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Abstract: Perceptual video coding (PVC) can provide a lower bitrate with the same visual quality

compared with traditional H.265/high efficiency video coding (HEVC). In this work, a novel

H.265/HEVC-compliant PVC framework is proposed based on the video saliency model. Firstly,

both an effective and efficient spatiotemporal saliency model is used to generate a video saliency map.

Secondly, a perceptual coding scheme is developed based on the saliency map. A saliency-based

quantization control algorithm is proposed to reduce the bitrate. Finally, the simulation results

demonstrate that the proposed perceptual coding scheme shows its superiority in objective and

subjective tests, achieving up to a 9.46% bitrate reduction with negligible subjective and objective

quality loss. The advantage of the proposed method is the high quality adapted for a high-definition

video application.
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1. Introduction

High efficiency video coding (HEVC), also known as H.265, is the latest video coding

standard. It was released in 2013 and achieves an average bitrate reduction of 50% for fixed video

quality compared with the H.264/AVC which is a block-oriented motion-compensation-based video

compression standard. As regards the limited channel bandwidth and storage capacity, its coding

efficiency needs further improvement. A perceptual model based on the human visual system

(HVS) can be integrated into the video coding framework to achieve a low bitrate with a high

perceptual quality.

Saliency refers to the indication of the probability of human attention according to the visual

stimulus, and the term saliency often appears indistinguishably in two types of studies with different

approaches; the “different outputs” approach and the “different evaluations” approach [1]. The first

is a scientific study that aims to implement the psychophysical findings of human visual attention

systems. This approach is referred to as a saliency map, and computes how much attention a pixel

in a given image or video attracts, and then compares the output of the method with actual human

gaze data. These outputs are often in the form of a two-dimensional map. The second type is a form

of engineering studies, simply designed to extract meaningful objects. This approach is referred to

as salient object detection, which aims to estimate regions in a given image that contain meaningful

objects, and utilizes ground truth region labels for evaluation. Salient object detection is commonly

interpreted in computer vision as a process that includes two stages: (a) detecting the most salient
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object and (b) segmenting the accurate regions of that object. These outputs are often in the form of a

binary map.

Recently, perceptual video coding (PVC) has attracted lots of attention [2–4]. The perceptual

models in previous works have been divided into four categories: the visual attention (VA) model, the

region-of-interest (ROI) model, the visual sensitivity (VS) model, and the cross-modal attention (CMA)

model. A detailed description of these methods is as follows.

The main idea, according to the visual attention model, is to encode the importance of different

regions with bottom-up or top-down attention. Itti presents a biologically-motivated algorithm to

select visually-salient regions for video compression [5]. Gou et al. propose a novel multiresolution

spatiotemporal saliency detection model to calculate the spatiotemporal saliency map [6]. This method

can improve the coding efficiency significantly and works in real time. Wei et al. present an

H.265/HEVC-compliant perceptual video coding scheme based on visual saliency [7]. This method

can reduce the bitrate significantly with negligible perceptual quality loss. However, in previous

work, the video-based visual saliency model (VSM) has proved to be unsophisticated for use in video

coding. The main idea of the ROI model is to encode an area around the predicted attention-grabbing

regions with higher quality compared to other less visually important regions. Xu et al. present a

region-of-interest based H.265/HEVC coding approach to improve the perceived visual quality [8].

Grois et al. define a dynamic transition region between the region-of-interest and backgrounds [9],

then a complexity-aware adaptive spatial preprocessing scheme is presented for the efficient scalable

video coding. However, the above methods do not make a distinction between the different parts of the

non-moving region. The main idea, as regards the visual sensitivity model, is to improve the coding

performance with kinds of visual signal distortion sensitivity differences in HVS [10]. However, the

computation complexity is higher when using these models. The main idea of the cross-modal attention

model is to encode using multimodal interaction mechanisms [11]. However, it is not applicable for no

voice mixing of the video sequence. Recently, some innovative ideas have been developed to improve

the performance of video coding. Ferroukhi et al. propose a method combining bandelets and the set

partitioning in hierarchical trees (SPIHT) algorithm for medical video coding [12], and this method

has shown good high performances in terms of visual quality and peak signal-to-noise rate (PSNR)

at low bitrates. Rouis et al. present a novel approach for perceptually guiding the rate-distortion

optimization (RDO) process in H.265/HEVC [13], and this proposed method demonstrates a superior

rate-distortion (R-D) performance over a compared approach adopting a similar scheme. Moreover,

the learning-based perceptual video coding methods are proposed to improve video quality [14,15].

However, the computation complexity of these methods is high.

In summary, the research related to PVC has made great progress in recent years, but there are

deficiencies. For example, there is lack of effective saliency detection computing models for video

coding applications. Image-based saliency detection has been extensively studied over the past decades.

However, the research related to video-based saliency detection is much less explored. The existing

saliency detection models only consider some of the characteristics of the image, and some of the

temporal and context information is ignored. Moreover, most of the computation models are based

on the pixel level. The computation complexity is too high, making it is unfavorable for real-time

video applications.

In this paper, we proposed a new saliency detection model for video compression. Firstly, a novel

saliency object detection model is proposed to generate a spatiotemporal saliency map. Secondly,

the H.265/HEVC-compliant perceptual coding framework is developed based on the spatiotemporal

saliency map. This paper has the following contributions: (1) a new superpixel-based salient object

model is proposed which incorporates spatial and temporal features. (2) the proposed perceptual

coding method achieves higher compression rates with a good balance between subjective and objective

quality compared to the H.265/HEVC reference model.
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2. Proposed Perceptual Video Coding Algorithm

2.1. System Overview

Figure 1 shows the framework of the saliency-based H.265/HEVC. This perceptual video coding

framework includes two parts: the perceptual module and the encoder. The perceptual module is used

to generate the saliency map using the spatiotemporal information. The saliency map is inputted so

the encoder can determine the quantization parameters.

Inter-/Intra-

prediction
Transform Quantization

Current 

frame

Previous

frame

Entropy

encode

Saliency map

Perceptual module

Encoder

Image 

preprocessing

bitstream

Figure 1. Proposed system framework of the perceptual video coding.

2.2. Video-Based Spatiotemporal Saliency Detection Model

For monitoring video, the moving object is the most attractive point of attention for a human.

Meanwhile, there are the static features in the video. Thus, the spatiotemporal saliency map generated

by the visual attention model and moving object detection model can be explored to guide the bit

allocation for video coding.

For the input video signal, the spatial saliency and temporal saliency are computed using the

spatiotemporal information, respectively. Therefore, according to a certain weight coefficient, the

spatial and temporal saliency are merged into the final saliency map.

A good deal of research effort has already been devoted to saliency models for images. The image

saliency models can be used for spatial saliency detection in each video frame. In this paper, the spatial

saliency computation is based on the Markov chain (MC) saliency detection model developed by

Lu et al. [16], which is both effective and efficient. The main details of the MC saliency algorithm are

as follows:

• A single layer graph G(V, E) with superpixels is constructed, where V and E represent the nodes

and edges of G, respectively. On the G, each node, including transient nodes and absorbing

nodes, is connected to the transient nodes which neighbor it or share common boundaries with

its neighboring nodes. Thus, the weight wij of the edge eij between adjacent nodes i and j is

defined as

wij = e
−
||xi−xj ||

σ2 (1)

where xi and xj represent the mean of the two nodes in the CIELAB color space, and σ is a constant.
• The nodes are renumbered so that the first t nodes are transient nodes and the last r nodes are

absorbing nodes, and the affinity matrix A and degree matrix D can be expressed with wij. Then,

the transition matrix P on the sparsely connected graph can be calculated from matrix A and

D. After that, using the Markov chain theory, the absorbed time for each transient state can be

calculated based on the transition matrix P. Finally, the saliency map S can be generated by

normalizing the absorbed time.

The basic idea of the MC method is to detect the saliency using the time property in an absorbing

Markov chain. The virtual boundary nodes are identified as absorbing nodes based on the prior
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boundary. The saliency is computed as the absorbed time to the absorbing nodes. On the basis of

the MC saliency model, the spatial saliency value is represented as SS(i) for each pixel i.

Particularly for videos, the temporal information is a significant hint, and more context exists in

the field of video saliency detection. In video saliency detection, the optical flow technique can detect

motion accurately. MVx(x, y) and MVy(x, y) are represented as the horizontal and vertical motion

vector by using the Lucas–Kanade (LK) algorithm [17]. Thus, the motion vector amplitude (MVA)

MV(x, y) is calculated as

MV(x, y) =
√

MVx(x, y)2 + MVy(x, y)2. (2)

Furthermore, the MVA is enhanced as

Smv(x, y) =

{

α×MV(x, y)− α× β if MV(x, y)>β

0 otherwise
(3)

where α and β are parameters, in this work, α = 10 and β = 2. Finally, the Smv(x, y) value is clipped to

the [0, 255] range:

Ŝmv(x, y) =

{

255 if Smv(x, y)>255

Smv(x, y) others
(4)

Then, the Ŝmv(x, y) can be assigned the temporal saliency value ST(i) for pixel i(x, y):

ST(i) = Ŝmv(x, y). (5)

The temporal saliency reflects the dynamic characteristics of the video, while the spatial saliency

reflects the static characteristics of the video. When the spatial and temporal saliency maps are

constructed, we use them to get the final video saliency map. Figure 2 shows the block diagram

of the spatiotemporal saliency fusion framework. For the input video signal, the spatial saliency

and temporal saliency are computed by using the spatiotemporal information, respectively. Thus,

according to a certain weight coefficient, the spatial and temporal saliency are merged into the final

saliency map.

Spatial saliency 

computation

Temporal moving 

object detection

Spatiotemporal 

saliency fusion

Input video

Final saliency map

Figure 2. Spatiotemporal saliency fusion framework.
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Different fusion methods can be utilized, and the linear fusion is used in this paper. The final

video saliency map SST(i) is generated by

SST(i) = (1−ωt)× SS(i) + ωt × ST(i) (6)

where ωt is the weight of the temporal saliency, and (1− ωt) is the weight of the spatial saliency.

The weight ωt is determined by the contribution of temporal characteristics in the spatiotemporal

saliency. The best experimental combination that we obtained for Equation (6) was achieved for

ωt = 3/7 in this paper [18].

In the video, the moving objects are regarded as the salient region. Finally, the superposition

of spatiotemporal saliency is taken as the final saliency with linear fusion. Figure 3d shows the

spatiotemporal saliency for the third frame of the BasketballDrill sequence.

(a) Original image (b) Spatial saliency

(c) Temporal saliency (d) Spatiotemporal saliency

Figure 3. The saliency fusion of BasketballDrill sequence.

It is noted that this work is different from the existing method [6]. Firstly, the Markov chain-based

saliency detection model in this work is a spatial domain approach, while the phase spectrum of

quaternion Fourier transform (PQFT) model in the existing method [6] is a frequency domain one.

However, the PQFT-based saliency model only highlights the boundaries of the salient object while

the object interior still has a low saliency value. Secondly, the Markov chain-based saliency detection

method in the proposed work can enhance the object interior significantly. Moreover, the proposed

method is more effective in saliency detection. Figure 4 shows an example of the saliency maps

calculated by PQFT and the proposed methods, and it was discovered that the proposed method can

predict eye fixations better than the PQFT method.

Moreover, for good saliency detection, a model should meet at least the following two criteria:

(a) Good detection: the probability of missing real salient regions and falsely marking the background

as a salient region should be low. (b) High saliency value: the boundaries of salient regions and region

interiors have a high saliency value. The advantages of the proposed work are as follows: (1) In this

work, the optical flow technique is used to detect temporal saliency, which can detect moving objects
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precisely. (2) The Markov chain-based saliency detection method in the proposed work can enhance

the region’s interior significantly. Thus, the generated saliency map with the proposed method can

increase the coding performance.

(a) input image

(b) PQFT method

(c) Proposed method

Figure 4. Saliency maps calculated by the phase spectrum of quaternion Fourier transform (PQFT) and

proposed methods.

2.3. Saliency-Based Quantization Control Algorithm

In the video, the moving objects are regarded as the salient region. Finally, the superposition of

spatiotemporal saliency is taken as the final saliency with linear fusion.

In H.265/HEVC standards, the coding unit (CU) is a square region and is a node of the quad-tree

partitioning of the coding tree units (CTU) [19]. The quad-tree partitioning structure allows recursive

splitting into four equally sized nodes, and the minimum CU size is configured to be 32× 32, 16× 16, or

8× 8 that of the luma samples. Coding unit tree is an algorithm for adaptive quantization parameters

(QP). In order to control QP in the encoder, the saliency map can be partitioned into the block with a

size of 64× 64. Then, the block-based saliency average value SST(x, y) is calculated as

SST(x, y) =
∑

N
x=0 ∑

N
y=0 SST(x, y)

N2
(7)

where N is CU size, and SST(x, y) is the saliency value of the pixel i(x, y) within a CU.

In H.265/HEVC standards, a QP is used to determine the quantization step, the setting range of

QP is from 0 to 51. In order to associate the block-based saliency value with QP, the saliency value can

be normalized to the range [0, 3]. In this paper, the min–max normalization method is used to generate

the saliency level for the block-based saliency average value SST(x, y):

∆S = 3×
SST(x, y)− Smin

Smax − Smin
(8)

where ∆S is the calculated saliency level, and Smax and Smin are the maximums and minimums of

SST(x, y), respectively.
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When the ∆S value is high, the corresponding image can be encoded as a foreground. In contrast,

when the ∆S value is low, the corresponding image can be encoded as a background. In the perceptual

video coding process, the foreground needs to increase the allocated bitrate resources, while the

background needs to reduce the allocated bitrate resources. In video coding, QP is used to adjust

distortion. When the QP is larger, the image distortion is higher. Therefore, a high QP is used for the

foreground coding, and a low QP is used for the background coding. On the basis of the saliency level

∆S, the setting quantized parameters (QPset) can be dynamically adjusted in the encoding process.

When QPde f is the default quantized parameter, and the QPde f has four values (22, 27, 32, and 37) in

H.265/HEVC reference software. Thus, the saliency-based quantization control algorithm is shown in

Algorithm 1. By using the proposed method, more image distortion is introduced to CUs with a low

saliency while less to CUs with a high saliency.

Algorithm 1: Saliency-based quantization control algorithm

Input: image sequence: I, saliency map: S, default quantized parameter: QPde f

Output: QPset

1 for CU(x,y) ∈ I do

2 get the spatiotemporal saliency values: SST ;

3 calculate the mean value of (u,v) block in S: SST and ∆S;

4 if ∆S == 3 then

5 QPset ← QPde f -1;

6 else if ∆S == 2 then

7 QPset ← QPde f +3;

8 else if ∆S == 1 then

9 QPset ← QPde f +5;

10 else

11 QPset ← QPde f +7;

12 return QPset

3. Experiment Results

The proposed algorithm is implemented and verified based on the H.265/HEVC reference model

HM 16.0. The quantization parameters are set to 22, 27, 32, and 37, respectively. The configuration

profile is low-delay (LD).

The performance of the proposed algorithm is evaluated by the average bitrate saving (BS) and

Bjontegarrd Delta PSNR (BD-PSNR) according to Reference [20]. The BS is calculated as

BS(%) =
1

4

4

∑
i=1

BRHM(QPi)− BRpro(QPi)

BRHM(QPi)
× 100% (9)

where BRHM(QPi) and BRpro(QPi) are the bitrates using the H.265/HEVC reference software and the

proposed method with different QPi.

The double stimulus continuous quality scale (DSCQS) method is used for subjective

evaluation [21]. The subjects are presented with pairs of video sequences, where the first sequence is

the H.265/HEVC reference video and the second sequence is the video with the proposed method.

Secondly, a total of 24 naive viewers take part in the test campaign, and all viewers are screened for

the correct level of visual acuity and color vision. Thirdly, viewers are expected to mark their visual

quality score on an answer sheet with a quality rating scale over a defined scale that is defined in

Table 1.
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The subjective evaluation of video quality is evaluated by the difference mean opinion score

(MOS) average values Delta MOS (D-MOS), which is calculated as

D-MOS =
1

4

4

∑
i=1

(MOSpro(QPi)−MOSHM(QPi)) (10)

where MOSpro(QPi) and MOSHM(QPi) are the measured MOS values from the sequence encoded by

the proposed method and the H.265/HEVC reference software HM 16.0 with different QPi, respectively.

Table 1. Scale.

Scale MOS

Very annoying 1
Annoying 2

Slightly annoying 3
Perception but not annoying 4

Imperception 5

In the ablation study, the results of spatial-only, temporal-only, and the proposed spatiotemporal

saliency-based quantization control scenarios are shown in Table 2. From the experimental results,

it can be seen that the average bitrate saving and Bjontegarrd Delta PSNR loss are 6.51%, 0.059 dB,

and 6.09%, 0.053 dB for the spatial-only, temporal-only scenarios, respectively. For the proposed

spatiotemporal method, the bitrate can be reduced by 5.22% while the Bjontegarrd Delta PSNR loss is

only 0.046 dB on average. Thus, the objective distortion of the proposed method is smaller compared

with the spatial-only and temporal-only scenarios.

Table 2. The results of quantization control algorithm.

Spatial-Only Temporal-Only Spatio-Temporal (Proposed)

Class Sequence BS(%) BD-PSNR(dB) D-MOS BS(%) BD-PSNR(dB) D-MOS BS(%) BD-PSNR(dB) D-MOS

1920× 1080 ParkScene 4.66 −0.146 −0.059 4.13 −0.173 0.029 4.75 −0.139 0.206
Cactus 6.35 −0.142 −0.323 5.80 −0.129 −0.235 5.45 −0.140 0.030
BQTerrace 11.01 −0.155 −0.294 9.56 −0.133 −0.206 9.46 −0.148 0.073

1280× 720 Vidyo1 7.01 −0.060 −0.147 6.20 −0.010 −0.059 4.06 −0.048 0.162
Vidyo3 9.64 −0.049 −0.162 7.59 −0.001 −0.073 6.21 −0.057 0.118
Vidyo4 7.66 −0.031 −0.088 6.47 −0.015 −0.015 5.14 −0.025 0.162

High Res. Average 7.72 −0.097 −0.179 6.63 −0.077 −0.093 5.85 −0.093 0.125
832× 480 BasketballDrill 5.78 −0.017 0.029 4.94 −0.047 0.117 3.06 −0.003 0.206

BQMall 7.39 −0.005 −0.177 6.59 0.012 −0.177 5.81 0.016 0.132
PartyScene 6.13 −0.052 −0.236 6.08 −0.068 −0.147 4.80 −0.044 0.103
RaceHorsesC 0.99 −0.115 −0.192 2.05 −0.152 −0.103 3.31 −0.094 0.044

416× 240 BasketballPass 6.27 0.027 −0.133 5.98 0.020 −0.045 5.17 0.058 0.014
BQSquare 7.08 0.042 −0.238 8.34 0.043 −0.177 5.75 0.060 −0.059
BlowingBubbles 7.40 −0.057 −0.323 7.49 −0.033 −0.235 6.08 −0.031 −0.191
RaceHorses 3.79 −0.070 −0.176 4.03 −0.059 −0.088 3.98 −0.044 −0.015

Low Res. Average 5.60 −0.031 −0.181 5.69 −0.036 −0.107 4.74 −0.010 0.029
Average 6.51 −0.059 −0.180 6.09 −0.053 −0.101 5.22 −0.046 0.070

For our experiments, we selected four test sequences of different resolutions. The four test

sequences were also selected by considering the diversity of spatial characteristics and temporal

characteristics. The four test sequences were the ‘ParkScene’ sequence with a resolution of 1920× 1080,

the ‘Vidyo1’ sequence with a resolution of 1280× 720, the ‘BasketballDrill’ sequence with a resolution

of 832× 480, and the ‘BasketballPass’ sequence with a resolution of 416× 240. The test results of the

proposed method are shown in Table 3, compared to H.265/HEVC reference software with four QP

values of 22, 27, 32, and 37, It shows that the proposed PVC method can achieve 1.22%–8.84% bitrate

reduction for the test sequences, where Bitrate− Reduction(%) = HM16.0 Bitrates−Proposed Bitrates
HM16.0 Bitrates × 100%.

It is also observed in Table 3 that the bitrate reduction values are usually decreased as the QP value

increases for the proposed method. This is because the distortions introduced by quantization errors

are high enough at high QP values. It is noted in Table 3 that the average time saving is 0.16% for
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the test sequences (Time− Saving(%) = HM16.0 Encoding Time−Proposed Encoding Time
HM16.0 Encoding Time × 100%), compared

to the H.265/HEVC reference software. Thus, the proposed method is effective, and the computational

cost of the proposed method is almost the same as the H.265/HEVC reference software.

Table 3. The performance comparison with the H.265/HEVC reference software.

PSNR (dB) Bitrates (kbps)

Sequence
(Size)

QP HM16.0 Proposed HM16.0 Proposed
Bitrate − Reduction

(%)
Time − Saving

(%)

ParkScene
(1920× 1080)

22 40.02 39.58 10,462.13 9805.68 6.27 2.73

27 37.33 37.00 4492.62 4270.77 4.94 1.04
32 34.65 34.41 2034.98 1955.44 3.91 −1.37
37 32.16 31.98 924.67 888.67 3.89 −1.50

Vidyo1
(1280× 720)

22 43.34 43.05 3405.15 3104.26 8.84 0.18

27 41.25 41.07 1483.55 1422.43 4.12 −1.71
32 38.92 38.82 791.84 778.56 1.68 −2.81
37 36.21 36.12 450.40 443.17 1.61 −3.96

BasketballDrill
(832× 480)

22 40.80 40.56 4025.28 3828.77 4.88 4.67

27 37.66 37.49 1953.63 1871.79 4.19 0.80
32 34.72 34.63 954.91 936.29 1.95 −1.15
37 32.23 32.17 501.79 495.65 1.22 −1.30

BasketballPass
(416× 240)

22 41.44 41.09 1086.85 1003.60 7.66 2.02

27 37.82 37.58 560.75 527.07 6.01 2.44
32 34.47 34.33 282.05 272.08 3.54 1.23
37 31.48 31.36 145.73 140.69 3.46 1.21

Average 4.26 0.16

When the Delta MOS values are smaller, the subjective qualities are closer to the original

H.265/HEVC reference software. The fifth, eighth, and eleventh columns in Table 2 show the visual

quality for the spatial-only, temporal-only, and spatiotemporal scenarios. It can be seen from the

table that the average absolute Delta MOS value of the proposed method is even smaller than 0.1.

Figure 5 shows the typical example of MOS curve for Vidyo1 and BasketballDrill sequences among

the spatial-only, temporal-only, spatio-temporal methods, and the H.265/HEVC reference model.

From these figures, it can be seen that the proposed method shows visual quality improvements

over the H.265/HEVC reference model, spatiotemporal methods, and temporal-only scenarios.

Furthermore, when QP is set to 37, Figure 6 shows the difference between the image of pure-HEVC

and the image of the proposed reconstructed video for RaceHorsesC sequence. As can be seen from

the graphic, at the low bit-rate, the visual quality of the proposed method is better than the visual

quality of pure-HEVC.
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Figure 5. Rate mean opinion score (MOS) curves for quantization control algorithm.

(a) RaceHorsesC (pure-HEVC ) (b) RaceHorsesC (Proposed)

Figure 6. Visual quality comparison between the pure high efficiency video coding (HEVC) and the

proposed method.

Furthermore, the comparative results with previous work are shown in Table 4, with QP set to 32.

For Bae’s work [10], the average bitrate saving and Delta MOS are 1.4%, 0.3, respectively. In contrast,

the average bitrate can be reduced by 3.9% and the Delta MOS is 0.2 for the proposed scheme. Thus,

the performance of the proposed method is superior to Bae’s work.

Table 4. Comparisons of rate and Delta MOS values (QP = 32).

Bae [10] Proposed

Sequence BS(%) D-MOS BS(%) D-MOS

BQTerrace 3.6 0.9 5.9 0.1
Catus 0.8 0.0 2.2 0.0
ParkScene 0.8 −0.3 3.3 0.1
BQMall 0.9 0.2 4.2 0.4
Average 1.4 0.3 3.9 0.2

In summary, from the objective and subjective test results, the proposed perceptual video coding

scheme can achieve higher compression rates with the balance between subjective and objective quality

compared to the H.265/HEVC reference model.
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4. Conclusions

In this paper, we proposed a novel perceptual video coding scheme based on the spatiotemporal

saliency model. Simulation results demonstrate that the proposed perceptual coding scheme can save

of 5.22% bitrate, while the Bjontegarrd Delta PSNR is only 0.046 dB on average. Moreover, the average

absolute Delta MOS value of the proposed method is even smaller than 0.1.
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