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	is paper is to solve the problem stating that applying Intrusion Detection System (IDS) to guarantee security of Wireless Sensor
Networks (WSNs) is computationally costly for sensor nodes due to their limited resources. For this aim, we obtain optimal
strategies to save IDS agents’ power, through Quantal Response Equilibrium (QRE) that is more realistic than Nash Equilibrium. A
stage Intrusion Detection Game (IDG) is formulated to describe interactions between the Attacker and IDS agents. 	e preference
structures of di
erent strategy pro�les are analyzed. Upon these structures, the payo
 matrix is obtained. As the Attacker and IDS
agents interact continually, the stage IDG is extended to a repeated IDG and its payo
s are correspondingly de�ned. 	e optimal
strategies based on QRE are then obtained. 	ese optimal strategies considering bounded rationality make IDS agents not always
be in Defend. Sensor nodes’ power consumed in performing intrusion analyses can thus be saved. Experiment results show that
the probabilities of the actions adopted by the Attacker can be predicted and thus the IDS can respond correspondingly to protect
WSNs.

1. Introduction

Recently, Wireless Sensor Networks (WSNs) have attracted
considerable concerns owing to their broad applications.
Typical examples exist in environment monitoring, health
monitoring, earthquake monitoring, objects tracking, and so
on [1]. One of the major issues that we must face is how to
guarantee security of WSNs before they are widely applied.
Similar to traditional networks, there are to realize secure
WSNs and prevention- and detection-based mechanisms [2–
8]. 	e prevention-based mechanism, which aims to prevent
any attack before it occurs, includes cryptography, key man-
agement, and authentication. On the contrary, the detection-
based mechanism is to identify speci�cally those compro-
mised nodes a�er they have broken down themeasures taken
by the prevention step. 	is mechanism is generally applied
using Intrusion Detection System (IDS) as the second line of
defense, while the prevention-based mechanism is referred
to as the �rst line of defense. With an IDS, key data such as

intruder identi�cation, intrusion time, and intrusion activity
are provided to mitigate and remedy attack inuences.

Currently, lots of IDSs [9, 10] have been proposed for
various WSNs structures to provide an important secu-
rity mechanism against both insider and outsider attacks.
However, applying an IDS to WSNs is challenging since
sensor nodes have resources limited in terms of energy,
memory, computation, and communication capacities. Gen-
erally, di
erent methods including anomaly-, misuse-, and
speci�cation-based detection are computationally expensive,
which are particularly costly for small sensor nodes. 	is
situation motivates us to seek optimal strategies of intrusion
detection to possibly save sensor nodes’ resources.

As a formal and mathematical tool that studies competi-
tion among involved individuals, game theory has provided
us with an e�cient method to explore optimal strategies in
the �eld of intrusion detection ofWSNs [11–14]. Nevertheless,
game-theoretic approaches have a common assumption in
which players are completely rational and the solutions
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to games are based on Nash Equilibrium (NE). In real-
world applications, however, all Attackers (a player in game
theory) may not be always rational and they do not even
care about being detected. 	erefore, NE-based solutions are
not suitable for such circumstances and we need a more
appropriate method to solve Intrusion Detection Games.

Nowadays, Quantal Response Equilibrium (QRE) has
turned into a popular alternative to the traditional NE
in behavior game theory. 	e QRE model maintains the
assumption that individuals have beliefs that are supported
in equilibrium by the strategies that players choose, but
with the assumption that players make systematic mistakes
or deviations in their choices [15]. 	ere are two reasons
resulting in the deviation behavior. One is called bounded
rationality. 	e other is that players’ payo
s are inuenced
by social preference in which subjects appear altruistic or fair
or seek to reciprocate fairness or seek to limit inequality in
payo
s [15].

In this paper, QRE is adopted to seek optimal strate-
gies of saving IDS agents’ power in WSNs. Considering
the characteristics of sensor nodes, we construct a stage
Intrusion Detection Game to describe interactions between
the Attacker (a player) and IDS agents (the other player).
	e preference structures for the Attacker and IDS agents
are de�ned, which lead to form payo
s of players. As the
stage game evolves (the Attacker and IDS agents interact
continually), we extend it to a repeated game and de�ne
the corresponding payo
s. We further obtain QRE-based
strategies to show how the Attacker and IDS agents will select
their actions.

To the best of our knowledge, this paper is the �rst work
to focus on exploring QRE-based strategies for intrusion
detection in WSNs. 	e main contributions of this paper are
summarized as follows:

(1) we formulate a stage Intrusion Detection Game
according to Binmore’s method to study strategies of
malicious sensor nodes and IDS agents, which is able
to reect interactions between the Attacker and IDS
agents as well as their preferences;

(2) we extend the stage Intrusion Detection Game to a
repeated Intrusion Detection Game by rede�ning the
corresponding payo
s, which is able to reect the
reality that malicious sensor nodes and IDS agents
interact continually;

(3) instead of NE-based strategies, we obtain QRE-based
strategies of the Attacker and IDS agents, which
satis�es such a situation to the point that the Attacker
and IDS agents always make their decisions with
bounded rationality;

(4) we realize an implementation of applying the repeated
Intrusion Detection Game to WSNs based on the
algorithm of calculating QRE-based strategies that
can predict the Attacker’s future behavior.

	e rest of this paper is organized as follows. In Sec-
tion 2, we overview related work to distinguish the di
erence
between our work and other related works. In Section 3, we
construct our stage Intrusion Detection Game for WSNs and

extend it to a repeated game. Further, we give a method of
calculatingQRE-based strategies. In Section 4, we implement
an intrusion detection mechanism based on QRE-based
strategies and give the corresponding algorithm. In Section 5,
we perform experiments to show how the repeated Intrusion
Detection Game is actually played. Finally, conclusions are
provided in Section 6.

2. Related Work

IDSs in WSNs have attracted considerable attention. In the
good survey, Butun et al. [5] presented detailed information
about IDSs and the applicability of IDSs to WSNs, which
are followed by the analysis and comparison of each scheme
along with their advantages and disadvantages. Al-Hamadi
and Chen [16] considered an optimization problem for the
case where a voting-based distributed intrusion detection
algorithm is employed to detect and isolate malicious nodes
in WSNs. 	ey then can dynamically determine the best
redundancy level to apply to multipath routing for achieving
the case of intrusion tolerance. In another paper [17], they
analyzed dynamic redundancy management of integrated
intrusion detection and tolerance, which is to maximize
the lifetime of homogeneous clustered WSNs. To cope with
potential Denial of Service attacks in WSNs, Cho et al.
[18] proposed a partially distributed intrusion detection
system with low memory and power requirements. In [19],
Farooqi et al. proposed a novel intrusion detection mecha-
nism including online prevention and o�ine detection for
securing WSNs from routing attacks. To obtain e�cient
performance under limited computation resources of sensor
nodes, Kim et al. [20] developed a Wu-Manber algorithm-
based network intrusion detection system. By integrating
systemmonitoringmodules and intrusion detectionmodules
in WSNs, Sun et al. [21] proposed an extended Kalman �lter-
based mechanism to detect false injected data. 	ey further
combine cumulative summation and generalized likelihood
ratio to increase detection sensitivity. Shamshirband et al.
[22] developed a cooperative-based fuzzy arti�cial immune
system, in which the Cooperative-Decision-Making Module
incorporates the danger detector module with the fuzzy Q-
learning vaccination module to produce optimum defense
strategies for detecting intrusion in WSNs. In addition,
Riecker et al. [23] proposed a lightweight, energy-e�cient
IDS, where mobile agents are used to detect intrusions based
on the energy consumption of the sensor nodes.

Since selecting the pro�table detection strategy is able to
lower resources consumption, game theory has been widely
applied to obtain these optimal strategies. For example, the
optimal strategies of launching IDS agents installed in sensor
nodes are obtained by the signaling game in [24]. To deter-
mine the best defense strategies, Huang et al. [25] proposed
a Markovian IDS incorporating game theory with anomaly
and misuse detection, where Markov decision processes are
employedwith an attack-pattern-mining algorithm to predict
future attack patterns. Moosavi and Bui [26] considered non-
zero-sum discounted stochastic games to formally formulate
and analyze the intrusion detection problem in WSNs. 	ey
assumed that the game data are not to be fully known to
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the players and achieved a robust optimization approach
to address this data uncertainty. On the contrary, a zero-
sum stochastic game is applied in [27] to predict malicious
behavior of Attackers. In [28], Shen et al. formulate a
malware-defense di
erential game, in which the system can
dynamically choose its strategies to minimize the overall
cost whereas the malware intelligently varies its strategies
over time to maximize this cost, to obtain optimal dynamic
strategies for the system. In addition, cooperative games
are also applied to formulate intrusion detection problem
in WSNs. Shamshirband et al. [29] combined the game-
theoretic approach and the fuzzy Q-learning algorithm to
implement cooperative defense counter-attack scenarios for
the sink node and the base station. 	e game is composed
of three players consisting of sink nodes, a base station, and
an Attacker and performs when a victim node in WSNs
receives a ooding packet as a DDoS attack beyond a speci�c
alarm event threshold. To obtain secure and reliable defenses
of virtual sensor services in cloud-assisted WSNs, Liu et
al. [30] proposed a stochastic evolutionary coalition game
which is able to decide how evolutionary coalitions should
be dynamically formed for reliable virtual-sensor-service
composites to deliver data and how to adaptively defend in
the face of uncertain attack strategies.

Among various game types, a repeated game consists of
some number of repetitions of a stage game. Such a game is
generally divided into two categories: �nitely and in�nitely
repeated game, depending on whether interactions among
players are �nite or in�nite. Players in a repeated game
must consider the e
ects produced by their current chosen
strategies on the opponents’ strategies in subsequent rounds
[31].	e same stage game, when played repeatedly,may result
in di
erent equilibriums. 	erefore, each player must take
optimal reactions against the opponent, whichwill a
ect one’s
payo
s in future.

Some applications of repeated game have been devoted
to various aspects in wireless networks. Agah and Das
[32] formulated a repeated game between IDS and sensor
nodes to prevent Denial of Service (DoS) attacks in WSNs.
Upon their proposed game, a protocol was proposed to
category di
erent sensor nodes based on their behavior.
In [33], Pandana et al. proposed a self-learning repeated
game framework to overcome sel�shness and noncoopera-
tion of autonomous nodes in wireless ad hoc networks. 	e
framework ensures the cooperation among nodes for the
current packet forwarding and �nds the better cooperation
probabilities by self-learning algorithms. Chen et al. [34]
constructed a repeated game model based on reputation
for wireless networks to fully utilize the scarce spectrum
resource. 	e model is able to help multiple primary and
secondary users coexist and share the spectrum. Using
a repeated game to enforce cooperation among nodes in
wireless networks, Kong and Kwok [35] proposed an e�cient
packet-scheduling algorithm that leads to an equilibrium.
Upon the algorithm, the wireless channel resources are
fully utilized. 	e other typical cooperation applications
of repeated game are composed of cooperative multicast
[36], network selection [37], and power trading [38]. In
addition, Sagduyu et al. [39] formulated a repeated game

under network uncertainty to deal with jamming attacks in
wireless networks. A multiattacker repeated colluding game
is proposed in [40] to �nd subgame equilibriums that indicate
the optimal strategies of Attackers. Upon these equilibriums,
a security policy is established to detect malicious nodes
that collude with each other to launch the selective for-
warding attacks. Moreover, cognitive radio users, using a
repeated game in [41], can adapt their power by observing
the interference from the feedback signals of primary users
and transmission rates obtained in the previous stage. Zhu
and Mart́ınez [42] developed a repeated game to solve the
coverage optimization problem of mobile sensors. To defend
against multistage attacks, Luo et al. [43] modeled a two-
player non-zero-sum noncooperative dynamic multistage
gamewith incomplete information to �nd the best actions for
defenders. Sun et al. [44], considering inherent uncertainty
of nodes in ad hoc networks, proposed a power control
mechanism with a dynamic repeated game-theoretic frame-
work. Smith et al. [45] proposed a dynamic noncooperative
repeated game for transmitting power control across multi-
source-destination distributed wireless networks. Recently,
the “zero-determinant strategies” [46–50] of a repeated game
have attracted much attention in scienti�c world. In partic-
ular, Farraj et al. [48] employed a repeated game-theoretic
formulation to describe the interactions of the parties in
cyber-enabled power systems. Transient stabilization over
time using zero-determinant strategies is obtained to indicate
the potential of the constrained controller.

Based on the repeated game, QRE developing the concept
of NE considers bounded rationality and thus is pro�table
to describe the dilemma of security source allocation. To
�t the bounded rationality of human adversaries in security
game, Yang et al. [51] modeled human behavior of adversaries
and provided new mathematical models based on prospect
theory and stochastic discrete choice model. A modi�cation
of QRE is proposed to develop algorithms that are e�cient
to compute the best response of the security forces when
playing against the di
erent adversaries. In [52], QRE is used
to capture players’ bounded rationality and to model internal
Attackers’ behavior. 	e results are able to predict how an
internal Attacker will act in future. 	en, a detailed game-
based detection algorithm taking advantage of these results
is described in detail.

3. Constructing Intrusion Detection
Game for WSNs

3.1. Network Model. According to classi�cation based on
the installation location of IDS agents, there are purely
distributed, purely centralized, and distributed-centralized
structures [53]. For the purely distributed situation, each
sensor node has been equipped with an IDS agent that locally
examines malicious actions from neighboring sensor nodes.
On the contrary, for the purely centralized situation, the base
station (BS) has been equipped with the IDS agent, where
a special protocol is necessary to gather information from
sensor nodes to examine the behavior of sensor nodes. In
addition, for the distributed-centralized situation, monitor
sensor nodes are introduced and have been equipped with
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Figure 1: Network model [24].

IDS agents. Not only do these monitor nodes perform
activities like normal nodes, but also they check for intrusion
detection.

Our network model adopts the same one in [24], as
depicted in Figure 1. 	is model belongs to the distributed-
centralized case. However, under clustering hierarchy, each
sensor node has been equipped with an IDS agent, which
is not the same as the situation where IDS agents are only
installed inmonitor sensor nodes.When an energy-abundant
sensor node is elected as a cluster head (CH), the deployed
IDS agent will launch simultaneously while the IDS agents in
member sensor nodes are in sleep. 	erefore, a CH executes
the task of intrusion detection by the IDS agent in addition to
aggregating and sending data.

3.2. Stage Intrusion Detection Game

De�nition 1. 	e stage Intrusion Detection Game (IDG) is a
3-tuple G = (N,A,U), where

(1) N = {Attacker �, IDS agent�} is a set of players;

(2) A = A� ×A�, whereA� = {Cooperate (�), Preattack
(�), Attack (�)} and A� = {Sleep (�), Grant (�),
Defend (	)} are the sets of actions adopted by players
� and �, respectively;

(3) U = U� × U�, where U� = {
�(��) : A� �→ R} and
U� = {
�(��) : A� �→ R} are the sets of payo
s of
players � adopting strategy �� and � adopting strategy
��, respectively.

In De�nition 1, we consider that the game is played by
the Attacker (�) versus the IDS agents (�). Player � is in fact
referred to malicious sensor nodes that have such purposes
as to listen to sensor information, devastate a sensor node’s
communication abilities, or entirely disable a sensor node.
On the other hand, player � is referred to IDS agents that are
initially installed in CHs.	e goal of our Intrusion Detection
Game is, from the view of game theory, to supply optimal

strategies for IDS agents in response to the Attacker selecting
its strategies dynamically.

As an Attacker, player � has three possible actions. It may
take the action Cooperate (�), meaning that it acts normally
during communications among other sensor nodes. 	is
action disguises it to avoid being captured by its opponent.
However, the intentions of player � are hostile, and therefore
its aim is to systematically arrange methods so that it can
attack other sensor nodes for its own pro�ts. Generally, it
might disclose private information of other sensor nodes
for obtaining other information required for it to �nish an
attack.	ese actions are known as reconnaissance attacks and
can be summarized as the action Preattack (�). Moreover,
an Attacker �nally achieve the phase in which the action
Attack (�) is made to obtain its expected pro�t.	is action is
without doubt themost threatening action among all. It raises
and strengthens the seriousness of the problem and leads to
many unexpected results such as a network unavailable for its
legitimate sensor nodes, inaccurate sensing information, and
leaking private data. In summary, the set of actions of player
� is {�, �, �}.

To confront Attackers, player � also has three actions. Due
to limited resources in sensor nodes, the strategy that IDS
agents are always inDefend is not optimal. Otherwise, cluster
heads installed IDS agents will consume their power quickly
since processing intrusion detection is generally costly. Player
� may therefore take the action Sleep (�) for saving energy.
A�er launching IDS agents, it may grant sensor nodes to
continue when no malicious behavior has been discovered.
Note that two cases result in the fact that player � takes this
action Grant (�). One case is that the Monitored Events are
truly normal. 	e other is that IDS agents cannot detect the
malicious events since any IDS has the false negative rate. In
addition, player � will take the action Defend (	) to stop the
work of malicious sensor nodes once violations are detected.
In a summary, the set of actions of player � is {�, �,	}.

Based on the above analyses, there are nine possible
combinations between the Attacker’s actions and the IDS
agent’s actions. For example, strategy pro�le (�, �) means
that player � acts normally and player � is in sleep for saving
energy. (�, �)means that player � acts in a preattack step and
player � grants its opponent to continue for not detecting
reconnaissance attacks. (�,	) means that player � performs
attacking behavior and player � prevents its opponent from
its malicious work to protect sensor nodes.

Finally, let us quantify preferences and payo
s of players
in the stage IDG. Let the symbols ≻ and ∼ be the preference
and indi
erence, respectively. For example, if � ≻ �, then it is
said that � is preferred to �.

For the player Attacker, it is most pro�table to attack
successfully theWSNs without being defended. Since the IDS
agents taking the action Sleep or Grant cannot defend the
Attacker, the preference of strategy pro�le (�, �) is indi
erent
to that of (�, �). Its next choice is to take the action Cooperate
without being defended. 	e following preference action is
Preattack without any deterrence. 	e action Attack that
is defended follows the Attacker’s favorite, which is more
preferable than the action Cooperate that is defended. Finally,
the worst choice is the action Preattack responded by the
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Table 1: Payo
 matrix.

� � 	
� (6, 8) (6, 7) (1, 4)

� (4, 3) (4, 2) (0, 5)

� (8, 1) (8, 0) (2, 6)

action Defend. 	e above analyses result in the following
preference structure:

(�, �) ∼ (�, �) ≻ (�, �) ∼ (�, �) ≻ (�, �) ∼ (�, �)

≻ (�,	) ≻ (�,	) ≻ (�,	) .
(1)

With respect to the player IDS agents, themost preferable
pro�le is the action Cooperate followed by the action Sleep.
	e following is the action Cooperate followed by the action
Grant since taking the action Grant spends more power for
detection than taking Sleep. When it takes the action Defend,
it prefers orderly the actionsAttack, Preattack, andCooperate.
It next prefers the action Preattack followed orderly by the
actions Sleep and Grant. 	e least preferable pro�le is the
action Attack followed by the action Grant. 	erefore, the
preference structure attained is

(�, �) ≻ (�, �) ≻ (�,	) ≻ (�,	) ≻ (�,	) ≻ (�, �)

≻ (�, �) ≻ (�, �) ≻ (�, �) .
(2)

According to Binmore’s method [54], rational numbers
are assigned to reect players’ preferences ranked in (1) and
(2). 	en, a�er being multiplied with their least common
factor, the values of payo
 functions 
� and 
�, free of
fractions, can be formed in Table 1.

3.3. Repeated Intrusion Detection Game. In the realistic
WSNs, interactions between players Attacker and IDS agents
are continually performed. 	erefore, the stage IDG will be
played more than once and it is reasonable to model these
interactions as a repeated game. Generally, a repeated game
is a particular style of an extensive form game in which each
stage is a repetition of the same strategic-form game. 	e
times of playing a repeated game may be �nite or in�nite. If
the gamenever ends (Attacker and IDS agent interact forever)
or players (Attacker and IDS agent) do not know when the
game ends, it is called an in�nitely repeated game, which will
be employed in this paper. In a repeated game, a strategy is an
entire plan of action described in the stage game. When each
stage ends, all players are able to observe the consequence of
the stage game and make a choice to select the future actions
depending on the history of actions. 	e overall payo
 in
a repeated game is denoted by a normalized discounted
aggregate of the payo
 at each stage game. Our repeated
Intrusion Detection Game (RIDG) can be de�ned as follows.

De�nition 2. 	e in�nite �-discounted RIDG is composed of
repeated game G, which is denoted by G(∞, �), where

(1) the set of players isN de�ned in De�nition 1;

(2) for every player � ∈ {�, �}, its overall strategy at the �th
stage IDG is ��� = [��(ℎ0), ��(ℎ1), . . . , ��(ℎ�)], where

j

i

j

Sleep

Sleep

Grant

Defend

Cooperate

j

Sleep

Grant

Defend

Preattack

j
Sleep

Grant

Defend

Attack

i

j
Sleep

Grant

Grant

Defend

Cooperate

j

Sleep

Grant

Defend

Preattack

j
Sleep

Grant

Defend

Attack

Defend

Cooperate

j
Sleep

Grant

Defend

Preattack

j
Sleep

Grant

Defend

Attack

i

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

2:2

2:2

2:1

2:1

2:1

1:1

1:2

1:2

2:2

2:2

2:2

2:2

Figure 2: Repeated Intrusion Detection Game.

ℎ�, � ∈ {0, 1, . . . , �}, denotes the �th history stage and
��(ℎ�) denotes the strategy adopted by player � at the
�th history stage;

(3) for every player � ∈ {�, �}, its overall payo
 is the �-
discounted average of instant payo
s fromeach round
of the repeated Intrusion Detection Game.

Figure 2 shows a representation of the RIDG in extensive
form. In fact, an Attacker is perfectly aware of IDS agents’
past actions because IDS agents exert actions on the Attacker.
In other words, player �’s (IDS agents’) actions are perfectly
known by player � (Attacker). On the other hand, player � is
imperfectly aware of player �’s past choices because player �
judges its opponent’s actions with uncertainty. Consequently,
the RIDGbelongs to a repeated dynamic gamewith imperfect
information.

From Figure 2, player � �rst takes an action at the
beginning node. It may select action Cooperate, Preattack, or
Attack. Next, player � responds to its opponent with action
Sleep, Grant, or Defend. As soon as it selects action Defend,
the game ends. Except for this case, the game will be played
repeatedly.

Now, let us de�ne players’ payo
s for the repeated IDG.
Players Attacker and IDS agents strive to maximize their
expected payo
s over multiple rounds of the stage IDG.
	e expected payo
 is generally described as a sum of per-
period payo
s, multiplied by a discount factor �, � ∈ [0, 1).
If the discount factor is not too high, the players then are
interested enough in future outcomes of the game. Both
players therefore put more weight on the current payo
 than
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Figure 3: Implementation of applying our RIDG to WSNs.

on the future payo
s. 	e total payo
 for player �, � ∈ {�, �},
is given as


�� (��) =
�
∑
�=0

��
�� (��) , (3)

where 
��(��) denotes the payo
 obtained by player �, � ∈
{�, �}, adopting strategy �� at slot time, �, � = 0, 1, 2, . . . , �.
Further, in the repeated game with in�nite rounds, the
total payo
 in (3) is o�en averaged. 	erefore, the average
discounted payo
 for player �, � ∈ {�, �}, can be expressed
as


�� (��) = (1− �)
�
∑
�=1

��
�� (��) . (4)

Next let us analyze the total number of strategy pro�les
in our RIDG. Generally, as an in�nitely repeated game, the
total number of strategy pro�les at the �th stage is computed
by multiplying the number of history strategy pro�les at all
stages 0, 1, . . ., � − 1, with the number of actions to be played
at the �th stage. However, in our RIDG, the action Defend
adopted by player �means that the game ends. In this sense,
the number of combined actions excluding the terminal
action Defend is 3 × 2 = 6. 	erefore, the total number of
strategy pro�les at the �th stage, ��, can be computed as

�� = 6× ��−1, � = 1, 2, 3, . . . , (5)

where �0 = 9.
From (5), we can see that the total number of strategy

pro�les of our RIDGwill increase quickly as the number of all
repeated stage IDGs grows. As a result, complexity to predict
the future behavior of player � by computing the NE of a
subgame becomes higher and higher, which motivates us to
�nd an optimal alternative, QRE.

3.4. QRE-Based Strategies. QRE for extensive form games is
�rst de�ned by McKelvey and Palfrey [55], which provides
an equilibrium notion with bounded rationality. QRE is not
an equilibrium re�nement, and it can obtain signi�cantly
di
erent results from NE. It is only de�ned for games
with separate strategies, regardless of the fact that there are
repeated-strategy analogues. In particular, it is developed as

a probabilistic extension of NE and can be used to give
reasonswhy playersmight systematically deviate from theNE
path. 	is is because players in QRE are assumed to make
errors in selecting which strategy to play. 	e probability of
any particular strategy being picked is positively related to the
highest expected payo
 from that strategy.	erefore, strategy
choices in QRE are probabilistic rather than deterministic.

	e characteristic that QRE provides equilibrium with
bounded rationality is realized by introducing a rationality
parameter to the payo
. 	e rationality parameter denoted
by � is changed during the process of QRE converging to
the NE. When � = 0, players are completely irrational.
	is case means that even though a player cannot obtain
greater payo
, players Attacker and IDS agents will select
another strategy other than the one indicated by NE. On the
contrary, when � → ∞, players will follow NE since they
become completely rational in this case. So far, the QRE can
be calculated by

���� =
exp (� ⋅ 
�� (��))

∑�∈A� exp (� ⋅ 

�
� (�))

, (6)

where ���� is in fact the probability of player �, � ∈ {�, �},
selecting strategy ��. From (6), QRE-based strategies of
players Attacker and IDS agents can be obtained, respectively.
In essence, QRE-based strategies are based on the introduc-
tion of payo
 perturbations associated with actions adopted
by players Attacker and IDS agents. 	e probability of a
strategy pro�le is positively related to the average discounted
payo
s held by players. 	e set of QRE can be regarded as a
correspondence mapping the rationality parameter � into a
set of mixed strategy (the probability that each action of IDS
agents will be selected by IDS agents) inA.

4. QRE-Based Intrusion Detection for WSNs

As given in Figure 3, we realize an implementation of applying
our RIDG to WSNs. 	e data ow begins with member
sensor nodes that are being monitored by the IDS agents
installed in the corresponding CH. 	ese member sensor
nodes may be normal or malicious, so they take possible
actions including Cooperate, Preattack, and Attack. As soon
as the IDS agent is woken by events of member sensor nodes,
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(1) � ← 1;
(2) Initialize game parameters required in De�nition 2;
(3) Do UNTIL the end of interactions between players Attacker and the corresponding IDS agent
(4) Woken byMonitored Events;
(5) Judge whetherMonitored Events are normal or malicious with the known intrusion detection techniques;
(6) IF the output of detection is malicious THEN
(7) IF the RIDG is not existed THEN
(8) Construct the �rst stage RIDG with game parameters includingN,A, andU;
(9) ELSE
(10) Obtain the current stage RIDG from the Stored Game Data;
(11) ENDIF
(12) Compute ���� according to (6);
(13) Compute 
��(��) according to (4) and store it into the Stored Game Data for the next stage RIDG;
(14) Combine IDS results and ���� , and send them to Administrator;

(15) ENDIF
(16) � ← � + 1;
(17) ENDDO

Algorithm 1: QRE-based intrusion detection algorithm for IDS agents.

it �lters the Monitored Events and employs an IDS engine to
judge whether an event is normal or not.

Generally, IDS agents have been previously con�gured to
make them more accurate and reliable, through Con�gura-
tion Data sent by Administrator. Upon completion of events
detection, the relevant results will be temporarily stored for
the �nal decision. On the other hand, the IDS agent starts to
initialize game parameters required in De�nition 2. It accepts
the results of events detection and formulates the RIDG.
When the RIDG is constructed at the �rst stage, preferences
and payo
s of two players, which have been stored in the
Stored Game Data, are manually set by Administrator. 	e
IDS agent then, employing (6), calculates the QRE probabil-
ities with the events detection results and the stage RIDG.
	eQREprobabilities attainedwill be combinedwith the IDS
results, and this combination will be sent to Administrator
who may take Control Actions on member sensor nodes
through the IDS agent. A�er one round of RIDG is played,
the game parameters will be updated to the Stored Game
Data. In particular, the payo
s of two players are adjusted
according to (4), which will be used in the next stage RIDG.
	e above process will then be repeated until the IDS agent
selects action Defend. In fact, reaching this point means the
end of interactions between players Attacker and IDS agents.
Next, we describe the algorithm for the process of QRE-based
intrusion detection (Algorithm 1).

5. Experiments

With Gambit [56], QRE-based strategies are calculated to
show us how the RIDG is actually played, as illustrated in
Table 2 and Figures 4 and 5. 	ese illustrations show that
we are able to predict the Attacker’s actions, so that the
corresponding IDS agent can adopt the appropriate action in
advance. Calculations begin with equal probabilities for each
action. In thismanner, every action has a probability of 0.3333
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Figure 4: QRE-based strategies for the player Attacker.

or so, since there are three actions for each player. In addition,
the rationality parameter � starts with � = 0 at step 1.

	e trend of actions adopted by the Attacker is shown in
Figure 4, where �-axis represents the probability the Attacker
will select a certain strategy for a given �. It is remarkable that
the probability of the Attacker adopting the action Cooperate
or Preattack is gradually decreasing while the probability of
the action Attack is increasing. From Table 2, when � ≈
3.238326, the probability of the actionPreattack becomes zero
approximately.	is case means the action Preattack has been
eliminated from this step. Adapting the Attacker’s strategies
continually, it is � ≈ 161.049147, when the selection by the
Attacker of the action Attack becomes certain. 	is means
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Table 2: QRE calculations for the players Attacker and IDS agents in the RIDG.

Step � Attacker IDS agents

Cooperate Preattack Attack Sleep Grant Defend

1 0 0.333333 0.333333 0.333333 0.333333 0.333333 0.333333
2 0.010248 0.333301 0.327668 0.339031 0.333302 0.329903 0.336795
3 0.021502 0.333192 0.321514 0.345294 0.333192 0.326104 0.340703
4 0.033854 0.332985 0.314843 0.352172 0.332978 0.321894 0.345128
5 0.047402 0.332655 0.307631 0.359715 0.332625 0.317226 0.35015
6 0.062251 0.332172 0.299857 0.367971 0.332088 0.312046 0.355866
7 0.078512 0.331504 0.291508 0.376987 0.331314 0.306297 0.36239
8 0.0963 0.330612 0.28258 0.386808 0.330231 0.299913 0.369856
...

...
...

...
...

...
...

...
47 3.238326 0.0376928 0.00147867 0.960829 2.83! − 07 1.11! − 08 1

48 3.502404 0.0292182 0.000880193 0.969902 6.29! − 08 1.89! − 09 1

49 3.797081 0.021933 0.000492093 0.977575 1.21! − 08 2.71! − 10 1
...

...
...

...
...

...
...

...
89 161.049147 1.14! − 70 1.30! − 140 1 0 0 1

90 177.142263 1.17! − 77 1.37! − 154 1 0 0 1

91 194.844691 2.40! − 85 5.76! − 170 1 0 0 1
...

...
...

...
...

...
...

...
104 672.367387 9.88! − 293 0 1 0 0 1

105 739.592327 6.27463! − 322 0 1 0 0 1

106 813.539761 0 0 1 0 0 1
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Figure 5: QRE-based strategies for the player IDS agents.

that if � is greater than 161.049147, then the Attacker always
selects the actionAttack that is in fact theNEof the stage IDG.

Figure 5 shows the trend of actions adopted by IDS
agents, where the probability of the action Sleep or Grant
is decreasing and the probability of the action Defend is
increasing. However, compared to the changeable trend of

the selection by the Attacker, the action adopted by the IDS
agents converges quickly to the action Defend that is the NE
of the stage IDG. 	is point, from Table 2, is obtained when
� ≈ 3.238326 for the IDS agents while � is 161.049147 or so
for the Attacker.

6. Conclusion

To save sensor nodes’ power, we have put forward a method
based on QRE to make IDS agents not always be in Defend.
A stage IDG that is able to reect interactions between the
Attacker and IDS agents has been formulated, where we
have thoroughly considered players’ preferences and have
assigned payo
s of players according to Binmore’s method.
To reect the reality that the Attacker and IDS agents interact
continually, we have extended the stage IDG to a repeated
IDG and have de�ned the corresponding payo
s. Further, we
have given the method of calculating QRE-based strategies
that predict theAttacker’s future behavior. As a result, optimal
reactions can be suggested to the IDS agents to protectWSNs.

In the future, to extend the current game model RIDG
when taking into accountmultiple Attackers thatmay collude
is an interesting work.
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