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Projection to latent structures (PLS)model has beenwidely used in quality-related processmonitoring, as it can establish amapping
relationship between process variables and quality index variables. To enhance the adaptivity of PLS, kernel PLS (KPLS) as an
advanced version has been proposed for nonlinear processes. In this paper, we discuss a new total kernel PLS (T-KPLS) for nonlinear
quality-related process monitoring. 
e new model divides the input spaces into four parts instead of two parts in KPLS, where
an individual subspace is responsible in predicting quality output, and two parts are utilized for monitoring the quality-related
variations. In addition, fault detection policy is developed based on the T-KPLS model, which is more well suited for nonlinear
quality-related process monitoring. In the case study, a nonlinear numerical case, the typical Tennessee Eastman Process (TEP)
and a real industrial hot strip mill process (HSMP) are employed to access the utility of the present scheme.

1. Introduction

Multivariate statistic process monitoring (MSPM) is e�ective
for detecting and diagnosing abnormal operating situations
in many industrial processes, which helps by improve prod-
ucts’ quality a lot. In MSPM, projection to latent structures
(PLS) model pays more attention to quality-related faults
while principal component analysis (PCA) considers all faults
in a process [1–7]. 
e major advantage of PLS is its ability to
capture the relations of a large number of highly correlated
process variables and few quality variables. By building a PLS
model on process variables and quality variables, the process
data can be projected onto two low-dimension subspaces [1,
8]. 
en some statistics can be calculated in these subspaces
separately. It should be noted that PLS is a linear algorithm;
thus, it performs well in linear or approximately linear data.
However, when the process data have strong nonlinearity,
PLS will give unsatisfactory results [8].

Formany physical and chemical processes, the nonlinear-
ity lying in the process data and quality data is too obvious
to be neglected. To deal with this problem, many nonlinear

PLS methods have been proposed [6, 9]. Generally, PLS can
be improved by two ways for nonlinear cases, which are the
modi�cation of inner model and the modi�cation of outer
model, which re�ects the relation between process variables
and quality variables. A method called kernel projection
to latent structures (KPLS) proposed by Rosipal and Trejo
is developed successfully as a nonlinear PLS model [10].
In KPLS model, the original input data are transformed
into a high-dimensional space via nonlinear mapping, and
then a linear PLS model is created between the feature data
and quality data [11–13]. KPLS takes the advantage over
other nonlinear PLS approaches as it avoids the nonlinear
optimization [14, 15]. In fact, it just uses the linear algorithm
of PLS in the high-dimensional feature space.

In the aforementioned literature [16, 17], Li et al. revealed
the geometric properties of PLS for process monitoring
and compared monitoring policies based on various PLS,
which indicates that the standard PLS model divides the
measured space into two oblique subspaces. One includes
the quality-related variations; another subspace contains
the quality-unrelated variations. Two statistics are usually
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utilized for fault detection separately [3, 18]. Although
PLS-based methods work well in several cases, there are still
some problems. In regular PLS, there are usually many com-
ponents extracted from process variables X for predicting
quality variables Y. As a result, the PLS model is complex
to interpret [16, 19–21]. 
ese PLS components still include
variations orthogonal to Y which have no contribution for
predicting Y. On the other hand, the X-residuals from PLS
model are not necessarily small in covariances. 
is makes
the use of� statistic on X-residuals inappropriate. 
e KPLS
model space decomposition is similar to PLS model, with the
above-mentioned defects.

In order to improve the KPLS model, a new total kernel
PLS (T-KPLS) is proposed for nonlinear quality-related
process monitoring in this paper. First of all, we reveled and
summarized the existing KPLS model and corresponding
process monitoring techniques. 
en T-KPLS is developed.

e properties of the new model and the process monitoring
strategies are discussed then. T-KPLS model can describe
the nonlinear process according to quality data e�ectively
and also give a further decomposition on the feature spaces
in KPLS. Actually, besides nonlinearity, traditional MSPM
approaches also possess the assumption that the processes
operate under a Gaussian distribution and in a single mode.
Also, increasing number of studies can be found in this area.
However, due to the scope in this paper, these issues will be
considered in the subsequent researches [14, 15, 22–25].


is paper is organized as follows. KPLS-related algo-
rithm and process monitoring methods are introduced in
Section 2. Section 3 proposes the algorithm of T-KPLS, dis-
cusses its properties, and constructs T-KPLS-based process
monitoring policy. Section 4 provides a numerical simulation
example and TEP benchmark to illustrate the feasibility of
T-KPLS-based approaches. Furthermore, the new method is
also implemented to a real industrial hot strip mill process in
Section 5. Finally, this paper is concluded in Section 6.

Notation. 
e notation adopted in this paper is fairly stan-
dard. All vectors andmatrices are presented in a bold fashion
and written in a vector-matrix style. 
e symbols for scalars
and functions are regularly formulated throughout this paper.

2. KPLS Model for Process Monitoring

2.1. KPLS Model. For a nonlinear process, the input matrix

can be de�ned as X = [x1, x2, . . . , x�]� ∈ R
�×�, which

consists of � samples with � process variables, and output
matrix with � quality variables can be denoted by Y =[y1, y2, . . . , y�]� ∈ R

�×�. De�ne � as a nonlinear map which
maps the input vector from the original space into the feature
space �, in which they are related linearly approximately.
A�er the nonlinear map, the original input matrix X is

changed to Φ = [�(x1), �(x2), . . . , �(x�)]� ∈ R
�×�.

Note that the dimensionality of the feature space 	 can
be very large and even in�nite. De�ne K ∈ R

�×� as the

kernel matrix to represent ΦΦ�, where K�� = 
(x�, x�) =⟨�(x�), �(x�)⟩, 
, � = 1, 2, . . . , �, where
(⋅) is an inner product
operator in feature space.With the kernel trick, one can avoid
performing explicit nonlinear mapping [10]. Similar to PLS,

KPLS algorithm sequentially extracts the latent vectors t, u
and the weight vectors w, q from the Φ and Y matrices [12].
To eliminate the mean e�ect, mean centering in the high-
dimensional space is performed. In order to center the feature
data to zero mean, the following preprocessing for normal

training data is necessary [10, 12, 13]: Φ = Φraw − 1�Φraw,
where Φraw is the directly mapped matrix, Φraw denotes the
mean of Φraw, and 1� represents the �-dimension column
vector whose elements are all one. So the centered K can be
calculated as follows:

K = (I� − (1�) 1�1��)Kraw (I� − (1�) 1�1��) . (1)

For a test sample xnew ∈ R
�, the directly mapped

feature vector is �(xnew)raw ∈ R
�; then the inner product

is calculated by (Knew
raw )� = ⟨�(x�), �(x�)⟩ = 
(x�, xnew). 
e

centered vector �(xnew) is �(xnew) = �(xnew)raw − Φ�raw and
Knew are mean-centered as

Knew = (I� − (1�) 1�1��)(Knew
raw − (1�)Kraw1�) . (2)


e algorithm of KPLS modeling has been illustrated in
Appendix A. A�er that,Φ and Y can be represented as

Φ = Φ̂ +Φ	 = TP
� +Φ	,

Y = Ŷ + Y	 = TQ
� + Y	. (3)

Let R = Φ�U(T�KU)−1 ∈ R
�×
; then

T = ΦR. (4)


e derivation of (4) is presented in Appendix B.

e determination of kernel function
(⋅) is very impor-

tant. According to Mercer’s theorem, there exists a mapping
into a space where a kernel function acts as a dot product
if the kernel function is a continuous kernel of a positive
integral operator. Hence, the necessary condition for the ker-
nel function is to meet Mercer’s theorem [10, 27]. A speci�c
choice of kernel function implicitly determines the mapping
Φ and the feature space �. 
e most widely used kernel
functions includeGaussian, polynomial, sigmoid function. In
this study, the Gaussian kernel function is considered


(�, �) = exp(−����� − �����2� ) , (5)

where the parameter � is the width of a Gaussian function. It
plays a crucial role in process monitoring. In general, when �
becomes large, the robustness of thismodel increaseswhereas
the sensitivity decreases. Namely, false alarms decrease while
missing alarms increase. In [28], Mika et al. proposed a
method for determining �, which is widely utilized for KPLS-
based nonlinear regression [29]. In this paper, �rst of all,
we choose an appropriate false alarm rate level for normal
training data (10% in this paper). 
en � can be searched
along with the component number � until that the KPLS
model with � components acquired by cross validation
presents a false alarm rates below the prede�ned level.
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2.2. KPLS-Based Fault Detection. Usually �2 and � statistics

are used in KPLS-based monitoring, where �2 is for quality-
related faults and � for quality-unrelated faults. Given a new
sample, the score tnew of �(xnew) can be calculated as

tnew = R
�� (xnew) = (U�KT)−1U�Knew ∈ R


. (6)


e residuals of �(xnew) are represented as �	(xnew) =�(xnew) −Ptnew, which cannot be calculated directly. Further,
two statistics �2 and � can be calculated [3, 19] as follows:

�2 = t
�
newΛ−1tnew,

� = �����	 (xnew)����2,
(7)

where Λ = (1/(� − 1))T�T. Two kinds of control limits are
given, respectively: (�(�2 − 1)/(�(� −�)))�
,�−
,� and !"ℎ2 ,�.�
,�−
 is �-distribution with� and �−� degrees of freedom.!"2ℎ is the "2-distribution with scaling factors ! and ℎ degrees
of freedom [13]. Although �(xnew) is unavailable, it is able to
calculate � by the kernel trick as follows:

� = �� (xnew) � (xnew) − 2t�newT�Knew + t
�
newT
�
KTtnew,

(8)

where

�� (xnew) � (xnew)
= 1 − (2�)

�∑
�=1
K

new
raw (
) + ( 1�2 )

�∑
�=1

�∑
�=1

Kraw (
, �) . (9)

3. T-KPLS Model for Nonlinear Data

KPLS divides the feature space � into two subspaces. One is
the principal space which is monitored by �2, re�ecting the
major variation related to Y. 
e other is the residual space
which is monitored by �, re�ecting the variation unrelated

toY. However, the principal part Φ̂ contains variations which
do not a�ect output Y and is useless for predicting Y. For the
residual part Φ	, as the objective of KPLS is to maximize the
covariance betweenΦ and Y, it does not extract the variance
of Φ in a descending order. So the latter KPLS score may
capture more variance in Φ than the previous one. A�er the
score vectors have been extracted, Y is best predicted, but the
residual ofΦmay still contain the large variability.
erefore,
it is not suitable to use� statistic to monitor the residual part
in KPLS. In this part, a T-KPLSmodel is proposed to improve
the original KPLS model. Following that, the T-KPLS-based
process monitoring strategy is established.

3.1. T-KPLSModel. 
eT-KPLSmodel is a further decompo-
sition on the KPLSmodel. It can be thought as a postprocess-

ingmethod to decompose the Φ̂ andΦ	 further in KPLS.
e
detailed algorithm for T-KPLS can be found in Algorithm 1.

In step (4) of Algorithm 1, loading matrix P
 = Φ�
W
 ∈
R
�×
� , whereW
 ∈ R

�×
� contains the scaled eigenvectors

of (1/�)Φ
Φ�o corresponding to its �
 largest eigenvalues. In

Table 1: Meaning of di�erent sections ofΦ.

Section Description

Φ� 
e Y-related part of Φ̂ which is responsible for
predicting Y

Φ
 
e part of Φ̂ that is orthogonal to Y in original T of
KPLS

Φ	� 
e principal part ofΦ	 which represents a large
variation inΦ	

Φ		 
e residual part which is not excited inΦ

step (5), P	 = Φ�	W	 ∈ R
�×
� , where W	 ∈ R

�×
� are
the scaled eigenvectors of (1/�)Φ	Φ�	 corresponding to its�	
largest eigenvalues [27]. As �(⋅) is unknown, the algorithm
in Algorithm 1 cannot be implemented intuitively, while the
calculable steps are shown in Algorithm 2. In Algorithm 2,

K
 = %�TT�KTT�%�,
K	 = (I� − TT

�)K (I� − TT
�) , (10)

where %� = I� − T�(T��T�)−1T�.
In T-KPLS model, we can modelΦ and Y as follows:

Φ = Φ� +Φ
 +Φ	� +Φ		,
Y = T�Q

�
� + Y	. (11)


e meanings of di�erent sections of Φ are listed in
Table 1. Compared with KPLS, T-KPLS is clearer for describ-
ing Φ and more suitable for monitoring di�erent parts of�(x). T-KPLS does not change the prediction ability of Y,
but it decomposes Φ thoroughly supervised by Y. T� is the
score of Φ� and completely related to Y from the original T,
whereas T
 is the score ofΦ
 and orthogonal to Y in original
T. T	 is the main part of Φ	. Φ		 represents the residual of
Φ and the noise. Note that in the T-KPLS model, all the
scores T�, T
, and T	 have their de�nite values. However, the
loadingsP�,P
, andP	 are unknown because of the uncertain
map function �.

In T-KPLS, the orthogonality among all score vectors
holds. Meanwhile, T
 is orthogonal to output Y. 
e proof
is omitted, and one can refer to Zhou et al. [19].

3.2. T-KPLS-Based Quality-Related Process Monitoring. In
multivariate statistical process monitoring, two types of
statistics are widely used for fault detection. One is the &
statistic which calculates the Mahalanobis distance between
new scores and the normal scores. 
e other is the� statistic
which represents the square predict error of the sample. As for
T-KPLS, the similar statistics are constructed. A�er T-KPLS
model is built from normal historical data, the new scores
and residuals are calculated from the new sample. 
en, the
statistics are constructed with corresponding control limits
for fault detection.
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(1) Perform KPLS algorithm on X and Y to get the model described in (3)

(2) Run PCA on Ŷ with �� components, where Ŷ = T�Q
�
� , �� = rank(Q)

(3) De�neΦ� = T�P
�
� , where P

�
� = (T��T�)−1T��Φ̂, P� ∈ R

�×
�

(4) Run PCA onΦ
 = Φ̂ −Φ�, with �
 components, �
 = � − ��,Φ
 = T
P
�



(5) Perform PCA onΦ	, with �	 components, where �	 is determined using PCA methods,

Φ	� = T	P
�
	

(6)Φ		 = Φ	 −Φ	� = Φ	 − T	P
�
	

Algorithm 1: T-KPLS algorithm for comprehension.

Obtain K and Y

(1) A�er KPLS model: T = KU(T�KU)−1
(2) Run eigenvector decomposition on Ŷ: T� = ŶQ� = TQ�Q�
(3) Perform eigenvector decomposition on (1/�)K
 to get the eigenvectors

W
 with regard to its largest �
 eigenvalues. T
 = K
W

(4) Perform eigenvector decomposition on (1/�)K	 to get the eigenvectors

W	 with regard to its largest �	 eigenvalues. T	 = K	W	

Algorithm 2: T-KPLS algorithm for calculation.

Table 2: Monitoring statistics and control limits.

Statistic Calculation Control limit

�2� t��newΛ−1� t�new
�� (�2 − 1)
� (� − ��) �
� ,�−
� ,�

�2
 t�
newΛ−1
 t
new
�
 (�2 − 1)� (� − �
) �
� ,�−
� ,�

�2	 t�	newΛ−1	 t	new
�	 (�2 − 1)� (� − �	) �
� ,�−
� ,��	 �����		 (xnew)����2 !"2ℎ,�

According to T-KPLS model, three score vectors can be
calculated as follows:

t�new = Θ�Knew ∈ R

� ,

t
new = Θ
Knew ∈ R

� ,

t	new = Θ	Knew ∈ R

� .

(12)

Motivated by total PLS- (T-PLS-) based methods [19],
four fault detection indices are constructed in Table 2. 
e
expression of �	 can be calculated as follows:

�	 = �� (xnew) � (xnew) − K
�
newΩ	Knew. (13)


e detailed expression of (12) and �	 for calculation are
shown in Appendix C.

3.3. Model Implementation. Implementation of the T-KPLS-
based quality-related detection scheme involves o�ine train-
ing model and online testing model. As sketched in Figure 1,
the training model aims to obtain the model parameters.
When all parameters are available, the schematic plot for

Historical process
and quality data:

T-KPLS model

Parameters needed for testing model

Ay Qy Ty Ao Wo To Ar Wr TrA U T Q

X→ K, Y

Figure 1: Training model T-KPLS-based monitoring.

A new sample

Step 1

Step 2

Step 3

Step 4

tynew tonew trnew

T2
y

T2
o T2

r

OrOr

Quality-related

index

Quality-unrelated

index

Qr

�(xnew )

xnew → knew

Figure 2: Flowchart of testingmodel for T-KPLS-basedmonitoring.

a testing sample is sketched in Figure 2.
e whole procedure
involves four steps: the acquisition of online measurement,
the calculation of all scores for the new sample, the acquire-
ment of four detection indices, and the result for quality-
related detection.
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4. Case Study on Simulation Examples

In this section, two detailed simulation examples are carried
out to demonstrate the advantage of T-KPLS.

4.1. Simulation on a Numerical Nonlinear Example. Firstly,
a synthetic nonlinear numerical process without feedback is
presented as follows:

Process variable :
{{{{{{{{{

x1 ∼ N (0, 1) , x2 ∼ N (0, 1) ,
x3 = sin (x1) + 91,
x4 = x21 − 3x1 + 4 + 92,
x5 = x22 + cos (x22) + 1 + 93,

Quality variable : y = x
2
3 + x3x4 + x1 + V,

(14)

where 9� ∼ N (0, 0.012) (
 = 1, 2, 3), V ∼ N (0, 0.052),
N (<, >2) means the normal distribution with mean < and

variance >2. From (14), it is obvious that the abnormal
variation in x1 can cause the disturbances in x3 and x4, while
x2 just in�uences x5. As quality variable ymerely relates to x1,
x3, and x4, so the fault in x1 will a�ect y, while the fault in x2
cannot.

We used 200 samples generated from the above process
as a training dataset. 
e faulty dataset with 400 samples was
also generated according to the following faults:

(i) Fault 1: a step bias in x2 at 201st sample, x2 = x∗2 + ?,
(ii) Fault 2: a ramp change in x2 at 201st sample, x2 = x∗2 +(@ − 200)?,
(iii) Fault 3: a step bias in x1 at 201st sample, x1 = x∗1 + ?,
(iv) Fault 4: a ramp change in x1 at 201st sample, x1 = x∗1 +(@ − 200)?,

where x∗1 , x
∗
2 are the normal values of x1 and x2, respectively,? is the magnitude for step bias and slope for ramp change,

and @ is the sample number.
en the faulty measurements of
variable x3, x4, and x5 are generated by (14).

Training samples are applied to perform aKPLSmodel on(X, y). 
e width of Gaussian kernel � = 100 is kept for this
simulation. 
e components number A = 2 is determined
using cross validation, which provides a good prediction of
y. 
en T-KPLS model is constructed based on KPLS, where�� = 1 for the single output, and �	 = 1 is chosen as the
principal component unrelated to y.

According to the descriptions of Faults 1 and 2, they are
quality-unrelated faults. Let ? = 1; the monitoring results

with KPLS model (�2 and �) are plotted in Figure 3. It is
observed that Fault 1 causes signi�cant alarms in both two

detection indices of KPLS. However, the alarms in �2 chart
are false alarms for indicating a y-related fault. 
us, KPLS-
based monitoring causes false alarms for this disturbance. T-
KPLS-based monitoring for Fault 1 is depicted in Figure 4.

Among the four detection indices, �2� is kept under the

control line, which gives correct result. Also �2	 and�	 alarm
tinily. Compared with KPLS, T-KPLS provides lower false
alarm rates for Fault 1. Similarly, the detection results of Fault
2 with ? = 0.005 using KPLS and T-KPLS are shown in

T
2
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Figure 3: KPLS-based monitoring with 99% control limit when
quality-unrelated Fault 1 occurs.

Table 3: False alarm rates of faults unrelated to y (%).

Fault value
(?) KPLS

(�2) T-KPLS
(�2�) T-KPLS

(�	)
T-KPLS
(�2� or �	)

Fault 1

0.2 26.8 0 4.7 4.7

0.4 31.7 0 11.6 11.6

0.6 53.3 0 26.6 26.6

0.8 77.2 0 43.3 43.3

Fault 2

0.002 24.5 0 8.3 8.3

0.003 37.4 0 18.6 18.6

0.004 44.5 0 27.8 27.8

0.005 56.3 0 36.8 36.8

Figures 5 and 6, respectively. It is shown that the results for
Fault 2 is similar to that of Fault 1. Table 3 lists the false alarm
rates under di�erent fault magnitudes ?. In all simulations,
we repeat 100 times andmake use of the mean for conviction.
From Table 3, it is clear that T-KPLS-based method gives
lower false alarm rates.


e prede�ned Faults 3 and 4 are quality-related. For
Fault 3 with ? = 0.6, KPLS-based method could detect this
fault as shown in Figure 7. T-KPLS-based method performs

sensitively in �2�, �2	 , and �	 in Figure 8. 
at is to say,

the alarms in �2 of KPLS are merely denoted by �2� of T-
KPLS. 
us, for this kind of fault, when the step magni-
tude is small enough, T-KPLS will work better than KPLS.
For quality-related Fault 4 with ? = 0.005, KPLS-based
method cannot detect quality-related faults by �2 as shown
in Figure 9, while T-KPLS-based �	 statistic detects the fault
sensitively in Figure 10. It means that the variations leading
y to abnormality occur in the residual space. 
e results of
simulation on Faults 3 and 4 show that T-KPLS-based policy
could improve the detection rates. Moreover, Table 4 lists the
detection results which show that the quality-related fault can

be detected by T-KPLS using �2� and �	 better.
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Figure 4: T-KPLS-based monitoring when quality-unrelated Fault 1 occurs.

Table 4: False detection rates of faults related to y (%).

Fault value
(?) KPLS

(�2) T-KPLS
(�2�) T-KPLS

(�	)
T-KPLS
(�2� or �	)

Fault 3

0.2 63.6 80.5 57.3 83.6

0.4 79.8 88.5 74.4 88.7

0.6 90.3 99.2 86.3 99.2

0.8 99.4 100 99.5 100

Fault 4

0.002 4.1 0 29.5 29.5

0.003 4.3 0 43.1 43.1

0.004 3.5 0 54.2 54.2

0.005 4.6 0 62.1 62.1

4.2. Simulation on Tennessee Eastman Process

4.2.1. Tennessee Eastman Process. 
e Tennessee Eastman
(TE) Process was provided by Eastman Chemical Company
which is a realistic industrial process for evaluating di�erent

process control and monitoring technologies [16, 30]. 
e
process has �ve major parts: a reactor, condenser, recycle
compressor, liquid separator, and product stripper, and it
involves eight components: A–H. 
e gaseous reactants A,
C–E, and the inert B are fed to the reactor while the liquid
products G and H are formed. 
e reactions in the reactor
follow (15).
e species F is a by-product. All reactions of this
process are irreversible, exothermic, and approximately one-
orderwith respect to the reactant concentrations. For detailed
process description, one can refer to Lee et al. and Chiang
et al. [30, 31]. 
e process used here is implemented under
closed-loop control. All the training and testing datasets
were generated by Chiang et al. and Lee et al., which can
be openly downloaded in their website. 
e faults in the
test dataset are introduced from the 160th sample. 
e TE
process has been used as a benchmark process for evaluating
process monitoring methods. Kano et al. applied PCA-
based method for monitoring this process [32]. Russell et al.
compared canonical vector analysis (CVA) and PCA-based
technologies, while Lee et al. reviewed the results using both
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Figure 5: KPLS-based monitoring with 99% control limit when
quality-unrelated Fault 2 occurs.

independent component analysis (ICA) and PCA for TEP
[26, 30, 33]. Also, PLS-based monitoring policy has been
utilized for quality-related fault detection [30]. In [31], Chiang
et al. compared the fault detection and diagnosis method
such as PCA, PLS, and Fisher discriminant analysis (FDA),
according to the case study of TEP.


e TEP contains two blocks of variables: 12 manipulated
variables and 41 measured variables. Process measurements
are sampled with interval of 3min, while nineteen compo-
sition measurements are sampled with time delays which
vary from 6min to 15min. 
e time delay has a potentially
critical impact on product quality control in this process,
because the closed-loop control works when the next sample
of quality variable is available [21]. 
us during this interval,
the products are produced with uncontrolled quality. It also
implies that the fault e�ect on product quality cannot be
detected until next measurement sampled,

A (g) + C (g) + D (g) B→ G (liq) ,
A (g) + C (g) + E (g) B→ H (liq) ,

A (g) + E (g) B→ F (liq) ,
3D (g) B→ 2F (liq) ;

(15)

PLS and KPLS-based monitoring methods can detect the
fault correlated to Y, thus receiving wide applications in
industrial cases. 
ere are 21 prede�ned faults in TEP, in
which 15 of them are known, denoted by IDV (1–15). IDV
(1–7) are step changes in a process variable, for example, in
the coolingwater inlet temperature. IDV (8–12) are associated
with an increase in the variability of some process variables.
Fault 13 is a slow dri� in the reaction kinetics. IDV (14–15) are
associated with sticking valves [19, 20].

Table 5: Fault detection rate of TEPusingT-PLS, KPLS, andT-KPLS
(%).

Faults ID Type T-PLS KPLS T-KPLS

IDV(1) Step 99.3 88.6 99.7

IDV(2) Step 97.6 98.6 99.6

IDV(5) Step 99.5 48.2 97.4

IDV(6) Step 99.8 99.5 99.8

IDV(8) Random variation 93.4 95.6 97.3

IDV(12) Random variation 95.6 99.8 98.3

IDV(13) Slow dri� 95.3 96.4 98.5

Table 6: False alarm rates of TEP using T-PLS, KPLS, and T-KPLS
(%).

Faults ID Type T-PLS KPLS T-KPLS

IDV(0) — 5.2 8.6 5.9

IDV(3) Step 5.9 9.8 5.9

IDV(4) Step 33.5 25.3 17.2

IDV(9) Step 5.3 8.2 4.4

IDV(11) Random variation 32.3 32.7 17.8

IDV(14) Random variation 12.4 22.7 7.8

IDV(15) Slow dri� 5.3 28.0 10.0

4.2.2. T-KPLS-Based Quality-Related Detection for TEP. In
this case study, the component G in steam 9, that is, the 35th
measured variable, is chosen as the output quality variable
y. 
e process variables X consist of measured variable 1–
22 and manipulated variable 1–11. 
e detailed X and y are
summarized by Li et al. [20]. We use 480 normal samples
to build KPLS and T-KPLS model. 
e selection of kernel
parameter � a�ects the detection results for this process
signi�cantly. According to the simulation results, the larger� is, the lower the false alarm rates and the higher the missing
alarm rates will be. In this simulation, � = 5000 is chosen
for the KPLS model. Eight principal components are kept
according to cross validation. For T-KPLS, �� is set to 1
because of the single quality variable, and �
 = � − �� =7, �	 = 6 are determined according to the KPCA-based
method. TEP provides 21 faulty sample datasets, and each of
them consists of 960 samples. Here, we apply 13 known fault
sets to perform our simulation. First of all, these known faults
should be divided into two groups including the quality-
related faults and the quality-unrelated faults with the criteria
proposed by Zhou et al. [19]. Here, the IDV (1, 2, 5, 6, 8,
12, 13) are related to quality variable y; others are not. For
comparison, the normal data set is also included in this
simulation. As illustrated in Figures 11 and 12, the proposed

approach with �2� and �	 can detect Fault 1 e�ectively, but

show few false alarms for quality-unrelated Fault 3.
e alarm
for the quality-related fault is considered as an e�ective alarm,
while the detection for quality-unrelated fault is thought
to be a false alarm. Tables 5 and 6 list the fault detection
rates and fault alarm rates of KPLS and T-KPLS. Also, the
detection results by T-PLS [19] are cited in these two tables
for comparison.
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Figure 6: T-KPLS-based monitoring when quality-unrelated Fault 2 occurs.

From the detection results, it is observed that T-KPLS-
based method gives a higher detection rate and lower false
alarm rate than KPLS-based method. Compared with linear
T-PLS, T-KPLS performs better in most cases. In Table 5, T-
KPLS has higher detection rates in most cases. Meanwhile,
T-KPLS gives lower false alarm rates in most cases as shown
in Table 6. To sum up, T-KPLS is an improvement for KPLS,
and it is e�ective to detect quality-related faults in nonlinear
processes.

5. Application in Real Industrial Hot Strip Mill

Hot strip mill process (HSMP) is an extremely complex
process in iron and steel industry. A schematic layout of
the hot strip mill is illustrated in Figure 13 corresponding to
the real industrial hot strip mill. According to Figure 13, the
process generally consists of the following units: reheating
furnaces, roughing mill, transfer table, crop shear, �nishing
mill, run-out table cooling, and coiler. 
e �nishing mill has

the most signi�cant in�uence on the �nal thickness of steel
strip, in which the controlled variables include average gap
of the 7 �nishing mill stands and work roll bending (WRB)
force of the last 6 stands (WRB force of the �rst stand is not
measured). 
e thickness and temperature of the strip a�er
�nishing rolling are around 850∘C–950∘C and 1.5–12.7mm,
respectively. As is well known from materials science, the
kinetics of metallurgical transformations and the �ow stress
of the rolled steel strip are dominantly controlled by the
temperature, which is mainly determined by the �nishing
temperature control (FTC).


e demand of dimensional precision, especially thick-
ness precision of hot strip mill, has become stricter in recent
years, which makes the improvement of thickness precision
be a hot topic. In general, the thickness in exit of �nishing
mill is closely related to gap and rolling force and has little
connection with bending force. In this paper, two classes
of strips’ manufacturing process are taken for this test with
thicknesses, where their thickness targets are 3.95mm and
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Figure 7: KPLS-based monitoring with 99% control limit when
quality-related Fault 3 occurs.

Table 7: Process and quality variables in �nishing mill.

Variable Type Description Unit

1∼7 Measured �� stand average gap, 
 = 1, ..., 7 mm

8∼14 Measured �� stand total force, 
 = 1, ..., 7 MN

15∼20 Measured �� stand work roll bending force,
 = 2, ..., 7 MN

y Quality Finishing mill exit strip thickness mm

2.70mm, respectively. Based on historical dataset, the new
proposed framework can be constructed with the measured
process variables and quality variable which are listed in
Table 7. In this case study, three kinds of frequently occurring
faults are mainly studied, which are listed in Table 8, where
all faults with the same duration time of 10 s are terminated
arti�cially. In real circumstances, faults may occur in some
driving units or sensors for measuring force, temperature,
and gaps. Furthermore, malfunction of control loop in a
single stand may also exist occasionally. To be summarized,
three kinds of faults de�ned in control systems can all be
found in �nishing mill process. In this work, three typical
faults separately selected from each type are chosen to
support our study, which are tabulated in Table 8. Among all
these faults, Fault 1 is a little quality-related; others are directly
quality-related. Gaussian kernel parameter � a�ects detection
results signi�cantly. In this study, T-KPLS model is built,
where � = 8 is determined according to cross validation,�� = 1; because of the single output, �	 = 10 is obtained
by KPCA-based method. In the model, �min = 0 and �max =10000 are chosen, which yield an optimum � = 7500.


e results of thickness quality-related process monitor-
ing are given by Table 9. As can be shown in Table 9, com-
pared with PLS, KPLS, and T-PLS, T-KPLS-based method

Table 8: Typical faults in �nishing mill.

No. Description Fault type
Quality
related

1
Sensor fault of bending force
measurement in �5 stand Sensor fault No

2
Malfunction of hydraulic gap
control loop in �4 stand Process fault Yes

3
Actuator fault of cooling valve
between �2 and �3 stands Actuator fault Yes

Table 9: Detection rate or false alarm rate for hot strip mill (%).

Fault
No.

Type of
detection

PLS
(�2) KPLS

(�2) T-PLS
(�2 or �	) T-KPLS

(�2 or �	)
1 False alarm rate 0.104 0.117 0.366 0.044

2 Detection rate 0.998 1.000 1.000 1.000

3 Detection rate 0.656 0.870 0.900 0.980

just gives a little false alarm rate for quality-unrelated Fault
1, while for quality-related Fault 2 and 3, it presents higher
detection rates, especially in Fault 3. In conclusion, T-KPLS
is an appropriate enhancement for typical KPLS model, and
it is e�ective to deal with the quality-related disturbances in
real industrial processes.

Regarding HSMP, the following should be noted.

Remark 1. We clarify that the data considered about �n-
ishing mill process are acquired from real steel industrial
�eld, namely, Ansteel Corporation, China. 
e faults occur
occasionally and were eliminated manually.

Remark 2. In this implementation, only thickness has been
concerned as the quality variable, whereas T-KPLSmodel can
handle multioutput cases.

6. Conclusion

In this paper, the T-KPLS algorithm is proposed by further
decomposing KPLS. 
e purpose of T-KPLS is to perform a
further decomposition on the high dimension space induced
by KPLS, which is more suitable for quality-related process
monitoring. 
e process monitoring methods based on T-
KPLS are developed to monitor the operating performance.
Both theoretical analysis and simulation results show better
performance of T-KPLS than KPLS. T-KPLS-based methods
can give lower false alarm rates and missing alarm rates
thanKPLS-basedmethods inmost simulated cases. However,
there are still some problems needed to be considered in the
modeling with T-KPLS, such as how to select an appropriate
kernel function for a given process data and establish a
framework for precisely choosing the kernel parameters. Due
to the scope of this paper, further studies for these issues will
be concerned in the future.
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Figure 8: T-KPLS-based monitoring when quality-related Fault 3 occurs.
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Figure 9: KPLS-based monitoring with 99% control limit when quality-related Fault 4 occurs.

Appendices

A. KPLS Algorithm


e nonlinear iterative KPLS algorithm is shown in
Algorithm 3.

Based on Algorithm 3, the following equations hold:

P = Φ�T, Q = Y
�
T,

Φ	 = (I − TT
�)Φ,

Y	 = (I − TT
�)Y,

(A.1)
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Figure 10: T-KPLS-based monitoring when quality-related Fault 4 occurs.

where T = [t1, t2, . . . , t
] ∈ R
�×
 is the score matrix, and �

is KPLS score number, obtained by cross validation [34]. P =[p1, p2, . . . , p
] ∈ R
�×
,Q = [q1, q2, . . . , q
] ∈ R

�×
 are the
loadings matrices, andΦ	, Y	 are the residuals matrices.

B. The Proof of T = ΦR
First of all, setting U = [u1u2 ⋅ ⋅ ⋅ uA], K1 = K = ΦΦ�.
According to the KPLS algorithm in Algorithm 3, the fol-
lowing equations hold:

t1 = K1u1����K1u1
���� H⇒ K1u1 = t1

����K1u1
���� = t1J11,

t2 = K2u2����K2u2
���� =

(I − t1t
�
1 )K1u2����(I − t1t
�
1 )K1u2

����
H⇒ K1u2 = t1 (t�1K1u2) + t2

�����(I − t1t
�
1 )K1u2

�����

= t1J12 + t2J22,
t3 = K3u3����K3u3

���� H⇒ K1u3 = t1 (t�1K1u3) + t2 (t�2K1u3)
+ t3

�����(I − t1t
�
1 ) (I − t2t

�
2 )K1u3

�����
= t1J13 + t2J23 + t3J33.

(B.1)

To sum up,

K1u
 = t1J1
 + t2J2
 + t3J3
 ⋅ ⋅ ⋅ t
J

. (B.2)


en,

K1U = TC. (B.3)
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Figure 11: Detection of IDV (1) using T-KPLS (�2� and �	). 
e

dashed line represents the 99% control limit.
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Figure 12: Detection of IDV (3) using T-KPLS (�2� and �	). 
e

dashed line represents the 99% control limit.

Here, C = [[[
[

�11 �12 �13 ⋅⋅⋅ �1�
�22 �23 ⋅⋅⋅

�33 ⋅⋅⋅
...

d

���

]]]
]
is a reversible upper triangle

matrix. As T is a unit orthogonal matrix; namely, T�T = I
,
so C = T�K1U; then,

T = K1UC
−1 = K1U(T�K1U)−1 = ΦΦ�U(T�KU)−1.

(B.4)


us T = ΦR holds.

C. Calculations of Scores and �	
Motivated by the calculation in T-PLS model,

t�new = Q
�
�QR
�� (xnew)

= Q
�
�Q(U�KT)−1U�Knew = Θ�Knew,

t
new = P
�

 (PR� − P�Q

�
�QR
�) � (xnew)

= W
�

Φ
Φ

�
TR
�� (xnew)

−W
�

Φ
Φ

�
TT
�
T�(T��T�)−1Q��QR�� (xnew)

= W
�

%�TT�KT(U�KT)−1U�Knew

−W
�

%�TT�KTT�T�(T��T�)−1

×Q
�
�Q(U�KT)−1U�Knew

= Θ
Knew,
t	new = P

�
	 (I − PR

�) � (xnew)
= W
�
	Φ	� (xnew) −W

�
	Φ	PR

�� (xnew)
= W
�
	 (I − TT

�)Knew

−W
�
	 (I − TT

�)KT(U�KT)−1U�Knew

= Θ	Knew.
(C.1)


e � statistic for T-KPLS is as follows:

�	 = �����		 (xnew)����2 = �����	 (xnew) − P	t	new
����2

= ��	 (xnew) �	 (xnew) − 2��	 (xnew)P	t	new
+ t
�
	newP
�
	 P	t	new.

(C.2)


e �rst part of �	 is detailed in (8). And the second part is

��	 (xnew)P	trnew
= (� (xnew) − Ptnew)�Φ�	W	t	new
= �� (xnew)Φ�	W	t	new − t

�
newP
�Φ�	W	t	new

= �� (xnew)Φ� (I − TT
�)W	t	new

− t
�
newT
�ΦΦ� (I − TT

�)W	t	new
= K
�
new (I − TT

�)W	t	new
− t
�
newT
�
K (I − TT

�)W	t	new.

(C.3)
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Figure 13: Schematic layout of the hot strip mill.

(1) Set 
 = 1, initialize u� as the �rst column of Y�.
(2) t� = Φ�w� = K�u�, where w� = Φ�� u�.
(3) Scale t� to unit length, t� = t�/ ����t�����.
(4) u� = Y�q�, where q� = Y�� t�.
(5) Scale u� to unit length, u� = u�/ ����u�����.
Repeat (2)–(5) until t� convergence.
(6) De�ate matrices K, Y andΦ:
Φ�+1 = (I − t�t

�
� )Φ�, Y�+1 = (I − t�t

�
� )Y�

K�+1 = (I − t�t
�
� )K� (I − t�t

�
� ).

(7) Set 
 = 
 + 1, loop to step (1), until 
 > �.
Algorithm 3: KPLS algorithm.


e last one is

t
�
	newP
�
	 P	t	new

= t
�
	newW

�
	Φ	Φ

�
	W	t	new

= t
�
	newW

�
	 (I − TT

�)K (I − TT
�)W	t	new.

(C.4)

By substituting t	new with Θ	Knew and combining relevant
parts, �	 can be expressed as

�	 = �� (xnew) � (xnew) − K
�
newΩ	Knew. (C.5)
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