
RESEARCH Open Access

Quality scores for 32,000 genomes
Miriam L Land1*, Doug Hyatt1,2, Se-Ran Jun1, Guruprasad H Kora3, Loren J Hauser1,2,4, Oksana Lukjancenko6

and David W Ussery1,2,5

Abstract

Background: More than 80% of the microbial genomes in GenBank are of ‘draft’ quality (12,553 draft vs. 2,679

finished, as of October, 2013). We have examined all the microbial DNA sequences available for complete, draft, and

Sequence Read Archive genomes in GenBank as well as three other major public databases, and assigned quality

scores for more than 30,000 prokaryotic genome sequences.

Results: Scores were assigned using four categories: the completeness of the assembly, the presence of full-length

rRNA genes, tRNA composition and the presence of a set of 102 conserved genes in prokaryotes. Most (~88%) of the

genomes had quality scores of 0.8 or better and can be safely used for standard comparative genomics analysis.

We compared genomes across factors that may influence the score. We found that although sequencing depth

coverage of over 100x did not ensure a better score, sequencing read length was a better indicator of sequencing

quality. With few exceptions, most of the 30,000 genomes have nearly all the 102 essential genes.

Conclusions: The score can be used to set thresholds for screening data when analyzing “all published genomes” and

reference data is either not available or not applicable. The scores highlighted organisms for which commonly

used tools do not perform well. This information can be used to improve tools and to serve a broad group of

users as more diverse organisms are sequenced. Unexpectedly, the comparison of predicted tRNAs across 15,000

high quality genomes showed that anticodons beginning with an ‘A’ (codons ending with a ‘U’) are almost

non-existent, with the exception of one arginine codon (CGU); this has been noted previously in the literature for a

few genomes, but not with the depth found here.
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Background
The introduction of second-generation sequencing

began an exponential growth in sequencing data [1-4]

and in the number of genomes submitted to public re-

positories. The drop in sequencing cost that came with

this technology, however, had little effect the mostly

manual cost of finishing genomes. Finishing second-

generation sequenced genomes continues to be expen-

sive and many researchers have no plans to finish their

draft genomes [5]. There is still an open question of

whether whole genome sequencing projects with less

than 5% of the genes missing is adequate quality for

most purposes [6] or if there continues to be value in

finishing most microbial genomes [7]. Even though sin-

gle molecule, or ‘third-generation’ sequencing will

facilitate the generation of closed genomes, currently

most of the genomes in the database are of varying

levels of draft quality.

The establishment of a quality nomenclature by Chain

et al. in 2009 [8] provides a mechanism for comparing

draft sequences and understanding the qualifiers associ-

ated with a single genome sequence. It does not, how-

ever, shine any light on the impact that predominately

draft genomes have on the quality of the repository data-

bases. With more than 30,000 unique publicly available

genome sequences of varying qualities, there is enough

data to score genomes on the basis of completeness and

compare quality among data sources.

DNA sequences were obtained from two sources at

GenBank and the National Center for Biotechnology

Information [9]: draft genomes (WGS or ‘draft’) and

complete finished genomes (‘complete’). An assembled ver-

sion of the GenBank Sequence Read Archive was obtained

for analysis [10]. Despite major overlaps, three additional
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data sources, the Broad Institute [11], Pathosystems

Resource Integration Center [12], and the United States

Department of Energy (DOE) Systems Biology Knowledge-

base (http://kbase.us), were acquired because they con-

tained additional unique genome sequences. The DNA

sequences were then scored for completeness.

Estimates of genome quality were based on 1.) the se-

quence quality (number of contigs and number of non-

standard bases); 2.) the presence of a full-length 5S, 16S,

and 23S rRNA; 3.) the presence of at least one tRNA

coding for all of the 20 standard amino acids; and 4.) the

presence of a set of essential genes containing 102 con-

served Pfam-A [13] domains found in nearly all bacteria

and archaea (Additional file 1: Table S1). Software tools

were either selected or developed to provide an estimate

for each of these measures of completeness. The four in-

dividual scores ranged from zero to one and they were

averaged for a combined score. The data sources and

calculation of the scores are described in more detail in

the Methods section.

To keep all scores comparable, we ran standard pre-

dictions using the same settings across all genomic DNA

sequences; tRNAscan-SE [14] was used to predict

tRNAs, RNAmmer [15] was used to predict rRNAs, and

Prodigal [16] was used to predict protein coding genes

in all the acquired sequences. HMMER3 [17] was used

to find Pfam-A [13] domains. We chose not to use the

predictions from the source databases because consist-

ent annotation was not available for all sequences and

the resultant scores would have been a reflection of the

source annotation and not just the completeness of the

sequence. A score for annotation quality may be added

to future versions of this scoring system.

Results and discussion
The number of genomes found in each source varied

from 12,553 in the WGS genomes to 2,477 in the Broad.

There were 20,367 genomes only found in a single

source and 11,696 from more than one source for a total

of 32,063 unique genome assemblies using the MD5

checksum method of determining uniqueness (Table 1).

Most data sources had at least one internal duplicate

using the MD5 checksum.

As expected, among GenBank genomes, the ‘complete’

genomes tended to score the best, followed by the WGS ge-

nomes and lowest quality scores were for the assemblies of

SRA reads (Figure 1). In the genomes from PATRIC, Broad,

and KBase databases, it was more difficult to separate draft

and finished genomes. Their scores therefore are similar to

a mixture of the ‘draft’ and ‘complete’ genomes at NCBI.

One counterintuitive result was the existence of a handful

of ‘complete’ genomes with relatively low scores, and a

small set of ‘draft’ genomes that received perfect scores.

As noted in the discussion, factors other than data

source can influence the score. With over 20,000 ge-

nomes, it is possible to analyze some of these factors

and highlight a few intriguing observations.

Sequence quality score

The sequence quality is a function of the number of contigs

per megabase (counting N's as gaps) and the number of

non-standard bases per genome. The sequence quality

scores varied between the different sources (Figures 1a and

b and Additional file 1: Table S2). Surprisingly, about 2% of

the ‘complete’ genomes did not have perfect scores, while

3% of the WGS genomes received perfect scores (0.99 or

better), despite being ‘draft’. As might be expected, the col-

lection of SRA genomes had lower quality scores, with a

maximum sequence quality of 0.88 and an average of 0.38.

All other databases had an average score of 0.75 or better.

The SRA genomes scored low enough on sequence quality

that additional analysis was not done on these genomes.

The number of contigs per genome ranged from 1 to

13,915 (Additional file 2: Figure S1 and Additional file 1:

Table S3). The average for the ‘complete’ genomes was

about 5 replicons per genome and the average contig

counts for ‘draft’, KBase, PATRIC, and Broad were 190,

130, 151, and 48, respectively. The results included a

‘complete’ genome with 930 contigs and 70 ‘draft’ genomes

that contained a single contig/scaffold.

tRNA score and anticodons

Most genomes scored well with respect to having at least

one tRNA codon for each amino acid (Figure 1c and

Additional file 1: Table S4). Even among the WGS ge-

nomes, nearly 60% of the genomes had perfect scores for

tRNA genes (all 20 types). As expected, the ‘complete’ ge-

nomes scored better than other data sources, although 7

of these genomes had a score of 0.1 (9 or more missing

tRNAs). Among the low-scoring ‘complete’ genomes was

Pyrobaculum calidifontis JCM 11548, Thermoproteus uzo-

niensis 768-20, and two “Candidatus Tremblaya princeps”.

Factors that may contribute to a low score are: 1) P. calidi-

fontis and T. usoniensis are part of the 0.1% of genomes

that have 9 or more predicted pseudo tRNA genes not

Table 1 Counts of total and unique genomes acquired

from each data source

Data source Count Unique to this source

GenBank complete finished 2,679 500

GenBank draft 12,553 4,759

GenBank SRA - assembled 11,767 11,750

PATRIC 12,245 771

DOE KBase 11,944 396

Broad 2,477 2,191

Total 53,665 20,367
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included in the calculations and 2) the Candidatus ge-

nomes are endosymbionts with less than 140 kbp DNA in

their chromosome.

The number of tRNAs per genome were compared

across the data sources (Additional file 2: Figure S2 and

Additional file 1: Table S5). These did not affect the

score but provided some interesting observations. The

maximum number found was 280 for Escherichia coli

HVH 33 (4-2174936). This genome was found at both

Broad and WGS and the number of tRNAs was high

compared to the average of 79 +/- 13 for the other 1500

E. coli genomes. The number of rRNA molecules for this

genome is in line with other Escherichias (5 23S and 7

16S), and it is likely that this is a single genome.

While it is possible for a genome to have tRNAs with up

to 62 different anticodons, surprisingly, the maximum

found, out of more than 20,000 genomes, was only 47

(Additional file 2: Figure S3 and Additional file 1: Tables S6).

The average number for all data sources was between 33

and 37. Of the 62 possible anticodons, 15 of the 16 antico-

dons starting with an A (codon ending with U) were rela-

tively rare (Figure 2). For example, the anticodon ACA

was only detected 8 times (Additional file 1: Table S7).

The anticodon ‘ACG’ (arginine) was the only one pre-

dicted in a large number of genomes. This is consistent

with findings from other researchers [18], although this

is the first time this observation has been made with

such a large number of bacterial genomes.

A list of rarely predicted tRNAs by genus (Additional file 1:

Table S8) shows that rare anticodons are over-represented

in some genera. The percent of genomes with rare an-

ticodons in the genera Escherichia, Butyrivibrio and

Figure 1 Comparison of quality scores between the data sources. For each data source, the percent of genomes within each range of

scores. The number in the legend is the largest value in the range. Ranges with no genomes are not presented in the legends. The six tables are

scores for (a) Sequence quality from GenBank Sources, (b) Sequence quality from Non-GenBank Sources, (c) tRNAs (one each of 20 standard

amino acids), (d) rRNAs (one full size 5S, 16S, and 23S rRNA), (e) Essential Genes (102 conserved Pfam-A domains) and (f) Total combined Scores.
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Lactobacillus were compared (Table 2). Only 0.1%

Escherichia genomes in our analysis have a rare tRNA.

In contrast, 87% and 44% of Butyrivibrio and Lactoba-

cillus, respectively, have genomes with a rare tRNA.

This implies that part of the bias observed might be re-

flective of the large presence of E. coli and other com-

mon organisms that are easy to grow and cultivate in

the lab.

rRNA score and length distribution

The lengths of the rRNA molecules were compared

across data sources (Additional file 2: Figures S4-S7

and Additional file 1: Tables S10-S13). In our scoring

scheme, the lowest possible score for rRNAs was 0.1. All

genomes scored 0.3 or better (Figure 1d and Additional file 1:

Table S9) and 5.7% of the ‘complete’ genomes scored

below 0.9.

Some of the extremely long 16S predictions were in-

vestigated. The predictions of 7 genomes with extremely

long rRNA genes were compared to the annotations at

GenBank. Two had the same predictions in GenBank,

four had more reasonable predictions at GenBank, and

one genome was missing all 16S predictions, including an

abnormally long one predicted by RNAmmer.

Most genomes with abnormally long 16S rRNA

(greater than 2300 bases) fell into one of the following

categories, 1) the DNA encoding the rRNA gene con-

tained Ns, 2) the genome contained one or more “nor-

mal” predictions, or 3) the genome was less than 40%

GC. The first is an indicator of a problem in the se-

quencing, the second may indicate an atypical region

of the genome, and the third may be a weakness of the

RNAmmer tool.

Essential gene score

Protein-coding genes were predicted for all genomes

using Prodigal [16] and average gene length and density

were calculated (Additional file 2: Figures S8-S9 and

Figure 2 Rose plot of predicted tRNA anticodon frequency. Length of line from center outwards indicates relative frequency. Each quadrant

corresponds to a different starting base for the anticodon. The upper right quadrant contains the anticodons that start with ‘A’ and are

relatively rare.

Table 2 Comparison of 3 selected genera and the number

of genomes with rare anticodons found in the analysis

Genus Number in
study

Number with rare
anticodons

Percent

Butyrivibrio 32 28 87

Escherichia 2177 3 0.1

Lactobacillus 338 150 44
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Additional file 1: Tables S14-S15). The average gene

length was expected to be slightly less than 1000. The

Broad genes had the longest average length at 940 bases

and the PATRIC had the shortest average length at 902

bases. WGS contained the individual genome with the

shortest average length (200 bases) while WGS, KBase,

and PATRIC all had the genome with the longest aver-

age length (1291 bases).

The distribution of essential gene scores shows that

all of the data sources are very similar (Figure 1e and

Additional file 1: Table S16). The set of ‘universally con-

served domains’ was surprisingly well conserved, being

found in nearly all of the more than 20,000 genomes. The

percent of genomes with perfect scores of 1 ranged from

96% for WGS to 99.9% for Broad. The Pfam-A model that

was missed the most often is the 60-65 residue ribosomal

protein S14p. This may be a reflection of the inability of

the gene finder to find the genes rather than missing do-

mains. The protein predictions for Clostridium clarifla-

vum DSM 19732 and Clostridium thermocellum DSM

1313 were each missing a S14p domain-containing pro-

tein. A 6-frame translation search of the genomes revealed

that a sequence matching the model was in the DNA.

Total combined score

The total score was calculated by averaging the other

normalized four scores (Figure 1f and Additional file 1:

Table S17). The ‘complete’ genomes had an average score

of 0.97 and the average score was 0.85 for the WGS draft

genomes. Although only 6% of the genomes had a perfect

quality score, most (~88%) of the genomes had quality

scores of 0.8 or better. At the other extreme, about 3% of

the genomes had a score below 0.6 and probably have too

low a quality to yield reliable analysis. This score corre-

sponds to more than 1000 contigs.

While the ‘complete’ genomes were the best scoring

on average, there are a few low quality genomes in this

database. Among them are Borrelia valaisiana VS116

(0.27) and Bacillus anthracis str. A2012 (0.27). The draft

WGS genomes on average have lower scores, although a

28 genomes in the WGS dataset scored a perfect 1.0. To

achieve a perfect score, the sequence must be in one

contiguous piece and contain no runs of ‘N’ greater than

10 bases.

The data, algorithm and score cards for all the ge-

nomes are accessible from our website [19]. The results

of the study can be downloaded from the results page of

our website.

The data were examined to identify underlying factors

that may have contributed to the score. From GenBank

files and the PATRIC web site it was possible to gather

the sequencing technology, the assembly method, cover-

age, and update date for many of the genomes. From

Broad it was possible to gather a sequencing technology

and coverage for many genomes. It was not possible to en-

tirely account for the effect of read length, experience of

the researchers, all version changes, the wide disparity in

the number of available genomes, or the fact that the in-

formation was not available for most early genomes. Care

should be used when drawing conclusions from the data.

The analysis by date showed that older genomes were

predominately complete and tended to score better than

newer draft genomes (Additional file 2: Figure S10). The

data is consistent with graphs showing the differences

between complete and draft genomes (Figure 1).

The analysis by percent GC and genome size only sug-

gested that larger assemblies are more likely to have all

the necessary components (Additional file 2: Figure S11)

and percent GC is not a determining factor (Additional

file 2: Figure S12). The analysis by coverage did not

show any differences until sequencing technology was

taken into consideration (Figure 3). It shows that when

using 454, Illumina, or a mixture of the two, coverage of

over 100× did not necessarily lead to a better scores and

sometimes it was worse. It also shows that a combin-

ation of Illumina and PacBio often scored well, up to a

coverage level of about 1000 and then dropped off.

An analysis was done by sequencing technology and

assembly method (Figures 4 and 5 and Additional file 1:

Tables S18 and S19). The primary observation is that the

small number of genomes using PacBio as one of its se-

quencing technologies have done well so far and SOLID

has scored lower. Because PacBio has a reputation for

longer reads of inaccurate quality [20] one possible in-

terpretation is that read length affects quality score more

than sequencing quality. Time will tell whether or not

this continues to hold true over thousands of genomes.

Scores were compared by genus (Figure 6). Only the

50 most abundant genera are presented and they are

listed left to right by most abundant (2170 genomes) to

least abundant (49 genomes). Except for Candidatus and

“candidate division”, most genera have pretty good aver-

age scores for the essential genes. This is despite the fact

that there is a large percent of draft genomes in the ana-

lysis. The interesting exception is Rhizobium.

In several histograms, Broad appears to be an outlier. For

example, in Additional file 2: Figure S9, Broad has a higher

percentage of genomes between .9 and 1.0 genes per kilo-

base than any other source. This was investigated and the

taxonomic makeup of the Broad is also an outlier. Eighty

percent of the Broad genomes belong to 8 genera (Escheri-

chia, Enterococcus, Staphylococcus, Brucella, Acinetobacter,

Mycobacterium, Ba.cil.lus and Pseudomonas), compared to

34% in other sources (Additional file 1: Table S20).

Conclusions
A final conclusion from this scoring review is that widely

used analysis tools performed well most of the time, but
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Figure 3 Plot of average score by log coverage level for each sequencing technology. The coverage level and sequencing technology

extracted from GenBank and PATRIC sources. The log of the coverage is plotted by score and symbols assigned by sequencing technology. Due

to the density of the data in the plot, less frequent sequencing technologies are not shown.

Figure 4 Box and whiskers plot of average score by sequencing technology. Where available, a sequencing technology was parsed from

GenBank and PATRIC sources. Data are sorted left to right from largest to smallest mean value. The box represents the first quartile, the mean,

and the third quartile. The whiskers represent 2 standard deviations on either side of the mean. Because the data have an upper limit of 1, the

upper range can exceed the possible values.
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each had a point where they seemed to miss the mark.

tRNAscan predicted pseudogenes rather than real genes

in some genomes, RNAmmer predicted unrealistically

long genes under some circumstances, and Prodigal oc-

casionally missed a few valid small genes instead of lots

of small false-positive genes.

The normalization process did not change the scores

by very much. Each investigator’s preferences for a score

cutoff will have greater impact on the assignment of a

“good” vs a “bad” score. For future use, it is recommended

that the standardization step be skipped for analysis of a

single genome.

Automated annotation should be checked for the min-

imal quality components presented here. The annotation

may need to be manually edited to compensate for the rare

occasions when the tools give misleading or missing results.

Genome sequences are used by researchers in several

fields to answer many different types of scientific questions.

The score presented in this work is one metric among

many that can be used even though none are suitable in

all circumstances. For example, when comparing assem-

bly methods and/or strains within the same species, well

established measures such as N50 or use of a reference

sequence will be more targeted and specific than a single

score. Also, the score cannot address errors associated

with sample preparation, contamination, or misidentifi-

cation of the genus, species and/or strain. A very high

quality sequence can lead to a flawed analysis if it is in-

correctly identified.

Methods
Obtaining the data

Complete finished GenBank genomes were obtained from

the NCBI ftp site [21]. GenBank and Fasta files were ex-

tracted from each subdirectory.

Draft GenBank genomes were obtained from the NCBI

WGS ftp directory [22]. All projects labeled as belonging

to the BCT division were downloaded and GenBank and

Fasta files were stored for each of them.

Broad genomes were obtained from the Broad Olive

web site [11]. Fasta files were downloaded for each Broad

project. Genomes were divided by sequencing status.

PATRIC genomes were obtained from the PATRIC ftp

site [23]. Fasta files were downloaded for each PATRIC

genome. Genomes were divided by sequencing status.

SRA: genomes were downloaded from the NCBI genomes

SRA [24] in January 2012, and assembled as described previ-

ously by Larsen et al. 2012 [10]. All genomes were

assumed to be draft.

Figure 5 Box and whiskers plot of average score by assembler. Where available, a assembly method was parsed from GenBank and PATRIC sources.

Data are sorted left to right from largest to smallest mean value. The box represents the first quartile, the mean, and the third quartile. The whiskers

represent 2 standard deviations on either side of the mean. Because the data have an upper limit of 1, the upper range can exceed the possible values.

Land et al. Standards in Genomic Sciences 2014, 9:20 Page 7 of 10

http://www.standardsingenomics.com/content/9/1/20



KBase genomes were downloaded using the API com-

mands all_entities_Genome to get the master list of

Bacterial and Archaeal genomes. The API commands

genomes_to_contigs and contigs_to_sequences were used

to download the sequences for the genomes. KBase does

not provide a sequencing status for genomes.

Additional data repositories could have been consid-

ered for this paper. It was assumed that repositories that

attempt to include “all possible genomes” would have

largely overlapping sets of genomes. This was supported

by the data in Table 1. Only the data sets with a unique

focus, such as the Sequence Read Archive and the Broad

(selected genera), had a large percentage of unique ge-

nomes. The scoring system could be applied to any reposi-

tory that routinely finds rRNAs, tRNAs, and functional

domains for its genomes.

Definition of unique genomes

Identification of different assemblies for the same genome

sequence is difficult, as strain meta-data can be missing or

slightly different. For this analysis it was necessary to auto-

matically determine unique genome sequences, due to the

number of genomes. Name matching is problematic be-

cause names change with time and data sources can rep-

resent strain names with different syntax. Even if the data

sources had names of other identifiers that linked their

data to one or more of the other sources, there is the issue

of ensuring they are the same version of the genome.

While not perfect, an MD5 checksum algorithm was

used to identify duplicate assemblies. Minor differences

in assemblies or treatment of gaps produce different

checksums and therefore two genomes that are for all

practical purposes the same, appear to be different. Most

data sources had at least one internal duplicate using the

MD5 checksum.

The MD5 hex checksum for a genome was calculated

by first creating an MD5 checksum of all component

contigs. These checksums were sorted and concatenated

into a new string with comma separators and no spaces.

The checksum of the genome was the checksum of this

new string.

Genomes were sorted by size and the names of the lar-

gest and smallest genomes were examined. Genomes with

a total size of less than 138,500 bp were found to be plas-

mids and genomes greater than 18,000,000 bp were found

to be eukaryotic. The plasmids and eukaryotic genomes

were deleted from the databases. One GenBank genome

was eliminated because it was a project containing a set of

10 different genomes, rather than representing a single

genome.

Figure 6 Quality scores for 50 most abundant genera. Average quality scores for sequence, tRNAs, rRNAs, essential genes, and total plotted

for each of the 50 most represented genera. The genera are presented in order of abundance from Escherichia on the left to Kingella on

the right.
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How the scores are assigned, by component

Calculation of quality scores was performed in two stages.

In the first stage, algorithms were run to determine the

range of values associated with a metric (e.g., the number

of ‘essential genes’ found for a given genome). In the sec-

ond stage, a score was scaled to represent our assessment

of the quality of that level of completeness. For example,

a score of 0.9 was assigned if 90% of essential genes

were found.

The sequence quality score included a combination of

contigs and non-standard bases. Large numbers of contigs

are an indicator of an incomplete genome. Strings of N’s

over 10 bp were assumed to be gaps and added the same

penalty as an additional contig. The score was calculated

as a fraction using:

1. The numerator was the number of “good” bases

across all contigs (i.e., A, C, T, or G).

2. The denominator was the number of “good” bases,

plus

o the count of “bad” (bad = anything except A, C,

T, G, or N) bases, plus

o a 10,000 bp “penalty” bases for each contig after

the first, plus

o a 10,000 bp “penalty” for each gap of 10 or more

N's

3. ‘Complete’ genomes were penalized for gaps of 10 or

more N's but were not penalized for additional

contigs, which were assumed to be additional

plasmids or chromosomes.

The sequence quality score was designed to estimate

how close the genome was to being completely se-

quenced – that is, once contiguous piece per replicon.

In principle, this would likely be reflective of the reli-

ability of coverage – that is, that enough of the genome

is present in good enough quality so as to minimize er-

rors in the prediction of all the genes and features by

protein-coding and RNA gene prediction algorithms.

Gene prediction algorithms may fail to predict genes in

extremely short contigs, or at the edges of longer con-

tigs. It was generally assumed that each contig would

lose, on average, half a gene at each edge, or one gene

total, with an average size of 900-1000 bp. However, we

did not consider an assembly that could only capture

90% of genes to be of high quality, so we scaled the score

downward by increasing this “missing bases” penalty by a

factor of 10.

The rRNA score was calculated using the 5S, 16S, and

23S rRNA predictions from RNAmmer version 1.2 [15]. A

minimum and maximum length was established for each

molecule type by plotting the distribution of all lengths

and picking a value where the distribution dropped off

dramatically (data not shown). The 23S has a broader

length range to accommodate the molecules with in-

trons. The score was calculated as follows:

1. Start with a minimum of 0.1.

2. Defined an ideal length range for each molecule type:

a. 23S to be between 2900 and 3500

b. 16S to be between 1450 and 1700

c. 5S to be between 100 and 120

3. For each molecule type,

a. add .3 if length was within the ideal range

b. else, add .2 if length was greater than 0.5 times

the minimum

c. else, add .1 if a prediction of any length exists

The tRNA score was based on tRNAscan-SE 1.3.1 [14]

and predictions for at least one tRNA that coded for each

of the 20 standard amino acids. Because the tRNAs are

highly conserved and relatively easy to locate, genomes

with 10 or more missing amino acids was determined to

be very low quality and got the lowest possible score. The

optional tRNAs (e.g., selenocysteine) were included in the

count of total tRNAs and total anticodons. The score was

calculated as follows:

1. Start with a maximum of 1.0

2. Subtract 0.1 for each amino acid with no tRNA,

until a minimum of 0.1 is reached.

Essential genes were defined as 102 Pfam-A domains

found to be present in nearly all bacterial and archaeal ge-

nomes (Additional file 1: Table S1). The domains were de-

termined by scanning 2010 complete genomes with Pfam-

A and selecting those domains that were present in 99% of

the genomes. The data set included 1982 bacterial and 128

archaeal genomes available from GenBank in September

2012. Prodigal [16] was used to predict the genes and ob-

tain translations for each genome. Prodigal has a known

weakness for occasionally missing one or two of the small

genes in the list of essential genes. It was used because it

provided a consistent basis for comparing all of the ge-

nomes and the missing genes would be in the noise at a

whole database scale. HMMER3 [17] was then used to

find the 102 essential Pfam-A models in the gene pre-

dictions. The score was assigned as follows:

1. Start with a maximum of 1.0

2. Subtract 0.01 for each missing Pfam-A until a

minimum of 0.1 is reached.

The four individual scores were each standardized to a

zero mean and unit variance (xnew = (x-μ)/σ) and then

averaged. The average was transformed to a scale with a

minimum of zero and a maximum of one. The total com-

bined score is this transformed value.
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Numbers in all the Supplementary tables were rounded

to two significant digits. Some integers presented in the

text (e.g., maximum length of 23S), are given with more

digits of precision.

Additional files

Additional file 1: Additional tables mentioned in the text with

frequency distributions and statistics supporting the analysis.

Additional file 2: Additional figures mentioned in the text with bar

charts used to visually support the analysis.
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