AT HADLEY -18 ARK AT CONSOLID CAN -17 ARK R AT LAS ANIMAS	-16 ARK R AR PURGATOIRE -15 ARK AT FT LYON HOSP -14 ARK R BL JOHN MARTIN -13 ARK BL FT BENT CAN -12 ARK RIV AB PROMERS	-11 ARK RIV AT PROWERS -10 ARK RIV NR WILEY - 9 ARK AB LAMAR CANAL - 8 ARK RIVER AT LAMAR - 7 ARK AB BIG SANDY C	 6 ARK RIV NR GROTE 5 ARK RIV NR GRANADA 4 ARK RIV NR AMITY 3 ARK RIV AT HOLLY 2 ARK AT FRONTIER DCH 	- I ARK R NR COOLIDGE
	SITE SPE- SPE- NO. ON DATE DOWN- STREAM- CIFIC SODIUM, SIUM, CALCI NO. ON DATE STREAM STREAM- CIFIC OXYGEN, SODIUM, SIUM, CALCI PLATE STREAM FLOW, TEMPER- DUCT- DIS- DIS- PLATE SAMPLE TION TIME TANEOUS ATURE ANCE SOLVED	SITE NO. ON PLATE NO. ON NO. ON	STE NO. ON I STREAMDATE STREAMDOWN- STREAMSTREAM STREAM <td>SITE Domu- ter of term SPE- ter of term SPE- term SPE- term <</td> <td>STE DONL STEAH STRAM STEAH STA STEAH STA STA ST</td> <td>STER DONL STERM S</td> <td>STIFE MATCHING STREMA <thstrema< th=""> <ths< td=""><td>STERMAL International Province Pro</td><td>STEAL STEAL <th< td=""></th<></td></ths<></thstrema<></td>	SITE Domu- ter of term SPE- ter of term SPE- term SPE- term <	STE DONL STEAH STRAM STEAH STA STEAH STA STA ST	STER DONL STERM S	STIFE MATCHING STREMA STREMA <thstrema< th=""> <ths< td=""><td>STERMAL International Province Pro</td><td>STEAL STEAL <th< td=""></th<></td></ths<></thstrema<>	STERMAL International Province Pro	STEAL STEAL <th< td=""></th<>

	SULFATE DIS- SOLVED (MG/L AS S74)			52 <i>d</i>	1111	1 000 	2003	2788		I
	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)		:::::	30 30	34 1 1 1	53		152 160 170	160	ł
CONT I NUED	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)			.		2.2	5.11		11111	I
Y 1977-0	CAR- BONATE FET-FLD (MG/L AS C03)			@		e 0	®	@		1
sites, Jut	BICAR- BONATE FET-FLD (MG/L AS HCO3)		1111	213		270 240	2 80	283	1111	1
VS RIVER S	ALKA- LINITY FIELD (MG/L AS CACO3)			 	1111	220 200 200	538 538 5	230		!
AT ARKANSI	HA RD- NE SS. NON CAR- BON A TE (MG/L CA CO3)			380 I I I		750 1300	1300	1600		1
TY DATA	HARD- NESS (MG/L AS CAC03)					970 1580	1500	800 		ł
ATER-OUAL	MAGNE- SIUM. DIS- SOLVED (MG/L AS MG)			2 ²	11111	85 150	1 1 1 1	220		ł
ABLE 10W	DATE OF SAMPLE	77-07-19 77-07-19 77-07-19 77-07-19 77-07-19	91-70-77 91-70-77 91-70-77 91-70-77 91-70-77	77-07-19 77-07-19 77-07-19 77-07-19 77-07-14 77-07-14	77-07-14 77-07-14 77-07-14 77-07-14 77-07-14 77-07-14	77-07-14 77-07-14 77-07-14 77-07-14 77-07-14 77-07-13	77-07-13 77-07-13 77-07-13 77-07-13 77-07-13 77-07-13	77-07-13 77-07-13 77-07-13 77-07-13 77-07-13	77-07-12 77-07-12 77-07-12 77-07-12 77-07-12	77-07-12
1	TE on .TE site name	41 ARK RIV AR PUERLO 46 ARK RIV AT SANTA FE 39 ARK RIV NR 23RD LN 38 ARK RIV NR 28TH LN 37 ARK RIV AT BAXTER	36 ARK RIV AT DEVINE 35 ARK RIV AT 40TH LN 34 ARK RIV NR AVONDALE 33 ARK RIV AT AVONDALE 32 ARK R AT COLO CANAL	31 ARK R AT RF HIGHLIN 30 ARK RIV NR NEPESTA 29 ARK RIV AT FOWLER 28 ARK RIVER AT CATLIN 27 ARK R AT MANZANOLA	26 ARK AT FT LYON STOR 25 ARK RIV NR ORDWAY 24 ARK R NR ROCKY FORD 23 ARK RIV AT SWINK 22 ARK AT FT LYON CAN	21 ARK RIV AT LA JUNTA 26 ARK RIV NR BENTS FT 19 ARK RIVER AT HADLEY 18 ARK AT CONSOLID CAN 17 ARK R AT LAS ANIMAS	16 ARK R AR PURGATOIRE 15 ARK AT FT LYON HOSP 14 ARK R BL JOHN MARTIN 13 ARK BL FT BENT CAN 13 ARK RIV AB PROWERS	II ARK RIV AT PROMERS 10 ARK RIV NR WILEY 9 ARK AB LAMAR CANAL 8 ARK RIVER AT LAMAR 7 ARK AB BIG SANDY C	<pre>6 ARK RIV NR GROTE 5 ARK RIV NR GRANADA 4 ARK RIV NR AMITY 3 ARK RIV AT HOLLY 2 ARK AT FRONTIER DCH</pre>	I ARK R NR COOLIDGE
	SI PLA.	1 X X X X X	 X X X X X	 X X X X X	 X X X X X	1 X X X X X	1 X X X X X	× × × × ×	<u> </u> Z Z Z Z Z	¥

1 9 77 CONT I NUED
JULY
I VER SI TES,
ARKANSAS R
AT
DATA
10WATER-OUALITY
TABLE

PHOS- PHORUS. ORTHO. DIS- SOLVED (MG/L AS P)			0.1901		. 040 			; ; ; ; ; ;	1
NITRO- GEN, DIS- SOLVED (MG/L AS N)			ا ا ا	5 5	4.0 3.2 .77	<u></u> .		3.2 1.7	ł
SOLIDS, SUM OF CONSTI- TUEVTS, DIS- SOLVED (MG/L)	11111	1111	957		1740 3370	3240	4 263	1111	I
MANGA- NESE, DIS- SOLVED (UG/L AS VN)			1181		81 11 2	5 5 8 8 1	। । । झा ट्र	1111	1
IRON, DIS- SOLVED (UG/L AS FE)			=		<u>×</u> <u>×</u>	•	20		ļ
SIL ICA, DIS- SOLVED (MG/L AS SI02)			[.]		2	4		1111	1
FLUO- RIDE, DIS- SOLVED (MG/L AS F)	11111		<u>-</u>		21112	11211	11121	11111	1
DATE OF SAMPLE	77-07-19 77-07-19 77-07-19 77-07-19 77-07-19	77-07-19 77-07-19 77-07-19 77-07-19 77-07-19	77-07-19 77-07-19 77-07-19 77-07-14 77-07-14	77-07-14 77-07-14 77-07-14 77-07-14 77-07-14	77-07-14 77-07-14 77-07-14 77-07-14 77-07-14	77-07-13 77-07-13 77-07-13 77-07-13 77-07-13	77-07-13 77-07-13 77-07-13 77-07-13 77-07-13	77-07-12 77-07-12 77-07-12 77-07-12 77-07-12	77-07-12
SITE NO. ON PLATE I SITE NAME	M-41 ARK RIV AB PUEBLO M-40 ARK RIV AT SANTA FE M-39 ARK RIV NR 23RD LN M-38 ARK RIV NR 28TH LN M-37 ARK RIV AT BAXTER	M-36 ARK RIV AT DEVINE M-35 ARK RIV AT 40TH LN M-34 ARK RIV NR AVONDALE M-33 ARK RIV AT AVONDALE M-32 ARK R AT COLO CANAL	M-31 ARK R AT RF HIGHLIN M-30 ARK RIV NR NEPESTA M-29 ARK RIV AT FOWLER M-28 ARK RIVER AT CATLIN M-27 ARK R AT MANZANOLA	M-26 ARK AT FT LYON STOR M-25 ARK RIV NR ORDWAY M-24 ARK R NR ROCKY FORD M-23 ARK RIV AT SWINK M-22 ARK AT FT LYON CAN	M-2! ARK RIV AT LA JUNTA M-20 ARK RIV NR BENTS FT M-19 ARK RIVER AT HADLEY M-19 ARK AT CONSOLID CAN M-17 ARK R AT LAS ANIMAS	M-IG ARK R AB PURGATOIRE M-IS ARK AT FT LYON HOSP M-I4 ARK R RL JOHN MARTIN M-I3 ARK BL FT BENT CAN M-I2 ARK RIV AB PROWERS	M-11 ARK RIV AT PROWERS M-10 ARK RIV NR WILEY M- 9 ARK AB LAMAR CANAL M- 8 ARK RIVER AT LAMAR M- 7 ARK AB BIG SANDY C	M- 6 ARK RIV NR GROTE M- 5 ARK RIV NR GRANADA M- 4 ARK RIV NR AMITY M- 3 ARK RIV AT HOLLY M- 2 ARK AT FRONTIER DCH	M- 1 ARK R NR COOLIDGE

TABLE 11.--WATER-QUALITY DATA AT ARKANSAS RIVER SITES. 1978 IRPIGATION SEASON

(CFS=CUBIC FOOT PER SECOND: DEC C=DECREES CELSIUS: UMHOS=MICDOMIOS PER CENTIMETER AT 25 DECREES CELSIUS: WC AL=WILLICANS PER LITER: COLS./100 ML=COLONIES PER 100 MILLILITERS: VALUES PRECEEDED BY K INJICATE THE COLONY COUNT WAS 9ASED OM A NON-IDEAL BACTERIA PLATE: VALUES EXCEEDING WATER-OUALITY STANDARDS ARE UNDERLINED)

STREP- T OCOCCI FECAL. KF AGAR (COLS. PER I ØØ ML)	К - 80 К - 80 К - 80 К - 80 К - 10 В 3	4 - X X 250 250 450 450 450	K 00 30 2 80 2 80 2 80 4 4 1 9	86 86 11 0 0 00 12 0 000 12 7 00 82 7 00 82 1 0	720 110 3300 3300 110	X 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1600 140 140 5500 160 K7000	989 989 9899 9899 9899 9899 9899 9899
COLI- FORM. FECAL. M-MF (COLS./ I 30 ML)	××××××××××××××××××××××××××××××××××××××	1990 1990 1391 1390 1390 1390 1390 1390	K47 388 389 1100 1100 K12	K20 140 920 340 180	K 23 88 8386 8386 8386 8386 8386 8386 8386	K20 58 2000 K50 K58 K58	К 1 29-00 К 15-00 К 15-00 К 15-00 К 15-00 К 15-00 К 15-00	К 1 350 К 1 6 859 359 К59
(SLINN) Hd	8 - 7 - 78 8 - 7 - 78 8 - 7 - 78 8 - 7 - 78 8 - 78 8 - 78 8 - 78 7 - 78 7 7 7 - 78 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	~~~~~~~	888778 886778 89678	881181 8619181 8619181		8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	-2833 232 837 837 837 837 837 837 837 837 837 837	8. 8. 8. 9. 8. 9. 8. 8. 8.
OXYGEN DIS- SOLVED		ᢦ <i>ఴ</i> ო <i>Ⴡ</i> ѻѻ ₽4 ఴౢౢౢౢౢౢౢౢౢౢౢ		8 8 8 8 8 8 8 7 8 7 8 7 8 7 8 7 8 7 8 7	080111 4080121	- 00 C 0		008-00 008-00 0000000000000000000000000
SPE- CIFIC CON- DUCT- ANCE (UMHOS)	745 200 200 200 200 200 200 200 200 200 20	002 005 004 004 004 000 000 000 000 000 000		2430 5330 5330 2533 2533 2533 2533 2533 25	3670 4959 4959 1100 34999 3599	3799 4150 725 3700 3500	4420 5140 940 1500 4100 4100	4300 5370 1380 2380 4300
TEMPER- ATURE (DEG C)	14 14 18 18 18 18 18 18 18 18 18 18 18 18 18		10.0 27.0 25.0 31.0 31.0	16.55 22.55 24.56 24.56 24.56 24.56 24.56 24.55				12.5 23.5 32.6 32.6 24.6 24.6
STREAM- FLOW. INSTAN- TANEOUS (CFS)	122 2958 937 948	214 179 1888 1988 238 228	83 2450 644 81 125	6.0 4994 1-1 3.1	9.0 484 313 14 6.9	4.1 31 295 27 27	234 234 234 56 48 48 4	16 16 27 11 11 8 8
TIME	0830 1030 0740 0715 0730	0915 1130 0930 0830 0930	000 230 139 005 340 0945	1115 1123 1115 1115 115 115 115 115 115 115 115	1215 1339 1220 1220	1329 1536 1430 1315 1365 1369	1415 1615 15330 1730 1730	1515 1739 1515 1515 1515
DATE OF SAMPLE	78-04-18 78-05-15 78-06-20 78-07-25 78-07-25 78-08-23	78-04-18 78-05-15 78-06-20 78-07-25 78-08-23 78-08-23	78-04-18 78-05-15 78-06-15 78-06-20 78-07-25 78-09-23 78-09-18	78-04-18 78-05-15 78-06-20 78-06-20 78-07-25 78-09-23 78-09-18	78-04-18 78-05-15 78-06-20 79-07-25 78-08-23 78-09-18	78-04-18 78-05-15 78-06-20 78-06-20 78-07-25 78-09-23 78-09-18	78-04-18 78-05-15 78-06-20 78-07-25 78-09-25 78-09-23	78-04-18 78-95-15 78-96-20 78-96-20 78-97-25 78-99-23
SITE NAME	ARK RIV AB PUEBLO	ARK RIV NR AVONDALE	ARK RIV NR NEPESTA	ARK RIV AT LA JUNTA	ARK R AT LAS ANIMAS	NRY R BL JOHN MARTIN	ARK RIVER AT LAMAR	ARK R NR COOLIDGE
SITE NO. ON PLATE	M-4 1	M-34	M-30	M-21	м- 1 7	M-14	8 	

TABLE 12.---WATER-QUALITY DATA AT FOUR IRPIGATION-RETURN FLOW SITES. 1973 IRRIGATION SEASON

(CFS=CUBIC FOOT PER SECOND; DEG C=DEGREES CELSIUS; UMHOS=MICROMHOS PER C=NTIMETER AT 25 DEGREES CELSIUS; MG/L=WILLIGRAMS PER LITER; COLS,/100 ML=COLONIES PER 100 MILLILITERS; VALUES PRECEEDED BY K INDICATE THE COLONY COUNT WAS BASED ON A NON-IDEAL BACTERIA PLATE; VALUES EXCEEDING WATER QUALITY STANDARDS ARE UNDERLINED).

il TE 3. ON ATE 1 SITE NAME	DATE OF SAMPLE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	TEMPER- ATURE (DEG C)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	DIS- SOLVED (MG/L)	(STINU)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	N ITRO- GEN, AM- MONIA + ORGANIC T OTAL (MG/L AS N)	NITR O- GEV + NO2+NO3 TOTAL (MG/L AS V)
3-31 ROCKY FORD DRAIN	78-03-16 78-04-20 78-06-17 78-06-22 78-07-28 78-07-28 78-08-25 78-09-25	1615 1230 1330 1130 1130 1930	0 0 7 - 0 0 4 0 0 7 - 0 0 4	15.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5	2250 2430 2140 1520 1640 2030 2030	8. 7. 4. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.		63 61 37 31 6 1 4 4 4 7 6 1 8 7 6 1 8 7 6 1 8 7 6 1 8 7 6 1 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	- 4 4 0 m m v • 4 4 0 m m v • 0 m v 4 0 0	ທູລູນ ຈູດ ຊີວິດ ຊີວີ ຊີວີ
R-I5 EAST LAMAR DRAIN	78-03-16 78-04-20 78-05-17 78-07-28 78-08-25 78-08-25 78-09-26	1300 0900 0930 0915 1100 0300	. 10 1.0 3.0 1.2 .60	4-10 180 180 180 180 180 180 180 180 180 1	3999 4239 4239 3239 3789 3789	w 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8.9 7.7 7.9 7.9 7.9 7.9 7.9	140 130 130 130 130	- 7 - 1 - 75 - 75 - 75 - 75 - 75 - 75	. 08 0 2 0 2
R-10 GRANADA DR AT MTH	78-04-20 78-05-17 78-06-22 78-07-28 78-07-28 78-08-25 78-09-19	0300 0330 0930 1900 1700	2.7 8.7 1.1 8.6 1.9 .6	7.5 14.6 28.9 18.0 21.0 20.0	5330 5350 3550 3550 3550 4900 5350	0-20 20 20 20 20 20 20 20 20 20 20 20 20 2	7.0 7.0 8.7 8.8 8.8	2 00 1 2 0 1 2 0 1 1 0 1 0 1 0	\$28.50 	- 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20
- I SIXMILE CR AT HWY50	78-03-17 78-04-20 78-05-17 78-05-17 78-06-22 78-07-28 78-09-25 78-09-20	1200 1400 1530 1330 1330		12.9 18.9 25.9 23.9 23.9 15.0	2889 2699 2699 1999 2659 2659 2769		8887887 - 6 - 6 - 8 - 6 - 7 - 6 - 6 - 6 - 6 - 6	32 255 31 29.6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	۵ ۵ ۷ ۵ 4 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

STREP- TO COCC I FECAL FECAL COLS. PER	1 000 1900 3400 K3000 12000 17000	216 1328 1328 1328 1328 1328 1328 20008 20008 20008	2990 6002 292 22000 10030	3300 3320 13200 8720 8720 8720 8720 8720 8720 8720 8
COLI- FORM, FE CAL, 0, 7 UM-MF (COL S./ 100 ML)	K35 K3 K16 64 K9200 K9200 K9200 K9200 K9200 K9200	K5 K7 12000 3700 3700 8603 8603	22 K200 K1400 K1400 K1200	К К К К К С 8 8 8 8 8 8 8 8 8 8 8 8 8 8
OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG /L)	28 28 39 20 20 20 20 20 20 20 20 20 20 20 20 20	- 22 8 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	×	- 0 0 0 0
SOLIDS, RESIDUE AT 105 DEG, C, SUS- PENDED (MG/L)		06 23 23 23 23 23 23 23 23 23 23 23 23 23	- 000 - 45 - 45 - 45 - 45 - 45 - 45 - 45 - 45	2 - 20 2 - 20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
PHOS- PHOS- TOTAL (MG/L AS P)	0.23 .23 .23 .23 .23 .23 .23 .23	6 6 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	- 80 - 61 - 60 - 40 - 24	
PHOS- PHORUS, ORTHO, TOTAL (MG/L AS P)	9.95 95 92 92 92 92 92 92	×	- 70 - 29 - 11 - 17 - 05	• • • • • • • • • • • • • • • • • • •
DATE OF SAMPLE	78-03-16 78-04-20 78-05-17 78-05-17 78-06-22 78-06-22 78-07-28 78-07-28 78-07-28	78-03-16 78-04-20 78-05-17 78-06-22 78-06-22 78-07-28 78-07-28	78-04-20 78-05-17 78-06-22 78-06-22 78-07-28 78-07-28 78-09-19	78-03-17 78-04-17 78-05-17 78-05-22 78-06-22 78-07-28 78-09-255
TE ON TE SITE NAME	-31 ROCKY FORD DRAIN	-15 EAST LAMAR DRAIN	-10 GRANADA DR AT MTH	I SIXMILE CR AT HWY50
PL S	II	IF	IF	Ļ

TABLE 12.--WATER-QUALITY DATA AT FOUR IRRIGATION-RETURN FLOW SITES, 1978 IRRIGATION SEASON ---CONTINUED

TAPLE 13.-DAILY PRECIPITATION IN THE INTENSIVE STUDY AREA NEAR HOLLY. 1978 IRRIGATION SEASON

ΠT
QE HC
WEST
NORTH
MILES
2
GAGE.
BAIN
URVEY
S TCAL S
GEOLOC
U.S.

	0CT	0.00	00	00	00.	00.	00.	00.	00.	00.	.00	.00	00.	00.	.00	00.	00.	00	00.	.32	00.	66.	00.	0 0 •	09.	00.	00.	00	.00	60.	.00	.32
	SEPT	0.00	90	00	00	.00	.00	.00	00.	.00	.00	.00	.00	.00	.00	00.	00.	.00	.00	.08	. 30	00	6.6.	.00	. 05	.02	.00	.00	.00	.00		.15
	AUG	9.00 00	00	. 07	00	.00	. 00	. 90	.00	00.	.00	. 00	. 00	00	.00	.00	00.	00.	.00	.00	60.	<u>0</u> 0	.00	.00	• 00	<i>0</i> 0'	. 00	.00	.57	.10	.00	1.64
NO	JULY	00.00	00	00	00	. 00	. 00	. 00	.07	. 10	.00	. 00	. 00	. 00	. 02	. 02	.00	.00	66	. 00	. 00	.00	.00	. 010	. 00	. 00	. 00	.00	. 00	. 22	. 00	.43
RECIPITATI INCHES)	JUNE	0.00	40	1.94	. 45	. 00	. 02	00.	.00	. 00	. 00	.00	.00	00.	.00	90.	00.	.03	.00	60.	00.	90.	. 00	. 00	.00	.00	. 62	.00	00.	.00	1	3.67
) DAILY P	МАҮ	Ø.15 83	•	649	1.25	.37	. 12	.00	00.	60.	.00	00.	.00	.00	.00	.00	.27	00.	00.	.00	.00	66.	.00	.00	.00	.00	1.10	.00	.00	96.	.03	4.01
	APR	0.00 00	00	00	00	. 00	.00	.00	. 00	. 00	.00	. 00	.00	.00	.00	.00	.00	.00	. 00	.00	.00	.00	. 00	. 00	.00	60.	.00	• 00	. 02	2.19		2.21
	MAR				1	8				1		1			•	0.00	.00	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
	DAY	- 0	4 (*) 4	ۍ ۲	\$	7	œ	0	61	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	TOTAL

TABLE 13.--DAILY PRECIPITATION IN THE INTENSIVE STUDY AREA NEAR HOLLY, 1978 IRRIGATION SEASON-CONTINUED

NATIONAL WEATHER SERVICE RAIN GAGE AT HOLLY

IPITATIO	ES)
PREC	INCH
DAILY	J

z

OCT	00.00	00.	OK.		00.	00.	00.	.00	90	00.	00	00.	00.	. 30	60.	00.	ωø.	00.	06.	.53	000.	00.	Ф5	.00	0w.	00.	00.	00.	6.9	. 30	.58
SEPT	0.00 .03	00.	99.	•		.00	.00	.00	.10	. 00	00.	.00	.00	.00	.00	.00	00	. 00	60.	.00	60.	.00	.00	• 02	. 02	. 00	.00	.00	.00]	. 14
AUG	3.00 .03	.80	000		00.	00.	00.	.00	oo.	60.	00	.00	00.	00.	.00	.00	00	00.	• 90	. 00	.00	60.	.00	.00	.00	.00	.00	. 73	.47	.00	2.96
JULY	0.00 .00	00.	00	•	- 02	. 00	. 00	. 00	• 32	. 12	.00	.00	. 00	. 00	.10	. 00	. 00	00.	. 00	. 00	. 00	00.	. 00	. 00	. 00	. 00	. 00	.00	. 32	. 00	. 94
JUNE	0.04 .00	41	×	-	¢0.	00.	.00	.00	.00	00.	.00	. 00	.00	.00	.00	.00	.03	00.	.00	. 00	.00	.00	.00	. 00	. 00	.25	.00	.00	. 00		3.00
МАҮ	1.12 0.08	40	6:0.• 8.5	, ,	1.1	.06	.08	.00	00	00.	.00	.00	.00	.00	.00	.00	.69	60.	66.	.00	.00	60.	.00	.00	90.	.00	1.27	.00	.00	• 00	5.79
APR	0.00 .00	00.	. 00.		. 00	.00	.00	.00	60.	. 00	00.	.00	. 00	. 04	.00	. 02	60.	.00	00	. 00	00	.00	.00	.00	OD	.01	.00	.00	. 78		. R5
MAR											1	ł			0.02	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	60.	. 00	. 00	. 00	. 02
DAY	- ~	т Т	t 1	· ·	0	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	TOTAL

TABLE 14.--MEAN DAILY AIR TEMPERATURE IN THE INTENSIVE STUDY AREA NEAR HOLLY, 1978 IRPIGATION SEASON

NATIONAL WEATHER SERVICE STATION AT HOLLY

MEAN DAILY TEMPERATURE (DEGREES FAHRENHEIT)

OCT	68 62 55 58	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	61 60 60 60 60 60 60 60 60 60 60 60 60 60	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	50 70 70 70 70 70 70 70 70 70 70 70 70 70	0000004 000400
SEPT	27 27 27 26 27 26 26 26 26 26 26 26 26 26 26 26 26 26	78 78 68 68	82 76 63 67	74 72 72 85 82	447 55 54 63	59 65 66 61
AUG	74 69 63 88	68 77 76 74 47	69 75 87 73	78 87 74 74	81 74 83 82	87 72 78 70 70
JULY	74 77 85 88	85 79 78 78 78	68 79 82 81	8 8 8 3 3 8 2 8 8 3 3 8 8 8 8 3 3	77 80 73 8 73	38- 38- 756 756
JUNE	69 64 62 62	62 64 68 76	75 78 78 82	80 78 84 81	76 381 91 91	83 78 79 82
МА Ү	57 422 48 88	30 94 90 90 90	73 69 71 71	70 68 64 65	62 58 81 75	27 87 72 87 72 72
A PR	6 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	55 66 96 96 75 75 75 75 75 75 75 75 75 75 75 75 75	557 14 537	4 4 4 4 8 レ U O O	ກ <u>4</u> ກ ກ Ø - 1 8	6655 653 653 652 652 652 652 652 652 652 652 652 652
MAR				35 37 38 38 38 38 38 38 38 38 38 38 38 38 38	4 3 5 6 4 2 - 2 6 6	4 5 5 7 7 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
DAY	<u>-</u> თ ო ი	00870 90870	5432	10 11 10 10 10 10 10 10 10 10 10 10 10 1	22 22 24 25	300 300 300 300 300 300 300 300 300 300
TABLE 15.---DAILY STREAMFLOW IN THE INTENSIVE STUDY AREA NEAR HOLLY, 1978 IRRIGATION SEASON

WEST HOLLY DRAIN AT MOUTH

. MEAN DAILY DISCHARGE (CUBIC FEET PER SECOND)

DAY	MAR	APR	MAY	JUNE	JULY	AUG	SEP T	OCT
1		1.0	4.6	1.7	13	18	6.3	1.7
2		Ø.74	4.0	1.6	12	17	5.0	2.3
3		.42	4.0	3.5	10	27	5.4	1.4
4		.42	3.8	140	12	25	4.0	1.4
5		.36	15	67	14	22	2.9	1.5
6		1.5	28	41	12	2Ø	4.6	1.4
7		1.9	5.Ø	24	14	22	3.8	1.6
8		1.7	4.1	17	17	19	6.8	1.3
9		1.1	3.3	11	11	17	9.0	Ø.94
10		1.9	2.8	9.3	19	16	10	1.6
11		4.1	3.Ø	7.8	9.3	16	8.2	1.7
12		3.8	3.7	7.0	13	14	7.3	1.2
13		3.8	3.6	5.4	14	15	5.2	1.7
14		4.0	3.5	3.8	15	15	6.3	1.5
15		2.8	3.2	5.8	14	20	4.5	1.6
16	1.8	6.0	2.9	5.4	11	16	5.1	1.5
17	Ø.9Ø	5.1	3.5	6.2	12	15	4.1	1.4
18	.36	4.2	4.9	6.5	16	14	3.9	.51
19	.26	4.7	5.1	7.0	18	13	4.7	.57
20	.6Ø	4.4	3.9	8.3	16	11	5.0	.44
21	.36	4.0	5.7	12	17	10	5.6	.40
22	.36	4.3	6.9	15	18	9.8	5.8	1.1
23	.73	4.2	5.8	13	16	11	2.6	1.3
24	1.2	2.4	7.6	13	17	10	1.1	1.2
25	.90	2.5	6.2	15	16	8.9	.95	1.2
26 27 28 29 30 31	.67 .14 .17 .17 .21 .26	2.1 2.6 3.7 3.5 8.6	4.4 13 12 2.4 2.1 1.9	12 15 17 18 15	14 15 14 11 14 15	7.2 4.6 4.3 4.1 4.1 6.3	2.5 2.9 1.8 1.2 1.4	1.4 1.4 .76 .51 .53
MEAN	•56	3.06	5.77	17.5	13.9	13.9	4.60	1.23

TABLE 15.--DAILY STREAMFLOW IN THE INTENSIVE STUDY AREA NEAR HOLLY, 1978 IRRIGATION SEASON--CONTINUED

BUFFALO CANAL NEAR AMITY

MEAN DAILY DISCHARGE (CUBIC FEET PER SECOND)

DAY	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	OCT
1		3.7	19	18	55	69	47	1.3
2		2.4	20	23	55	58	31	1.2
3		4.8	13	39	53	94	22	1.2
4		5.1	11	90	43	83	21	1.1
5		5.7	34	86	43	62	20	1.3
6		5.8	64	74	48	72	13	1.2
7		7.8	18	29	52	65	15	2.0
8		7.6	18	25	47	61	15	1.1
9		8.0	31	21	55	46	14	2.6
10		7.9	19	19	43	37	19	2.1
11		30	31	13	50	47	15	0.87
12		32	29	25	44	51	15	.96
13		48	18	27	46	46	16	.96
14		46	11	30	36	49	11	.78
15		57	6.7	19	35	47	9.0	.96
16	10	45	13	23	39	34	6.5	.96
17	9.5	34	33	26	41	28	6.2	.96
18	10	27	4Ø	24	51	26	5.7	.82
19	12	23	28	24	51	28	4.8	.77
20	9.6	20	25	25	47	29	5.2	.59
21	8.8	16	24	54	45	26	5.5	.62
22	8.3	14	30	71	42	25	6.2	.64
23	8.1	14	55	65	45	27	4.8	.57
24	8.8	12	45	69	52	24	4.0	.62
25	8.4	11	35	62	51	18	5.7	.58
26 27 28 29 30 31	8.2 7.4 7.0 7.0 7.3 6.5	9.7 9.3 8.2 7.5 15	42 57 38 27 23 19	53 70 73 57 60	45 48 52 48 44 46	18 13 16 36 52	4.2 4.3 2.4 1.7 1.2	.73 .73 1.5 1.2 .68 .78
MEAN	8.6	17.9	28.3	43.2	46.9	41.9	11.7	1.04

TABLE 15.--DAILY STREAMFLOW IN THE INTENSIVE STUDY AREA NEAR HOLLY, 1978 IRRIGATION SEASON--CONTINUED

BUFFALO CANAL NEAR HOLLY

MEAN DAILY DISCHARGE (CUBIC FEET PER SECOND)

DAY	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	OCT
1		2.0	Ø.34	9.7	17	12	20	Ø.Ø7
2		0.72	4.5	12	18	8.8	17	.13
3		1.3	2.4	19	16	38	18	1.8
4		1.1	4.1	60	19	35	13	1.9
5		1.0	17	40	21	27	6.3	1.8
6		2.1	30	18	20	28	7.4	2.1
7		4.8	9.7	15	19	33	11	1.4
8		3.3	9.7	11	25	32	12	1.1
9		3.9	15	6.5	34	16	7.8	2.9
10		2.3	10	5.7	30	7.9	7.8	2.7
11 12 13 14 15	 	12 12 13 13 21	15 15 9.7 6.5 4.6	3.2 13 15 13 5.3	33 28 26 11 15	16 21 15 15 23	3.4 Ø.33 .10 1.3 2.4	2.4 .27 .20 .17 .77
16	0.03	13	5.2	9.9	10	18	2.2	2.1
17	17	8.Ø	17	16	6.2	3.5	1.8	2.4
18	00	2.5	19	14	5.5	4.7	1.5	.23
19	00	4.3	11	12	5.3	5.5	1.5	.11
20	00	5.6	12	11	1.0	8.9	1.5	.91
21	.00	6.9	13	19	2.0	7.9	1.6	1.5
22	.00	2.9	15	31	0.27	6.1	2.4	1.0
23	.00	.43	26	18	.94	12	4.0	1.4
24	.00	.93	22	17	1.5	18	1.6	2.7
25	.00	.97	16	9.8	2.1	13	4.3	4.7
26 27 28 29 30 31	.00 .00 .00 .25 .03	.53 .08 .04 .02 .79	19 27 19 13 12 10	13 22 18 12 21	2.7 8.4 26 23 13 11	23 13 19 8.6 15 23	3.5 3.6 4.3 1.9 .10	.36 .17 1.3 2. 2.3 .02
MEAN	.03	4.68	12.9	16.3	14.5	17.0	5.45	1.39

TABLE 15.--DAILY STREAMFLOW IN THE INTENSIVE STUDY AREA NEAR HOLLY, 1978 IRRIGATION SEASON--CONTINUED

CALCULATED TRIBUTARY INFLOW

MEAN DAILY DISCHARGE (CUBIC FEET PER SECOND)

DAY	MAR	APR	MAY	JUNE	JULY	AUG	SEP T	OCT
1 2 3 4	 	0.98 98 98 98	Ø.98 98 98 98	Ø.98 98 98 400	9.9 8.1 9.1 9.9	0.93 .93 .93 .93	1.8 2.1 2.1 2.1	2.6 2.6 2.6 2.6
5		2.8	.98	100	14	•98	2.6	3.0
6 7 8 9		4.3 4.7 4.7 4.7	.98 .98 .98 .98	40 20 10 5.4	14 2.1 14 9.9	.93 .98 .93 .93	2.6 2.6 2.6 2.6	3.Ø 3.3 3.7 3.7
11 12 13 14	 	4.9 4.7 .98 .98 .98	.98 .98 .98 .98	.98 .98 .98 .98	9.9 14 7.6 6.0	.93 .93 .93 .93	2.6 2.6 3.0 3.0	4.0 4.4 4.4 4.9
16 17 18 19	0.98 .98 .98 .98	.98 .98 .98 .98	.98 .98 .98 .98	3.1 6.4 4.8 8.1	4.4 3.3 2.1 2.1 1.8	•93 •98 •93 •98	3.0 3.0 3.0 3.0 3.0	5.2 5.7 5.3 5.3
2Ø 21 22	.98 .98 .98	2.1 9.9 6.4	.98 .98 .98	6.4 8.2 9.9	1.8 1.8 1.3	•93 •93 •93	3.0 3.0 3.0	4.9 4.4 4.0
23 24 25	.98 .98 .98	.98 .98 4.8	.98 .98 .98	14 2.8 12	1.3 7.98 .98	.98 .93 .93	3.0 3.0 3.0	3.7 3.3 3.0
26 27 28 29 30 31	.98 .98 .98 .98 .98 .98 .98	9.9 4.8 4.8 3.3 3.3	.98 .98 .98 .98 .98 .98	1.1 1.1 1.3 1.3 .98	.98 .98 .98 .98 .98 .98	1.3 1.3 1.3 1.8 1.8 1.8	3.Ø 2.6 2.6 2.6 2.6	3.0 2.6 2.1 1.8 1.3 0.98
MEAN	. 98	3.1	.98	22	5.4	1.1	2.7	3.6

LOCAL WELL NUMBER	ELEVATION OF MEASURING POINT (FEET ABOVE SEA LEVEL)	DATE	ELEVATION OF WATER LEVEL (FEET ABOVE SEA LEVEL)
SCØ22Ø4336DDD	3482.01	78-03-10 78-04-19 78-05-16 78-06-21 78-07-26 78-08-24 78-09-19 78-10-17 78-11-13 79-03-09	3404.29 3400.66 3402.07 3393.74 3393.00 3386.20 3385.89 3384.28 3377.41 3406.75
SCØ23Ø42Ø4BCB	3506.82	78-03-10 78-05-16 78-06-21 78-07-26 78-09-19 78-10-17 78-11-13 79-03-09	3407.22 3404.01 3404.38 3403.72 3395.89 3392.62 3389.99 3401.72
SCØ23Ø42Ø4DCA	3467.78	78-03-10 78-05-16 78-06-21 78-07-26 78-08-24 78-11-13 79-03-09	3398.07 3393.02 3396.89 3397.56 3396.69 3392.40 3396.68
SCØ23Ø42Ø5A BB	3499.98	78-03-10 78-06-21 78-08-24 78-10-17 78-11-13 79-03-09	3407.36 3404.13 3403.79 3404.01 3399.23 3406.28
SCØ23Ø42Ø6ABB	3540.29	78-03-10 78-06-21 78-07-26 78-09-19 78-10-17 78-11-13 79-03-09	3407.41 3404.05 3404.24 3401.70 3392.37 3389.72 3399.34

LOCAL WELL NUMBER	ELEVATION OF MEASURING POINT (FEET ABOVE SEA LEVEL)	DATE	ELEVATION OF WATER LEVEL (FEET ABOVE SEA LEVEL)
SCØ23Ø42Ø6CCC	3432.84	78-03-10 78-04-19 78-05-16 78-06-21 78-07-26 78-08-24 78-09-19 78-10-17 78-11-13 79-03-09	3411.83 3412.45 3413.46 3413.86 3414.66 3414.30 3413.54 3412.88 3412.52 3411.42
SCØ23Ø42Ø7ACD	3415.71	78-03-10 78-05-16 78-06-21 78-08-24 78-09-19 78-10-17 78-11-13 79-03-09	3405.22 3406.47 3406.67 3406.97 3405.09 3405.91 3405.58 3404.76
SCØ23Ø42Ø7CBB	3419.17	78-03-10 78-05-16 78-06-21 78-09-19 78-10-17 78-11-13 79-03-09	3410.02 3410.95 3411.46 3408.94 3410.43 3410.19 3409.47
SCØ23Ø42Ø8BBB	3428.91	78-03-10 78-04-19 78-05-16 78-06-21 78-07-26 78-08-24 78-09-19 78-10-17 78-11-13 79-03-09	3404.28 3404.09 3404.04 3404.11 3404.09 3401.96 3402.78 3399.86 3399.63 3403.65

LOCAL WELL NUMBER	ELEVATION OF MEASURING POINT (FEET ABOVE SEA LEVEL)	DATE	ELEVATION OF WATER LEVEL (FEET ABOVE SEA LEVEL)
SCØ23Ø42Ø8CAA	3413.19	78-03-10 78-04-19 78-05-16 78-06-21 78-07-26 78-09-19 78-10-17 78-11-13 79-03-09	3399.77 3399.76 3400.65 3400.73 3401.29 3400.57 3400.35 3401.07 3399.35
SCØ23Ø42Ø8CBB	3412.36	78-03-10 78-04-19 78-05-16 78-06-21 78-07-26 78-08-24 78-09-19 78-10-17 78-11-13 79-03-09	3402.53 3403.04 3403.68 3403.91 3403.87 3404.15 3404.21 3403.22 3403.09 3402.15
SCØ23Ø42Ø9BBB	3426.23	78-03-10 78-05-16 78-06-21 78-07-26 78-10-17 78-11-13 79-03-09	3398.74 3396.59 3398.28 3398.92 3390.88 3395.44 3398.16
SCØ23Ø42Ø9DAA	3414.47	78-03-10 78-04-19 78-05-16 78-06-21 78-07-26 78-08-24 78-09-19 78-10-17 78-11-13 79-03-09	3395.75 3394.77 3394.50 3396.02 3395.86 3395.77 3393.18 3393.58 3393.43 3395.16

LOCAL WELL NUMBER	ELEVATION OF MEASURING POINT (FEET ABOVE SEA LEVEL)	DATE	ELEVATION OF WATER LEVEL (FEET ABOVE SEA LEVEL)
SCØ23Ø4211BBB	3459.40	78-03-10 78-08-24 78-10-17 78-11-13 79-03-09	3401.20 3397.44 3398.97 3399.15 3399.84
SCØ23Ø4211DCC.	3420.21	78-03-10 78-04-19 78-05-16 78-06-21 78-07-26 78-08-24 78-09-19 78-10-17 78-11-13 79-03-09	3390.93 3391.62 3391.63 3392.26 3391.83 3392.25 3391.71 3390.61 3390.33 3390.14
SCØ23Ø4216ADD	3396.24	78-03-10 78-04-19 78-05-16 78-06-21 78-07-26 78-09-19 78-10-17 78-11-13 79-03-09	3386.77 3387.35 3387.64 3387.98 3388.24 3386.21 3386.12 3386.82 3386.85
SCØ23Ø4216BBB	3400.11	78-03-10 78-04-19 78-05-16 78-06-21 78-09-19 78-10-17 78-11-13 79-03-09	3393.53 3394.14 3394.14 3394.77 3394.04 3393.76 3393.57 3393.43
SCØ23Ø4217CAA	3405.80	78-03-10 78-06-21 78-09-19 78-10-17 78-11-13 79-03-09	3395.28 3397.56 3392.93 3395.57 3395.26 3395.27

LOCAL WELL NUMBER	ELEVATION OF MEASURING POINT (FEET ABOVE SEA LEVEL)	DATE	ELEVATION OF WATER LEVEL (FEET ABOVE SEA LEVEL)
SCØ23Ø4217CBB	3409.12	78-03-10 78-04-19 78-06-21 78-09-19 78-10-17 78-11-13 79-03-09	3399.01 3398.77 3401.06 3399.57 3399.25 3399.00 3398.94
SCØ23Ø43Ø3DDA	3438.28	78-03-10 78-05-16 78-07-26 78-11-13 79-03-09	3426.42 3424.Ø3 3428.26 3422.2Ø 3426.49
SCØ23Ø431ØAAB	3439.93	78-03-10 78-05-16 78-07-26 78-11-13 79-03-09	3427.99 3425.92 3429.58 3423.95 3427.90
SC02304310ACC	3441.96	78-03-10 78-04-19 78-05-16 78-06-21 78-07-26 78-08-24 78-09-19 78-10-17 78-11-13 79-03-09	3428.90 3428.69 3429.08 3429.67 3429.63 3429.41 3429.14 3425.93 3426.18 3426.88
SC02304310BBB	3444.52	78-03-10 78-04-19 78-06-21 78-10-17 78-11-13 79-03-09	3433.61 3432.05 3433.65 3431.85 3429.82 3433.56

LOCAL WELL NUMBER	ELEVATION OF MEASURING POINT (FEET ABOVE SEA LEVEL)	DATE	ELEVATION OF WATER LEVEL (FEET ABOVE SEA LEVEL)
SCØ23Ø4311BBB	3437.60	78-03-10 78-04-19 78-05-16 78-06-21 78-07-26 78-08-24 78-09-19 78-10-17 78-11-13 79-03-09	3425.91 3422.94 3423.55 3425.02 3427.88 3426.40 3423.58 3421.81 3421.90 3425.82
SCØ23Ø4311BCB	3434.69	78-03-10 78-05-16 78-07-26 78-10-17 78-11-13 79-03-09	3425.52 3424.32 3427.79 3423.03 3422.41 3425.22
SCØ23Ø4311DCB	3430.92	78-03-10 78-04-19 78-05-16 78-06-21 78-08-24 78-09-19 78-10-17 78-11-13 79-03-09	3420.04 3420.02 3420.09 3421.15 3421.39 3420.22 3419.40 3419.25 3419.71
SCØ23Ø4312CCB	3428.24	78-03-10 78-05-16 78-06-21 78-07-26 78-09-19 78-10-17 78-11-13 79-03-09	3417.31 3417.64 3419.09 3418.66 3417.41 3416.87 3416.67 3416.53
SCØ23Ø4312DBC	3424.56	78-03-10 78-04-19 78-05-16 78-06-21 78-08-24 78-10-17 78-11-13 79-03-09	3413.13 3413.76 3413.49 3413.17 3415.14 3413.23 3413.17 3412.67

LOCAL WELL NUMBER	ELEVATION OF MEASURING POINT (FEET ABOVE SEA LEVEL)	DATE	ELEVATION OF WATER LEVEL (FEET ABOVE SEA LEVEL)
SCØ23Ø4313AAB	.3418.24	78-03-10 78-04-19 78-05-16 78-06-21 78-07-26 78-08-24 78-09-19 78-10-17 78-11-13 79-03-09	3409.46 3410.31 3409.80 3411.21 3411.34 3410.48 3409.71 3409.48 3409.38 3408.99
SCØ23Ø4313BBB	3424.52	78-03-10 78-04-19 78-05-16 78-06-21 78-07-26 78-08-24 78-09-19 78-10-17 78-11-13 79-03-09	3416.07 3416.48 3416.34 3417.56 3418.12 3417.39 3416.41 3416.02 3416.00 3415.75
SCØ23Ø4313CAA	3419.70	78-03-10 78-04-19 78-05-16 78-06-21 78-10-17 78-10-17 78-11-13 79-03-09	3409.24 3408.88 3408.62 3411.38 3409.83 3409.36 3409.19
SCØ23Ø4314BAD	3430.10	78-03-10 78-04-19 78-05-16 78-06-21 78-10-17 78-11-13 79-03-09	3419.36 3419.10 3419.33 3420.60 3418.68 3418.57 3419.17

LOCAL WELL NUMBER	ELEVATION OF MEASURING POINT (FEET ABOVE SEA LEVEL)	DATE	ELEVATION OF WATER LEVEL (FEET ABOVE SEA LEVEL)
SCØ23Ø4314DBA	3428.28	78-03-10 78-04-19 78-05-16 78-06-21 78-10-17 78-11-13 79-03-09	3415.76 3415.87 3416.26 3417.72 3415.51 3415.30 3415.69

TABLE 17.--CALCULATED GROUND-WATER PUMPAGE IN THE INTENSIVE STUDY AREA NEAR HOLLY, 1978 IRRIGATION SEASON

CALCULATED DAILY GROUND WATER PUMPAGE (ACRE-FEET)

DAY	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	ОСТ
1 2 3 4 5		33 33 48 59 60	23 15 9.3 6.8 Ø.Ø	1.5 0.0 .0 .0	26 5.0 0.0 .0 .0	32 32 27 27 27 27	1.0 2.3 16 19 22	16 30 28 28 28
6 7 8 9 10		55 54 54 37 30	.9 .0 1.6 .9	. 0 . 0 . 0 . 0	.0 .0 .0 .0	31 32 32 32 29	44 44 54 57	28 28 28 28 28 26
11 12 13 14 15		21 16 16 31 51	. Ø . Ø . Ø	.0 .0 9.1 15	2.Ø 9.3 9.3 19 9.3	28 25 34 21 19	57 60 60 57 59	4 4 4 4
16 17 18 19 20	0.0 .0 .0 .0	55 6Ø 61 55	.0 .0 .0 .0	15 27 29 29 29	11 15 23 23 23	42 38 37 39 53	58 58 53 54 53	12 12 26 26 27
21 22 23 24 25	.0 5.9 5.9 .0 7.7	54 54 51 61 66	. Ø . Ø . Ø	7.0 .0 .0 .0	26 25 25 33 34	58 58 61 61 59	39 40 44 45 46	41 41 43 41
26 27 28 29 30 31	18 18 28 33 33	51 48 48 39 25	.0 .0 15 29 29	.Ø 4.5 24 32 37	59 52 47 59 70 59	53 35 33 19 6.7 5.0	48 47 42 34 25	41 27 26 26 20 14
MEAN	10.1	46.3	4.2	8.6	29.6	35.0	42.7	25.9

TABLE 18.-DAILY MEAN SPECIFIC CONDUCTANCE IN THE INTENSIVE STUDY AREA NEAR HOLLY. 1978 IRRIGATION SEASON

WEST HOLLY DRAIN AT MOUTH

MEAN DAILY SPECIFIC CONDUCTANCE (MICROMHOS PER CENTIMETER AT 25 DEGREES CELSIUS)

DAY	MAR	APR	MAY	JUNE	JULY	AUG	SEP T	OCT
1		4730	3960	5800	3720	4860	3540	6150
2		5130	4810	5400	3800	4100	356Ø	6210
3		4710	4700	2700	39 00	3590	3970	6330
4		465Ø	4673	600	4100	3Ø5Ø	4160	6320
5		4650	3460	1400	4210	2900	4520	6120
6		6000	2220	1800	4330	3270	4870	605Ø
7		5770	3180	2590	4320	3360	5429	597Ø
8		5830	5490	2700	3640	337Ø	556Ø	6000
9		5800	5869	345Ø	39 00	3720	5480	6180
10		6050	6090	4900	4130	3880	5430	6030
11		6180	6340	5000	4470	4160	5490	6110
12		5870	6390	5110	3660	4560	55 <i>3</i> Ø	6110
13		4200	5810	5260	3840	4750	5560	6130
14		4400	5820	532Ø	4050	486Ø	565Ø	622Ø
15		4480	6019	4000	4590	4680	5630	6230
16	4770	44 7Ø	6150	29 8Ø	5200	4820	5420	6230
17	4690	4680	569Ø	3090	44 80	4970	5310	6300
18	4600	49 5Ø	497Ø	3040	4300	4790	524Ø	6500
19	4590	5090	5310	3090	4930	4710	5050	6290
2Ø	454Ø	5030	534Ø	3030	4140	468Ø	4 89Ø	649Ø
21	4580	4960	5700	2980	4390	4640	4870	657Ø
2 2	4680	485Ø	5630	22 7 Ø	45 3Ø	4610	49 3Ø	637Ø
23	4770	4740	5489	2300	4720	4520	5140	639 Ø
24	477Ø	4840	5180	2300	44 7Ø	4420	5370	664Ø
25	4730	4890	5030	2200	4450	5370	5610	675Ø
26	466Ø	4910	5310	2650	4670	5340	5820	6790
27	465Ø	4830	5260	2350	4500	5320	5919	6480
28	4730	4370	3760	2380	4630	5130	6080	6010
29	4580	4230	5100	2570	4830	4850	6220	6120
30	4650	3080	5000	3100	497Ø	4650	6120	6240
31	4730	-	5600		5940	3840		625Ø
MEAN	4670	495Ø	5140	3210	4320	4380	5210	6280

TABLE 18.--DAILY MEAN SPECIFIC CONDUCTANCE IN THE INTENSIVE STUDY AREA NEAR HOLLY, 1978 IRRIGATION SEASON-CONTINUED

BUFFALO CANAL NEAR AMITY

MEAN DAILY SPECIFIC CONDUCTANCE (MICROMHOS PER CENTIMETER AT 25 DEGREES CELSIUS)

DAY	MAR	APR	MAY	JUNE	JULY	AUG	SEP T	OCT
1		4590	3920	4580	1760	1830	1530	5330
2		4520	4350	4710	1300	1370	2470	55 <i>00</i>
3		4680	4490	3390	2160	1400	3180	565Ø
4		4690	2660	1010	2510	1350	3150	5800
5		4630	1710	1100	2360	1440	3569	554 Ø
6		545Ø	2330	1380	2150	1710	3750	555 Ø
7		5120	2910	1760	2990	1850	4100	577Ø
8		5150	3600	1850	2120	2260	4060	572Ø
9		5360	373Ø	24 00	1750	2700	4170	5790
1Ø		5160	456Ø	3800	234Ø	3170	4230	565Ø
11		4270	4730	3900	1930	3340	4320	5580
12		4360	47 6Ø	4000	1490	3560	4390	5 53Ø
13		37 AA	4370	4160	2160	3610	4530	546Ø
14		4280	438Ø	4 2 ØØ	2320	3700	465Ø	5400
15		4320	4510	2250	2720	3630	4640	539Ø
16	4620	4320	4500	1950	3170	3910	4610	535Ø
17	4540	4410	4480	2050	2210	4 Ø 2 Ø	4689	534Ø
18	4630	4540	3460	2010	272Ø	4300	471Ø	5400
19	4620	46 ØØ	3930	2050	259Ø	4300	4920	538Ø
20	4 57Ø	474Ø	4410	2000	272Ø	4420	4830	5370
21	4610	4670	4430	1950	3030	4530	4880	536Ø
22	4700	462Ø	4720	1800	377Ø	4620	4880	5200
23	4800	4620	4869	1800	3010	4 660	4860	5300
24	4820	4750	3790	1710	2890	4430	4840	5300
25	48110	4840	3850	1690	2730	4320	4670	5300
26	477Ø	4890	3810	1680	2620	4370	4650	5300
27	4730	4730	3340	1270	2540	4300	4880	5400
28	4690	374Ø	4110	1290	2640	4370	5050	5360
29	4620	3430	4210	1450	3250	4250	5210	5490
30	4580	3460	447Ø	1680	3360	3720	523Ø	5400
31	4510		4530		3780	1910		5400
MEAN	4660	4550	4000	236Ø	2490	3330	4320	546Ø

ON SE ASON
IRRIGATI
. 1978
HOLLY
A NEAR
DY ARE
E STUI
INTENSIV
IN THE
ANALYSES]
R-OUALITY
9WATE
PLE 1
TAF

(cfs=cubic feet per second: deg c=degrees celsius: umhos=micpowhos per centiweter at 26 degrees celsius: wc/l=willigraws per Liter: cols/imm ml=colonies per imm milliters: values preceeved by k indicate the colony count was based on a won-ideal bacteria plate: site: sw=surface aateq; gw=ground water; values exceeding water-quality standards are underlined).

1 2	12	2 2 1	15 15 15	6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12 IS	41 10 0 0.0	82222	<u> </u>
863 870 670	180 593 	 73n 	1 000 730 540	140 150 340	450 450 719	780 970 830 510	750 440 360 91 <i>0</i>	890 770 790 853
8.9 8.1 8.1 8.2	7.9 7.9 7.9 7.1	, 10 - 0 8 8 8 8 8 8 9 8 8 9 8 9 8 8 8 8 8 8 8	888888 8988 8988 8988 8988 8988 8988 8	7.5 7.9 7.5 7.5	8. 8 8. 7 8. 7 8. 7 8. 8 8. 9 8. 9 8. 9 8. 9 8. 9 8. 9 8. 9	88.7 7.6 7.6 7.6 7.6	20200 70700	1.1
12.7 11.8 11.8 12.8 14.4	6 6 6 6 7 6 7 7 6 7 7 6 7 7 7 7 7 7 7 7	81 9.5 16.2 16.2	10.00 11.3 10.2 10.2	7.2 7.2 6.6 7.8	7.6 7.8 10.2			
4959 5750 53 <i>0</i> 9 64 <i>0</i> 9	1573 2449 4560 4403	5380 5780 5480 6818 6918	6999 5138 4789 4689	1400 1640 1570 2680 3180	4500 4000 5000 5400	6280 5780 6280 5680 4593	6 9 9 9 4 2 2 3 6 4 1 9 6 2 9 9	55 89 5558 6 888 6 158
5.9 11.0 8.5 22.95	18.8 20.9 27.9 25.5	18.9 17.0 21.6 21.6	17.9 9.5 13.9 25.9 25.9	-17.0 24.5 27.0 28.0 20.5	27.0 24.0 20.0 9.0	8 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	40040 60000	50.00 0.00 0.00 0.00
2.9 2.9 2.9 2.9 2.9	46 18 9.3 17			74 52 41	23 13 13 13	- 70 		1
1130 1000 1700 0900 1400	1600 0800 1400 1330 1500	03 00 09 30 12 09 11 00	12 00 0800 1530 1130	1 000 15 00 15 30 09 00	1700 1400 1400 1500 0930	0930 0900 1445 1515 1530	1030 1700 1400 1345 1200	11 00 1 730 1 2 15 1 900
78-03-16 78-04-07 78-04-19 78-05-04 78-05-16	78-06-05 78-06-22 78-07-11 78-07-27 78-07-27	78-08-25 78-09-07 78-09-19 78-10-04 78-10-04	78-01-02 78-04-07 78-04-19 78-04-19 78-05-04 78-05-16	78-96-96 78-96-21 78-97-11 78-97-11 78-97-27 78-98-19	78-08-24 78-09-06 78-09-16 78-09-16 78-09-19 78-10-05	78-17-18 78-11-02 78-07-26 78-07-26 78-07-26	78-08-09 78-07-27 78-07-12 78-07-12 78-07-26 78-06-21	78-06-21 79-07-25 78-08-09 73-07-12
Ŵ			SW			M M M O O O	88888 88888 8	M M M M
WEST HOLLY DRAIN AT MOUTH			BUFFALO CANAL NEAR AMITY			SC023Ø42Ø7ACD SC023Ø42Ø7CBR SC023Ø42Ø8BBB	SC02304208CAA SC02304209HBB SC02304209DAA SC02304216BB SC02304303DDA SC02304303DDA	SC02304311BCC SC02304311DCB SC02304312CC8 SC02304312DBC
	WEST HOLLY DRAIN AT MOUTH SW 78-03-16 1130 2.7 5.0 4950 12.7 8.7 78-04-07 1000 2.9 11.0 5750 11.8 7.8 860 17 78-04-19 1700 2.9 16.0 5300 12.8 8.1 78-05-04 8900 3.6 8.5 5250 14.4 7.7 670 16 78 78-05-16 1400 2.9 22.0 6400 14.4 8.2	WEST HOLLY DRAIN AT MOUTH SM 78-03-16 1130 2.7 5.0 4950 12.7 8.3	WEST HOLLY DRAIN AT MOUTH SM 78-03-16 1130 2.7 5.0 4957 12.7 8.9	WEST HOLLY DRAIN AT WOUTH SN 78-03-16 1130 2.7 5.0 4959 12.7 8.7 8.0 17 78-04-17 1000 2.9 11.0 5750 11.8 7.8 860 17 78-04-17 1700 2.9 10.0 5550 12.1 8.1 6.6 7.7 8.9 10 78-05-16 1400 2.9 0.20 8.5 5550 14.4 7.7 670 10 10 78-05-16 1400 2.9 22.0 0400 14.4 8.2 12 14 8.2 12 14 12 16	WEST HOLLY DRAIN AT WOUTH SM 78-03-16 1130 2.7 5.6 4959 12.7 8.9 6.1 17 6.1 17 6.1 17.1 6.10 17.1 6.1 17 6.1 17.1 6.10 17.1 17.1 17.1 17.1 17.1 17.1	WEST HOLLY DRAIN AT WOITH Sin-an-indication 1130 2.7 5.0 4550 12.7 6.0 7.0 6.0 7.1 6.0 7.1 6.0 7.1 6.0 7.1 6.0 7.1 6.0 7.1 6.0 7.1 6.0 7.1 6.0 7.2 7.2 6.0 7.2 7.2 6.0 7.2 7.2 7.2 7.2 7.2 7.2 <th7.2< th=""> 7.2 <th7.2< th=""></th7.2<></th7.2<>	WEST HOLLY DRAIN AT NOUTH Stand-10 11/2 5/2 5/2 5/2 1/2 5/2 1/2 5/2 1/2 5/2 1/2 5/2 1/2 5/2 1/2 5/2 1/2 5/2 1/2 5/2 1/2 5/2 1/2 5/2 1/2 5/2 1/2 5/2 1/2 5/2 1/2	MEST HOLLY DRAIN KT WOTTH Str 7+-0-10 112/1 50 100/1 70 0 <th0< th=""> 0 <th0< th=""> <th0< th=""></th0<></th0<></th0<>

NTINUED	CHL2- RIDE, DIS- SOLVED (MG/L AS CL)	130 239 190 253	48 77 180 239 150	45 138 253 293	233 199 168 179	4 +	35 75 1 <i>0</i> ¹ 233	243 223 243 243 299	233 119 262 292	238 249 258
SEA SONCOI	CARBON DI OXIDE DIS- SOLVE MG/L AS CO2)	9.4	5. 5 0. 2 0. 6	3.1	0.4 0.1 1.1 1.0 0.1 1.4 1.0	3 2.5 4	4 1 · 4 1 · 1 · 4 1 · 1 · 4		:::::	;;;;
RIGATION S	CAR- BONATE FET-FLD (MG/L AS CO3)	6 0	e 0 3	6 6	66 6 6	6 0 0	e ø			
1978 IRI	BICAR- BONATE BONATE FET-FLD (MG/L AS HC33)	37 <i>9</i> 37 <i>9</i> 37 <i>0</i>	280 312 302	369 310	329 299 380	269 290 279	26 <i>9</i> 330	319		
AR HOLLY.	ALKA- LINITY FIELD (MG/L AS CAC03)	3 Ø3 3 Ø3	230 250 250	3 <i>0</i> 19 259	269 238 246	213 160 223	219 273	254 370 349 230	269 250 340 340	339 309 333
OY AREA NE	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	15 <i>0</i> 0 17 <i>0</i> 0	29 a 13 00 12 00	1500 1790	1400 1300 1600	259 	1200 1200		1703 1300 1200 1790 2090	630 1400 1533
ISIVE STUD	HARD- NE SS (MG/L AS CACO3)	1800 2000	52 <i>a</i> 1600 1500	1800	1500 1500	460 573 1209	1400 1400 2000	1 900 1 900 1 600	1900 1600 1400 2000 2000	980 1700 1800 1900
THE INTEN	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	250	53 200 170	230 280	290 200 220	46 53 130	160	230 260 180	260 200 130 320 320	24 23 25 25 25 25 25 25 25 25 25 25 25 25 25
NL YSES IN	CALCIUM DIS- SOLVED (MG/L AS CA)	31.0	129 310 300	33 <i>0</i> 31 <i>0</i>	180 293 380	11 0 140 280	310 370	370 350 340 340	350 350 350 290	323 353 363 363
OUALITY ANA	DATE OF SAMPLE	78-03-16 78-04-07 78-04-19 78-05-04 78-05-16	78-06-05 78-06-22 78-07-11 78-07-27 78-07-27	78-08-25 78-09-07 78-09-19 78-16-04 78-10-18	78-01-02 78-04-07 78-04-19 78-04-19 78-05-04 78-05-16	78-96-96 78-96-21 78-97-11 78-97-11 78-97-27 78-98-19	78-08-24 78-09-06 78-09-16 78-09-19 78-19-19 78-10-05	78-10-18 78-11-92 78-07-26 78-07-26 78-07-26	.78-08-09 78-07-27 78-07-12 78-07-12 78-07-26 78-06-21	78-06-21 78-07-25 78-08-09 78-07-12
TABLE 19WATER-	SITE NAME	ST HOLLY DRAIN AT MOUTH			FFALO CANAL NEAR AWITY			92 304 2 07 A CD 22 3 04 2 07 A CD 32 3 04 2 08 BBB	72 304 2 08 C AA 72 304 2 09 BBB 32 304 2 09 D AA 72 304 2 16 BFB 72 304 3 03 D DA	723043118CC 223043110CB 723043120CB 723043120CB
		M			BUI			s c c c c c c c c c c c c c c c c c c c	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	202 202 202 202 202 202 202 202 202 202

PHOS- PHORUS, TOTAL (MG/L AS P)	0.12 .05 .04 .06	1.20 1.10 .09 .73	. 00 . 04 . 05 . 05	.01 .02 .16 .16	2.70 2.90 2.90 1.93	. 80 . 26 . 84 . 91	• • • • • • • • • • • • • • • • • • •	.01 .01 .02 .02	10° ×
PHOS- PHORUS, ORTHO, ORTHO, COTAL (MG/L A3 P)	9.92 .02 .02 .02	. 08 . 04 . 01 . 05	• 01 • 01 • 01 • 01	 .01 .02 .01 .01	.12 .03 .11		. 01 . 04 . 03 . 03	. 03 . 03 . 02 . 02	. 02 . 05 . 01
PHOS- PHORUS. DIS- SOLVED (MG/L	1111	11111	9 9 1	<u> </u>	11111	· · · · · · · · · · · · · · · · · · ·	ا -		
NITRO- GEN, GEN, NO2+VO3 TOTAL (MG/L AS N)	22. 	2.988 2.968 2.97	4. 2.6 8. 1.00	7 2.8 2.1 .95	822 52	4- 00.4	4 0 4 4 0 4 0 0 0	ດທຸດຈຸທ ຄ.ຄ.ດ ພະບານເ	8.9 9.0 1.0 1.0 1.0
NITRO- GEN,AM- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	2.7 1.2 1.3 1.3	44-0- 00-	. 97 . 96 . 1 0 . 94	1.0 8.3 8.9 8.9 1.0 8		.71 5 	.94 .1.1 .82 .69		84 84 54 82
FL UO- RI DE. DIS- SOLVED (MG/L AS F)	0.0		°. <u>-</u>	<u> </u>	0 0 8.	º º	80.7.9		► 8.08
SULFATE DIS- SOLVED (MG/L AS SO4)	3100 22900	630 	2900 3700	3100 2700 2500	530 670 1500	2100	2900 3300 2300 2300	3000 2000 3400 3400	1700 28 <i>0</i> 0 2900 3000
DATE OF SAMPLE	78-03-16 78-04-07 78-04-19 78-05-04 78-05-04	78-06-05 78-06-22 78-07-11 78-07-27 78-07-27	78-08-25 78-09_07 78-09-19 78-10-04 78-10-18	78-11-02 78-04-07 78-04-19 78-04-19 78-05-04 78-05-16	78-06-06 78-06-21 78-07-11 78-07-27 78-07-27	78-08-24 78-09-06 78-09-16 78-09-16 78-09-19 78-10-05	78-10-18 78-11-02 78-07-26 78-07-26 78-07-26 78-07-14	78-08-09 78-07-27 78-07-12 78-07-12 78-07-26 78-06-21	78-06-21 78-07-25 78-08-09 78-07-12
NAME	AIN AT MOUTH			NEAR AMITY					
SITE	WEST HOLLY DR			BUFFALO CANAL			S CM23 M4 2 M7 ACD S CM23 M4 2 M7 CBB S CM23 M4 2 M8 BRB	SCØ2304 208CAA SCØ2304 209BBB SCØ2304209BAA SCØ23042 16BBA SCØ23042 16BBB SCØ23043 303DDA	SCR2304 311BCC SCR2304 311DCB SCR2304 312 CCB SCR2304 312 CCB

TABLE 19.--WATER-QUALITY ANALYSES IN THE INTENSIVE STUDY AREA NEAR HOLLY, 1978 IRRIGATION SEASON--CONTINUED

TABLE 19.--MATER-QUALITY ANALYSES IN THE INTENSIVE STUDY AREA NEAR HOLLY, 1978 IRRIGATION SEASON--CONTINUED

ST REP- T OC OCCI FE CAL, KF AGAR, (CDLS, PER 100 ML)	3400 44 <i>0</i> 0 > 5003 K400	>3 0000 K180 K850 1900 6900	> 5000 5 1 000 3 3000 3 300 3 300 640	120 820 K500 200	I 1 000 K50 9500 8800 4900	259 12000 1100	250 400 422 400	10102	78¢1
COL I- FORM, FECAL, 0,7 UM-MF (COLS,/ 130 ML)	45 239 868 868 868	×339999 <10 K219 K2900 K259	570 1400 490 150 460	40 230 52 71 40 K	230000 K10 K800 2600 K300	210 K640 460 230	340 120 • 22	18282	- % % -
OXYGEN DEWAND. BIO- CHEM- ICAL. 5 DAY (MG/L)	440-0 86000	5 -1 3 -1 5 -1	04400 01-01-00-000	0-4-0 00000	25 18 8.3 4.5	0.0 	- 04.0014		
SOLIDS, RESIDUE AT 105 DEG, C, SUS- PENDED (MG/L)	51 13 13 13 13 13 13 13 13 13 13 13 13 13	1600 1590 127 230	81 165 20 10	52 3 5 T	788 8580 2140 1740 956	40 10 10 10 0	44000	0401	100-
DATE OF SAMPLE	78-03-16 78-04-07 78-04-19 78-05-04 78-05-04	78-06-05 78-06-22 78-07-11 78-07-27 78-07-27	78-08-25 78-09-07 78-09-19 78-10-04 78-10-04	78-11-02 78-04-07 78-04-19 78-05-04 78-05-04	78-06-06 78-06-21 78-07-11 78-07-27 78-08-13	78-08-24 78-09-06 78-09-16 78-09-16 78-09-19 78-10-19	78-10-18 78-11-02 78-07-26 78-07-26 78-07-26 78-07-26	78-08-09 78-07-27 78-07-12 78-07-12 78-07-26 78-06-21	78-06-21 78-07-25 78-08-09 78-07-12
SITE NAME	WEST HOLLY DRAIN AT MOUTH			BUFFALO CANAL NEAR AMITY			S CØ2304207ACD S CØ2304207CBB S CØ2304208BBB	S C 0 2 3 0 4 2 0 8 C A A S C 0 2 3 0 4 2 0 8 B B B S C 0 2 3 0 4 2 0 9 B B B S C 0 2 3 0 4 2 0 6 B B R S C 0 2 3 0 4 2 0 6 B B R S C 0 2 3 0 4 3 0 3 D D A	SC02304311BCC SC02304311DCB SC02304312CCB SC02304312CCB