QUALITY OF THE ARKANSAS RIVER AND IRRIGATION-RETURN FLOWS
IN THE LOWER ARKANSAS RIVER VALLEY, COLORADO
By Doug Cain
U.S. GEOLOGICAL SURVEY

Water-Resources Investigations Report 84-4273

Prepared in cooperation with the
SOUTHEASTERN COLORADO WATER CONSERVANCY DISTRICT

UNITED STATES DEPARTMENT OF THE INTERIOR

DONALD PAUL HODEL, Secretary
GEOLOGICAL SURVEY
Dallas L.- Peck, Director

For additional information write to:

Colorado District Chief

Copies of this report can be purchased from:

Open-File Services Section Western Distribution Branch
U.S. Geological Survey

Box 25046, Mail Stop 306
Denver Federal Center
Denver, CO 80225
Telephone: (303) 236-7476
Page
Abstract 1
Introduction 2
Description of study area 2
Problem and objectives 5
Approach- 6
Acknowledgments 6
Areal variations in the quality of irrigation-return flows 6
Locations of identified irrigation-return flows 8
Water quality of identified irrigation-return flows 8
Seasonal variations in the Arkansas River and selected irrigation- return flows 13
Variations in the Arkansas River 13
Discharge 13
Specific conductance 13
Other water-quality constituents 13
Variations in selected irrigation-return flows 16
Discharge 16
Specific conductance 16
Other water-quality constituents 19
Relationships between quantity and quality of applied water and irrigation-return flow in a small irrigated area- 21
Description of small irrigated area 21
Method of investigation 24
Water budget 24
Sources of water in West Holly Drain 24
Evapotranspiration 27
Irrigation-return flow 27
Salt budget 31
Other water-quality constituents 34
Summary 38
References cited 41
Supplemental information- 43
System of numbering wells 44
Data- 46

ILLUSTRATIONS

Plate 1. Maps showing location of irrigation-return flows and sampling sites, Arkansas River, Colorado- in pocket
Page
Figure 1. Map showing location of study area- 3
2-8. Graphs showing:
2. Mean annual streamflow 1974-78, irrigated acreage, and mean specific conductance of ground and surface water 4
3. Downstream increase in specific conductance of irrigation-return flows- 10

CONTENTS

Abstract

Figures 2-8. Graphs showing continued:

4. Specific conductance and streamflow of the Arkansas River, July 1977------------------------- 12
5. Streamflow of the Arkansas River,
1978 irrigation season------------------------ 14
6. Specific conductance of the Arkansas River,
1978 irrigation season-------------------- 15
7. Discharge and specific conductance of irrigation-
return flow at five sites, 1978 irrigation
season-------------------------------18
8. Dissolved-oxygen and suspended-solids concentration of irrigation-return flow at five sites, 1978 irrigation season---------------- 20
9. Map showing data-collection sites in the intensive
study area near Holly-------------------------- 22

10. Graph showing sources of water and salt in the

West Holly Drain, 1978 irrigation season---------------- 28
12. Graph showing sources and fate of water applied at the land surface in the intensive study area near Holly, 1978 irrigation season----------------------- 29
13-19. Diagrams showing:
13. Ground-water balance in the intensive study
area near Holly, 1978 irrigation season-------- 30
14. Salt budget in the intensive study area near
Holly, 1978 irrigation season--------------- 32
15. Sources and fate of salt applied at the land surface in the intensive study area near Holly, 1978 irrigation season-------------------- 35
16. Minimum, maximum, median, and mean concentrations
of major iorrs in water from the intensive study
area near Holly, 1978 irrigation season-------
17. Minimum, maximum, median, and mean concentrations of nutrients, suspended solids, biochemicaloxygen demand, and bacteria in the intensive study area near Holly, 1978 irrigation season--- 37
18. Median ratios of water-quality constituents
in the West Holly Drain and applied water-----
39
19. System of numbering wells in Colorado-------------- 45

TABLES

Page

Table 1. Water-quality standards for selected streams------------------- 7
2. Sources of irrigation water and discharge points for
irrigation-return flows and selected tributaries------------ 9

CONTENTS

Page
Table 3. Statistical summary of selected water-quality data from irrigation-return flows and selected tributaries sampled during 1976-77 10
4. Characteristics of five irrigation-return flows sampled during the 1978 irrigation season 17
5. Land use in the intensive study area near Holly, 1978 23
6. Calculated water budget for the intensive study area near Holly, 1978 irrigation season- 26
7. Calculated salt budget for the intensive study area near Holly, 1978 irrigation season- 33
8. Water-quality data from reconnaissance sampling of irrigation-return flows and selected tributaries 47
9. Pesticide data from selected irrigation-return flows and tributaries- 57
10. Water-quality data at Arkansas River sites, July 1977 58
11. Water-quality data at Arkansas River sites, 1978
irrigation season 61
12. Water-quality data for four irrigation-return flow sites, 1978 irrigation season- 62
13. Daily precipitation in the intensive study area near Holly, 1978 irrigation season------------------------ 64
14. Mean daily air temperature in the intensive study area near Holly, 1978 irrigation season 66
15. Daily streamflow in the intensive study area near Holly, 1978 irrigation season- 67
16. Water levels in and near the intensive study area near Holly, 1978 and 1979 71
17. Calculated ground-water pumpage in the intensive study area near Holly, 1978 irrigation season 79
18. Daily mean specific conductance in the intensive study area near Holly, 1978 irrigation season 80
19. Water-quality analyses in the intensive study area near Holly, 1978 irrigation season 82

METRIC CONVERSION FACTORS

Inch-pound units used in this report may be converted to SI (International System) units by using the following conversion factors:

Multiply inch-pound units	$B y$	To obtain SI units
acre	0.4047	hectare
acre-foot (acre-ft)	1,233	cubic meter
cubic foot per second ($\mathrm{ft}^{3} / \mathrm{s}, \mathrm{cfs}$)	0.02832	cubic meter per second
cubic foot per second per square mile $\left.\left[\left(f t^{3} / \mathrm{s}\right) / \mathrm{mi}^{2}\right)\right]$	0.01093	cubic meter per second per square kilometer
foot (ft)	0.3048	meter
inch (in.)	2.54	centimeter
micromho per centimeter at 25° Celsius (micromho, UMHO)	1.000	microsiemen per centimeter at 25° Celsius
mile (mi)	1.609	kilometer
square mile (mi²)	2.590	square kilometer
ton (short)	0.9072	metric ton
ton (short) per day	0.9072	metric ton per day

QUALITY OF THE ARKANSAS RIVER AND IRRIGATION-RETURN FLOWS IN THE LOWER ARKANSAS RIVER VALLEY, COLORADO

By Doug Cain

ABSTRACT

Irrigation-return flows in the lower Arkansas River valley of Colorado were investigated using data from a one-time sampling at 59 sites during the 1976 and 1977 irrigation seasons, monthly sampling at 4 sites, and intensive measurement and biweekly sampling in a small irrigated area during the 1978 irrigation season. The data were evaluated to determine areal and seasonal variations in the quality of irrigation-return flows and to develop relationships between the quantity and quality of applied water and irrigation-return flow.

Specific conductance of return flows generally increased downstream, paralleling a downstream increase in the specific conductance of irrigation water. During July 1977, the source of most Arkansas River streamflow downstream from Manzanola was irrigation-return flow. A similar situation probably existed during periods of little precipitation in the early and late irrigation seasons during 1974 to 1978. Irrigation-return flows had a large effect on the quality of water in the Arkansas River during these times.

Seasonal variations of discharge, specific conductance, and dissolved oxygen of five return flows were similar to those observed in the Arkansas River. Three irrigation-return flows, composed mainly of tailwater, had larger concentrations of suspended solids, biochemical-oxygen demand, and Kjeldah1 nitrogen than two flows that were composed primarily of ground-water return flow.

Irrigation-return flow accounted for 40 percent of applied water in a small (6.75-square mile) irrigated area. Three-fourths of the total return flow was ground-water return flow, which also transported 88 percent of applied salts to the ground-water system. Except for nitrite plus nitrate and total phosphorus, measured water-quality constituents were generally more concentrated in the West Holly Drain, which drains the area, than in the applied water.

INTRODUCTION

Irrigation-return flow is the volume of water applied for irrigation but not consumed by crops, which returns to its source or to another water body. Irrigation-return flows are two types: (1) Surface-water return flow, or tailwater, is excess irrigation water that runs off the end of fields and flows directly back to streams; and (2) ground-water return flow is excess irrigation water that percolates to the ground-water reservoir, and may eventually return to streams as ground-water inflow or seepage.

Approximately 300,000 acres of irrigated land in the lower Arkansas River valley of Colorado may contribute irrigation-return flow to the Arkansas River. Recognizing the possible impacts that irrigation-return flows could have on the quality of water in the Arkansas River, and, thereby, its use as an agricultural, municipal, or industrial supply, the Southeastern Colorado Water Conservancy District requested the U.S. Geological Survey to conduct a 3 -year investigation to determine the quality of irrigation-return flows in this area of Colorado (fig. 1).

Description of Study Area

The study area extended from just below Pueblo Reservoir to the ColoradoKansas State line, and focused on irrigated agricultural lands in the valley of the Arkansas River (p1. 1). According to the U.S. Bureau of the Census (1981), the 1980 population of this area was approximately 160,000, with twothirds of the total living within the city limits of Pueblo. One-half of the remaining population lives in the towns of Rocky Ford, La Junta, Las Animas, and Lamar. About 25,000 people reside in smaller towns or rural areas. Excluding the city of Pueblo, the economy of the area is primarily agricultural. The value of crops produced in 1978 was about $\$ 60$ million (Colorado Department of Agriculture, 1980). Hay, wheat, corn, and sorghum were the principal crops east of La Junta; beans, melons, vegetables, hay, and corn were the principal crops west of La Junta during the study period. Diversion of streamflow and ground-water pumpage are required to sustain agriculture because the mean annual precipitation is 12-15 in.

The Arkansas River flows from west to east through the study area. Major tributaries include Fountain Creek and the St. Charles, Huerfano, Apishapa, and Purgatoire Rivers. During the period 1974 to 1978 , the mean annual flow of the Arkansas River decreased downstream by more than a factor of 10 from Avondale to Lamar, as a result of diversions for irrigation and resultant consumptive use (fig. 2).

Streamflow in the study area is regulated by Pueblo Reservoir and John Martin Reservoir near Las Animas. Both reservoirs store water during the winter and during flood periods for later release. In addition, Pueblo Reservoir is used for storage of water diverted into the Arkansas River from the Colorado River basin as part of the Fryingpan-Arkansas Project, a multipurpose, water-development project of the U.S. Bureau of Reclamation.

${ }_{0}^{0}$
Figure 1.--Location of study area.

Figure 2.--Mean annual streamflow 1974-78, irrigated acreage, and mean specific conductance of ground and surface water.

Streamflow used for irrigation is diverted from the river through a system of 16 major and several minor canals. Because streamflow is not normally adequate to meet crop demands, especially in spring and late summer, the hydraulically connected alluvial aquifer adjacent to the Arkansas River has been extensively developed. According to Taylor and Luckey (1974), an estimated 153,000 acre-ft, or about 20 percent of the water applied to crops during 1941-65, was pumped from approximately 1,400 wells completed in the alluvial aquifer. Despite extensive ground-water withdrawals and efforts to supplement streamflow with imported water from the Fryingpan-Arkansas Project and from private transmountain-diversion projects, demand for irrigation water has exceeded available supply in most years.

The quality of water in the Arkansas River changes dramatically in the study area. Specific conductance, which is directly related to dissolvedsolids concentrations, increased from a mean of about 500 micromhos at Pueblo Reservoir to a mean of about 3,500 micromhos at the Colorado-Kansas State line (fig. 2). According to Miles (1977), the main reason for the increase in dissolved solids is consumptive use, which concentrates the chemical constituents in both ground and surface water. Associated with this increase is a shift in the relative proportions of the major ions that comprise most of the dissolved solids. Relative proportions of sodium, chloride, and sulfate increase, whereas relative proportions of calcium, magnesium, and bicarbonate decrease (Gaydos, 1980). In addition, increases occur in stream temperature, concentrations of nitrite plus nitrate, and suspended solids (Cain and Edelmann, 1980; U.S. Geological Survey, 1978). Impacts on river-water quality related to municipal and industrial wastewater discharges are greatest just east of Pueblo; these impacts have been intensively analyzed by Cain and others, (1980). The salinity problem, located primarily east of La Junta, has been studied by Miles (1977).

Water pumped from the alluvial aquifer for irrigation also showed a large downstream increase in specific conductance (fig. 2). Ground water generally had a larger specific conductance than water from the Arkansas River, but the difference between the two sources decreased downstream. In the stream reach between Lamar and the Colorado-Kansas State line, the mean specific conductance of surface and ground water was similar.

Problem and Objectives

During the process of application and return to streams, irrigation water undergoes changes in quality that may cause adverse effects on receiving streams. Some commonly observed effects on water quality caused by irrigation-return flows are increases in concentrations of suspended sediment, nutrients, pesticides, bacteria, and salinity.

The objectives of the investigation were:

1. Identify and define the quality and areal trends in the quality of major irrigation-return flows.
2. Document seasonal variations in the quality of both surfaceand ground-water return flows.
3. Document relationships between the quality and quantity of applied water and irrigation-return flows in a small
irrigated area.

Approach

Water-quality samples were collected from irrigation-return flows throughout the study area during 1976 and 1977 to define areal variations in their quality. Based on these samples four irrigation-return flows were selected for monthly sampling during the 1978 irrigation season to document seasonal trends in quality. A small irrigated area was also selected for intensive study during 1978 to document relationships between the quantity and quality of applied irrigation water and irrigation-return flow. This evaluation included developing water and salt budgets for the small irrigated area.

The quality of irrigation-return flow was evaluated in comparison with the quality of applied water and with water-quality standards for the Arkansas River and selected tributaries in the study area (Colorado Department of Health, 1982). Water-use classifications and resulting numerical standards are listed in table 1. These standards are not intended to apply specifically to irrigation-return flows. However, because irrigation-return flows enter the Arkansas River and its natural tributaries and, in some places, may be a large part of the flow, these standards are used in this report as one measure of the quality of irrigation-return flows.

Acknowledgments

The author wishes to thank the many landowners who permitted access to their property to measure and to collect samples of irrigation-return flows. Special appreciation is extended to the Buffalo Mutual Irrigation Company and the Board of the Holly Drain for allowing temporary installation of continuous-recording instrumentation.

AREAL VARIATIONS IN THE QUALITY OF IRRIGATION-RETURN FLOWS

An inventory and reconnaissance sampling of irrigation-return flows was made during the 1976 and 1977 irrigation seasons to define the locations, quality, and areal variations in the quality of major irrigation-return flows. Because a drought condition existed in the study area at the time, less water than normal was available for irrigation, and it is likely that the volume of irrigation-return flows was significantly decreased. Some of the irrigationreturn flow channels or ditches that contain water during normal years were dry and were not sampled.
Table 1.--Water-quality standards ${ }^{1}$ for selected streams
[from Colorado Department of Health (1982); mg/L, milligrams per liter;

	Streams						
	Arkansas River ${ }^{2}$	St. Charles River	Sixmile Creek	Huerfano River	Apishapa River	Purgatoire River	Other tributaries
Water-use classifications ${ }^{3}$							
Class 2 recreation ${ }^{4}$	x	X	X	X	x	K	x
Class 2 warm-water aquatic life	x						
Water supply	x	x	x	x	x	K	K
Agriculture	x	x	X	x	x	X	K
Numeric standards ${ }^{5}$							
Dissolved oxygen (mg/L) ${ }^{6}$	5.0	5.0	5.0	5.0	5.0	5.0	5.0
pH (standard units)	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0
Fecal coliform (colonies per 100 milliliters)	2,000	2,000	2,000	2,000	2,000	2,000	2,000
```Nonionized ammonia (mg/L as N)```	0.1	0.1	------	0.1	0.1	0.1	-------
Dissolved nitrate (mg/L as $N$ )	10	10	-------	-------	-------	-------	-------
Dissolved chloride (mg/L)	250	250	-------	-------	-------	-------	-------
Dissolved sulfate ( $\mathrm{mg} / \mathrm{L}$ )	2,200	1,600	-------	-------	-------	-------	-------
Dissolved iron ( $\mu \mathrm{g} / \mathrm{L}$ )	300	300	-------	-------	-------	-------	-------
Dissolved manganese ( $\mu \mathrm{g} / \mathrm{L}$ )	50	50		-----		-------	-------
Aldrin ( $\mu \mathrm{g} / \mathrm{L}$ )	. 003	. 003	. 003	. 003	. 003	. 003	. 003
Dieldrin ( $\mu \mathrm{g} / \mathrm{L}$ )	. 003	. 003	. 003	. 003	. 003	. 003	. 003
DDT ( $\mu \mathrm{g} /$ )	. 001	. 001	001	. 001	. 001	. 001	. 001
Endrin ( $\mu \mathrm{g} / \mathrm{L}$ )	. 004	. 004	. 004	. 004	. 004	. 004	. 004
Heptachlor ( $\mu \mathrm{g} / \mathrm{L}$ )	. 001	. 001	. 001	. 001	. 001	. 001	. 001
Lindane ( $\mu \mathrm{g} / \mathrm{L}$ )	. 1	. 1	. 1	. 1	. 1	. 1	. 1
Malathion ( $\mu \mathrm{g} / \mathrm{L}$ )	. 1	. 1	. 1	. 1	. 1	. 1	. 1
Methoxychlor ( $\mu \mathrm{g} / \mathrm{L}$ )	. 03	. 03	. 03	. 03	. 03	. 03	. 03
Mirex ( $\mu \mathrm{g} / \mathrm{L}$ )	. 001	. 001	. 001	. 001	. 001	. 001	. 001
PCB's ( $\mu \mathrm{g} / \mathrm{L}$ )	. 001	. 001	. 001	. 001	. 001	. 001	. 001
Toxaphene ( $\mu \mathrm{g} / \mathrm{L}$ )	. 005	. 005	. 005	. 005	. 005	. 005	. 005

[^0]
## Locations of Identified Irrigation-Return Flows

Identified irrigation-return flows are shown on plate 1. Most of the sites are ditches or channels constructed for collection and conveyance of return flow. Many natural tributaries in the area also contain irrigationreturn flow; the five tributaries that were sampled during the study are shown on plate 1. Water-quality samples were collected at 59 irrigation-return flow sites. Data for onsite determinations (discharge, temperature, specific conductance, pH , and dissolved oxygen), major ions, nutrients, and bacteria from these samples are in table 8; data at selected sites for pesticides are listed in table 9 (tables 8 and 9 are in the Supplemental Information section at back of report).

Distribution of both identified and sampled irrigation-return flows was not uniform. Larger numbers of irrigation-return flows were identified and sampled in the St. Charles River mesa area southeast of Pueblo, in the vicinity of Rocky Ford, between John Martin Reservoir and Lamar, and between Granada and the Colorado-Kansas State line. Although most of the sampled irrigation-return flows discharged directly to the Arkansas River, some of the flow discharged into irrigation canals, then was reapplied to crops, or the flow infiltrated through sandy channels and percolated directly to the groundwater table before reaching the river. The name of the sites sampled, the source of irrigation water for each site, and the point of discharge, are listed in table 2.

## Water Quality of Identified Irrigation-Return Flows

The quality of identified irrigation-return flows sampled during 1976 and 1977 was generally acceptable when compared with the water-quality standards in table 1. Water-quality standards were exceeded, however, in 3 of 24 samples analyzed for sulfate, 14 of 20 samples analyzed for manganese, 2 of 44 samples analyzed for nitrite plus nitrate, 1 of 7 samples analyzed for fecal coliform, and 3 of 15 samples analyzed for dieldrin. In all, water-quality standards for one or more constituents were exceeded at 18 to 59 sites.

The discharge and quality of irrigation-return flows sampled during 1976 and 1977 varied widely in the study area. Minimum and maximum values and other statistics for selected constituents are given in table 3 . Some of the variation in amount and quality of irrigation-return flow is caused by variations in the amount and quality of applied water.

The specific conductance of irrigation-return flows shows a large downstream increase (fig. 3). The major cause of the increase is an increase in specific conductance of both surface and ground water available for irrigation (fig. 2).

The quality of applied irrigation water has a large effect on the quality of irrigation-return flow. The relationship between the two was quantitatively evaluated for an intensive study area near Holly, described later in this report. To provide an indication of the areal relationship between the quality of irrigation-return flow and applied surface water, samples were

Table 2.--Sources of irrigation water and discharge points for irrigation-return flows and selected tributaries

Site No. on Plate 1	Site name	Source of irrigation water ${ }^{1}$	Point of discharge
IR-54	21st Lane Drain	Bessemer Ditch, wells	Reapplication to fields
IR-53	23rd Lane Drain	Bessemer Ditch, wells?	Reapplication to fields
IR-52	25th Lane Drain	Bessemer Ditch, wells?	Tailwater ponds
IR-51	St. Charles Bottomland Drain	Bessemer Ditch, wells?, tailwater?	Arkansas River
IR-50	St. Charles Drain	Bessemer Ditch, wells?	St. Charles River
IR-49	37th Lane Drain	Bessemer Ditch, wells?	Tailwater Pond
IR-48	39th Lane Drain at Mouth	Bessemer Ditch, wells?	Tailwater Pond
IR-47	39th Lane Drain at Highway 50	Bessemer Ditch, wells?	Tailwater Pond through IR-48
IR-46	40th Lane Drain	Bessemer Ditch, wells?	Tailwater Pond
IR-45	Wheeler Lane Drain	Bessemer Ditch, wells?	Arkansas River
IR-44	Avondale Drain at Highway 50	Bessemer Ditch, wells	Collier Ditch
IR-43	Avondale Drain at Br 50	Bessemer Ditch, wells	Collier Ditch
IR-42	51st Lane Drain	Bessemer Ditch, wells?	Collier Ditch
IR-41	Avondale Bottomland Drain	Collier Ditch, wells?	Arkansas River
IR-40	North Nepesta Drain	Wells?	Arkansas River
IR-39	RR Junction Drain	Wells?	Arkansas River
IR-38	Oxford Farmers Drain	Oxford Farmers Ditch?, wells?	Arkansas River
IR-37	E. Manzanola Drain	Catlin Canal, wells	Arkansas River
IR-36	Vroman Drain	Rocky Ford Canal, wells?	Arkansas River
IR-35	Patterson Hollow Drain	Catlin Canal, wells	Arkansas River
IR-34	Highway 71 Drain	Rocky Ford Canal, wells?	Arkansas River
IR-33	N. Rocky Ford Drain	Rocky Ford Canal, wells?	Arkansas River
IR-32 ${ }^{2}$	Rocky Ford STP Drain	Rocky Ford Canal, wells	Arkansas River
IR-31	Rocky Ford Drain	Rocky Ford Canal, wells	Arkansas River
IR-30	Krammes Drain	Rocky Ford Canal, wells	Arkansas River
1R-29	Newdale Drain	Rocky Ford Canal, wells	Arkansas River
IR-28	W. La Junta Drain	Catlin Canal, wells	Arkansas River
IR-27	East Swink Drain	Catlin Canal, wells	Arkansas River
IR-26	E. Purgatoire Drain	Jones Canal, wells	Arkansas River
IR-25	Miller Ditch	Ft. Lyon Canal, wells?	Arkansas River (John Martin Res.)
IR-24	McClave Drain	Ft. Lyon Canal	Arkansas River
IR-23	Lubers Drain	Ft. Lyon Canal, wells?	Alluvial aquifer
IR-22	Prowers Arroyo Drain	Ft. Lyon Canal?	Alluvial aquifer
IR-21	West Keesee Drain	Keesee Canal, wells?	Arkansas River
IR-20	East Keesee Drain	Keesee Canal	Arkansas River
IR-19	Dry Creek Drain	Ft. Bent Canal, wells	Arkansas River
IR-18	Prowers Drain	Ft. Bent Canal, wells	Arkansas River
IR-17	Vista Del Rio Drain	Amity Canal, wells	Pumped from drain for irrigation
IR-16	Markham Arroyo Drain	Amity Canal, wells	Hyde Canal
IR-15	East Lamar Drain	Lamar Canal, Ft. Bent Canal, wells	Arkansas River
IR-14	Vista Del Rio Drain	Amity Canal, Hyde Canal, wells	Big Sandy Creek
IR-13	N. Granada Drain	$X-Y$ Canal, wells	Arkansas River through IR-10
IR-12	S. Granada Drain	$X-Y$ Canal, wells	Arkansas River through IR-10
IR-11	Western Alfalfa Drain	$X-Y$ Canal, wells	Arkansas River
IR-10	Granada Drain at Mouth	$X-Y$ Canal, wells	Arkansas River
IR-9	N. Arkansas Drain near Barton	Buffalo Canal, wells	Arkansas River through IR-6
IR- 8	N. Fork W. Holly Drain	Buffalo Canal, wells	Arkansas River through IR-6
IR- 7	S. Fork W. Holly Drain	Buffalo Canal, wells	Arkansas River through IR-6
IR- 6	W. Holly Drain at Mouth	Buffalo Canal, wells	Arkansas River
IR- 5	E. Holly Drain at Holly	Buffalo Canal, wells	Arkansas River through IR-2
IR- 4	E. Holly Drain Tributary	Buffalo Canal, wells	Arkansas River through IR-2
IR-3	E. Holly Drain at Highway 50	Buffalo Canal, wells	Arkansas River through IR-2
IR- 2	E. Holly Drain at Mouth	Buffalo Canal, wells	Arkansas River
IR-1	Romer Field Drain	Wells	Arkansas River
T-1	Sixmile Creek at Highway 50	Bessemer Ditch, wells	Arkansas River
T-2	Chicosa Creek near Fowler	Rocky Ford Highline Canal, wells	Arkansas River
T-3	Apishapa River near Fowler	Rocky Ford Highline Canal, Dxford Farmers Ditch, wells	Arkansas River
T-4	Timpas Creek at Highway 50	Rocky Ford Highline Canal, Otero Canal, Catlin Canal, Rocky Ford Canal, wells	Arkansas River
T-5	Crooked Arroyo at Highway 50	Otero Canal, wells	Arkansas River

[^1]Table 3.--Statistical summary of selected water-quality data from irrigationreturn flows and selected tributaries sampled during 1976-77
[ $\mathrm{ft}^{3} / \mathrm{s}$, cubic feet per second; ${ }^{\circ} \mathrm{C}$, degrees Celsius; micromhos, micromhos per centimeter at $25^{\circ}$ Celsius; $\mathrm{mg} / \mathrm{L}$, milligrams per liter]

Con-stituent	Number of samples	Mean value	Stan-   dard   devia-   tion	Minimum value	Median value	$\begin{aligned} & \text { Max- } \\ & \text { imum } \\ & \text { value } \end{aligned}$
Discharge ( $\mathrm{ft}^{3} / \mathrm{s}$ )	66	3.2	5.3	0.10	1.7	31
Temperature ( ${ }^{\circ} \mathrm{C}$ )	74	21.9	4.3	14.0	22.0	34.0
Specific conductance (micromhos)	72	2,580	1,350	445	2,500	6,020
pH	68	8.0	. 24	7.5	8.0	9.0
Dissolved chloride (mg/L)	70	69	61	4.9	51	250
```Dissolved nitrite plus nitrate (mg/L)}\mp@subsup{}{}{1```	44	3.7	2.9	. 06	3.7	15
Suspended solids (mg / L)	35	375	806	6	61	3,300

${ }^{1}$ Includes 13 values of total nitrite plus nitrate.

Figure 3.--Downstream increase in specific conductance of irrigation-return flows.
collected at 41 main-stem sites during July 1977. Approximately two-thirds of the irrigation-return flow samples were collected about the same time. Locations of the Arkansas River sites are shown on plate 1 ; results of the chemical analyses of the samples are given in table 10 (in the Supplemental Information section).

Specific conductance of the Arkansas River during July 1977 (fig. 4) showed a similar pattern to mean specific conductance (fig. 2). Specific conductance in both instances increased slowly and steadily from Pueblo to near Las Animas, where an abrupt increase occurred. The abrupt increase during July 1977 is related to canal diversions from the Arkansas River between Manzanola and Las Animas. Just downstream from Manzanola, all Arkansas River streamflow was diverted for irrigation. Between this zero-flow point and Las Animas is a distance of about 35 miles. In this reach, streamflow recovered as a result of inflows from several possible sources. These include sluicing of canal water back to the river, returns from several large irrigation-return flows near Rocky Ford, and to a lesser extent, tributary inflows and ground-water seepage. Sluice water would not show an increased specific conductance, and return flows near Rocky Ford had specific conductances similar to the river during July 1977. The specific conductance of tributary inflows and ground-water seepage to the river would be expected to be larger than the specific conductance of sluice or return-flow water in this reach.

As the replenished flow of the river was further diverted between La Junta and Las Animas, specific conductance increased abruptly as a result of the increasing proportion of streamflow composed of tributary inflow and ground-water seepage. Gaged-tributary inflow between the zero-flow point downstream from Manzanola and the Colorado-Kansas State line was less than 10 $\mathrm{ft}^{3} / \mathrm{s}$ during the sampling period in July 1977. During the same period, the combined discharge of measured irrigation-return flows entering the Arkansas River between the zero-flow point and the Colorado-Kansas State line was about $80 \mathrm{ft}^{3} / \mathrm{s}$. These data indicate that the source of most Arkansas River streamflow downstream from Manzanola was irrigation-return flow.

To determine how often this situation occurred, an analysis of streamflow data was made for 1974 through 1978. During this period, the flow of the Arkansas River at La Junta was less than $30 \mathrm{ft}^{3} / \mathrm{s}$ about one-half the time. These periods of low flow occurred primarily during the winter and during periods of little precipitation in the early (April, May) and late (August, September) parts of the irrigation season. Irrigation-return flows between Manzanola and the Colorado-Kansas State line of only $40 \mathrm{ft}^{3} / \mathrm{s}$ (one-half the July 1977 amount) would have been enough to make up more than one-half the flow of the Arkansas River downstream from La Junta when the flow at La Junta was less than $30 \mathrm{ft}^{3} / \mathrm{s}$ and tributary inflow was small (less than $10 \mathrm{ft}^{3} / \mathrm{s}$).

Because irrigation-return flows were such a large contributor to streamflow downstream from Manzanola, they could be expected to have a major effect on the quality of water in the Arkansas River. Based on the data collected in 1976 and 1977, the volume of irrigation-return flows upstream from Manzanola was small compared to Arkansas River flow, and their effect on the quality of water in the Arkansas River was likely to be less.

Figure 4.--Specific conductance and streamflow of the Arkansas River, July 1977.

Water-quality samples were collected monthly during the 1978 irrigation season at four irrigation-return flow sites, and biweekly at an additional site in the intensive study area, to evaluate seasonal variations. Concurrent with collection of the monthly return-flow samples, selected onsite waterquality data were collected at eight Arkansas River sites to illustrate seasonal variations in stream quality, and to evaluate further the relationship of the quantity and quality of streamflow and irrigation-return flow.

Variations in the Arkansas River

The eight main-stem sites, where water-quality data were collected monthly during the 1978 irrigation season, are shown on plate 1 ; water-quality data are listed in table 11 in the Supplemental Information section.

Discharge

Arkansas River streamflow had a large seasonal variation during the 1978 irrigation season (fig. 5). Flows were small during the early part of the irrigation season (April, May). Snowmelt runoff in the mountains west of the study area caused the largest flows of the season during June. Streamflow decreased from the peak in June to successively smaller amounts in July and August and returned to discharges similar to springtime flows by September. Throughout the irrigation season, streamflow declined greatly from Pueblo to the Colorado-Kansas State line.

Specific Conductance

Streamflow variations in the study area had a strong effect on the seasonal variation of specific conductance in the Arkansas River (fig. 6). Largest specific-conductance values occurred during the low-flow periods in spring (April, May) and late summer (August, September). High streamflow in early summer (June, July) resulted in the smallest specific-conductance values observed during the irrigation season. Large downstream increases in specific conductance occurred throughout the irrigation season.

Other Water-Quality Constituents

During the 1978 irrigation season, measured dissolved-oxygen concentrations in the Arkansas River ranged from 4.0 to $13.2 \mathrm{mg} / \mathrm{L}$ (milligrams per liter). These concentrations generally were greater than the water-quality standard of $5 \mathrm{mg} / \mathrm{L}$; the only value less than the standard was at the La Junta site in June. Measured dissolved-oxygen values were probably larger than the daily mean value at each site, because the measurements were made during daylight hours. Based on 24-hour dissolved-oxygen measurements, Cain and others (1980) and Cain and Edelmann (1980) showed that larger dissolved-oxygen

Figure 5.--Streamflow of the Arkansas River, 1978 irrigation season.

Figure 6.--Specific conductance of the Arkansas River, 1978 irrigation season.
concentrations occurred during daylight than during nightime hours at three Arkansas River sites in Pueblo County. During the 1978 irrigation season, dissolved-oxygen concentrations were generally larger during the spring and fall, and smaller during the summer.

The number of fecal-coliform bacteria in water samples from the Arkansas River was largest at most sites during the high streamflow period of June and July 1978. About one-half the samples collected during this period exceeded the standard of 2,000 colonies per 100 mL (milliliter). During the low-flow periods in spring and late summer, all but two fecal-coliform values were less than 500 colonies per 100 mL . The numbers of fecal-streptococci bacteria did not exhibit the same strong seasonal variation. Fecal-streptococci data are characterized by large, apparently unrelated variations.

Variations in Selected Irrigation-Return Flows

Four irrigation return-flow sites were chosen for collection of monthly water-quality samples during the 1978 irrigation season. Water-quality samples were also collected biweekly at one site in the intensive study area. Locations of all five sites are shown on plate 1 ; water-quality and streamflow data are given in tables 12 and 19 in the Supplemental Information section. The sites were chosen to represent areas with different crop types and sources of irrigation water, and to illustrate differences in the quality of tailwater and ground-water return flows. Characteristics of the sites and their contributing drainage areas are listed in table 4.

Discharge

Discharge of the five irrigation return-flows sampled during the 1978 irrigation season is plotted in figure 7. Discharge of East Lamar Drain and Sixmile Creek consisted largely of ground-water return flow and showed less variation than the other three sites. All sites had the largest measured discharge during June, July, or August, when irrigation water was most plentiful. The discharge per square mile of area drained by the Rocky Ford Drain (table 4) was much greater than the other irrigation-return flows. The Rocky Ford Canal has one of the oldest surface-water rights in the study area, resulting in the most available water per irrigated acre, and larger amounts of irrigation-return flow.

Specific Conductance

Specific conductance of water at all five sites was largest in spring and fall and smallest during the summer (fig. 7). The magnitude of variation in Rocky Ford Drain and Sixmile Creek was less than the three sites downstream from La Junta. The same variability occurred in the Arkansas River at sites upstream and downstream from La Junta (fig. 6) and thereby, for irrigation water diverted from the river.
Table 4.--Characteristics of five irrigation-return flows sampled during the 1978 irrigation season

Site No. on plate 1	Site name	Approximate drainage area ${ }^{1}$ $\left(m i^{2}\right)$	Approximate length of drain (mi)	Åverage discharge per square mile $\left[\left(f t^{3} / s\right) / m i^{2}\right]$	Type of channel	Primary source of irrigation water	Secondary source of irrigation water	Primary crops grown	Type of irrigation return flow
IR-31	Rocky Ford Drain	3.0	5.5	5.2	Excavated ditch	Rocky Ford Canal	Wells	Corn, vegetables, melons	Primarily tailwater
IR-15	East Lamar Drain	2.5	4.0	0.4	$\begin{gathered} \text { Deeply ex- } \\ \text { cavated } \\ (15-20 \mathrm{ft}) \\ \text { ditch } \end{gathered}$	Lamar and Fort Bent Canals	Wells	Corn, alfalfa, sorghum	Primarily groundwater return flow
IR-10	Granada Drain	8.5	11.0	. 7	Excavated ditch with two branches	Wells	$X-Y$ Canal	Alfalfa	Primarily tailwater
IR-6	West Holly Drain	6.75	10.7	1.2	Excavated ditch with two branches	Buffalo Canal	Wells	Alfalfa, sorghum (see table 9)	Primarily tailwater (see fig. 11)
T-1	Sixmile Creek	5.5	5.3	. 5	Natural tributary; ephemeral above and perennial below Bessemer Ditch	Bessemer Ditch	Wells	Vegetables, corn	Primarily groundwater return flow from terrace deposits

${ }^{1}$ Area that contributes irrigation-return flow.

Figure 7.--Discharge and specific conductance of irrigationreturn flow at five sites, 1978 irrigation season.

Specific conductance of water in Sixmile Creek was larger than water in Rocky Ford Drain, even though the area drained by Sixmile Creek is irrigated by water of less specific conductance. Average specific conductance of return flow from Sixmile Creek was about 6 times the applied surface water, whereas average specific conductance of return flow from Rocky Ford Drain was only about 1.5 times the applied surface water. The apparent reason for this large difference was that the discharge of Sixmile Creek was primarily ground-water return flow, and the discharge of Rocky Ford Drain was mostly tailwater. Ground-water return flow had a much larger specific conductance than applied irrigation water for two reasons. First, dissolved salts were concentrated by crop evapotranspiration and second, ground-water return flow has a long contact time with soluble minerals, which results in a greater pickup of dissolved salts. Tailwater did not show a large increase in dissolved solids over applied water because it generally was in contact with less soluble material during its comparatively short residence time on the irrigated field.

Other Water-Quality Constituents

Seasonal variation of dissolved oxygen for the five return-flow sites is shown in figure 8. Dissolved-oxygen concentrations were generally greatest during cooler spring and fall months of the irrigation season. This seasonal variation is related to the fact that larger amounts of oxygen can be dissolved in cooler rather than warmer water. Only 2 of 43 values measured were less than the water-quality standard of $5 \mathrm{mg} / \mathrm{L}$.

All pH values measured at the return-flow sites were between 7.3 and 8.4 , within the water-quality standard of 6.5 to 9 . The smallest pH value at all sites except West Holly Drain occurred during June.

Suspended-solids concentrations were largest and showed the greatest seasonal variation in water from the Rocky Ford, Granada, and West Holly Drains, which primarily contained tailwater (fig. 8). As irrigation water flows across a field it can dislodge, suspend, and transport sediment particles, often resulting in a significant increase of suspended solids in tailwater. The concentration of suspended solids in water from East Lamar Drain and Sixmile Creek was small and relatively stable in 1978. Flow in both systems was composed primarily of ground-water return flow.

Consistent seasonal trends were not readily apparent for any of the nutrients analyzed at the five return-flow sites during 1978; however, other trends were evident. Concentrations of total Kjeldahl nitrogen (organic nitrogen plus ammonia) were generally greater in samples from both the Rocky Ford and Granada drains than concentrations that were commonly observed in the Arkansas River at three sites in 1976, 1978, and 1979 (Goddard, 1980; Cain and Edelmann, 1980; U.S. Geological Survey, 1980). These three sites were the Arkansas River above Pueblo, Arkansas River near Nepesta, and Arkansas River at Coolidge. Total Kjeldahl nitrogen would be expected to be larger in water from these two drains, because the flow consisted primarily of tailwater. Total Kjeldahl nitrogen concentrations in water from the West Holly Drain were also generally larger when the flow was primarily tailwater.

Figure 8.--Dissolved-oxygen and suspended-solids concentration of irrigation-return flow at five sites, 1978 irrigation season.

Concentrations of total nitrite plus nitrate at Rocky Ford and Granada Drains and Sixmile Creek were also greater than concentrations usually found in the Arkansas River. Concentrations of total nitrite plus nitrate (as nitrogen) at the three sites were usually between 5 and $9 \mathrm{mg} / \mathrm{L}$; these concentrations did not exceed the water-quality standard of $10 \mathrm{mg} / \mathrm{L}$ on samples collected in 1978. In contrast, concentrations of total nitrite plus nitrate at East Lamar and West Holly Drains were less than $5 \mathrm{mg} / \mathrm{L}$.

Total orthophosphorus concentrations were less than $0.2 \mathrm{mg} / \mathrm{L}$ (as phosphorus), except for one sample from the East Lamar Drain and two samples from the Granada Drain. All three samples were collected early in the irrigation season; the large concentrations may have been related to early season fertilization. Total phosphorus concentrations were considerably greater than total orthophosphorus, and they also were more variable.

Biochemical-oxygen demand (BOD_{5}) did not show an apparent seasonal variation at the five return-flow sites. Concentrations of BOD_{5} for the return flows consisting primarily of tailwater (Rocky Ford, Granada, and West Holly Drains) generally were larger than for the two return flows consisting primarily of ground-water return flow (East Lamar Drain and Sixmile Creek). Concentrations of BOD_{5} found in water from the Rocky Ford and Granada Drains are quite large, averaging about one-half of the $20 \mathrm{mg} / \mathrm{L}$ concentration that would be expected from a sewage-treatment plant operating at the secondary-treatment leve1. Concentrations of BOD_{5} found in water from the East Lamar Drain were variable, with more than one-half the values greater than $5 \mathrm{mg} / \mathrm{L}$. Because the suspended-solids concentration at this site was small, with a mean value of 32 mg / L, it was expected that some of the BOD_{5} may have been caused by oxygendemanding substances in the dissolved state. The BOD_{5} of Sixmile Creek was uniformly small, 1.0 to $2.0 \mathrm{mg} / \mathrm{L}$, similar to values commonly observed in ground water.

Numbers of both fecal-coliform and fecal-streptococci bacteria were generally smallest in samples collected early in the irrigation season. The largest counts were observed in samples collected in July, August, or September, in contrast to the Arkansas River sites, where the largest counts occurred in June or July. Counts exceeding the water-quality standard of 2,000 colonies per 100 mL for fecal coliform were recorded at all sites except the East Lamar Drain. The number of fecal-streptococci colonies found was greater than the number of fecal-coliform colonies on all but 3 of the 27 return-flow samples.

RELATIONSHIPS BETWEEN QUANTITY AND QUALITY OF APPLIED WATER AND IRRIGATION-RETURN FLOW IN A SMALL IRRIGATED AREA

Description of Small Irrigated Area

A small ($6.75 \mathrm{mi}^{2}$) irrigated area near Holly (fig. 9 and pl. 1) was selected for intensive sampling and measurement during the 1978 irrigation season (March 16-0ctober 31). The area was chosen because it had defined geographic boundaries, was irrigated by one canal, and had a single drain for collection and conveyance of return flow.

Base from U. S. Geological Survey
1:24000 Holly West and Holly East, 1953
$\underbrace{0}_{0}$
KILOMETERS
CONTINUOUS-RECORD RAIN GAGE
DAILY TEMPERATURE AND RAINFALL STATION OBSERVATION WELL-Monthly water-level measurement
IRRIGATION WELL IN INTENSIVE STUDY AREA-
Monthly water-level measurement, biweekly discharge or power-meter readings, and single water-quality sample
Figure 9.--Data-collection sites in the intensive study area near Holly.

The area, which is north of the Arkansas River and just west of Holly near the Colorado-Kansas State line, is bounded on the north by the Buffalo Canal, on the south by a railroad levee, on the west by a levee along the Arkansas River, and on the east by a levee along Wild Horse Creek.

In addition to an average-annual precipitation of about 15 in ., water for irrigation is supplied by the Buffato Canal and by 13 wells completed in the alluvial aquifer, which is hydraulically connected to the Arkansas River. The aquifer was mapped and studied by Vogeli and Hershey (1965), Major and others (1970), and R. T. Hurr, U.S. Geological Survey, (written commun., 1978). Some tributary inflow, consisting of rainfall runoff and tailwater from irrigation to the north, enters the Buffalo Canal and is available as irrigation water.

The West Holly Drain, which enters Wild Horse Creek about 0.25 mi upstream from its confluence with the Arkansas River, provides drainage for the area. It consists of two eastward-flowing branches, one along U.S. Highway 50 , and another branch one-half to three-quarters of a mile north; these branches merge about one-half mile upstream from Wild Horse Creek. The drain, especially along the north branch, is deeply excavated; the drain provides conveyance for intercepted ground water in addition to collecting tailwater and rainfall runoff. Crops grown during the 1978 irrigation season, which were typical of the lower Arkansas River valley east of Las Animas, are listed in table 5.

Table 5.--Land use in the intensive study area near Holly, 1978 [mi², square miles]

Land use	Approximate $\left(\mathrm{mi}^{2}\right)$	area 1
	Cultivated areas total	
Alfalfa		
Sorghum	1.92	28.4
Pasture grasses	1.76	26.1
Sugar beets	1.14	16.9
Winter wheat	.69	10.2
Corn	.26	3.8
Barley	.24	3.6
	.18	2.7
Phreatophytes		
Built-up land ${ }^{3}$	Uncultivated areas	

[^2]
Method of Investigation

Data were collected to provide information to calculate water and salt budgets, and to illustrate relationships between the quantity and quality of water used for irrigation and the return flow from irrigation. Location of the data-collection sites and the type and frequency of data collected at each site are shown in figure 9. The data are presented in tables 13-19 in the Supplemental Information section.

Water Budget

The water budget for the area is diagrammed in figure 10 ; the method of calculation and source of data for most components of the water budget are listed in table 6 . The methods of calculation of other components are described in the following sections.

Errors associated with terms in the water budget vary. A rigorous evaluation of these errors is beyond the scope of this study. However, Winter (1981) has made an extensive review of the type and magnitude of errors that can be expected in the determination of many hydrologic quantities. This review, along with specific knowledge of data collection and analysis methods used during this study allows some general statements to be made about expected relative magnitudes of errors. Values which were measured directly, such as streamflow or ground-water pumpage measured by flowmeter, were probably the most accurate, having expected errors in the range of ± 10 percent. Water budget components, such as precipitation and tributary inflow, which are based on data measured at a few points and extrapolated to the entire area, are likely to have somewhat larger errors. Similar magnitudes of error can be expected for water budget components that were determined indirectly, such as ground-water inflow, outflow and storage; ground-water pumpage, calculated from power records; rainfall runoff; tailwater; and ground water intercepted by West Holly Drain. The largest errors can be expected for water budget components that were calculated from other water budget components, especially if the calculation involved subtracting one component from another. This type of component would include ground-water return flow, applied surface water, applied irrigation water, and total applied water. Even though the percentage error of terms in the water budget may vary, all values (except ground-water storage) are shown to the same number of places for ease of comparison and to eliminate major discrepancies in calculated terms.

Sources of Water in West Holly Drain

Water in the West Holly Drain originates from three sources: (1) Rainfall runoff; (2) intercepted ground water; and (3) tailwater from irrigation. Where applicable, the volume of rainfall runoff was estimated by using the straight-line base-flow separation technique described by Schulz (1976, p. 315). Intercepted ground water was differentiated from tailwater by assuming the volume of intercepted ground water was directly proportional to water levels in wells near the drain. Monthly mean water levels in four wells were plotted, and a smooth curve was drawn through the points. This plot was

Evapotranspiration 4

E.

 mas

Figure 10.--Water budget in the intensive study area near Holly, 1978

Table 6.--Calculated water budget for the intensive study area near Holly, 1978 irrigation season ${ }^{1}$

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Water budget component} \& \multicolumn{2}{|l|}{Mean dajly amount} \& \multicolumn{2}{|l|}{Total for season} \&

\hline \& (acrefeet) \& (cubic feet per second) \& $$
\begin{aligned}
& \text { (acre- } \\
& \text { feet) }
\end{aligned}
$$ \& (inches for entire area) \& Method of calculation and source of data

\hline Buffalo Canal inflow \& 51.6 \& 26.0 \& 11,900 \& 32.9 \& Buffalo Canal near Amity stream gage (table 15).

\hline Buffalo Canal outflow \& 19.2 \& 9.7 \& 4,400 \& 12.3 \& Buffalo Canal near Holly stream gage (table 15).

\hline Tributary inflow \& 5.2 \& 2.6 \& 1,200 \& 3.3 \& Regression relation between daily measurements at Crowley Lateral and biweekly measurements at other tributaries (table 15).

\hline West Holly Drain outflow \& 15.9 \& 8.0 \& 3,700 \& 10.1 \& West Holly Drain at Mouth stream gage (table 15).

\hline Ground-water inflow \& 15.2

14.7 \& 7.7
74 \& 3,500
3,400 \& 9. B \& Darcy's Law using monthly water level data (table 16), bedrock and transmissivity maps (modified from R. T. Hurr, U.S. Geological Survey, written commun., 1978). Boundaries of area were broken down into 24 sections across which flow was calculated. These flows were summed to get total ground-water inflow and outflow.

\hline Ground-water outflow \& - 14.7 \& 7.4 \& 3,400 \& 9.4 \& Same as ground-water inflow.

\hline Ground-water storage \& 242,300 \& -- \& ------ \& ---- \& Monthly water level data (table 16), bedrock map (modified from R. T. Hurr, U.S. Geological Survey, written commun., 197B) and specific yield of 0.2 (Vogeli and Hershey, 1965, p. 25).

\hline Change in groundwater storage \& -3.5 \& -1. B \& -800 \& -2.3 \& From ground-water storage.

\hline Ground-water pumpage \& 25.0 \& 12.6 \& 5,700 \& 16.0 \& From biweekly discharge meter readings or pump rating and biweekly electric or gas meter reading.

\hline Precipitation \& 20.3 \& 10.2 \& 4,700 \& 13.0 \& From 2 rain gages (table 13), weighted according to area of Thiessen polygons constructed around each site.

\hline Evapotranspiration \& 45.9 \& 23.1 \& 10,600 \& 29.3 \& See text.

\hline Rainfall runoff \& 3.0 \& 1.5 \& 700 \& 1.9 \& See text and figure 11.

\hline Tailwater \& 7.7 \& 3.9 \& 1,B00 \& 4.9 \& See text and figure 11.

\hline Intercepted ground water \& 5.2 \& 2.6 \& 1,200 \& 3.3 \& See text and figure 11.

\hline Ground-water return flow \& 26.2 \& 13.2 \& 6,000 \& 16.7 \& See text and figures 12 and 13.

\hline Applied surface water \& 37.6 \& 19.0 \& 8,700 \& 24.1 \& Buffalo Canal inflow plus tributary inflow minus Buffalo Canal outflow.

\hline Applied irrigation water \& 62.6 \& 31.6 \& 14,400 \& 40.0 \& Applied surface water plus ground-water pumpage.

\hline Total applied water \& 82.9 \& 41.8 \& 19,100 \& 53.0 \& Applied irrigation water plus precipitation.

\hline
\end{tabular}

[^3]then superimposed on the plot of daily streamflow for the West Holly Drain, and the scale was adjusted until the two plots approximately corresponded during the early and late irrigation season, when most of the flow was intercepted ground water. The estimated amount of intercepted ground water was then read off the ordinate axis. Results of the separation are shown in figure 11.

Evapotranspiration

Seasonal evapotranspiration was estimated to be all the water unaccounted for in the water budget for the area. Inflows to the area were precipitation, the Buffalo Canal inflow, tributary inflow, and ground-water inflow. Outflows were evapotranspiration, West Holly Drain outflow, Buffalo Canal outflow, and ground-water outflow. A decrease in ground-water storage of 800 acre- ft was taken into account in the calculation. This technique gave an evapotranspiration estimate for the intensive study area of 10,600 acre-ft, or an average of 29.3 in . for the entire area.

The estimate for evapotranspiration calculated using the water-budget method was compared to evapotranspiration calculated using the modified Blaney-Criddle method (U.S. Soil Conservation Service, 1970). This method assumes that crop growth and yields are not limited by inadequate water at any time during the year. Seasonal consumptive use is calculated by summing the consumptive use for shorter periods. During this study, consumptive use was calculated daily for the vegetation types listed in table 5. The method uses mean air temperature (table 14 in the Supplemental Information section) and the percentage of daylight hours to calculate a consumptive-use factor. This factor is multiplied by a consumptive-use coefficient to determine consumptive use for the period. The consumptive-use coefficient takes into account variations in consumptive use resulting from various climates and growth stages of specific crops. The Blaney-Criddle method resulted in a value of seasonal evapotranspiration for the intensive study area that was only 6 percent greater then the estimate using the water-budget method. Because of the close agreement between the methods, daily estimates of evapotranspiration used in some water-budget calculations were made using the Blaney-Criddle method and reducing these values by 6 percent.

Irrigation-Return Flow

Irrigation-return flow consists of both tailwater and ground-water return flow. Ground-water return flow cannot be easily measured so it was estimated by two different methods: (1) A water balance at the land surface (fig. 12); and (2) a ground-water balance (fig. 13). According to the land-surface water-balance method, water reaching the land surface may be evaporated or transpired, or it may run off as tailwater or rainfall runoff, or it may infiltrate the soil and percolate to the water table as ground-water return flow. Because all other terms were known, ground-water return flow could be calculated. The ground-water balance method states that the difference between inflows to and outflows from the ground-water system must equal the change in ground-water storage. Ground-water inflow from outside the area is the only inflow to the ground-water system besides ground-water return flow.

SOURCES OF WATER

SOURCES OF SALT

Figure 11.--Sources of water and salt in the West Holly Drain, 1978 irrigation season.

Figure 12.--Sources and fate of water applied at the land surface
in the intensive study area near Holly, 1978 irrigation season.
CHANGE IN
STORAGE

Figure 13.--Ground-water balance in the intensive study area near Holly, 1978

Outflows in the area were ground-water pumpage, ground water intercepted by the West Holly Drain, and ground water that flowed out of the area. Because the change in ground-water storage and all other ground-water inflows and outflows could be estimated ground-water return flow could be calculated. As shown in figures 12 and 13 , the two methods gave the same result for the seasonal ground-water return flow. However, seasonal distribution of groundwater return flow using the two methods was different, probably as a result of transient storage of ground-water return flow in the unsaturated zone. Irrigation-return flow in the intensive study area accounted for 40 percent of the total water applied to crops; about three-fourths of the irrigation return flow was ground-water return flow.

Salt Budget

The salt budget was calculated from the water budget by using measured specific-conductance data converted to dissolved-solids concentrations by means of regression equations. Data used to develop the equations were obtained from measurements made on surface and ground water collected in the intensive study area during 1978. Dissolved-solids concentrations used in developing the regression equations were computed as the sum of measured major dissolved constituents in the waters. The regression equations were developed using the General Linear Models (GLM) Procedure of SAS Institute, Inc. ${ }^{1}$ (1979, p. 140-199) for surface and ground water. To simplify salt-budget calculation, the equations were developed without an intercept term as described by Krumbein and Graybill (1965, p. 240-241). The regression equation used for the calculation of dissolved solids in surface water was:

> Dissolved solids $=0.84 \times$ Specific conductance $\quad($ in micromhos)

The equation for the calculation of dissolved solids in ground water was:
Dissolved solids $=0.82 \times$ Specific conductance
(in mg/L)
(in micromhos)

The correlation coefficient for both equations was 0.99 , indicating that specific conductance is an excellent predictor of dissolved-solids concentration.

The salt budget is diagrammed in figure 14 ; the method of calculation and source of flow and specific-conductance data are given in table 7. Comments regarding errors in the water budget can generally be applied to the salt budget. Errors associated with a given component in the salt budget are probably somewhat larger than for the same component in the water budget because of additional errors in the measurement or estimation of specific conductance and its conversion to dissolved-solids concentration. As with the water budget, values listed in table 7 (except ground-water storage) are shown to the same number of places for ease of comparison and to eliminate discrepancies in calculated terms.

[^4]
EXPLANATION
water
outflow

Table 7.--Calculated salt budget for the intensive study area near Holly, 1978 irrigation season

Salt-budget component	Mean of daily specific-conductance values (micromhos per centimeter at 25° Celsius)	Mean daily amounts of salt (tons per day)	Total salt for season (tons)	Method of calculation and source of flow and dissolved-solids data ${ }^{1}$
Buffalo Canal inflow	3,850	170	39,200	Buffalo Canal near Amity daily streamflow (table 15), and specific conductance (table 18).
Buffalo Canal outflow	3,850	64	14,700	Buffalo Canal near Holly daily streamflow (table 15), specific conductance set equal to Buffalo Canal near Amity (table 18).
Tributary inflow	3,850	14	3,200	Daily streamflow from water budget (table 6), specific conductance set equal to Buffalo Canal near Amity (table 1B).
West Holly Drain outflow	, 4,780	67	15,500	West Holly Drain daily streamflow (table 15) and specific conductance (table 18).
Ground-water inflow	25,010	85	19,500	Flow from water budget (table 6), specific conductance for each of 24 sections where flow was calculated was taken from map of ground-water specific conductance. Loads from each section were summed to give total salt load in ground-water inflow and outflow.
Ground-water outflow	25,740	94	21,700	Same as ground-water inflow.
Ground-water storage	5,740	${ }^{3} 271,000$	------	Amount of water from water budget (table 6) specific conductance set equal to mean specific conductance of ground-water pumpage.
Change in ground-water storage	-	43	10,000	Difference between salt inflows and outflows.
Ground-water pumpage	5,740	159	36,500	Pumpage and specific conductance at each well used to calculate salt load at each well, then loads summed for all wells.
Precipitation	0	0	0	Amount of water from water budget (table 6), specific conductance set equal to zero for purposes of salt budget.
Evapotranspiration	0	0	0	Amount of water from water budget (table 6), specific conductance set equal to zero for purposes of salt budget.
Rainfall runoff	500	2	400	Flow from water budget (table 6), specific conductance estimated to be 500 micromhos.
Tailwater	24,660	33	7,500	West Holly Drain salt load minus intercepted ground-water salt load minus rainfall-runoff salt load.
Intercepted ground water	5,700	33	7,600	Flow from water budget (table 6), specific conductance estimated at 5,700 micromhos from map of ground-water specific conductance.
Ground-water return flow	, 2,48,170	244	56,300	Total applied water-salt load minus rainfall-runoff salt load minus tailwater salt load minus evapotranspiration salt load.
Applied surface water	23,850	120	27,700	Buffalo Canal inflow salt load plus tributary-inflow salt load minus Buffalo Canal outflow salt load.
Applied irrigation water	- 24,370	279	64,200	Applied surface-water salt load plus ground-water pumpage salt load.
Total applied water	24,110	279	64,200	Same as applied irrigation-water salt load, because precipitation salt load equals zero.

[^5]The source and fate of salts in water applied at the land surface are shown in figure 15. Although ground water comprised only 30 percent of applied water (fig. 12), it contributed 57 percent of the salts, because of its larger dissolved-solids concentration. Most of the salts applied at the land surface eventually were transported to the ground-water system, after a period of transient storage in the unsaturated zone. The remainder of the salts were removed in tailwater or rainfall runoff.

The salt budget indicated an increase of 10,000 tons of dissolved salts in ground water occurring during the 1978 irrigation season. This value approximates an increase in specific conductance of 4 percent. If an increase of this magnitude occurred annually, the specific conductance of ground water would double in 15 to 20 years. However, long-term increases in specific conductance have not occurred in the study area. The mean specific conductance of water produced from seven wells during 1956-65 and 1978 showed no significant change at the 90 -percent confidence level.

Calculations were made for the nonirrigation season from November 1, 1978, to March 15, 1979, to determine if the excess salts had moved from the study area during this period. Because intensive hydrologic data were not collected during this time, estimates of some inflows and outflows were required. Based on available data, salt inflows and outflows were believed to be negligible from the following sources: Buffalo Canal, tributary inflow, West Holly Drain, precipitation, and evapotranspiration. Ground-water inflow and outflow were the only remaining means to transport salt across the study area boundaries. Water-level measurements made on March 9, 1979, allowed an estimate to be made of ground-water inflow and outflow and associated salt during the nonirrigation season. The estimate indicates that the excess salts were transported from the area with ground-water outflow. The difference between salt load in ground-water inflow and outflow during this period was about 10,000 tons, leaving no change in the amount of salt stored in ground water for the full year.

Because the annual salt budget can be balanced using only salt inflows and outflows, it appeared that the controlled test area contained no major net sinks or sources of salts. That is, there did not appear to be any net inflow of salts that were deposited in the area, nor any net dissolution and outflow of salts from the area.

Other Water-Quality Constituents

Because other water-quality constituents were not measured daily, it was not possible to develop budgets for these constituents similar to the water and salt budgets. Minimum, maximum, median, and mean values for other waterquality constituents in the West Holly Drain, in the Buffalo Canal, and in wells in the intensive study area are shown in figures 16 and 17. Calculated values in applied water, on the days samples were collected in the West Holly Drain, also are shown in figures 16 and 17.

Figure 15.--Sources and fate of salt applied at the land surface in the intensive study area near Holly, 1978 irrigation season.

	EXPLANATION
B	BUFFALO CANAL
G	GROUND WATER
A	APPLIED WATER (Calculated)
WWEST HOLLY DRAIN	
(MAXIMUM	
MEDIAN	
MEAN	
MINIMUM NUMBER OF SAMPLES	

Figure 17.--Minimum, maximum, median, and mean concentrations of nutrients, suspended solids, biochemical-oxygen demand, and bacteria in the intensive study area near Holly, 1978 irrigation season.

The widest variations observed for all constituents were in the calculated quality of applied water. These variations resulted from precipitation being a large percentage of the applied water on two of the days used in the calculation. The least variation was in the quality of ground water.

Ratios of concentrations of water-quality constituents in the West Holly Drain and in applied water were calculated as a measure of water-quality changes in the study area. Median values of these ratios are shown in figure 18. Ratios less than one indicate that concentrations were smaller in the West Holly Drain than in applied water, whereas ratios greater than one indicate greater concentrations in the West Holly Drain. Median concentration ratios for all constituents except dissolved nitrite plus nitrate and total phosphorus were greater than one, indicating larger concentrations in the West Holly Drain. These constituents included all major ions, Kjeldahl nitrogen, suspended solids, biochemical-oxygen demand and fecal-coliform and fecalstreptococci bacteria.

To assess the significance of the water-quality changes shown in figure 18, a statistical evaluation was made. Because the data were not normally distributed and also were paired, the Wilcoxon signed-rank nonparametric test (Romano, 1977, p. 208-211) was used. The test evaluates the magnitude and direction of differences between paired data and was applied at a 95-percent probability level. By means of this test, sodium, potassium, magnesium, hardness, sulfate, and fecal-coliform and fecal-streptococci bacteria were determined to have been present at significantly larger concentrations in the West Holly Drain than in applied water. Only dissolved nitrite plus nitrate was determined to have been present at significantly smaller concentrations in the West Holly Drain than in applied water.

Larger concentrations of major ions in the West Holly Drain than in applied water were most likely the result of consumptive use of water by evapotranspiration and interception of ground water by the drain; ground water generally had a larger concentration of major ions than applied water. The greater bacteria count in the West Holly Drain, especially fecal streptococci, suggested the area was a source of bacteria, possibly from grazed pasture lands. Smaller concentrations of dissolved nitrite plus nitrate in the West Holly Drain than in applied water suggests that this nutrient was utilized by plants in the study area.

SUMMARY

Two types of irrigation-return flows occur: (1) Tailwater is excess irrigation water that runs off the ends of fields and flows back to streams; and (2) ground-water return flow is excess irrigation water that infiltrates the soil and percolates to the water table. Irrigation-return flows were located throughout the lower Arkansas River valley, with greater numbers observed in the St. Charles mesa area, in the vicinity of Rocky Ford, between John Martin Reservoir and Lamar, and from Granada to the Colorado-Kansas State line.
 and applied water.

Specific conductānce of 59 sampled irrigation-return flows increased downstream; this increase paralleled that of available irrigation water. Water-quality standards for one or more constituents were exceeded at 18 of the 59 sites.

During July 1977, irrigation-return flow was the source of most Arkansas River streamflow downstream from La Junta. Irrigation-return flow may have a considerable effect on streamflow quality in this reach because it may comprise much of the Arkansas River flow during the early and late parts of the irrigation season.

Seasonal variations in discharge, specific conductance, and dissolvedoxygen concentrations of five irrigation-return flows sampled during the 1978 irrigation season were similar to those observed in the Arkansas River during the same period. Larger specific conductance and dissolved-oxygen concentrations were associated with lower streamflow and temperatures that occurred in the spring and fall.

Three irrigation-return flows sampled during the 1978 irrigation season and composed mainly of tailwater, had larger concentrations of suspended solids, biochemical-oxygen demand, and Kjeldahl nitrogen than two irrigationreturn flows consisting primarily of ground-water return flow. Return flows composed primarily of ground water showed much smaller seasonal variations in discharge and concentrations of most water-quality constituents. Although concentrations of nitrite plus nitrate were greater at three of the sites sampled during the 1978 irrigation season than concentrations of nitrite plus nitrate commonly observed in the Arkansas River, no values greater than the water-quality standard of $10 \mathrm{mg} / \mathrm{L}$ were observed. Fecal-coliform bacteria exceeded the water-quality standard at four of the five sites.

Water and salt budgets were developed for a 6.75-mi² area near Holly for the 1978 irrigation season; the area was irrigated by the Buffalo Canal and by wells. This area was drained by the West Holly Drain, a major irrigationreturn flow conveyance. During the 1978 irrigation season, tailwater contributed about one-half the flow of the West Holly Drain; intercepted ground water contributed about one-third; and rainfall runoff contributed the remainder. The sal.t load of the drain was contributed equally by tailwater and intercepted ground water, with only a small amount from rainfall runoff. About 40 percent of the water applied at land surface became irrigation-return flow. One-fourth of the total was tailwater, and three-fourths of the total was ground-water return flow. Although ground-water return flow accounted for 88 percent of the salts applied at the land surface, a long-term buildup of salts in ground water beneath the area was not occurring.

Dissolved nitrite plus nitrate was less concentrated in water leaving the area in the West Holly Drain than in applied water, suggesting removal during irrigation or plant growth. Major ions, biochemical-oxygen demand, and fecalcoliform and fecal-streptococci bacteria were more concentrated in the West Holly Drain than in applied water, suggesting concentration through consumptive use or pickup during irrigation.

REFERENCES CITED

Cain, Doug, Baldridge, Duaina, and Edelmann, Patrick, 1980, Waste-assimilation capacity of the Arkansas River in Pueblo County, Colorado, as it relates to water-quality guidelines and stream classification: U.S. Geological Survey Water-Resources Investigations 80-82, 104 p.
Cain, Doug, and Edelmann, Patrick, 1980, Selected hydrologic data, Arkansas River basin, Pueblo and southeastern Fremont Counties, Colorado: U.S. Geological Survey Open-File Report 80-1185, 233 p.
Colorado Department of Agriculture, 1980, Colorado agricultural statistics 1980: Colorado Department of Agriculture, 100 p.
Colorado Department of Health, 1982, Classifications and numeric standards for the entire Arkansas River Basin: Colorado Department of Health, Water Quality Control Commission, 59 p.
Gaydos, M. W., 1980, Summary of water-quality data for selected streams in Colorado: U.S. Geological Survey Water-Resources Investigations OpenFile Report 80-682, 148 p.
Goddard, K. E., 1980, Calibration and potential uses of a digital waterquality model for the Arkansas River in Pueblo County, Colorado: U.S. Geological Survey Water-Resources Investigations $80-38$, 87 p.; available only from U.S. Department of Commerce, National Technical Information Service, Springfield, VA 22151.
Krumbein, W. C., and Graybill, F. A., 1965, An introduction to statistical models in geology: New York, McGraw-Hill, 475 p.
Major, T. J., Hurr R. T., and Moore, J. E., 1970, Hydrogeologic data for the lower Arkansas River valley, Colorado: Colorado Water Conservation Board Basic-Data Release 21,125 p.
Miles, D. L., 1977, Salinity in the Arkansas Valley of Colorado: U.S. Environmental Protection Agency, Interagency Agreement, Colorado State University, EPA-1AD-D4-0544, 80 p.
Romano, Albert, 1977, Applied statistics for science and industry: New York, Allyn and Bacon, 513 p.
SAS Institute, Inc., 1979, SAS user's guide, 1979 ed: Cary, N.C., 495 p.
Schulz, E. F., 1976, Problems in applied hydrology: Fort Collins, Colorado, Water Resources Publications, 501 p.
Taylor, 0. J., and Luckey, R. R., 1974, Water-management studies of a streamaquifer system, Arkansas River valley, Colorado: Ground Water, v. 12, no. 1, p. 22-38.
U.S. Bureau of the Census, 1981, Census of population and housing 1980, Colorado--Preliminary population and housing unit counts: Washington, D.C., U.S. Bureau of the Census, PHC80-P-7, 7 p.
U.S. Geological Survey, 1976, Holly West quadrangle--Centered aerial photography: U.S. Geological Survey, scale 1:24,000, 1 sheet. 1978 and 1980, Water resources data for Colorado-Water years 1977 and 1979: Volume 1. Missouri River basin, Arkansas River basin, and Rio Grande basin: U.S. Geological Survey Water-Data Reports C0-77-1 and C0-79-1; available only from U.S. Department of Commerce, National Technical Information Service, Springfield, VA 22151.
U.S. Soil Conservation Service, 1970, Irrigation water requirements: U.S. Department of Agriculture, Soil Conservation Service Technical Release No. 21, 88 p.

1976, Land use and natural plant communities, Crowley, Otero and Pueblo Counties, Colorado [map]: Portland, Ore., 6 sheets, scale 1:126,720. 1977, Land use and natural plant communities, Bent and Prowers Counties, Colorado [map]: Portland, Ore., 4 sheets, scale 1:126,720.
Voegeli P. T., Sr., and Hershey, L. A., 1965, Geology and ground-water resources of Prowers County, Colorado: U.S. Geological Survey Water-Supply Paper 1772, 101 p.
Winter, T. C., 1980, Uncertainties in estimating the water balance of lakes: Water Resources Bulletin, v. 17, no. 1, p. 82-115.

SUPPLEMENTAL INFORMATION

System of Numbering Wells

The well locations in this report are given numbers based on the U.S. Bureau of Land Mangement system of land subdivision, and show the location of the well by quadrant, township, range, section, and position within the section (fig. 19). The first letter "S" preceding the location number indicates that the well or spring is located in the area governed by the Sixth Principal Meridian. The second letter indicates the quadrant in which the well or spring is located. Four quadrants are formed by the intersection of the base line and the principal meridian--A indicates the northeast quadrant, B the northwest, C the southwest, and D the southeast.

The first three digits of the number indicate the township, the next three digits the range, and the last two digits the section in which the well or spring is located. The letters following the section number locate the well or spring within the section. The first letter denotes the quarter section, the second the quarter-quarter section, and the third the quarter-quarter-quarter section. The letters are assigned within the section in a counterclockwise direction, beginning with (A) in the northeast section and within each quarter-quarter section in the same manner. Where two or more locations are within the smallest subdivision, consecutive numbers beginning with 1 are added in the order in which the data from the wells or springs were collected.

Figure 19.--System of numbering wells in Colorado.

Data
TABLE 8．－－WATER－QUALITY DATA FROM RECONNAISSANCE SAMPLING OF IRRIGATION－RETURN FLON S AND SELECTED TRIBUTARIES
 RLINED）

	1	｜｜1｜｜	$\bar{\circ} \underset{\underset{\sim}{E}}{\underset{\sim}{~}}$			${\underset{\sim}{c}}_{11}^{\mathbb{N}}$	$11_{\text {in }}^{n}$	$11 \underset{\sim}{\text { E }}$
	1：1：	1：1： 1	$\stackrel{\text { mil：}}{\text { cill }}$	1： $1: 1$	1 1 1 1 1	$\hat{N}^{:}: \begin{array}{c:c} \infty \\ i & 0 \\ 0 \end{array}$		1： 111
	11111	1｜｜1｜	$\underset{\sim}{\infty}\left\|\left.\right\|_{\infty} ^{\infty}\right.$	1｜1｜	11111		$1_{\stackrel{Q}{N}} 11_{\underset{\sim}{e}}^{\stackrel{1}{2}}$	1111 $\stackrel{\otimes}{\otimes}$
	－－	のr＊oy	$\forall m \rightarrow * N$ $\infty^{\circ} \infty^{\circ} \infty^{\circ} \stackrel{r}{r}$		cosir		Nかのロー がペーか。	
	11111	｜｜｜｜	｜｜｜｜	｜｜｜｜｜	｜｜｜｜	｜｜｜｜	11111	｜｜｜｜

TABLE 8. - WATER-QUALITY DATA FROM RECONNAISSANCE SAMPLING OF IRRIGATION-RETURN FLOWS AND SELECTED TRIBUTARIES-CINTINUED

	$\underset{\sim}{\sim} \mid 1$	べさ	11×1	11111	11111	11111	11111	11111				
		m゙¢ ¢ ¢ ¢	！号：	！！！	！！！	！！！	！！！！	！！！				
	\｜ぎ1		め1～！	11111	｜1｜ 1	Eil	$\left.1 \frac{\stackrel{\rightharpoonup}{N}}{\sim} \right\rvert\, 11$	$1111 \frac{N}{\sim}$				
	｜ig｜l	Qion ${ }_{\sim}^{\infty} \mid$	$11 \underset{\sim}{\text { N }} 11$	11111	11111	1｜111	｜ 1111	11111				
	11111	11111	$\underset{\sim}{\text { a }}$ 111ন	11111	11111		$1 \approx 11 \underset{\sim}{N}$	11110				
	\｜\｜	1111	$\frac{s}{v} 1118$	1111	11：	丽1边	$1 \frac{8}{v} 119$	1111080				
	11111	$1\\|\\|$	¢1118	11111	$\\|\\|$	¢ 11980	1 N 110	11118				

SITE		
NO．ON		date
PLATE		
1	SITE Name	SAMPLE
IR－54	$215 T$ lane drain	77－98－99
IR－53	23RD Lane drain	77－88－09
IR－52	25 TH LaNe drain	76－08－19
		77－88－09
IR－5I ST．CHAS RTMLND DR		77－68－99
IR－50	St．charles drain	76－の8－19
IR－49	37th lane drain	76－08－10
IR－48	39TH LaNE DR AT MT	77－ด8－19
IR－47	39TH LN DR AT HW5a	76－98－19
I R－46	4ath lane drain	77－08－19
IR－45	wheeler lane drain	77－98－10
IR－44	AVONDALE D AT HW50	77－98－99
IR－43	AVONDALE D AT BR5》	76－88－10
IR－42	5ist lane drain	77－98－99
IR－41	a ${ }^{\text {ONDDALE }}$ BTMLND DR	77－08－09
IR－4 \varnothing	NORTH NEPESTA DR	77－08－18
1R－39	RR JUNCTION DRAIN	77－ด8－18
IR－38	OXFORD FARMERS DR	77－08－18
IR－37	E manzanola dpain	77－08－18
IR－36	vROMAN DRAIN	77－98－18
IR－35I $\mathrm{R}-34$	Patterson hollow d	77－98－18
	HIGHWAY 71 drain	77－08－18
		77－98－23
$\begin{aligned} & \text { IR }-33 \\ & 18-32 \end{aligned}$	N ROCKY FORD drain	77－08－18
	ROCKY FORD STP DR	77－08－17
I R－3I	ROCKY FORD DRAIN	77－98－17
		77－08－23
1R－30	KRammes drain	77－08－17
IR－29IR－28	newdale drain	77－98－17
	w la junta drain	77－98－15
IR－27	EASt swink drain	77－98－15
IR－26	E purgatoire drain	77－08－0．44
I R－25IR 24	miller ditch	77－08－94
	mcclave drain	77－ด8－044
$\begin{aligned} & I R-24 \\ & I R-23 \end{aligned}$	lubers drain	77－08－04
IR－22	PROWERS ARROYO DR	77－08－084
$\begin{aligned} & \text { IR-21 } \\ & 1 R-20 \end{aligned}$	west keesee drain	77－98－04
	east keesee dpain	77－08－04
IR-19	dry creek drain	77－п8－93
	Prowers drain	77－98－03

TABLE 8. --WATER-QUALITY DATA FROM RECONNAISSANCE SAMPLING OF IRRIGATION-RETURN FLOWS AND SELECTED TRIBUTARIES-CONTINUED

SITENO. ON Plate	
1	SITE NAME
IR-54	$215 T$ Lane drain
IR-53	23RD LANE DRAIN
IR-52	25TH LaNE DRain
IR-5I ST. CHAS RTMLND DR	
IR-50	ST. Charles drain
IR-49	37TH LANE DRAIN
IR-48	39TH LaNE DR AT MT
IR-47	397 H LN DR AT HW5ø
IR-46	4 T Th Lane drain
IR-45	wheeler lane drain
IR-44	AVONDALE D AT HW5¢
IR-43	AVONDALE D AT BR50
IR-42	5 IST lane drain
IR-4 1	AVONDALE ATMLND DR
IR-49	NORTH NEPESTA DR
IR-39	RR JUNCTION DRAIN
IR-38	OXFORD FARMERS DR
IR-37	E MANZANOLA DRAIN
IR-36	vROMAN DRAIN
IR-35	Patterson hollow d
IR-34	highway 71 drain
IR-33 N ROCKY FORD DRAIN IR-32 ROCKY FORD STP DR	
IR-31 ROCKY FORD DRAIN	
IR-39 Krammes drain	
IR-29 NENDALE DRAIN IR-28 W LA JUNTA DRAIN	
IR-27 EAST SWINK DRAIN IR-26 E PURGATOIRE DRAIN IR-25 MILLER DITCH IR-24 MCCLAVE DRAIN IR-23 LUBERS DRAIN	
IR-22 PROWERS ARROYO DR IR-21 WEST KEESEE DRAIN IR-2の FAST KEESEE DRAIN IR-19 DRY CREEK DRAIN IR-I8 PROWERS DRAIN	

table 8. - water-quality data from reconnaissance sampling of irrigation-return flows and selected tributaries-continued
 HOUNT
 중

$\begin{gathered} \text { SITE } \\ \text { NO. ON } \\ \text { PLATE } \\ \mathbf{1} \end{gathered}$	
	SITE NAME
I R-54	21ST LANE DRAIN
I R-53	23RD LANE DRAIN
IR-52	25TH LANE DRAIN
IR-51	ST. CHAS BTMLND DR
I R-59	ST. CHARLES DRAIN
IR-49	37TH LANE DRAIN
IR-48	39TH LANE DR AT MT
IR-47	39 TH LN DR AT HW5@
IR-46	4 9 TH LANE DRAIN
I R-45	Wheeler lane drain
IR-44	AVONDALE D AT HW50
I R-43	AVONDALE D AT BR5®
IR-42	5IST LANE DRAIN
IR-41	AVONDALE BTMLND DR
IR-40	NORTH NEPESTA DR
IR-39	RR JUNCTI ON DRA IN
IR-38	OXFORD FARMERS DR
IR-37	E MANZANOLA DRAIN
IR-36	VROMAN DRAIN
IR-35	PATTERSON HOLLOW
I R-34	HIGHWAY 71 dRaIN
IR-33	N ROCKY FORD DRAIN
IR-32	ROCKY FORD STP DR
IR-31	ROCKY FORD DRAIN
$1 \mathrm{R}-30$	KRAMmES DRA IN
1R-29	NEWDALE DRA IN
IR-28	W LA JUNTA DRAIN
1R-27	EAST SWINK DRAIN
IR-26	E PURGATOIRE DRAIN
IR-25	MILLER DITCH
IR-24	mcclave drain
IR-23	LUBERS DRAIN
IR-22	PROWERS ARROYO DR
IR-21	WEST KEESEE DRAIN
$1 \mathrm{R}-2^{\circ}$	EAST KEESEF DRAIN
IR-19	DRY CREEK DRAIN
IR-18	PROWERS DRAIN

table 8．－water－quality data from reconnaissance sampling of irrigation－return flons and selected tributaries－－Conrinued

	$1\left\|\left.\right\|_{\underset{\sim}{\underset{\sim}{c}}} 1\right.$	1 Nิ	${\underset{\sim}{8}}_{111}^{8}$	$\underline{\underline{\Sigma}}$	$\stackrel{\rightharpoonup}{V}^{\prime} \mathrm{E}$		
	：1：	$\begin{array}{l:ll} 1 & 1 & 1 \\ \hline \end{array}$	$\underline{a}^{1: 1} 1$	i＾1：	n 1111	1：1：	
		$1111_{\substack{\circ \\ 0 \\ \hline}}$	$\stackrel{\infty}{\infty}^{111} \underset{\alpha}{\stackrel{\alpha}{\infty}}$	$\operatorname{l}_{\underset{\sim}{e}}^{\text {g }} 111$		${\underset{\sim}{*}}_{1}^{1} \underbrace{\text { E }}$	$\begin{aligned} & \mathbb{E} \mathbb{\infty} \underset{\sim}{\mathbb{O}} \underset{\sim}{\infty} \\ & \hline \end{aligned}$
	osign $\infty^{\circ} \infty^{\circ}$ ベ～	$\stackrel{\sim}{\infty} \dot{\infty} \dot{\infty} \dot{\infty} \dot{\infty} \dot{\infty} \dot{\infty}$	$\underset{\infty}{\infty} \underset{\sim}{\infty}$	$\stackrel{\infty}{\infty} \underset{\infty}{\infty} \underset{\infty}{\infty}=\dot{\infty}$	$\bar{\infty} \cdot \underset{\infty}{m \infty}$	人－	$\bullet \otimes \in \infty$ $\dot{\infty} \infty \omega^{\circ}$
	1111.1	11111	$\stackrel{\square}{\text { y }}$	11111	$11-8 \times$		$\stackrel{0}{0} \stackrel{8}{\text { a }}$
					siseo ㅇNNNN $\forall \theta n \sim N$	SRE日 $\stackrel{m}{\sim}$ nNNNN	
	$\operatorname{ni} \theta Q \in \pi$ 	coine $\dot{\sim} \dot{\sim} \dot{\sim} \dot{\sim} \dot{\sim} \dot{m}$	inseco $\dot{-} \dot{\sim} \dot{N} \tilde{N} \dot{\sim}$	U cocec $\stackrel{\dot{\sim}}{\dot{\sim}} \underset{\sim}{\infty} \underset{\sim}{\infty} \dot{\sim}$	$\operatorname{ses} \theta$ $\dot{\sim} \dot{\sim} \underset{\sim}{\dot{\sim}} \dot{\sim}$		$\stackrel{\text { Nin }}{\substack{\text { ¢ }}}$
			$\sin 080$ ～ーヴゥ			$\dot{\sim}^{\prime} \dot{\sim} \dot{\sim} \dot{m}^{\prime}$	$\stackrel{\Phi}{\dot{\sim}} \underset{m}{\dot{n}}$
$\stackrel{\text { w }}{\underset{F}{E}}$			QiNe		Mingo		
		$\sim \sim \sim \sim \infty$ ～NNべ ARNOB「大춫	$\stackrel{N}{N}_{\sim}^{\infty} N_{\sim}^{\infty}{ }^{\infty}$ oses品NAN：		$\begin{aligned} & \text { N NM N N } \\ & 11 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$		
				禹号号		\sim H	mon にド

table 8．－water－quality data from reconnaissance sampling of irrigation－return flows and selected tributaries－montinued

	$\begin{array}{cc} 111 & 1 \\ & \underset{区}{\otimes} \end{array}$	1111 冬	罣	$\overbrace{2}^{\mid 11}$			发令通区	
						ペกへへべ	año	
	1118	11118	$\underset{\sim}{\sim} 111$	$1 \begin{aligned} & \text { c } \\ & \substack{1}\end{aligned} 1$	$\cdots{ }_{\text {m }}^{\sim}$		Ning	
	111^{*}	$1\|1\|^{\circ}$	$0 \\| 11^{\circ}$	10111	$\theta 10 \theta \theta$	$\theta 1 * \theta 1$	$\theta \theta \theta \theta$	
	｜｜｜	11118	$\underset{\sim}{\infty} 1111 \underbrace{\infty}_{\text {c }}$	18111	$\underset{\sim}{E} \mid \underset{N}{N} N \underset{N}{N}$		－	
	111芯1	1：11尔	$\frac{a}{m}\left\|\left\lvert\,: \frac{n}{m}\right.\right.$	18：	$\underset{\sim}{\Sigma}$	$\left.\frac{ \pm}{\sim} \right\rvert\, \sim_{\sim}^{\sim}$	NiN	
	1118	11118		18111				
	11181	11｜｜çs	$\frac{\stackrel{N}{N}}{1} 11 \underset{\sim}{\underset{\sim}{N}}$	18：11				
	111_{g}^{g}	1:11		$1_{o}^{1} 11$				
		$\infty \infty \sim_{0}^{\infty}$ N～NN 大NAN		NNNN NNNN Qosoce NANN				
					$\begin{gathered} \text { Nー } \\ \substack{1 \\ \\ \\ \hline 1 \\ \hline} \end{gathered}$	\sim \sim	のみに	

table 8．－WATER－QUALITY data from reconnaissance sampling of irrigation－return flows and selected tributaries－continued

	｜｜｜｜｜	1｜1｜1	$\underset{-}{m} 118 \stackrel{8}{0}$	11111	$11 \text { Nกํํ }$		¢ ¢ ¢ N	
	1！！	1＇1：	O：1：c	1！＇1		Q⿴囗⿻一亅八 $\because \infty ?$	$\otimes \infty+\infty$ ¢ Mn n	
	$11 \pm \frac{\sim}{\text { N }}$	11込巡	$\simeq 110^{\circ}$	$\underset{\sim}{N} \stackrel{N}{N} 111$	$\bar{\square} \mathfrak{O}_{\sim}^{\infty}$		ヘ ${ }_{\text {cincoin }}$	
	｜｜｜｜	｜｜｜｜	11111	11111	$11\|1\|$	$1 \underset{\sim}{\sim} 11 \underset{\sim}{\underset{\sim}{N}}$	1111	
	$11\left\|\frac{\otimes}{\mathbb{N}}\right\|$	$1\|1\| \begin{gathered} 8 \\ 寸 \end{gathered}$	$\stackrel{8}{\circ} 111 \frac{\mathbb{N}}{n}$	｜		$\underset{\sim}{\mathbb{O}} \mid \underset{\sim}{\mathbb{N}} \underset{\sim}{\underset{N}{N}}$		
	119 夺1	1：11罟	볐！1 ¢ 团			11181	북9ㅜㄱㅢ	
	｜｜｜\％｜	11118	Q 1115	$1 \stackrel{\text { N }}{\text {｜}} 11$	$\stackrel{\otimes}{v} \\| \mid 1 \underset{N}{N}$	$11\left\|\frac{1}{v}\right\|$		

SITE		
$\begin{gathered} \text { NO. ON } \\ \text { PLATE } \\ 1 \end{gathered}$		date
		OF
	SITE NAME	SAMPLE
$\begin{aligned} & \text { IR-17 } \\ & \text { IR-16 } \end{aligned}$	VISTA DEL RIO DR	77－08－03
	MARKHAM ARROYO DR	77－98－03
IR－15	east lamar drain	77－87－29
		77－88－83
IR－14	VISTA DEL RIO DR	77－97－29
$\begin{aligned} & \text { IR-13 } \\ & \text { IR-12 } \\ & \text { IR } 11 \\ & \text { IR } \end{aligned}$	N granada drain	77－07－28
	S granada drain	77－07－28
	WEST ALFALFA DRAIN	77－97－28
	granada dr at mTh	77－07－28
		77－88－63
IR－9	N ARK DR NR BARTON	76－09－69
		77－07－28
$\begin{aligned} & I R-8 \\ & \text { IR }-7 \end{aligned}$	N FORK W HOLLY DR	77－67－28
	S FORK W HOLLY DR	77－07－28
IR－6	W HOLLY DR AT MTH	76－09－99
IR－5		77－07－28
		77－07－®2
	E holly d at holly	77－07－28
$\begin{aligned} & \text { IR-4 } \\ & \text { IR } \end{aligned}$	E holly drain trib	77－07－27
	E HOLLY DR AT HW5a	77－0．7－27
IR－2IR－1T－1	E HOLLY DR AT MTH ROMER FIELD DRAIN SIXMILE CR AT HWY5の	77－67－27
		77－87－12
		76－04－23
		76－05－21
		76－06－17
T－ 2 Chicosia CR NR FOWLER		76－07－14
		76－078－19
		76－08－18
		76－08－10
		76－69－03
T－ 3 A	APISHAPA R NR FOWLER	76－69－88
	TIMPAS CR AT HWY5a	76－09－03
T－ 5	CROOKED AR AT HWY5®	76－09－03

table 8. - water-quality data from reconnaissance sampling of irrigation-return flows and selected tributaries-montinued

NO. ON plate	SITE NAME
$\begin{aligned} & \text { IR-17 } \\ & \text { IR-16 } \\ & \text { IR-15 } \end{aligned}$	VISTA DEL RIO DR MARKHAM ARROYO DR EAST LAMAR DRAIN
IR-14	Vista del rio dr
$\begin{aligned} & \text { IR-13 } \\ & \text { IR-12 } \\ & \text { IR-11 } \end{aligned}$	n granada drain S GRANADA DRAIN WEST ALFALFA DRAIN
IR-9	N ARK DR NR BARTON
IR-8	N FORK W HOLly DR
IR-7	S FORK W HOLLY DR
IR-6	W HOLLY DR AT MTH
IR-5	e holly d at holly
IR-4	e holly drain trib
IR-3	E holly dr at hwsa
$\begin{aligned} & \text { IR-2 } \\ & \text { IR-1 } \\ & \text { T- } \end{aligned}$	E HOLLY DR AT MTH ROMER FIELD DRAIN SIXMILE CR AT HWY5の
T- 2 C	CHICOSA CR NR FOWLER
T- 3 A	APISHAPA R NR FOWLER
T- 5 c	CROOKED AR AT HWY50

TARLE 9.--PESTICIDE DATA FROK SELECTED IRRIGATION-RFTURN FLOWS AND TRIRUTARIES (UG/L=MICROGRAMS PER LITER; VALUFS EXCFEDING WATER-QUALITY STANDARUS ARE UNDERLINFD).

table 10. - water-quality data at arkansas river sites, july 1977--CONTinued

table 11．－water－quality data at arkansas river sites，ig7a irtigation season

								EQESES －पñ
$\text { 폳 } \frac{\bar{g}}{\xi}$	a－NM「－		000 mmo 	osinna	manioncos			
	＋		－				－	Sisisiono
	NiNEOS	กñ agntini	ロニベか	MESESE 	NEEPE が大゚ーデ			SESESE Mincin ${ }^{\sim}$
宽宸 0	nocesin 	NODOQO 			Snsoso		nsesso	Nensod

$\stackrel{\underset{\sim}{\underset{\sim}{2}}}{ }$	Sosiging MORNAN	 	©8Eng in シヘニ®	 シペべニジ	にssinse 	©sinnne ペ゙ざッロッ	nnsesis シーロロざさ	
				¢n®				
容め言								TiNNA
風				－		（ex	（ex	（ex

[^6]M－4 ARK RIV AB PUEBLO
M－34 ARK RIV NR AVONDALE
M－36 ARK RIV NR NEPESTA
M－21 ark riv at la junta
m－17 ark r at las animas
M－14 ARK R RL JOHN MARTIN
m－ 8 ark river at lamar

TABLE 12．－Water－ouality data at four irrigation－RETURN Flow Sites， 1979 I RRIGATION SEASON
CFS＝CUBIC FOOT PER SECOND：DEG C＝DEGREES CELSIUS；UMHOS＝MICROMHOS PER CENTIMETER AT 25 DEGREES CELSIUS；MG／L＝WI LIGRAMS
PER LITER；COLS．$/ 1$ G ML＝COLONIES PER 1Gの MILLILITERS：VALUES PRECEEDED BY K IND ICATE THE COLONY COUNT WAS BASED ON A NON－ NITRO
NITRO－
GEV，
NO2＋NO3
TOTAL
$(M G / L$
AS N ）

 NITRO－
GEN，AM－
$+0$
（MG／L
AS ）

OXYGEN，
DIS－
SOLVED
$(M G / L)$

$\underset{\sim}{\sim}$
$\underset{\sim}{2}$
ペッツ゚ロ゚
 SPE－
CIFIC
CON－
DUCT－
ANCE
（UMHOS）
$\stackrel{\stackrel{\sim}{\sim}}{\sim}$

TEMPER－

0	
0	

 STREAM－
FLOW，
INSTAN－
TANEOUS

SITE		
NO．ON	DATE	
PLATE	OF	
1 SITE NAME	SAMPLE	TIME
ROCKY FORD DRAIN	78－83－16	1615
	78－04－2．0	1290
	78－85－17	1230
	78－96－22	1330
	78－97－28	1130
	78－08－25	1400
	78－99－20	193a
EAST LAMAR DRAIN	78－03－16	1309
	78－84－20	9998
	78－85－17	9930
	78－07－28	0915
	78－98－25	11 an
	78－89－20	日800
GRANADA DR AT MTH	78－84－2a	の8an
	78－85－17	¢830
	78－90－22	9930
	78－87－28	ø830
	78－88－25	1930
	78－09－19	17aの
T－ 1 SIXMILE CR AT HWY5＾	78－93－17	1290
	78－84－20	1400
	78－05－17	1400
	78－06－22	1536
	78－87－28	1330
	78－98－25	1600
	78－09－2．0	1330

TARLE 12．－WATER－QUALITY dATA AT FOUR IRRIGATION－RETURN FLOW SITES， 1978 IRRIGATION SEASON－CONTINUED

	QQQQQ日 		Q OQ日B $\stackrel{N_{N}}{Q_{0}} \stackrel{E}{\sim}$ NO $\underset{\sim}{\sim} \sim$	
	${\underset{N}{\infty}}_{\infty}^{\infty} \underset{\sim}{\sim} \sim^{\sim} \dot{\sim}$			∞
			$\underset{\sim}{\infty} \underset{O}{Q}$	
	$\bar{\sigma}_{\dot{E}} \mathbb{E} \mathbb{E} \mathbb{M} \mathbb{E}$	$\bar{Q} \underset{\sim}{n} \bar{\infty} \overline{0}-\overline{0}$	$\stackrel{\otimes}{\therefore} \underset{\hdashline}{\square}=\underset{8}{\infty}$	
		－ONNNNNEN coscos 	ヘN～N゚Nñ 1111 OnƠOOQO $\stackrel{\infty}{\sim} \times \infty \times \infty$	

SITE
NO ON OLE
IR－3I ROCKY FORD DRAIN
IR－15 EAST LAMAR DRAIN
IR－ 10 GRANADA DR AT MTH
T－I SIXMILE CR AT HWY5

DAIL.Y PRECIPITATION

 E
\dot{m}
 SEEEO $\underset{G Q}{E} \in \mathbb{E}$ QEQEQ EQN $\stackrel{a}{\stackrel{\sim}{i}}$
DAILY PRECIPITATION

O	がかへinin	©aran	$\bar{\infty} \sim 0 q 9$	$\sim 0 \sim \infty$ 		$\alpha \infty$ minin in in
$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{\omega} \end{aligned}$	NKNK	$\stackrel{\infty}{\sim} \underset{\sim}{\sim} \cos _{0}^{\infty}$	NoN No	NNiñin		
	ォoacmo	$\underset{0}{\infty} \underset{\sim}{\wedge}$	으수ำ	$\underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{N}$	$\bar{\infty} \underset{N}{N} \underset{\infty}{\infty}$	ペN゚サロ mintor
$\begin{aligned} & \text { خ } \\ & \vdots \\ & > \end{aligned}$	$\underset{\sim}{\wedge}{\underset{\sim}{n}}_{\infty}^{\infty}$		moNへー	m～onn $\infty \infty \infty \infty \infty$	$\underset{\sim}{Q Q} \underset{\sim}{\sim}$	$\bar{\infty} \times \bar{\infty} \infty$
$\stackrel{\underset{\sim}{\mathrm{Z}}}{\stackrel{2}{2}}$	of	$\underset{\sim}{\sim}$	$\underset{\sim}{\sim} \propto \underset{\sim}{\sim} \underset{\sim}{\infty}$	$\underset{\infty}{\infty} \underset{\sim}{\sim} \mathbb{N}$		$\underset{\infty}{\infty} \underset{\sim}{\infty} \underset{\sim}{\sim} \times 1$
$\begin{aligned} & \lambda \\ & \underset{N}{2} \end{aligned}$	$\hat{i} \underset{\sim}{\sim} \underset{\sim}{\infty}$		Mávíñ			NポNホN
$\frac{\text { 들 }}{4}$	$\begin{aligned} & \sim N \nsim \infty \\ & \infty \\ & \infty \end{aligned}$			$\underset{\forall}{\infty} \uparrow \underset{\forall}{\forall} \underset{\forall}{\circ}$	にレーが 	

[^7]둘

TABLE 15. --DAILY STREAMFLOW IN THE INTENSIVE STUDY AREA NEAR HOLLY. 1978 IRRIGATION SEASON

WEST HOLLY'DRAIN AT MOUTH MEAN DAILY DISCHARGE
(CUBIC FEFT PER SECOND)

DAY	MAR	APR	MAY	JUNE	JULY	AUG	SEP T	OCT
1	---	1.0	4.6	1.7	13	18	6.3	1.7
2	---	0.74	4.0	1.6	12	17	5.0	2.3
3	---	. 42	4.0	3.5	10	27	5.4	1.4
4	---	. 42	3.8	140	12	25	4.0	1.4
5	---	. 36	15	67	14	22	2.9	1.5
6	---	1.5	28	41	12	20	4.6	1.4
7	---	1.9	5.8	24	14	22	3.8	1.6
8	---	1.7	4.1	17	17	19	6.8	1.3
9	---	1.1	3.3	11	11	17	9.0	0.94
10	---	1.9	2.8	9.3	10	16	10	1.6
11	---	4.1	3.0	7.8	9.3	16	8.2	1.7
12	---	3.8	3.7	7.9	13	14	7.3	1.2
13	---	3.8	3.6	5.4	14	15	5.2	1.7
14	---	4.0	3.5	3.8	15	15	6.3	1.5
15	---	2.8	3.2	5.8	14	20	4.5	1.6
16	1.8	6.9	2.9	5.4	11	16	5.1	1.5
17	0.90	5.1	3.5	6.2	12	15	4.1	1.4
18	. 36	4.2	4.9	6.5	16	14	3.9	. 51
19	. 26	4.7	5.1	7.0	18	13	4.7	. 57
20	. 60	4.4	3.9	8.3	16	11	5.8	. 44
21	. 36	4.0	5.7	12	17	10	5.6	. 40
22	. 36	4.3	6.7	15	18	9.8	5.8	1.1
23	. 73	4.2	5.8	13	16	11	2.6	1.3
24	1.2	2.4	7.6	13	17	10	1.1	1.2
25	. 90	2.5	6.2	15	16	8.9	. 95	1.2
26	. 67	2.1	4.4	12	14	7.2	2.5	1.4
27	. 14	2.6	13	15	15	4.6	2.9	1.4
28	.17	3.7	12	17	14	4.3	1.8	1.1
29	.17	3.5	2.4	18	11	4.1	1.2	. 76
30	.21	8.6	2.1	15	14	4.1	1.4	. 51
31	.26	-	1.9	---	15	6.3	-	. 53
MEAN	. 56	3.06	5.77	17.5	13.9	13.9	4.60	1.23

TABLE 15. --DAILY STREAMFLOW IN THE INTENSIVE STUDY AREA NEAR HOLLY. 1978 IRRIGATI ON SEASON-CONTINUED

BUEEALO CANAL NEAR_AMITY
MEAN DAILY DISCHARGE (CUBIC FEET PER SECOND)

DAY	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	OCT
1	---	3.7	19	18	55	69	47	1.3
2	---	2.4	20	23	55	58	31	1.2
3	---	4.8	13	39	53	94	22	1.2
4	---	5.1	11	90	43	83	21	1.1
5	---	5.7	34	86	43	62	20	1.3
6	---	5.8	64	74	48	72	13	1.2
7	---	7.8	18	29	52	65	15	2.0
8	---	7.6	18	25	47	61	15	1.1
9	---	8.0	31	21	55	46	14	2.6
10	---	7.9	19	19	43	37	19	2.1
11	---	30	31	13	50	47	15	0.87
12	---	32	29	25	44	51	15	. 96
13	---	48	18	27	46	46	16	.96
14	---	46	11	30	36	49	11	. 78
15	---	57	6.7	19	35	47	9.0	. 96
16	10	45	13	23	39	34	6.5	. 96
17	9.5	34	33	26	41	28	6.2	. 96
18	10	27	40	24	51	26	5.7	. 82
19	12	23	28	24	51	28	4.8	. 77
20	9.6	20	25	25	47	29	5.2	. 59
21	8.8	16	24	54	45	26	5.5	. 62
22	8.3	14	30	71	42	25	6.2	. 64
23	8.1	14	55	65	45	27	4.8	. 57
24	8.8	12	45	69	52	24	4.9	. 62
25	8.4	11	35	62	51	18	5.7	. 58
26	8.2	9.7	42	53	45	18	4.2	. 73
27	7.4	9.3	57	70	48	13	4.3	. 73
28	7.0	8.2	38	73	52	13	2.4	1.5
29	7.0	7.5	27	57	48	16	1.7	1.2
30	7.3	15	23	60	44	36	1.2	. 68
31	6.5	---	19	-	46	52	---	. 78
MEAN	8.6	17.9	28.3	43.2	46.9	41.9	11.7	1.84

TARLE 15. --DAILY STREAMFLOW IN THE INTENSIVE STUDY AREA VEAR HOLLY. 1978 IRRIGATION SEASON-CONTI NUED

BUEEALO CANAL NEAR HOLLY

MEAN DAILY DISCHARGE (CUBIC FEET PER SECOND)								
DAY	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	OCT
1	---	2.0	0.34	9.7	17	12	20	0.07
2	---	0.72	4.5	12	18	8.8	17	.13
3	---	1.3	2.4	19	16	38	18	1.8
4	---	1.1	4.1	60	19	35	13	1.9
5	---	1.0	17	40	21	27	6.3	1.8
6	---	2.1	30	18	20	29	7.4	2.1
7	---	4.8	9.7	15	19	33	11	1.4
8	---	3.3	9.7	11	25	32	12	1.1
9	---	3.9	15	6.5	34	16	7.8	2.9
19	---	2.3	10	5.7	30	7.9	7.8	2.7
11	---	12	15	3.2	33	16	3.4	2.4
12	---	12	15	13	28	21	0.33	. 27
13	---	13	9.7	15	26	15	.10	. 27
14	---	13	6.5	13	11	15	1.3	.17
15	---	21	4.6	5.3	15	23	2.4	. 77
16	0.03	13	5.2	9.9	19	18	2.2	2.1
17	.17	8.0	17	16	6.2	3.5	1.8	2.4
18	. 00	2.5	19	14	5.5	4.7	1.5	. 23
19	. $0 \square$	4.3	11	12	5.3	5.5	1.5	. 11
20	- 0	5.6	12	11	1.0	8.9	1.5	.91
21	. 00	6.9	13	19	2.0	7.9	1.6	1.5
22	.00	2.9	15	31	0.27	6.1	2.4	1.0
23	. 00	. 43	26	18	. 94	12	4.0	1.4
24	. 0	. 93	22	17	1.5	18	1.6	2.7
25	. ø்ø	. 97	16	9.8	2.1	13	4.3	4.7
26	- 00	. 53	19	13	2.7	23	3.5	. 36
27	. 00	. 88	27	22	8. 4	13	3.6	. 17
28	- 00	.04	19	18	26	17	4.3	1.3
29	- 00	. 62	13	12	23	8.6	1.9	2.
30	. 25	. 79	12	21	13	15	.10	2.3
31	. 93	--	10	---	11	23	--	.02
MEAN	. 03	4.68	12.9	16.3	14.5	17.0	5.45	1.39

TABLE 15. --DAILY STREAMFLOW IN THE INTENSIVE STUDY AREA NEAR HOLLY, 1978 IRRIGATION SEASON-CONTINUED

CALCUIAIED"IRIBUTABY INELON

MEAN DAILY DISCHARGE (CUBIC FEET PER SECOND)

DAY	MAR	APR	MAY	JUNE	JULY	AUG	SEP T	OCT
1	---	0.98	0.98	0.98	9.9	0.99	1.8	2.6
2	---	. 98	. 98	. 98	8.1	. 93	2.1	2.6
3	---	. 98	. 98	. 98	9.1	. 93	2.1	2.6
4	---	. 98	. 98	400	9.9	. 93	2.1	2.6
5	---	2.8	. 98	100	14	. 98	2.6	3.9
6	--	4.3	. 98	40	14	. 93	2.6	3.2
7	---	4.7	. 98	20	2.1	. 98	2.6	3.3
8	---	4.7	. 98	10	14	. 99	2.6	3.7
9	---	4.7	. 98	5.4	9.9	. 99	2.6	3.7
10	--	4.9	. 98	. 98	12	. 98	2.6	4.7
11	---	4.7	. 98	. 98	9.9	. 99	2.6	4.8
12	-	. 98	. 98	. 98	14	. 93	2.6	4.4
13	---	. 98	. 98	. 98	7.6	. 98	3.0	4.4
14	---	. 98	. 98	. 98	6.0	. 93	3.0	4.9
15	-	. 98	. 98	3.1	4.4	. 98	3.0	5.2
16	0.98	. 98	. 98	3.1	3.3	. 93	3.0	5.2
17	. 98	. 98	. 98	6.4	2.1	. 98	3.0	5.7
18	. 98	. 98	. 98	4.8	2.1	. 93	3.0	5.3
19	. 98	. 98	. 98	8.1	1.8	. 99	3.0	5.3
20	. 98	2.1	. 98	6.4	1.8	. 93	3.0	4.9
21	. 99	9.9	. 98	8.2	1.8	. 99	3.9	4.4
22	. 98	6.4	. 98	9.9	1.3	. 93	3.0	4.8
23	. 98	. 98	. 98	14	1.3	. 99	3.a	3.7
24	. 98	. 98	. 98	2.8	7.98	. 99	3.0	3.3
25	. 98	4.8	. 98	12.	. 98	. 99	3.0	3.9
26	. 98	9.9	. 98	1.1	. 98	1.3	3.0	3.8
27	. 98	4.8	. 98	1.1	. 98	1.3	2.6	2.6
28	. 98	4.8	. 98	1.3	. 98	1.3	2.6	2.1
29	. 98	3.3	. 98	1.3	. 98	1.8	2.6	1.8
30	. 98	3.3	. 98	. 98	. 98	1.8	2.6	1.3
31	. 98	---	. 98	---	. 98	1.8	---	0.98
MEAN	. 98	3.1	. 98	22	5.4	1.1	2.7	3.6

TABLE 16. --WATER LEVELS IN AND NEAR THE INTENSIVE STUDY AREA NEAR HOLLY, 1978 AND 1979

LOCAL WELL NUMBER	ELEVATION OF MEASURING POINT (FEET ABOVE SEA LEVEL)	DATE	ELEVATION OF WATER LEVEL (FEET ABOVE SEA LEVEL)
SCø22ø4336DDD	3482.01	78-03-19	3404.29
		78-04-19	3400.66
		78-55-16	3492.07
		78-06-21	3393.74
		78-97-26	3393.00
		78-Ø8-24	3386.20
		78-09-19	3385.89
		78-10-17	3384.28
		78-11-13	3377.41
		79-п3-ø9	3406.75
SC023042048CB	3506.82	78-03-10	3497.22
		78-05-16	3404.01
		78-06-21	3404.38
		78-Ø7-26	3403. 72
		78-99-19	3395.89
		78-10-17	3392.62
		78-11-13	3389.99
		79-73-09	3401. 72
SC02304204DCA	3467.78	78-03-10	3398.07
		78-95-16	3393.02
		$78-06-21$	3396.89
		78-07-26	3397.56
		78-98-24	3396.69
		78-11-13	3392.40
		79-03-の9	3396.68
SCø2304205A BB	3499.98	78-03-10	3407. 36
		78-06-2.1	3404.13
		78-08-24	3403.79
		78-10-17	3494.01
		78-11-13	3399.23
		79-03-の9	3406.28
SCØ23Ø4206ABB	3540.29	78-73-10	3407.41
		78-96-21	3494.95
		78-07-26	3404.24
		78- $59-19$	3491.70
		78-10-17	3392.37
		78-11-13	3389.72
		79-03-09	3399.34

TABLE 16. - WATER LEVELS IN AND NEAR THE INTENSIVE STUDY AREA NEAR HOLLY, 1978 AND 1979--CONTINUED

LOCAL WELL NUMBER	ELEVATION OF MEASURING POINT (FEET AROVE SEA LEVEL)	DATE	ELEVATION OF WATER LEVEL (FEET ABOVF SEA LEVEL)
SC02304206CCC	3432.84	78-03-10	3411.83
		7.8-034-19	3412.45
		78-05-16	3413.46
		78-96-21	3413.86
		78-07-26	3414.66
		78-x8-24	3414.30
		78-09-19	3413.54
		78-10-17	3412.88
		78-11-13	3412.52
		79-03-09	3411.42
SC02304207ACD	3415.71	78-03-10	3405.22
		78-75-16	3406.47
		78-06-21	3406.67
		78-78-24	3406.97
		78-09-19	3405.09
		78-10-17	3405.91
		78-11-13	3405.58
		79-03-99	3494.76
SCø2304207CBB	3419.17	78-03-10	3410.02
		78-05-16	3410.95
		78-06-21	3411.46
		78-79-19	3408.94
		78-10-17	3410.43
		78-11-13	3410.19
		79-03-09	3409.47
SC02304208RBR	3428.91	78-03-19	3404.28
		78-04-19	3404.09
		78-75-16	3494.04
		78-06-21	3404.11
		78-x7-26	3404.09
		78-08-24	3481.96
		78-090-19	3492.78
		78-10-17	3399.86
		78-11-13	3399.63
		79-03-09	3403.65

TABLE 16. - WATER LEVELS IN AND NEAR THE INTENSIVE STUDY AREA NEAR HOLLY, 1978 AND 1979-CONTINUED

LOCAL WELL NUM BER	ELEVATION OF MEASURING POINT (FEFT ABOVE SEA LEVEL)	DATE	ELEVATION OF WATER LEVEL (FEET ABOVE SEA LEVEL)
SCØ23042.08CAA	3413.19	78-0.3-10	3399.77
		78-0.4-19	3399.76
		78-05-16	3400.65
		78-Ø6-21	3400.73
		78-07-26	3491. 29
		78-09-19	3400.57
		78-10-17	3400.35
		78-11-13	3401.07
		79-03-09	3399.35
SCø23042ø8CBB	3412.36	78-03-10	3402.53
		78-04-19	3403.04
		78-05-16	3403.68
		78-96-21	3403.91
		78-07-26	3403.87
		78-98-24	3404.15
		78-09-19	3404.21.
		78-10-17	3403.22°
		78-11-13	3403.09
		79-03-09	3492.15
SC02304209BBB	3426.23	78-93-10	3398.74
		78-05-16	3396.59
		78-66-21	3398.28
		78-97-26	3398.92
		78-10-17	3390. 88
		78-11-13	3395.44
		79-83-09	3398.16
SCa2304209DAA	3414.47	78-03-19	3395.75
		78-04-19	3394.77
		78-95-16	3394.50
		78-06-21	3396.02
		78-07-26	3395.86
		78-の8-24	3395.77
		78-69-19	3393.18
		78-10-17	3393.58
		78-11-13	3393.43
		79-83-89	3395.16

TABLE 16. --WATER LEVELS IN AND NEAR THE INTENSIVE STUDY AREA NEAR HOLLY, 1978 AND 1979--CONTINUED
$\left.\begin{array}{cccc} & \begin{array}{c}\text { ELEVATION OF } \\ \text { MEASURING }\end{array} & & \\ \text { POCAL } & \text { ELEVATION OF } \\ \text { WELL } \\ \text { (FEET ABOVE }\end{array}\right)$

TABLE 16. - WATER LEVELS IN AND NEAR THE INTENSIVE STUDY AREA NEAR HOLLY, 1978 AND 1979-CONTINUED

TABLE 16．－－WATER LEVELS IN AND NEAR THE INTENSIVE STUDY AREA NEAR HOLLY， 1978 AND 1979－－CONTINUED

LOCAL WELL NUMBER	ELEVATION OF MEASURING POINT （FEET ABOVE SEA LEVEL）	DATE	ELEVATION OF WATER LEVEL （FEET ABOVE SEA LEVEL）
SCø2304311BBB	3437.60	78－03－19	3425.91
		78－84－19	3422.94
		78－05－16	3423.55
		78－06－21	3425.02
		78－97－26	3427.88
		78－Ø8－24	3426.40
		78－09－19	3423.58
		78－10－17	3421.81
		78－11－13	3421.90
		79－03－ø9	3425.82
SC023943118CB	3434.69	78－の3－1の	3425.52
		78－85－16	3424.32
		78－の7－26	3427.79
		78－10－17	3423.03
		78－11－13	3422.41
		79－Ø3－ø9	3425.22
SC02304311DCB	3430.92	78－03－10	3420．04
		78－04－19	3420.02
		78－65－16	3420．09
		78－76－21	3421.15
		78－08－24	3421.39
		78－09－19	3420.22
		78－10－17	3419.40
		78－11－13	3419.25
		79－03－09	3419.71
SCø23®4312CCB	3428.24	78－03－10	3417.31
		78－05－16	3417.64
		78－06－21	3419.09
		78－ヘ7－26	3418.66
		78－09－19	3417.41
		78－10－17	3416.87
		78－11－13	3416.67
		79－03－09	3416.53
SCø2304312DBC	3424.56	78－03－10	3413.13
		78－64－19	3413.76
		78－85－16	3413.49
		78－06－21	3413.17
		78－08－24	3415.14
		78－10－17	3413.23
		78－11－13	3413.17
		79－03－09	3412.67

TABLE 16. --WATER LEVELS IN AND NEAR THE INTENSIVE STUDY AREA NEAR HOLLY. 1978 AND 1979-CONTINUED

LOCAL WELL NUMRER	ELEVATION OF MEASURING POINT (FEET ABOVE SEA LEVEL)	DATE	ELEVATION OF WATER LEVEL (FEET ABOVE SEA LEVEL)
SC023Ø4313AAB	3418.24	78-03-10	3409.46
		78-04-19	3410.31
		78-95-16	3409.80
		78-06-21	3411.21
		78-97-26	3411.34
		78-08-24	3410.48
		7.8-09-19	3409.71
		78-10-17	3409.48
		78-11-13	3499.38
		79-93-99	3408.99
SC023043138BB	3424.52	78-93-10	3416.07
		78-04-19	3416.48
		78-05-16	3416.34
		78-06-21	3417.56
		78-97-26	3418.12
		78-Ø8-24	3417.39
		7.8-09-19	3416.41
		78-10-17	3416.02
		78-11-13	3416. ตด
		79-03-09	3415.75
SC02304313CAA	3419.79	78-93-19	3409.24
		78-04-19	3408.88
		78-05-16	3408.62
		78-06-21	3411.38
		78-10-17	3499.83
		78-11-13	3409.36
		79-か3-09	3409.19
SCø2304314BAD	3430.10	78-03-10	3419.36
		78-03-19	3419.10
		78-05-16	3419.33
		78-06-21	3420.60
		78-10-17	3418.68
		78-11-13	3418.57
		79-03-09	. 3419.17

TABLE 16. - WATER LEVELS IN AND NEAR THE INTENSIVE STUDY AREA NEAR HOLLY, 1978 AND 1979-CONTINUED

TABLE 17. - CALCULATED GROUND-WATER PUMPAGE IN THE INTENSIVE STUDY AREA NEAR HOLLY, 1978 IRRIGATION SEASON

CALCULATED DAİLY GROUND WATER PUMPAGE

DAY	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	OCT
1	--	33	23	1.5	26	32	1.0	16
2	---	33	15	0.0	万.0	32	2.3	39
3	---	48	9.3	. 0	0.0	27	16	28
4	---	59	6.8	. 0	. 8	27	19	28
5	---	60	$\emptyset .7$. 0	- \square	27	22	28
6	---	55	. 7	. 0	. 0	31	44	28
7	---	54	. 0	. 0	. \varnothing	32	44	28
8	---	54	. 7	. 0	. 0	32	44	28
9	---	37	1.6	. \varnothing	. 0	32	54	28
19	---	30	. 0	. 0	. 0	29	57	26
11	-	21	. 8	. 0	2.0	28	57	14
12	-	16	. 0	. 0	9.3	25	60	14
13	---	16	. 0	- 0	9.3	34	60	14
14	---	31	. 0	9.1	19	21	57	14
15	--	51	.8	15	9.3	19	59	14
16	9.0	55	. 0	15	11	42	58	12
17	. 0	60	. 8	27	15	38	58	12
18	. 0	60	. 0	29	23	37	53	26
19	- 0	61	. 0	29	23	39	54	26
20	. 0	55	. 0	29	23	53	53	27
21	.0	54	- 0	7.0	26	58	39	41
22	5.9	54	. 0	. 0	25	58	49	41
23	5.9	54	. \varnothing	. 0	25	51	44	41
24	- 0	61	. 0	. 0	33	51	45	43
25	7.7	66	. 0	. 0	34	59	46	41
26	18	51	. 0	. 9	57	53	48	41
27	18	48	. 0	4.5	52	35	47	27
28	18	48	. 8	24	47	33	42	26
29	28	39	15	32	59	19	34	26
39	33	25	29	37	79	6.7	25	29
31	33	---	29	---	50	5.0	---	14
MEAN	10.1	46.3	4.2	8.6	27.6	35.9	42.7	25.9

TABLE 18．－DAILY MEAN SPECIFIC CONDUCTANCE IN THE INTENSIVE STUDY AREA NEAR HOLLY． 1978 I RRIGATION SEASON

WEST HOLLY DRAIN＿AT MOUTH
MEAN DAILY SPECIFIC CONDUCTANCE
（MICROMHOS PER CENTIMETER AT 25 DEGREES CELSIUS）

DAY	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	OCT
1	－－－	4730	3960	5890	3720	4860	3540	6150
2	－－－	5130	4819	5400	3800	4100	3560	6210
3	－－－	4718	4790	2700	3900	359a	3970	6330
4	－－－	4650	467x	600	4100	3050	4160	6320
5	－－－	4650	346	1490	4210	290の	4529	6120
6	－－－	6000	2228	1800	4330	3278	4870	6050
7	－－－	5770	3180	2590	4320	336	542\％	5970
8	－－－	5830	5498	2780	3640	3370	5560	6000
9	－－－	5800	5867	3450	3900	3729	5480	6180
10	－－－	6050	6890	4900	4130	3880	5437	6030
11	－－－	6180	6349	5090	4470	4160	549¢	6110
12	－－－	5870	6397	5110	3660	4560	5530	6110
13	－－－	420n	5819	5260	3940	475\％	5568	6130
14	－－－	4400	5829	5328	4350	4860	5650	6220
15	－－－	4480	6017	4 900	4590	4680	5630	6230
16	4770	4470	6158	2980	5200	4820	5420	6230
17	4690	4680	5690	3090	4480	4970	5310	6300
18	4600	4950	4978	3040	4 吅	4790	5240	6500
19	459の	5090	5317	3090	4330	4710	595\％	6290
20	4540	5030	5347	3030	4140	4680	4890	6490
21	4580	496の	5790	2988	4397	464の	4870	6570
22	4680	4850	5630	2270	4530	4610	4930	6370
23	477の	4740	5489	23an	4720	4520	5149	6390
24	4770	484才	5180	2300	4470	4420	5370	6640
25	4730	4890	5030	2200	4450	5370	5619	6750
26	4660	4910	531の	2650	4670	5340	5820	6790
27	4650	4830	526 ${ }^{\text {a }}$	2350	4500	5320	5917	6480
28	4730	4370	3760	2380	4638	5130	6087	6010
29	4580	4230	5190	2570	4930	4850	6220	6120
30	465の	$3 \square 80$	500%	3100	4970	4650	6120	6240
31	4730	－	56ad	－－－	5940	384π	－－	6250
MEAN	4670	4950	514%	3210	4320	4380	5218	6280

TABLE 18．－－DAILY MEAN SPECIFIC CONDUCTANCF IN THE INTENSIVE STUDY AREA NEAR HOLLY． 1978 IRRIGATION SEASON－CONTINUEJ

BUEFALO CANAL＿NEAR AMITY

MEAN DAILY SPECIFIC CONDUCTANCE
（MICROMHOS PER CENTIMEIER AT 25 DEGREES CELSIUS）

DAY	MAR	APR	MAY	JUNE	JULY	AUG	SEP T	OCT
1	－－－	4590	3929	4580	1760	1830	1530	5330
2	－－－	4520	4350	4710	1900	1370	2478	5500
3	－－－	4680	4490	3390	2160	1490	3180	5650
4	－－－	4690	2660	1810	2510	1350	3150	5800
5	－－－	4630	1710	1100	2360	1440	356\％	5540
6	－－－	5450	2339	1380	2150	1710	3750	5550
7	－－－	5129	2918	1760	2990	1850	4109	5770
8	－－－	5150	369\％	1850	2120	2260	4060	5720
9	－－－	5360	3730	2490	1750	2700	4170	5790
1）	－－－	5160	4560	3800	2340	3170	4230	5650
11	－－－	4270	4730	3900	1930	3340	4329	5580
12	－－－	4360	4760	4090	1490	3560	4390	5530
13	－－－	3790	437π	4160	2160	3618	453a	5460
14	－－－	4280	4380	4200	2320	3700	4650	5400
15	－－－	4329	4510	225a	2720	3630	4640	5390
16	4620	4320	4500	1950	3170	3910	4610	5350
17	4540	4410	4480	2950	2210	4020	4689	5340
18	4630	4540	3460	2010	2720	4300	4710	$540 \varnothing$
19	4620	4600	3930	2050	2590	4300	4929	5380
20	4570	4740	4410	2000	2729	4420	4830	5370
21	4610	4679	4439	1950	3才30	4530	4880	5360
22	4700	4620	4720	1880	3×70	4620	4889	5290
23	480の	4620	4867	1890	3710	4660	4860	53a0
24	4820	4750	3790	1710	2790	4430	4840	5300
25	480の	484	3850	1690	2730	4329	4670	53 90
26	4770	4890	3818	1680	2620	4370	4650	5300
27	4730	4730	3349	1270	2540	4300	4880	5400
28	4690	3740	4110	1290	2640	4370	5050	5360
29	4620	3430	4219	1450	3250	4250	5219	5490
30	4580	3460	4478	1680	3360	3720	5230	5400
31	4510	－－	4530	－	3780	1918	－－－	5400
MEAN	4660	4550	$400 \square$	2360	2490	3338	4320	5460

tarle 19.--Water-ouality analyses in the intensive study arca near holly, 1978 irrigation season

WEST HOLLY DRAIN AT MOUTH
buffalo canal near amity

Scø2304207
SC02384207CBR
SC623942の88BR
SCø23042
SCa2304209RBB
SC02394299DAA
SC823042168B8
SC02394303DDA
C
SC02304311DCB
SCa23a4312
C02304312DBC

$$
\begin{aligned}
& \text { SITE NAME } \\
& \text { WEST HOLLY DRAIN AT MOUTH } \\
& \text { BUFFALO CANAL NEAR AMITY }
\end{aligned}
$$

SCの23ब4311BCC
SCब23ब4311DCB
SCब2364312CCB
SCब23日4312DRC
table 19. --Water-quality analyses in the intensive study area near holly, 1978 irrigation season--Continjed

[^0]: ${ }^{1}$ Standards are listed only for those water-quality constituents for which data are included in this report. ${ }^{2}$ For the reach from the confluence with Fountain Creek to the State line.
 ${ }^{4}$ Defined as secondary contact (that is, boating, kayaking).
 ${ }^{4}$ Defined as secondary contact (that is, boating,
 ${ }^{5}$ Dashes indicate no standard for that parameter.
 ${ }^{6}$ Minimum value.

[^1]: ${ }^{1}$ Question mark indicates source is uncertain.
 ${ }^{2}$ Receives effluent from Rocky Ford sewage lagoons.

[^2]: ${ }^{1}$ Determined from Holly West quadrangle, centered aerial photography (U.S. Geological Survey, 1976) and onsite mapping.
 ${ }^{2}$ Phreatophytes includes salt cedar, cottonwood, willow and some herbaceous plants.
 ${ }^{3}$ Includes roads, structures, and unvegetated rights-of-way.

[^3]: ${ }^{1}$ Apparent discrepancies are the result of rounding.
 ${ }^{2}$ Average amounc in storage for irrigation season; storage decreased from 42,000 acre-feet at the beginning of the irrigation season to 41,200 acre-feet at the end, after reaching a peak of 43,600 acre-feet in August.

[^4]: ${ }^{1}$ Use of the firm name in this report is for identification purposes only and does not constitute endorsement by the U.S. Geological Survey.

[^5]: All specific-conductance data converted to dissolved solids using regression relations shown in text.
 ${ }^{2}$ Specific conductance calculated by applying regression equation to dissolved-solids concentration determined from salt load and flow (table 6).
 'Average amount of salt stored in ground water during irrigation season.
 ${ }^{4}$ Specific conductance calculated seasonally rather than'from daily data

[^6]: SITE
 NO．ON
 PLATE

[^7]: MEAN DA ILY TEMPERATURE

