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Abstract

Offshore wind energy production is rapidly growing as an essential element

in the sustainable energy share. Wind energy siting studies require accurate

wind data, and in particular the knowledge of extreme wind events (low-level

jets, wind ramps, extreme shear and high wind speeds) is crucial for resource

and load assessment. This study evaluates the skill of three relatively new wind

atlases, i.e. ERA-5, DOWA and NEWA on the representation of extreme wind

events using observations taken at the Met Mast IJmuiden over the North Sea.

Overall, DOWA appears to best represent the wind speed profile with virtually

no bias. ERA-5 underestimates the mean wind speed profile though the wind

shear is well represented, while NEWA correctly represents the near surface

wind but underestimates the wind shear. The frequency of low-level jets are also

best represented by DOWA.Wind speed ramps and direction ramps are best rep-

resented by ERA-5, while DOWA appears to outperform the others concerning

wind shear.
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1 INTRODUCTION

Ongoing climate change and the demand for more sus-

tainable energy production have raised the interest in

wind energy resources. For instance, the Netherlands

generated 17.0 PJ of electrical energy via wind energy

in 2011 (onshore and offshore) and the generation has

increased to 35.7 PJ in 2018. Offshore wind energy was

responsible for ∼10 PJ of the increased energy production.

Hence, it is clear that insight into the wind characteristics

over potential wind park sites is crucial; not only mean

wind characteristics, but also the special dynamics of

the wind, are crucial for resource and load assessment

studies, i.e., low-level jets, wind ramps, extreme wind

shear, etc. (Smedman et al., 1996). However, offshore wind

observations are usually relatively scarce, especially at

hub heights. Hitherto wind atlases have been important

sources of wind information (e.g., Olauson, 2018), either

as a direct source or to drive small-scale models for wind

energy purposes (e.g., Witha et al., 2019a). Wind atlases

build upon the data assimilation technique, that is, deter-

mining the most probable atmospheric state that is con-
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sistent with both theory and observations, by merging

numerical weather prediction (NWP) model fields and

observations.

Compared to mere observations, wind atlases offer a

better spatial coverage and usually a longer time frame.

Therefore, wind atlases have become crucial for wind

energy applications (Olauson, 2018). However, NWPmod-

els are used to “fill in the gaps”, and since these mod-

els are fundamentally limited in their representation of

physical processes, wind atlases are subject to uncertainty

as well. In fact, as argued by Parker (2016), the lack of

uncertainty information may be their largest weakness.

Cross-validation with observations that were not assimi-

lated into a wind atlas may provide an intuitive means to

appreciate its value for practical purposes.

This paper evaluates three relatively new wind atlases,

that is,

(a) ERA-5 (C3S, 2017), a global reanalysis dataset pro-

duced by the European Centre for Medium-range

Weather Forecasts (ECMWF) using their Integrated

Forecasting System (IFS),

(b) DOWA, the Dutch Offshore Wind Atlas produced by

the Dutch national weather service KNMI using their

regional NWP model HARMONIE (Bengtsson et al.,

2017), and

(c) NEWA, the NewEuropeanWindAtlas (Petersen et al.,

2014; Dörenkämper et al., 2020; Hahmann, 2020), pro-

duced by a consortiumof European research institutes

using the communityWeather Research and Forecast-

ing model (WRF; Powers et al., 2017) for a multitude

of partly spatially overlapping domains together cov-

ering the EU and Norway/Switzerland.

Kalverla et al. (2019b) evaluated the performance of

these three NWP models in operational forecast mode.

Although (short) forecasts and reanalyses are not the

same, systematic biases may point out model weaknesses

noticeable in both products. All models tended to under-

estimate the wind speed by up to 0.5m⋅s−1, with a typical

root mean square error of up to 2m⋅s−1. Stable boundary

layers proved to be challenging conditions, despite recent

efforts to improve the turbulent mixing formulation for

these conditions (e.g. Tastula et al., 2012; Sandu et al., 2013;

Valkonen et al., 2014).

Moreover, Kalverla et al. (2019a) extensively compared

the ERA-5 wind speed data against observations at mul-

tiple sites over the North Sea and found that the over-

all representation of wind speed was quite good, with

a maximum root mean square error of 1.5m⋅s−1. The

superior performance of ERA-5 as compared to short

forecasts in Kalverla et al. (2019b) is likely due to the

data assimilation. As compared to the single location and

relatively small number of forecasts (30 days) evaluated

in Kalverla et al. (2019b), this provided more significant

results.

To enable a climatological description of local wind

structures, Kalverla et al. (2017) introduced methods to

systematically study various anomalous wind events. An

anomalous event describes one type of local structure, for

example, the presence of a wind speed maximum in the

wind speed profile (a low-level jet, LLJ) and the corre-

sponding fall-off (the difference between the maximum

wind speed and the subsequent wind speed minimum

aloft), the difference in wind speed or direction between

two neighbouring vertical levels (wind shear, wind veer)

or between consecutive time slots (i.e., wind ramps). Even

in the absence of a characteristic local structure, a wind

event can be anomalous just because it is rare. Therefore,

wind extremes – strong wind speeds with long return

periods – were also included in Kalverla et al. (2017). In

their validation of ERA-5, Kalverla et al. (2019a) focused

on one of these events: the LLJ. They showed that the rep-

resentation of LLJs in ERA-5 was mediocre: one-to-one

correspondence was poor, the LLJs seemed to be vertically

displaced (too high) and their magnitude underestimated,

but the climatological frequency representation of LLJ

characteristics was reasonable.

In this study, we present a first evaluation of wind and

anomalous wind events in the aforementioned three wind

atlases against observations from a prospective wind farm

site in the North Sea, 85 km off the Dutch coast – met

mast IJmuiden (MMIJ). MMIJ is located far enough from

the coast and spans a long enough period of time to

show reasonable agreementwith the ERA-5 data (Kalverla

et al., 2019a). The relatively long time span of the MMIJ

dataset allows for reliable statistics (better than other plat-

forms). However, MMIJ will only partly reflect effects

of small-scale coastal processes, and may not completely

obviate validation with other, near-shore observations.

Further validation of DOWA against observations from

other sites and with satellite data are reported in Duncan

et al. (2019a; 2019b). Initial validation and sensitivity stud-

ies that were performed for the NEWA may be found in

Witha et al. (2019b).

Section 2 briefly describes the datasets and the proce-

dure to align the data spatiotemporally. Then Sections 3

and 4 present a general model evaluation for wind speed

and direction, followed by Section 5 which concerns the

evaluation of anomalous events. Section 6 features a new

spatial climatology of LLJs based on DOWA. Conclusions

and perspectives are discussed in Section 7.
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TABLE 1 Summary of the most important characteristics of the three wind atlases and references to further documentation

ERA-5 DOWA NEWA

Full name ECMWF Retrospective Analysis

5th generation

Dutch Offshore Wind Atlas New European Wind Atlas

Time span 1950–present 2008–2017 1989–2018

Horizontal resolution 31 km 2.5 km 27, 9, 3 km (1-way nests)

Vertical resolution 137 levels up to 0.01 hPa. 65 levels up to 10 hPa 61 levels up to 50 hPa

Hydostatic assumption Yes No No

Domain Global The Netherlands, Southern

North Sea, Wadden Sea

Outer domain Europe, with 10

regional sub-domains

Data assimilation 4D-Var with 12 hr assimilation

windows

3 hr 3D-Var —

Data sources Satellites and insitu observations

(see documentation)

Routine observations, ASCAT

(satellite), MODE-S EHS

(aircraft)

—

Initialization From analysis From previous forecast with

additional data assimilation

ERA-5

Strategy Hourly surface analysis (2D

optimal interpolation)

Concatenated 3 hr forecasts. 8-day forecasts including 24 hr

spin-up

Lateral boundaries — ERA-5 ERA-5

Nudging — — Spectral nudging in outer

domain, above PBL and level 20

Uncertainty 10-member ensemble at 62 km

resolution

Uncertainty assessment report Sensitivity experiments and

multi-physics ensemble

Model IFS, Cycle 41r2 HARMONIE-AROME, Cycle

40h1.2.tg2

WRF V3.8.1 (with modifica-

tions)

Website https://confluence.ecmwf.int/

display/CKB/ERA5%3A+data+

documentation

https://www.

dutchoffshorewindatlas.nl

https://map.

neweuropeanwindatlas.eu

Reference/documentation ECMWF (2016); C3S (2017) Bengtsson et al. (2017) Gonzalez Rouco et al. (2019);

Witha et al. (2019a)

Note:Websites accessed on 21 January 2020.

2 DESCRIPTION OF THE
DATASETS

Three wind atlases are used in this study. ERA-5 has been

developed on a horizontal grid spacing of ∼30 km in mid-

latitudes. Compared to ERA-5, DOWA assimilates addi-

tional regional observations and uses a fine grid spacing of

2.5 km. Every 3 hr, data assimilation is applied to initialise

a new forecast cycle. The assimilated observations include

ASCAT satellite sea-surface wind fields andMODE-S EHS

aircraft wind profile measurements. NEWA is a wind atlas

covering the entire EU. Thus its performance cannot be

expected to be comparable to a wind atlas that was tailored

for a certain region (like DOWA). It is rather a trade-off

between many different model settings. NEWA also has a

fine grid spacing of 3 km, but was produced with a slightly

different procedure: it consists of 8-day runs (with the first

day considered as spin-up) in which somemodel fields are

nudged towards the ERA-5 reanalysis data to prevent the

simulations from drifting away from the synoptic situa-

tion. Table 1 further summarises relevant characteristics of

the wind atlases .

For validation we use the MMIJ dataset, which spans

four years of observations (2012–2015) at several altitudes

up to 315m, spaced approximately 25m apart. Observa-

tions at 27, 58, and 90m are from mast-mounted cup

and sonic anemometers and wind vanes, while the data

beyond 115m were obtained with an upward-pointing

continuous-wave lidar. More details can be found in (e.g.

Kalverla et al., 2017, 2019a). The large temporal extent, dis-

tance to shore and vertical measurement range makes this

dataset optimally suited to characterise the wind climate.

https://confluence.ecmwf.int/display/CKB/ERA5%3A+data+documentation
https://confluence.ecmwf.int/display/CKB/ERA5%3A+data+documentation
https://confluence.ecmwf.int/display/CKB/ERA5%3A+data+documentation
https://www.dutchoffshorewindatlas.nl
https://www.dutchoffshorewindatlas.nl
https://map.neweuropeanwindatlas.eu
https://map.neweuropeanwindatlas.eu
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F IGURE 1 (a) Observed and modelled time-averaged vertical wind speed profile at met mast IJmuiden (MMIJ) and (b) error diagram

showing the mean (bias) and standard deviation (STDE) of the error distributions ofthe three wind atlases compared to observations from

MMIJ at multiple heights. (c, d) Diurnal and seasonal evolution of the mean and standard deviation of the same error distributions

Data quality was found to be very good (e.g., Poveda and

Wouters, 2015), with only a few gaps (not shown). The

observation data are available at 10min intervals, andwere

hourly averaged to facilitate comparison with the reanaly-

sis data. Thewind atlas datawere vertically (linearly) inter-

polated to, and temporally aligned with, the observations

to obtain four collocated datasets.

3 EVALUATION OF WIND SPEED
AND THE ROLE OF ATMOSPHERIC
STABILITY

Time-averaged wind speed profiles (Figure 1a) demon-

strate a striking correspondence between DOWA and the

observations, considering that MMIJ observations were

not assimilated into the wind atlas. ERA-5 underestimates

the wind speed by ∼ 0.5m⋅s−1 through the whole pro-

file, while NEWA is nearly unbiased near the surface and

reaches a slow bias of 0.5m⋅s−1 at 300m. As a conse-

quence, NEWA appears to underestimate the wind speed

shear within the layer. Parsons et al. (2018) showed that

ERA-5 on average shows a good skill for wind speed,

but that ERA-5 underestimates the wind speed for very

extreme sea states. Overall, the underestimated wind

speed is consistent with Couto et al. (2019) who found a

similar bias close to the Portuguese coast. A more com-

plete picture is obtained if we consider Figure 1b, which

shows both the bias and RMSE due to phase differences.

Although DOWA is nearly unbiased, it does not exactly

align with the observations, leaving an overall RMSE

of ∼ 1.5m⋅s−1. A small bias of 0.1m⋅s−1 is found only

near the surface. For ERA-5 and NEWA, the negative

bias is clearly present, and its altitude-dependence is also



KALVERIA et al. 5

F IGURE 2 Vertical profile of the wind speed bias in all wind atlases for different stability intervals (based on the observed bulk

Richardson number). (a)–(e) unstable stratification, and (f)–(j) stable stratification

apparent. ForNEWA, the random errors are larger than for

ERA-5 and DOWA, especially away from the surface.

Figure 2 reveals clearly that stability affects the bias

in all datasets. Considering most unstable stratification,

NEWA overestimates the near surface wind by 0.6m⋅s−1

and this bias decreases aloft. While ERA-5 and DOWA

show the same shape of the bias profile, theymainly under-

estimate the wind in the upper part of the profile. For

all datasets the bias reduces and appears more uniform

with height for moderate unstable stratification (−0.1 <

Rib < −0.025, where Rib is the bulk Richardson num-

ber). The near-neutral class contains the majority of dat-

apoints (−0.025 < Rib < 0.0) and herein DOWA is nearly

unbiased while NEWA underestimates the wind speed,

which increases with height. Surprisingly ERA-5 shows a

slow bias of ∼ 0.7m⋅s−1 near the surface, though its bias

decreaseswith height. Themost prominent biases and sen-

sitivities occur for stable conditions, consistent with find-

ings in Baas et al. (2016) for theHARMONIEmodel results

over the North Sea. For near-neutral conditions, NEWA

reveals a slow bias, which switches to a wind speed over-

estimation for Rib > 0.025, which increases for stronger

stability, even to 1.0m⋅s−1 for (0.075 < Rib < 0.1). For that

class DOWA also overestimates the wind by ≈0.5m⋅s−1,

while ERA-5 represents this class rather well. The wind

speed in NEWA is more accurate near the surface, which

does not support a deficiency in the surface roughness

formulation. Rather, it seems that too little momentum

is transported downward to the surface. This could be

a result of the large-scale nudging strategy employed in

the NEWA. Above the boundary layer, momentum fields

were nudged towards the ERA-5 values. If wind speed is

underestimated in ERA-5, it is thus very plausible that this

error propagates to NEWA. In contrast, DOWA is com-

pletely free in the inner domain, except for the 3 hr data

assimilation updates.

Examining the seasonal cycle shows that the slow bias

in ERA-5 is present throughout the lowest 300m, though

is most prominent from September to February with a

maximum negative bias at the surface. From March to

August the bias profile shows a maximum at ∼100m (not

shown). The wind speed underestimation in ERA-5 might

be explained by the surface roughness, or the Charnock

parameter, which dictates the relation between wind and

waves. The wind speed seems to be mainly underesti-

mated near the surface, which may point to an overes-

timation of the surface roughness. However, a compari-

son of the modelled significant wave height against wave

height observations at the nearby K13 platform indicates

that ERA5 slightly underestimates the wave height by 9%

(not shown). Unravelling the wave height biases further in

classes of atmospheric stability, we find the largest under-

estimation for Rib > 0.05 of 33%. For Rib < −0.05 the wave

heights are underestimated by 26%. In near-neutral condi-

tions, the wave heights in ERA-5 do show smaller biases.

Although roughness and wind speed are interdependent

over the sea, it seems the wind speed underestimation is

not triggered by an overestimated roughness here. The rep-

resentation of atmospheric stability and the turbulentmix-

ing under stable conditions are more likely explanations.
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F IGURE 3 Error diagrams illustrating the performance of the three wind atlases for mean wind speed below 300m in the period 2012

to 2015 as a function of (a) atmospheric stability and (b) wind speed. Observation data were used to aggregate the error statistics

Alternatively, the relatively coarse resolution of ERA-5

may induce a smoothing effect, especially for high wind

speed events.

The smoothing effect described above can effectively

suppress the random errors shown in Figure 1. Phase dif-

ferences such as a delayed front passage will lead to a

double penalty. The inability to reproduce small-scale fea-

tures thus prevents a double penalty, which explains why

the ERA-5 data perform relatively well in terms of the

standard deviation of the error (STDE; Figure 1b). While

one expects that higher-resolution models are generally

more subject to this problem, DOWA performs similarly to

ERA-5, which presumably has the merit of frequent data

assimilation in DOWA (Duncan et al. 2019a).

A remarkable discontinuity in the diurnal cycle of

wind speed was revealed in the ERA-5 data by Kalverla

et al. (2019a). At 1000 UTC, the wind speed bias suddenly

strengthens. To verify whether this artefact propagated to

the other wind atlases, the diurnal and seasonal cycle of

the wind speed bias and STDE are shown in Figure 1c,d.

The discontinuity in the diurnal cycle occurs only for

ERA-5. However, in the seasonal cycle, we find another

remarkable feature in the NEWA data – a smaller bias in

spring and early summer. The reason becomes clear upon

inspection of Figure 3, which shows the wind speed bias

and STDE as a function of (observed) wind speed and

stability. Stable conditions lead to a substantial positive

bias, while high wind speeds lead to a large negative bias.

In other words, all models but especially NEWA tend to

underestimate very strong winds, while they overestimate

the wind speed during stable conditions. Since winds are

generally stronger in winter and stable conditions occur

more frequently in spring and summer, this helps to

explain the seasonal cycle of the bias in NEWA.

The results in Figure 3a are consistent with Kalverla

et al. (2019b), who found a reduced model performance in

stable conditions. Hence our current results are a substan-

tial corroboration of this earlier result. Apparently, stable

conditions are in general still challenging (Holtslag et al.,

2013; Sandu et al., 2013; Steeneveld, 2014; Tsiringakis et al.,

2017), despite recent efforts to improve the turbulent mix-

ing formulation (Sandu et al., 2014; Bengtsson et al., 2017;

Olson et al., 2019a; 2019b). Furthermore, the results in

Figure 3b support the hypothesis that the slow speed bias

results from a smoothing effect, as this would manifest

itself most clearly for distinct wind speed maxima.

4 EVALUATION OF WIND
DIRECTION

Wind direction is critical for offshore wind energy pur-

poses for determining the directional shear on wind

turbines, understanding the model's representation of

boundary-layer friction, and its representation of advec-

tion of onshore atmospheric phenomena towards offshore

wind parks, for example (Dörenkämper et al., 2015; Wag-

ner et al., 2019). Here we discuss two methods to evalu-

ate wind direction, that is, (a) the bias as the difference

between the means of the wind direction of two samples

(Figure 4a), and (b) the bias as the mean of wind direction

differences (Figure 4b). These definitions are equivalent
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F IGURE 4 Modelled and observed wind direction using (a) circular statistics and (b) mean of difference in wind direction. (c)

Boxplots show the wind direction error distributions for the three wind atlases as compared to MMIJ observations at multiple levels. Red

triangles denote the arithmetic means. Outliers are not drawn, because that would require axis limits of up to ±180◦

for arithmetic means. Figure 4a suggests that the bias is

more or less constant with height, but Figure 4b suggests it

increases steadily. This apparent inconsistency stems from

the use of vector means instead of arithmetic means in

Figure 4a – a common method to compute angular statis-

tics to avoid artefacts like averaging 355 and 5◦. The differ-

ence between the vector mean and the arithmetic mean is

greater when the angles are widely distributed (Jammala-

madaka and Sengupta, 2001). Figure 4b shows that the

standard deviation increases with height, thus the appar-

ent wind veer with height might represent a statistical

artefact rather than a physical effect.

To circumvent the pitfalls of circular statistics, the per-

formance for wind direction can be inferred directly from

the error distribution of the wind direction (Figure 4c).

Indeed, both the width and the mean of the error dis-

tribution increase with height, consistent with Figure 4b.

The positions of the means relative to the medians, and

the upward shift of the 75percentile as compared to the

relatively constant location of the 25percentile indicate a

changing skewness with height. From a physical point of

view, the wind in the wind atlas veers with respect to the

observations, and this veering increaseswith height. These

results confirm findings in Kalverla et al. (2019b) and pre-

vious literature, where the models' inability to represent

a realistic wind veer with height was related to exces-

sive mixing in stable conditions and to strong baroclinity

(Brown et al. 2005; Holtslag et al., 2013; Sandu et al., 2013).

Despite the remaining biases, wind direction in ERA-5 and

DOWA is better represented than in the 30 operational

forecasts evaluated in Kalverla et al. (2019b), probably due

to data assimilation, or model improvements discussed in

Sandu et al. (2014) and Bengtsson et al. (2017). Again,

the relative wide error distributions in NEWA may be the
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F IGURE 5 (a) Seasonal and (b) diurnal cycle of low-level jets, based on observations and wind atlases. Low-level jets are defined as all

hourly wind speed profiles with a maximum exceeding a fall-off threshold of 2m⋅s−1 at the location of met mast IJmuiden, expressed as a

percentage of the total number of wind profiles in that month/hour

result of a substantial double penalty, considering that

NEWA consists of 8-day simulations without data assimi-

lation – as compared to the 3 hr update cycles for DOWA.

5 ANOMALOUS WIND EVENTS
IN WIND ATLASES

Building upon the model representation for general wind

characteristics, this section discusses the representation

of anomalous events in these datasets. The methodology

used to assess model performance is explained after the

subsection about LLJs, using the LLJ data as illustration.

5.1 Low-level jets

LLJs are wind profiles with a wind speed maximum near

the surface, as illustrated, for example, in Kalverla et al.

(2019a). LLJs over MMIJ occur primarily in spring and

early summer, often appear at the end of the afternoon and

persist until the nextmorning.Wagner et al. (2019) studied

the LLJ climatology at the FINO1 site in the German Bight

and found LLJs occur for 14.5% of the time and on 64.8%

of days, mostly from directions between east and south.

They are formed by a variety of mechanisms, but baro-

clinic effects, orographic effects (e.g., flow forced through

the Dover Strait; Capon 2003), and the combination with a

stable boundary layer explain most of their characteristics

(also Wagner et al., 2019). Recently, Kalverla et al. (2019a)

demonstrated that LLJs are present in the ERA-5 data,

although they tend to be located toohigh above the surface.

Consequently, when the ERA-5 data are interpolated to

observation heights, the number of LLJs is grossly under-

estimated. However, the seasonality could still be faintly

recognised at MMIJ.

To investigate whether the refined datasets improve

upon the representation of LLJs, we study the seasonal

and diurnal cycles for all three wind atlases (Figure 5).

The observations exhibit a pronounced seasonal cycle, the

erratic nature of which has been discussed at length in

Kalverla et al. (2019a). In the four-year observation period

(2012 to 2015), May and July saw more LLJ events than

April and June.

Indeed, ERA-5 grossly underestimates the amplitude

of the seasonal cycle, and completely misses the peak in

May. The other two datasets, especially DOWA, demon-

strate considerably better skill. The diurnal cycle is char-

acterised by a distinct dip around noon, and peaks in the

afternoon and the early hours of the morning. The after-

noon peak, presumably related to the adjustment of the

sea breeze, appears to be best represented in the wind

atlases. If two different mechanisms are responsible for

LLJ formation, one of these mechanisms might be better

resolved than the other. Alternatively, the formationmech-

anism might be relatively well represented, but the jets'

propagation through the night proves challenging. Fur-

ther investigation of individual LLJ events could provide a

definitive answer in thismatter, but that exercise is beyond

the scope of this evaluation.

Often, a fall-off threshold is used to distinguish

between “real” LLJs and “normal” conditions that hap-

pen to show a weak wind speed maximum by chance. In

line with previous studies, a fall-off threshold of 2m⋅s−1

was used for Figure 5. Alternatively, the absolute fall-off

may be inspected directly. This is shown in Figure 6, where
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F IGURE 6 Scatter plots of absolute fall-off of low-level jets as represented in the wind atlases versus observed fall-off. A 2m⋅s−1 fall-off

threshold is indicated by the red box. Outside this region, red lines indicate the region where wind atlas and observations agree on the

absolute fall-off value to within a factor of 2. The dashed grey line indicates a 1:1 correspondence. The point size increases when further away

from the origin to expose the structure both in dense and sparse regions of the graph. TN is an abbreviation for true negatives, relating to the

bottom left corner in each panel

the red box near the origin indicates the fall-off thresh-

old of 2m⋅s−1. All points outside this box may be regarded

as significant LLJ events – either observed, modelled, or

(preferably) both.

5.2 Quantification of model
performance for anomalous events

Usually model performance is expressed in summary

statistics or as a variety of skill scores. With the cur-

rent data the signal will be dominated by non-significant

events, and since the differences are subtle, mismatches in

timing will lead to very low correlation coefficients (notice

the dense clustering of scatter points along the zero lines

of both axes of Figure 6). It is reasonable to suppose that

a stronger LLJ event is more likely to be picked up by the

wind atlas data, and as it occurs, these most anomalous

events are the main focus of this section.

To quantify model performance, we establish the fol-

lowing contingency “rules”:

(a) If either observations or wind atlas data report on the

presence of a significant LLJ event, and the absolute

fall-off in both datasets is comparable to within a fac-

tor of 2, then the model performance is satisfactory

and the data point is counted as a hit.

(b) If a significant LLJ is observed, but not present in the

wind atlas data, or if it is present in the wind atlas

data but muchweaker than observed (less than half as

strong), then this data point is regarded a miss.

(c) If a significant LLJ is present in the wind atlas , but

it is not observed, or it is observed but the wind atlas

overestimates its strength by at least a factor of 2, then

it is labelled as a false alarm. All other events are true

negatives.

The contingency rules allow for estimating skill scores,

such as the probability of detection, false alarm rate, or crit-

ical success index (CSI; Schaefer, 1990). The CSI, defined

as

CSI =
hits

(hits +misses + false alarms)

is a simple and intuitive parameter to compare the perfor-

mance of severalmodels: the score increases ifmore events

are correctly predicted, and it decreases as more events are

missed or falsely predicted.

An alternative and more robust (but less intuitive)

statistic than the CSI is the symmetric extreme depen-

dency score, defined as (Hogan et al., 2009):

SEDS =
ln[(hits+ false alarms)∕n]+ ln[(hits +misses)∕n]

ln(hits∕n)
,

where n is the total number of events (hits+misses+false

alarms+true negatives). The SEDS varies between −1 and

1, where 1 indicates a perfect forecast, a random forecast

would receive a skill score of 0, and a forecast that actually

degrades the quality of a random forecast tends to −1.

The CSI and SEDS both penalise phase errors,

which is desirable in forecast verification. However, for

climatological studies for resource assessment, phase
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TABLE 2 Critical success index (CSI),

symmetric extreme dependency score (SEDS) and

frequency bias (FBIAS) for the representation of LLJs

in ERA-5, DOWA and NEWA

ERA-5 DOWA NEWA

CSI 0.26 0.42 0.28

SEDS 0.67 0.73 0.65

FBIAS 0.36 0.78 0.50

errors are not essential. An alternative score that measures

the climatological model performance is the (frequency)

bias:

FBIAS =
total predicted

total observed
=
hits + false alarms

hits +misses
.

A frequency bias of∼1 means that the total number of LLJ

events is more or less correct, even if the timing is wrong.

FBIAS < 1 represents an underestimation of the number

of LLJ events and vice versa. A downside of this score is

that correct model forecasts for the wrong physical and

dynamical reasons are counted as successes.

All wind atlas datasets underestimate the amount

of significant LLJ events (Table 2). Over four years

(∼35,000 hr wind profiles), only 372 LLJs have been cor-

rectly captured in ERA-5, against 943 missed events. With

“only” 99 false alarms, this results in a frequency bias of

0.36. DOWA performs better and picks up approximately

twice as many LLJ events, reflected in a much higher fre-

quency bias of 0.78. The representation in NEWA is inter-

mediate: more hits than ERA-5, but substantially more

false alarms. Hence, (a) although NEWA does not seem

to improve upon ERA-5 with respect to a general valida-

tion of the wind speed profiles, the increased resolution

does favour the climatological LLJ representation, and (b)

DOWA especially improves upon the representation of the

dynamical conditions in coastal areas.

5.3 Wind ramps

Wind ramps are rapid changes of the wind speed and/or

direction in time. In climatologies for wind energy appli-

cations, the mean wind is often assumed to be station-

ary, or time-averaged statistics are considered. Therefore,

wind ramps are interesting anomalous events that require

additional, tailored evaluation. Kalverla et al. (2017) deter-

mined the wind speed and direction differences over var-

ious time intervals in the MMIJ dataset, and studied the

frequency distributions to build some intuition about the

magnitude of these difference. Naturally, the frequency

distributions centres around zero, for in the absence of a

long-term trend, increasing wind speeds must be balanced

by equivalent decreases. Forwind direction, this is not nec-

essarily true, but it was found in practice. Kalverla et al.

(2017) used the 5 and 95percentile to obtain site-specific

characteristic up-ramp and down-ramp thresholds, and

analysed the sensitivity to this threshold.

Here we use the 2.5 and 97.5percentile instead, to

put even more emphasis on the most extreme condi-

tions. The cumulative probabilities of hourly differences

in wind speed and direction based on MMIJ and the

corresponding grid points in the wind atlas datasets are

shown in Figure 7a,b. In general, only small differences

appear between the datasets, though the distribution of

wind speed differences in DOWA is slightly broader than

observed, and the distribution is slightly too narrow in

ERA-5 and DOWA. The differences between datasets are

quantified through the 2.5 and 97.5percentile. A typical

1 hr down-ramp at MMIJ amounts to −2.0m⋅s−1, while

ERA-5, DOWA and NEWA estimate the ramp intensity at

−1.6, −2.2 and −1.9m⋅s−1, respectively. Typical up-ramp

values amount to 2.0m⋅s−1 according to observations, and

1.7, 2.3 and 2.0m⋅s−1 for the respective wind atlas datasets.

Thus, NEWA best captures the climatology of wind speed

ramps. Before further quantification, some notes must be

made about the evaluation of wind ramps.

Figure 7c shows the joint distribution of wind speed

and subsequent hourly wind speed differences at MMIJ.

Such a representation might be relevant for forecasting

applications, where wind ramps within the cubic part of

the power curve lead to the largest power fluctuations. A

slightly negative correlation betweenwind speed andwind

speed difference appears. This is in agreement with the

analysis of MMIJ data in Kalverla et al. (2017) (their figure

7) who found the most severe down-ramps for high mean

wind speeds.

Ramps over relatively short time intervals are probably

more relevant for energy applications, but unfortunately

ERA-5 and DOWA do not offer short intervals (NEWA is

available every 30min). To provide some intuition about

the relevance of hourly ramps, Figure 7d depicts the typ-

ical wind speed up-ramps for MMIJ as a function of the

time interval over which the ramp is considered . Herein,

a moving average and a resampling (with correspond-

ing time interval) were subsequently applied to the MMIJ

data. The 97.5percentile increases almost linearly with

the time interval of the underlying data, except below

20min, where the acceleration appears smaller. To show

the robustness of this result, and also to illustrate the sensi-

tivity to the ramp threshold, three different percentiles are

shown in Figure 7d. Both the typical ramp and the acceler-

ation are smaller for lower ramp thresholds, which makes

sense. The current results differ fromKalverla et al. (2017),

since they only applied resampling (no moving average).
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F IGURE 7 Cumulative probability distribution of 1-hourly (a) wind speed and (b) direction differences based on observations and

wind atlas data. The dashed lines indicate the 2.5 and 97.5percentile as thresholds for the classification of typical up- and down-ramp events.

(c) Hexbin visualisation of hourly MMIJ data illustrating the frequency of wind speed ramps as a function of wind speed. The dashed line

represents a linear fit, and the red lines denote the area where the wind ramp causes a disturbance within the cubic part of a conceptual

power curve. (d) shows wind speed ramp as a function of the time resolution of the underlying data, based on MMIJ data resampled at

different intervals using a moving average to mimic a smoothing effect. Three different up-ramp thresholds are used to assess the robustness

of the relation

The averaging appears to be responsible for the decreased

acceleration between 10 and 20min (not shown). These

factors explain why the empirical square root relation

between wind rampmagnitude and time interval found in

Kalverla et al. (2017) does not correspond with the present

results.

Upon visual inspection, the distribution of wind direc-

tion differences is well-captured by DOWA and slightly

underestimated in the other datasets (Figure 7b). Typi-

cal 1 hr direction up- and down-ramps at MMIJ are −22◦

and+28◦, respectively. ERA-5 underestimates both thresh-

olds: −18◦ and +22◦, and DOWA slightly overestimates

them: −23◦ and +29◦. NEWA reports thresholds of −20◦

and +26◦, i.e. a small underestimation. The asymmetry

of the distribution is probably related to frontal passages,

which are accompanied by an abrupt wind veer. Wind

direction ramps on hourly time-scales as investigated in

this study are relevant for offshorewind power forecasting,

especially when below rated power, as the efficiency of a

wind turbine array depends on the generated wakes, and

the fixed layout strongly depends on the wind speed.

While wind atlases are not actual forecasts, it is illus-

trative to inspect the 1:1 correspondence between observed

and simulated wind ramp events (Figure 8a–c). The R2

value corresponding to a linear fit is annotated for ref-

erence, but this parameter is mostly determined by the

bulk of the data, while our main interest is in the extreme

cases. Hence, the contingency rules from the previous

section are used. The red box in the middle corresponds

to the typical up- and down-ramp thresholds as observed.

In this case, the distribution of wind speed differences is

two-sided, that is, an additional possibility where the wind

atlas would “predict” an up-ramp while a down-ramp

is actually observed (or vice-versa) is present. Although

this rarely occurs in practice, the possibility requires

an additional rule to distinguish between false up-ramp
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F IGURE 8 Scatter plots of 1-hr (a–c) wind speed and (d–f) direction difference as estimated from ERA-5, DOWA, and NEWA. In this

figure, both positive and negative values are considered. The ramp thresholds in red have been based on the 2.5 and 97.5percentile of the

observed ramps. Additional red lines have been inserted to separate missed up-ramp events from false down-ramp alarms and vice versa

alarms and missed down-ramp events (and vice versa).

The rule employed here can be summarised as “whichever

is greater”. The corresponding skill scores are provided in

Table 3.

The frequency bias again demonstrates that ERA-5

underestimates the number of wind ramps. This is

expected, since the relatively coarse horizontal grid spac-

ing of 30 km seriously limits the model representation of

small-scale structures that are responsible for ramp events.

However, the number of false alarms is also limited (at

least, relative to the other datasets). Consequently, the CSI

and SEDS are highest for ERA-5. The false alarm rate is

much higher in DOWA, which indicates an overestima-

tion of ramp events (FBIAS= 1.24). NEWA has almost no

frequency bias, but the 1:1 correspondence with observa-

tions is particularly poor, as reflected by the high number

of misses and false alarms compared to the number of

hits. In other words, a more realistic climatology of ramps

in NEWA comes with a deterioration in timing of these

events. While the climatology is more important during

the resource assessment and planning phase, correct tim-

ing is obviously quite relevant for forecasting applications.

Model performance for wind direction ramps is visu-

alised and quantified in Figure 8d–f and Table 3. The inter-

pretation is analogous to that of wind speed ramps: ERA-5

underestimates wind ramps, DOWA in this case performs

best in a climatological sense, and NEWA especially strug-

gles with the timing of events. Further investigation is

needed to assess whether the physical characteristics of

the wind ramps (both in wind speed and direction) are

consistent between all four datasets.

5.4 Extreme shear

It is illustrative to split the wind vector in a streamwise

and a normal component (Kalverla et al., 2017). If thewind

would turn without a change in magnitude, a substantial

wind shear would remain hidden if only wind speed was

analysed. Besides, the energy in the lateral wind compo-

nent would be falsely regarded in load and power calcu-

lations. Thus, the analysis of extreme shear starts with an

evaluation of the longitudinal wind component (aligned

with the 115m wind, at approximately hub-height) in
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ERA-5 DOWA NEWA ERA-5 DOWA NEWA

Speed ramps Direction ramps

CSI 0.42 0.37 0.33 0.38 0.36 0.30

SEDS 0.70 0.61 0.58 0.66 0.61 0.56

FBIAS 0.72 1.24 1.02 0.73 1.03 0.90

Wind shear Wind veer

CSI 0.40 0.69 0.66 0.00 0.00 0.00

SEDS 0.73 0.88 0.86 –0.11 -0.05 –0.04

FBIAS 0.51 0.80 0.84 0.09 0.14 0.13

Note: Up- and down-ramps have been combined in the calculation of skill scores, although it would also be

possible to calculate them separately.

TABLE 3 Skill scores for wind

ramps and wind shear (“shear” and

“veer” are used here to refer to the

longitudinal and lateral components)

F IGURE 9 Scatter plots of modelled and observed integrated wind difference in the (a–c) longitudinal and (d–f) lateral wind

components between 50 and 100m. The red lines delimiting the extreme/anomalous shear thresholds are based on the 95percentile of the

observations

Figure 9a–c, which is based upon accumulated wind shear

between 50 and 100 m.

Clearly, the degree of wind shear is underestimated

by all wind atlases datasets. Following the convention

of Kalverla et al. (2017), the extreme shear threshold

is defined as the 95percentile. This value is 0.61m⋅s−1

according to the MMIJ data, while ERA-5, DOWA and

NEWA estimate it at 0.41, 0.49 and 0.47m⋅s−1, respec-

tively. Especially for ERA-5, where the timing is quite

well-represented, the underestimation of the absolute

wind shear is so large that most extreme events (exceed-

ing the 95percentile of the observations) are classified as
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missed events. Both DOWA and NEWA perform much

better in this respect, with slightly better performance

for DOWA.

It is interesting to explore the causes behind general

underestimation of wind shear and the difference between

the datasets. Earlier we found that the surface rough-

ness in ERA-5 is slightly underestimated. Stable strat-

ification suppresses turbulent mixing and thereby sup-

ports the development of strong shear (and LLJs). As

shown in Section 4 and in Kalverla et al. (2019b), NWP

models still struggle to adequately represent these condi-

tions. An alternative rendering of Figure 9, in which the

observed Richardson number was used to further cate-

gorise the data in the scatter points (not shown), revealed

that the majority of the extreme shear cases are indeed

characterised by stable stratification, while unstable and

neutral cases with little wind shear make up the bulk

of the data. This explains why the underestimation of

extreme shear is not reflected in the mean wind profile in

Figure 1a.

The lateral wind shear, which may be interpreted as a

measure of vertical wind veer, is evaluated in Figure 9d–f.

The 95percentile threshold of the extreme accumulated

shear over the layer 50–100m is very low, 0.06m⋅s−1, and

underestimated in all wind atlas datasets (0.001, 0.002

and 0.001m⋅s−1; but these values are hardly significant).

Almost all extreme events are missed by the wind atlas

data, and the fact that these misses are barely compen-

sated by false alarms confirms that, also in a climatolog-

ical sense, the wind atlas provide a poor impression of

lateral (extreme) shear. Since turbulence generally tends

to destroy vertical gradients, it is likely that these errors

are the result of excessive mixing, either due to inade-

quate representation of the physics, including insufficient

resolution, or due to misrepresentation of atmospheric

stability, as discussed previously.

5.5 Wind extremes

Finally, we address wind speed extremes as anomalous

events because the conventional statistics may not ade-

quately capture them. For example, the Weibull fit is

strongly determined by the bulk of the data, but especially

rare events in the tail may be relevant for structural loads.

Therefore in Kalverla et al. (2017), extreme value theory

was applied to estimate the 50-year extreme wind speed,

based on the IJmuiden observations. Because four years

is too short to select only annual maxima, the method

of independent storms (Palutikof et al., 1999) was used

to select ∼ 40 unrelated events within the measurement

period. Here this analysis is repeated for the wind atlas

(Figure 10), though with hourly-averaged observations

rather than 10min observations. Thus, here we find much

lower estimates of the 50-year wind speed extreme. Since

design standards are based on the 10min estimate (Burton

et al., 2011), this section mostly serves as model validation

and intercomparison.

The smoothing effect of a relatively coarse model res-

olution has been used in Section 3 to explain the under-

estimation of high wind speeds in ERA-5 and NEWA,

since the latter is nudged towards the ERA-5 momentum

fields. A similar effect is introduced by the time-averaging

of the observations. The impact is substantial: while an

extreme value of 42.7 ± 2.4m⋅s−1 was reported in Kalverla

et al. (2017), here we find 36.7 ± 2.1m⋅s−1, a difference

of 6m⋅s−1. Consequently, the wind atlas data should not

be used directly to estimate wind extremes. Neverthe-

less, the difference between the three wind atlases can be

compared to the uncertainty related to the spatio-temporal

characteristics. With a 50-year extreme value of 35.9 ±

2.5m⋅s−1, ERA-5 closely approaches the estimate based

on hourly-averaged observations. DOWA actually overes-

timates it with a value of 38.5 ± 2.2m⋅s−1, and NEWA

underestimates it at 34.2 ± 1.6m⋅s−1.

Thus, the difference between the three models is small

compared to the impact of time-averaging. A more sys-

tematic investigation of the 50-year extreme as a function

of the spatio-temporal characteristics of the underlying

data could provide the additional information required

to obtain reliable estimates of wind extremes from the

wind atlases . Coupling between weather models and

large-eddy simulations has receivedmuch attention lately,

and is rapidly becoming accepted (e.g. Muñoz-Esparza

et al., 2014; Sanz Rodrigo et al., 2017; Hewitt et al., 2018).

These developments make such a study possible in the

near future.

Yet, even if reliable data about past extremes is avail-

able (including information about their validity), there

is another potential pitfall that should be considered

when applying extreme value theory. The fundamental

assumption is that all extreme events in the data are drawn

from the sameparent distribution. The parent distribution,

in this case, is the long-term wind climate at MMIJ. Using

only four years of data is already pushing the limits of this

assumption, for not all physical extremes that may occur

within the current climate may be represented in the sub-

set. Moreover, since the theory is used to make prediction

far into the future, the assumption that the climate does

not change may be violated. In 2017, Ophelia set a record

for the easternmost Atlantic major hurricane. Scientists at

the Dutch national weather service warn that such storms,

which can get considerably stronger than other types of

storms in this area, may occur more often as the ocean

warms by climate change (Haarsma et al., 2013; Baatsen

et al., 2015; Dekker et al. 2018). Hence, present results on
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F IGURE 10 Gumbel plots for extreme value analysis based on the three wind atlases (colour) as compared to observations (black)

from met mast IJmuiden. Return periods are shown on the top axis. Shaded regions represent uncertainty estimates of the mean plus or

minus one standard deviation based on a Monte Carlo procedure

F IGURE 11 Spatial climatology of low-level jets up to a

height of 600m as represented in the Dutch Offshore Wind Atlas

(2008–2017) , overlaid on the corresponding ERA-5 visualisation

wind extremes only act as an illustration of their uncer-

tainty, and interested readers are strongly advised to turn

their attention to the dedicated literature referenced above.

6 A SPATIAL CLIMATOLOGY OF
LOW-LEVEL JETS BASED ON THE
DOWA

Now that the performance of the three wind atlases

have been evaluated, it is instructive to briefly highlight

their potential regarding spatial analysis of anomalous

events. To illustrate the refinement achieved by downscal-

ing, the ten-year (2008–2017)mean LLJ frequency over the

DOWA domain is overlaid on a similar visualisation of the

ERA-5 data (Figure 11). The detailed orographic structure

in the southeast of the domain especially stands out, but

also the coastal morphology is represented much more

truthfully.

Some striking features are revealed in Figure 11. For

example, the shape of the eastern coastline of East Anglia

clearly favours LLJ formation. A band of preferred LLJ

occurrence appears which more or less follows the shape

of this coastline. Furthermore, the impact of the Dover

Strait is clearly visible in the climatology, and the eastern-

most extremity of Kent leaves a LLJ “wake” towards the

northeast. Some aspects of this specific jet are discussed by

Capon (2003).

A fixed fall-off threshold of 2m⋅s−1 was used to pro-

duce Figure 11. Alternatively, it would be possible to

map the mean, median or 95percentile of the absolute

fall-off. That would provide additional information about

the spatial distribution of LLJ characteristics. Moreover,

this approach can be used for other anomalous events

as well. However, a comprehensive spatial analysis of a

variety of anomalous events is left for future work.

7 SUMMARY AND CONCLUSIONS

This study evaluates three state-of-the-art wind atlas

datasets used in the wind energy industry, that is, ERA-5,

DOWA and NEWA against four years of high-quality
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wind profile observations over the North Sea. Exceptional

performance was found for the Dutch Offshore Wind

Atlas, which was nearly unbiased in terms of wind speed.

ERA-5 demonstrates comparable root mean square errors

(∼ 1.4m⋅s−1), but it generally underestimates the wind

speed, probably due to the smoothing effects due to its

relatively coarse resolution. NEWA, despite its increased

resolution, does not improve upon ERA-5, which seems

to inherit the wind underestimation from ERA-5, and

an increase of the random errors suggest that the model

is considerably more sensitive to the double-penalty

problem. The fact that DOWA performs much better in

this respect, even though its resolution is comparable to

NEWA, illustrates the impact of themodelling strategy and

additional data assimilation.

The wind in the wind atlas products is typically veered

with respect to the observations, and this veering increases

with height. ERA-5 and DOWA performed very simi-

larly, while NEWA again exhibited a wider range of wind

direction errors. Also a potential pitfall in using sum-

mary statistics for the evaluation of wind direction was

illustrated.

The wind atlases' representation of anomalous

wind events was evaluated. Generally, the relatively

high-resolution models are able to represent more

fine-scale structures, but this comes at the cost of con-

siderable mismatches in the timing of events. For LLJs,

DOWA outperforms the two other datasets. In a cli-

matological sense, wind ramps are best represented in

NEWA, but one-to-one correspondence is slightly better

in DOWA. Extreme wind shear is best represented by the

higher-resolution models, though they still underestimate

the vertical wind shear, which has been linked to defi-

ciencies in the representation of stable conditions. The

representation of lateral shear, or wind veer is very poor in

all datasets. For wind extremes, the differences between

the models are nullified by the uncertainties related to

spatiotemporal characteristics of the underlying data and

about changes in future climate.

Finally, a climatological map of LLJ frequency based

on the DOWA data was briefly discussed. Compared to

ERA-5, the enhanced resolution reveals much more detail

of the LLJ climatology; orography-related features can

clearly be distinguished. The high-resolution data reveal

many interesting aspects of the LLJ climatology, such as

the role of orography and coastal effects. This opens up a

wealth of possibilities for further investigations, and it is

advised that climatological maps of anomalous events are

incorporated in future standards.

ACKNOWLEDGEMENTS

The analysis was performed on the high-performance

computing facility offered by the Dutch Science

Organization NWO (grant no. SH-312-15). This work is

part of the EUROS project (NWO/TTW research grant no.

STW-14158). NEWA data were kindly provided (prior to

publication) by Björn Witha (ForWind).

ORCID

Gert-Jan Steeneveld https://orcid.org/0000-0002-5922-

8179

REFERENCES

Baas, P., Bosveld, F.C. and Burgers, G. (2016) The impact of atmo-

spheric stability on the near-surface wind over sea in storm

conditions.Wind Energy, 19, 187–198.

Baatsen, M., Haarsma, R.J., Van Delden, A.J. and De Vries, H. (2015)

Severe autumn storms in future Western Europe with a warmer

Atlantic Ocean. Climate Dynamics, 45, 949–964.

Bengtsson, L., Andrae, U., Aspelien, T., Batrak, Y., Calvo, J., de Rooy,

W., Gleeson, E., Hansen-Sass, B., Homleid, M., Hortal, M., Ivars-

son, K.-I., Lenderink, G., Niemelä, S., Nielsen, K.P., Onvlee, J.,

Rontu, L., Samuelsson, P., Muñoz, D.S., Subias, A., Tijm, S., Toll,

V., Yang, X. and Køltzow,M.Ø. (2017) TheHARMONIE-AROME

model configuration in the ALADIN-HIRLAM NWP system.

Monthly Weather Review, 145, 1919–1935.

Brown, A.R., Beljaars, A.C.M., Hersbach, H., Hollingsworth, A.,

Miller, M. and Vasiljevic, D. (2005) Wind turning across the

marine atmospheric boundary layer. Quarterly Journal of the

Royal Meteorological Society, 131, 1233–1250.

Burton, T., Jenkins, N., Sharpe, D. and Bossanyi, E. (2011) Wind

Energy Handbook (2nd ed.) Wiley, Chichester, UK.

C3S (2017). Copernicus Climate Change Service (C3S) Climate

Data Store (CDS). Available at: https://cds.climate.copernicus.

eu/cdsapp#!/home; accessed 21 January 2020.

Capon, R.A. (2003) Wind speed-up in the Dover Straits with the

Met Office new dynamics model.Meteorological Applications, 10,

229–237.

Couto, A., Silva, J., Costa, P., Santos, D., Simões, T. and Estanqueiro,

A. (2019) Towards a high-resolution offshorewind atlas – the Por-

tuguese case. Journal of Physics: Conference Series, 1356. https://

doi.org/10.1088%2F1742-6596%2F1356%2F1%2F012029

Dekker, M.M., Haarsma, R.J., de Vries, H., Baatsen, M. and van

Delden, A.J. (2018) Characteristics and development of Euro-

pean cyclones with tropical origin in reanalysis data. Climate

Dynamics, 50, 445–455.

Dörenkämper, M., Sïle, T. and Zagar, M. (2020) The making of the

new European wind Atlas, Part 2: production and evaluation.

Geoscientific Model Development Discussions. (personal commu-

nication, 5th January 2020).

Dörenkämper, M., Optis, M., Monahan, A. and Steinfeld, G. (2015)

On the offshore advection of boundary-layer structures and the

influence on offshorewind conditions.Boundary-LayerMeteorol-

ogy, 155, 459–482.

Duncan, J.B., Marseille, G.J. and Wijnant, I.L. (2019a). DOWA

validation against ASCAT satellite winds. Technical Report

R11649, TNO, Utrecht, Netherlands. Available at: https://www.

dutchoffshorewindatlas.nl/binaries/dowa/documents/reports/

2019/01/18/tno-report-dowa-validation-against-ascatsatellite-

winds/TNO+2018+R11649+DOWA+validation+ASCAT.pdf;

accessed 21 January 2020.

https://orcid.org/0000-0002-5922-8179
https://orcid.org/0000-0002-5922-8179
https://orcid.org/0000-0002-5922-8179
https://cds.climate.copernicus.eu/cdsapp#!/home
https://cds.climate.copernicus.eu/cdsapp#!/home
https://doi.org/10.1088%2F1742-6596%2F1356%2F1%2F012029
https://doi.org/10.1088%2F1742-6596%2F1356%2F1%2F012029


KALVERIA et al. 17

Duncan, J.B., van der Werff, P.A. and Bot, E.T.G. (2019b). Under-

standing of the offshore wind resource up to high altitudes

(≤ 315m). Technical Report R11592, TNO, Utrecht, Netherlands.

Available at: https://www.dutchoffshorewindatlas.nl/binaries/

dowa/documents/reports/2019/01/14/tno-report-offshore-wind-

resource/TNO+2018+R11592+Profiles_rev1.pdf; accessed 21

January 2020.

ECMWF (2016). Data assimilation, in IFS Documentation – Cy41r2,.

ECMWF, Reading, UK.

Gonzalez Rouco, F., García Bustamante, E., Hahmann, A.N., Karag-

ili, I., Navarro, J., Tobias Olsen, B., Sïle, T. and Witha, B. (2019).

NEWA Report on uncertainty quantification (Deliverable D4.4).

Available at: https://doi.org/10.5281/zenodo.3382572; accessed

21 January 2020.

Haarsma, R.J., Hazeleger, W., Severijns, C., De Vries, H., Sterl, A.,

Bintanja, R., Van Oldenborgh, G.J. and van den Brink, H.W.

(2013) More hurricanes to hit western Europe due to global

warming. Geophysical Research Letters, 40, 1783–1788.

Hahmann, A.N. (2020) The making of the new European Wind

Atlas, Part 1: model sensitivity. Geoscientific Model Development

Discussions. (personal communication, 5th January 2020).

Hewitt, S., Margetts, L. and Revell, A. (2018) Building a digital

wind farm.Archives of ComputationalMethods inEngineering, 25,

879–899.

Hogan, R.J., O'Connor, E.J. and Illingworth, A.J. (2009) Verifica-

tion of cloud-fraction forecasts. Quarterly Journal of the Royal

Meteorological Society, 135, 1494–1511.

Holtslag, A.A.M., Svensson, G., Baas, P., Basu, S., Beare, B., Bel-

jaars, A.C.M., Bosveld, F.C., Cuxart, J., Lindvall, J., Steeneveld,

G.J., Tjernström, M. and Van De Wiel, B.J.H. (2013) Stable

atmospheric boundary layers and diurnal cycles: challenges for

weather and climatemodels. Bulletin of the AmericanMeteorolog-

ical Society, 94, 1691–1706.

Jammalamadaka, S.R. and Sengupta, A. (2001) Topics in Circular

Statistics. World Scientific, Singapore.

Kalverla, P.C., Duncan, J.B., Steeneveld, G.-J. and Holtslag, A.A.M.

(2019a) Low-level jets over the North Sea based on ERA5 and

observations: together they do better. Wind Energy Science, 4,

193–209.

Kalverla, P.C., Steeneveld, G., Ronda, R., Holtslag, A.A.M. and M,

A.A. (2019b) Evaluation of three mainstream numerical weather

prediction models with observations from meteorological mast

IJmuiden in the North Sea.Wind Energy, 22, 34–48.

Kalverla, P.C., Steeneveld, G.-J., Ronda, R.J. and Holtslag, A.A.M.

(2017) An observational climatology of anomalous wind events

at offshore meteomast IJmuiden (North Sea). Journal of Wind

Engineering and Industrial Aerodynamics, 165, 86–99.

Muñoz-Esparza, D., Kosović, B., Mirocha, J. and van Beeck, J. (2014)

Bridging the transition from mesoscale to microscale turbulence

in numerical weather prediction models. Boundary-Layer Meteo-

rology, 153, 409–440.

Olauson, J. (2018) ERA-5: the new champion of wind power mod-

elling?. Renewable Energy, 126, 322–331.

Olson, J.B., Kenyon, J.S., Angevine, W., Brown, J.M., Pagowski, M.

and Sušelj, K. (2019a) A description of the MYNN-EDMF scheme

and the coupling to other components inWRF-ARW . NOAA Tech-

nical Memorandum OAR GSD-61, ESRL, Boulder, CO.

Olson, J.B., Kenyon, J.S., Djalalova, I., Bianco, L., Turner, D.D.,

Pichugina, Y., Choukulkar, A., Toy,M.D., Brown, J.M., Angevine,

W.M., Akish, E., Bao, J.-W., Jimenez, P., Kosovic, B., Lundquist,

K.A., Draxl, C., Lundquist, J.K., McCaa, J., McCaffrey, K., Lantz,

K., Long, C., Wilczak, J., Banta, R., Marquis, M., Redfern, S.,

Berg, L.K., Shaw, W. and Cline, J. (2019b) Improving wind

energy forecasting through numerical weather prediction model

development.Bulletin of theAmericanMeteorological Society, 100,

2201–2220.

Palutikof, J.P., Brabson, B.B., Lister, D.H. and Adcock, S.T. (1999) A

review of methods to calculate extreme wind speeds.Meteorolog-

ical Applications, 6, 119–132.

Parker, W.S. (2016) Reanalyses and observations: what's the dif-

ference?. Bulletin of the American Meteorological Society, 97,

1565–1572.

Parsons, M.J., Crosby, A.R., Orelup, L., Ferguson, M. and Cox,

A.T. (2018). Evaluation of ERA5 reanalysis wind forcing for

use in ocean response modeling. In: Waves in Shallow Envi-

ronments (WISE) conference, 22–26 April 2018, Tel Aviv, Israel.

Available at: https://oceanweather.com/news/_site/2018/04/20/

era5-evaluation-at-2018-wise.html

Petersen, E.L., Troen, I., Ejsing Jørgensen, H. and Mann, J. (2014)

The New European Wind Atlas. Energy Bulletin, 17, 34–39.

Poveda, J.P.M. and Wouters, D. (2015) Wind Measurements at Mete-

orological Mast IJmuiden. ECN, Petten, Netherlands. https://

publicaties.ecn.nl/PdfFetch.aspx?nr=ECN-E--14-058

Powers, J.G., Klemp, J.B., Skamarock, W.C., Davis, C.A., Dudhia, J.,

Gill, D.O., Coen, J.L., Gochis, D.J., Ahmadov, R., Peckham, S.E.,

Grell, G.A., Michalakes, J., Trahan, S., Benjamin, S.G., Alexan-

der, C.R., Dimego, G.J., Wang, W., Schwartz, C.S., Romine, G.S.,

Liu, Z., Snyder, C., Chen, F., Barlage, M.J., Yu,W. and Duda,M.G.

(2017) The Weather Research and Forecasting model: overview,

system efforts, and future directions. Bulletin of the American

Meteorological Society, 98, 1717–1737.

Sandu, I., Beljaars, A. and Balsamo, G. (2014) Improving the rep-

resentation of stable boundary layers. ECMWF Newsletter, 138,

24–29.

Sandu, I., Beljaars, A., Bechtold, P., Mauritsen, T. and Balsamo, G.

(2013) Why is it so difficult to represent stably stratified condi-

tions in numerical weather prediction (NWP)models?. Journal of

Advances in Modeling Earth Systems, 5, 117–133.

Sanz Rodrigo, J., Chávez Arroyo, R.A., Moriarty, P., Churchfield,
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